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Abstract 

Several studies have addressed the biomass and volume of trees using Airborne Light 

Detection and Ranging (LiDAR ) data. However, little research has been conducted into 

shrub vegetation, which covers a high percentage of Mediterranean forest. We used 

LiDAR data and an airborne image to estimate biomass and volume of shrub vegetation. 

Field data were collected in 29 square plots of 100 m2. In each plot, the percentage of 

the surface covered was measured in the field. Shrub vegetation inside 3 stands for each 

plot was clear cut to calculate the biomass and volume of the 29 plots. To find the best 

fit between LiDAR-spectral data and field measurements, stepwise regressions were 

performed using previously selected variables. The highest accuracy was found when 



variables derived from LiDAR data and the airborne image were combined (R2 values of 

0.78 and 0.84 for biomass and volume, respectively). Biomass and volume were 

predicted using variables from height metrics of LiDAR data (median and standard 

deviation); density metrics (percentage of points whose height was between 0.50 m to 

0.75 m, 0.75 m to 1 m, and higher than 1 m); and spectral data (standard deviation of 

green band, mean of the vegetation index NDVI). These results revealed the potential of 

LiDAR and spectral data to characterize shrub structure and make it possible to estimate 

and map the biomass and volume of this vegetation. 
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1. Introduction 

A high percentage of Mediterranean forest consists of dense, low shrub. The difficulty 

involved in shrub management and the lack of information about shrub behavior means 

that these areas are often left out of spatial planning projects. Nevertheless, these shrub 

ecosystems are important for the environment and landscape because they prevent soil 

erosion and desertification [1]; contribute to managing the wildlife habitat [2]; 

contribute to creating fuel-type maps for better accuracy in fire behavior modeling [3]; 

represent important CO2 sinks; and help refill aquifers [4,5]. For management of forest 

areas, biomass is a key variable as it allows the function and structure of the ecosystem 

across the landscape to be evaluated [6-8]; and it is a potential source of renewable 

energy [9,10].  

 

LiDAR has been used successfully in the last decade in forest applications [11-13]. In 

applications related to forest inventories, two approaches can be followed [14]: (i) 

estimation of the dasometric variables using regressions between field data and statistics 



derived from LiDAR data in a plot or stand [15-18]; and (ii) calculation of the 

dendrometric variables needed to delineate the crown of a tree [10,19,20].  

Little research has been conducted into shrub areas because of the inherent difficulty: 

this vegetation is low and occupies a continuous surface in which individual elements 

cannot be defined. Therefore, only the plot-stand approach can be applied. Moreover, 

their low height requires high accuracy levels in methodology and LiDAR data 

characteristics. Sometimes, buffers are used when vegetation heights measured in the 

field are compared to those calculated from LiDAR data to find the maximum 

correlations between both data [21]. A threshold is usually applied to LiDAR data in 

forestry applications to eliminate points close to the ground [22-24]. This value 

represents the maximum elevation to consider in shrub studies.  

 

Most studies of shrub vegetation using LiDAR data have been based on height 

estimation and presence/absence of shrub vegetation [3,21]. As with trees, shrub height 

is underestimated using LiDAR data [25-27]. In relative terms, this underestimation is 

more important for shrub vegetation as it is lower in height [28-30]. However, less 

attention has been paid to biomass and volume estimation, which are key variables for 

forestry applications. One of the reasons for this is the difficulty of measuring the 

variables to be correlated with LiDAR data in the field. Without this data, the 

parameters extracted from LiDAR data cannot be correlated. Another reason is the lack 

of knowledge of this type of vegetation, unlike trees, where allometric equations are 

defined to estimate dendrometric variables from simple measurements. In studies based 

on mapping the presence or absence of shrub vegetation, good results were obtained 

when only LiDAR data was used [31]. In addition, the detection of this vegetation was 

improved when LiDAR data and spectral information were combined [2,32,33]. Other 



studies successfully used this data combination to produce a classified vegetation map 

[26,34]. In forest applications, it was reported that when these data were all used 

together the prediction models improved significantly [35-38]. Therefore, it is a specific 

issue to analyze whether this combination of data can improve the prediction models for 

biomass and volume of shrub vegetation.  

 

The aim of this paper is to study the possibility of estimating key variables for biomass 

and volume of shrub areas, which cover a high percentage of Mediterranean forest, by 

analyzing the combination of data which produces the highest accuracy in the predicted 

models. The regression equations can be applied to map the volume and biomass of the 

study area [39,40]. The results presented here illustrate the feasibility of estimating 

these variables.  

 

2. Materials and methods  

2.1 Study area 

The 10 km2 study area is located in Chiva (Valencia, Spain), defined by a rectangle 

whose UTM coordinates Xmaximum, Ymaximum, Xminimum, and Yminimum, are 689800 m, 

4376028 m, 683800 m, and 4373000 m, respectively (Fig. 1). The area is located in 

zone 30N in the European Datum 1950 reference system. It is a mountainous area with a 

predominance of Quercus coccifera (Fig. 2), although other species can be found such 

as Rosmarinus officinalis, Ulex parviflorus, Cistus albidus L. and Erica multiflora L. 

These species are the most abundant in Mediterranean forests. The average occupation 

fraction of shrub vegetation is around 0.55. In contrast, there is a sub-area with trees 

occupying a surface fraction of 0.1. The altitude varies from 442 m to 1000 m, and the 

average slope fraction is 0.45.  



 

Fig. 1. Location of study area in Chiva (Spain). The black polygon represents area 

surveyed for LiDAR 

 

 

Fig. 2. Study area photograph with dense presence of kermes oak (Q. coccifera). 

 

2.2 LiDAR and spectral data 

The LiDAR data were acquired during a flight in December 2007, using an Optech 

ALTM 2050 system. The technical parameters were: flight height – 700 m above 



ground; pulse frequency – 50 kHz; scan frequency – 47 Hz; and scan angle – ±18º; 

pulse density points – 4 m-2. However, given that 10 overlapping flight lines were 

registered, some areas had a higher point density. For this reason, the average point 

density of the study area considering all the returns was 8 m-2. The number of echoes 

was 2. A fraction around 99 % of the LiDAR data belonged to the first pulse. This could 

be caused by the small differences between the canopy of vegetation and the ground. 

A spectral airborne image registered by the Ultracam D, made by Vexcel Imaging 

GMBH, was used with a cell size of 0.5 m. This image was acquired in July 2006, and 

it contained three spectral bands: infrared, red, and green.  

 

2.3 Field data 

To assess the digital terrain model (DTM) calculated, 1379 ground-surveyed 

checkpoints throughout the study area were measured using a RTK-GPS system (Leica 

System 1200). To obtain field values of biomass and volume to be correlated to the 

statistics derived from the LiDAR data, two classes of analysis were performed. Firstly, 

a dendrometic analysis was carried out to determine the actual volume and biomass of a 

whole plant from measurable variables, such as the base diameter, height, and weight of 

the plant. Next, a dasometric analysis was performed to calculate the biomass and 

volume occupied by vegetation in a plot. This analysis used measurements taken from 

individual shrubs, and the percentage occupation of each shrub species in a plot.  

 

For the dendrometric analysis (calculation of volume of whole plants), samples of 100-

150 plants of each species were analyzed from 29 square plots of 100 m2, located in 

different bioclimatic layers (elevation), slope, and aspect. The plots were distributed 

randomly among the cells of a grid defined in the studied area. The size of the cell was 1 



km2 and at least one plot with vegetation in each cell was defined.  In order to determine 

the real volume of a whole plant from measurable variables, such as the base diameter 

of the plant and its height, a global form factor was defined [5]. This factor is calculated 

as a quotient of the real volume of the plant and the volume of a geometric model taken 

as reference (Eq. 1).  

 

plant  theof  volumeModel

plant  theof  volumeReal
f                                 (1) 

 

The real volume of each plant was obtained by submerging it in water and determining 

the volume displaced. As a model volume, a solid of revolution (cylinder, paraboloid, 

cone or neiloid) can be used. The cylinder was the solid of revolution best suited to the 

species studied [5]. Therefore, after calculating the form factor, f, and with the field 

measurements of the plants, such as the stem diameter and height, we were able to 

calculate the volume of each plant using Eq. 2 (below), where Vi is the real volume of 

the whole plant, d is the base diameter of the main stem, h the height of the individual 

plant measured for each plant in the sample group, and f the form factor. To calculate 

dry biomass, we considered the weight of each individual both after cutting and after 

applying a drying process. Once the materials were dry, their dry biomass was 

determined. The wet biomass of a plant was its weight measured after cutting only. 

 

fh
d

Vi 



4

2
   (2) 

The dasometric analysis (calculation of the real volume of stands and plots) was carried 

out on the same 29 plots cited above. In each plot, the percentage of the surface covered 

by each species was measured in the field. The vegetation inside 3 stands was clear cut. 



Each stand was circular and one meter in diameter. In each clear cutting, we counted the 

number of shrub plants inside the stand, identified the species, and measured the weight, 

length, and base diameter of stems for each plant. The biomass and real volume 

occupied by each species in each cleared stand was then calculated. The real volume of 

each plant was the result of measuring the diameter and height, and using Eq 2. After 

counting the number of plants of each species in a stand, we calculated their percentage 

and the sum of the volume in a stand. Knowing the area of the stand, we were then able 

to calculate the volume of each species per square meter in the stand by applying the 

percentages of occupation calculated previously. This result was multiplied by the area 

occupied by each species in a plot, thus giving the total volume of vegetation in a plot. 

For biomass, 87 stands were clear cut determining the wet weight of biomass by means 

of a dinamometer. Then, some samples were put into a plastic container to take them to 

laboratory without moisture content losses. Determination of moisture content was done 

according to the norm UNE-EN 14774-2. Samples were placed on metal trays and 

located in a stove with controlled temperature (105 ± 2) ºC. The drying time did not 

exceed 24 h in order to avoid possible unnecessary loss of volatile substances. For 

sample preparation and result registration an electronic balance was used with the 

precision of 0.001 g. To obtain the dry biomass in each stand the wet weight was 

corrected removing the weight of water content. The statistics of field biomass and 

volume are summarized in Table 1. 

 

Table 1. Descriptive statistics of field data for the 29 plots. 

Statistic 
Wet Biomass 

(kg) 

Dry 
Biomass 

(kg) 

Volume 
(m3) 

Mean 659 421 0.48 
Minimum 245 166 0.16 
Maximum 1233 821 1.08 
Standard deviation 280 185 0.22 



2.4 DTM calculation 

 

To compute the DTM from LiDAR data, it is necessary to apply algorithms to eliminate 

points belonging to any object above the ground surface such as vegetation or buildings. 

To achieve this, we generated an IDL program based on iterative processes [22,41]. As 

input data type, we used rasterized point data with a cell size of 1 m2 and selected the 

lowest LiDAR point for each cell. Further information can be found in [42] The DTM 

iterative algorithm had five steps: 

 

Step 1: the study area was divided into windows with an initial window size (v1). In 

each analysis window, the lowest elevation point was selected. With these points, an 

initial DTM (DTM1) was calculated by applying the Delaunay triangulation method. 

Step 2: A smaller analysis window (v2) was selected to find new minimum heights 

from the input data.  

Step 3: We compared the points selected in step 2 with DTM1 (calculated in step 1), 

and selected those that were lower than a defined height threshold (u1). Points with 

differences larger than this threshold were rejected. A new DTM (DTM2) was then 

determined with the selected points.  

Step 4: A window size (v3), smaller than v2, was selected and the minimum height in 

each window was selected.  

Step 5: As in step 3, points of minimum height with a difference compared to DTM2 

greater than a second threshold (u2) were eliminated. The final DTM was calculated 

with the remaining points. 

 

 



2.5 Statistics derived from LiDAR and spectral data 

To estimate the biomass and volume of shrub vegetation, statistics derived from all 

LiDAR point cloud and spectral data were obtained and used as explanatory variables in 

the regression models. For LiDAR data, the bare-earth surface elevation was first 

subtracted from each LiDAR point by using the DTM calculated. Then, for each plot 

the following statistics (LiDAR height metrics) were obtained: maximum height, mean, 

standard deviation, coefficient of variation, kurtosis, skewness, interquartile distance, 

percentile values (5th, 10th, 20th, 25th, 30th, 40th, 50th, 60th, 70th, 75th, 80th, 90th, 

95th).  

 

Given that variables derived from the point distribution in height (density metrics) have 

been used successfully in some forestry applications [16,17,37], we calculated the 

percentage of points belonging to the following height intervals to be considered in the 

biomass and volume models of shrub vegetation: 0.25 m to 0.5 m, 0.5 m to 0.75 m, 0.75 

to1 m, and the fraction of points higher than 1 m. 

 

For the airborne image, the following statistics were calculated: minimum, maximum, 

mean, and standard deviation of the cell values within the plots for the bands green (G), 

red (R), infrared (IR), and NDVI.  

 

The large set of potential predictor variables calculated in the above section (24 

variables calculated from LiDAR point cloud and 16 variables calculated from spectral 

information) would make it hard to explain their physical response. Therefore, we 

needed to reduce the set, and also avoid the selection of highly correlated predictor 



variables. Thus, we calculated a correlation matrix and grouped variables using cluster 

analysis.  

 

2.6 Estimation of biomass and volume 

To estimate biomass (wet and dry) and volume, we performed a stepwise regression 

analysis with the variables selected from the above section. We used two types of data 

in this study, and tested all the possible combinations of these. Firstly, only variables 

derived from LiDAR data were selected. In a second step, we used only spectral 

variables derived from the airborne image. Finally, the biomass and volume were 

estimated combining LiDAR data and the statistics derived from the spectral variables. 

The models obtained were compared by calculating RMSE and R2.  

 

The models with the highest coefficients of determination and the lowest RMSE were 

selected for mapping the biomass of the study area. Initially, the study area was divided 

into cells of 100 m2, the same size as the plots, in which the value of each explanatory 

variable was calculated. Then, we applied the predicted model to estimate biomass and 

volume in each cell. 

 

3. Results and discussion 

3.1 DTM 

In this study, a DTM was calculated to subtract the bare-earth surface elevation from 

each LiDAR point elevation. The lowest RMSE was for analysis window sizes of 10 m, 

5 m and 2.5 m (v1, v2 and v3) and height thresholds equal to, or greater than, 1.5 m. 

These parameters produced a DTM with a mean signed error of 0.02 m, a standard 

deviation of 0.19 m, and an RMSE of 0.19 m.  



3.2 Pre-selection of LiDAR and spectral variables 

There was a high correlation between the mean height and the percentile values, the 

lowest being for the 5th and 10th percentiles (Table 2). The values of maximum, 

kurtosis, skewness, and coefficient of variation showed the lowest correlation of all the 

variables. Standard deviation also showed a low correlation with these values and with 

percentiles 5 through to 50. These results were confirmed in the dendrogram (Fig. 3) 

obtained from the cluster analysis. Fig. 3a reveals how four groups of variables can be 

established in the first steps of clustering. Firstly, maximum, kurtosis, skewness and 

coefficient of variation defined independent groups. Secondly, two additional groups 

were defined. In the first group the following variables were included: 60th, 70th, 75th, 

80th, 90th, 95th, mean, standard deviation, and interquartile distance. The second group 

was defined by the followed variables: 5th, 10th, 20th, 25th, 30th, 40th, and 50th. 

According to these results, we considered maximum, kurtosis, skewness, and coefficient 

of variation as explanatory variables, and we chose two variables from the two 

additional groups which showed a low correlation among the rest of the variables. All 

possible combinations were tested.  

Table 2. Correlation matrix of variables derived of LiDAR height metrics 

Statistic Max Mean Std cv Inter  Skew  Kur  P05  P10  P20  P25  P30  P40 P50 P60 P70  P75 P80 P90 P95

Max 1.00 0.71 0.76 -0.04 0.61 0.39 0.51 0.70 0.62 0.56 0.56 0.55 0.56 0.59 0.63 0.67 0.70 0.71 0.74 0.77

Mean 0.71 1.00 0.83 -0.38 0.76 -0.27 -0.10 0.79 0.84 0.88 0.90 0.91 0.94 0.96 0.98 0.99 0.98 0.97 0.92 0.89

Std 0.76 0.83 1.00 0.17 0.95 0.09 -0.05 0.51 0.46 0.49 0.51 0.52 0.59 0.65 0.74 0.84 0.89 0.92 0.97 0.98

Inter 0.61 0.76 0.95 0.16 1.00 -0.08 -0.25 0.35 0.32 0.37 0.41 0.43 0.52 0.61 0.71 0.82 0.86 0.89 0.93 0.92

 Skew 0.39 -0.27 0.09 0.61 -0.08 1.00 0.78 -0.02 -0.23 -0.37 -0.39 -0.41 -0.44 -0.43 -0.40 -0.32 -0.27 -0.23 -0.11 0.00

 Kur 0.51 -0.10 -0.05 0.10 -0.25 0.78 1.00 0.23 0.12 0.00 -0.03 -0.05 -0.11 -0.15 -0.17 -0.18 -0.18 -0.17 -0.14 -0.07

 P25 0.56 0.90 0.51 -0.68 0.41 -0.39 -0.03 0.85 0.96 1.00 1.00 1.00 0.98 0.96 0.92 0.86 0.82 0.77 0.68 0.63

 P75 0.70 0.98 0.89 -0.28 0.86 -0.27 -0.18 0.70 0.74 0.79 0.82 0.83 0.88 0.92 0.96 0.99 1.00 1.00 0.96 0.93

 P05 0.70 0.79 0.51 -0.53 0.35 -0.02 0.23 1.00 0.95 0.87 0.85 0.83 0.81 0.77 0.75 0.72 0.70 0.67 0.62 0.61

 P10 0.62 0.84 0.46 -0.66 0.32 -0.23 0.12 0.95 1.00 0.97 0.96 0.95 0.92 0.88 0.84 0.77 0.74 0.70 0.61 0.58

 P20 0.56 0.88 0.49 -0.69 0.37 -0.37 0.00 0.87 0.97 1.00 1.00 0.99 0.97 0.94 0.90 0.83 0.79 0.75 0.65 0.60

 P30 0.55 0.91 0.52 -0.68 0.43 -0.41 -0.05 0.83 0.95 0.99 1.00 1.00 0.99 0.97 0.93 0.87 0.83 0.79 0.68 0.63

 P40 0.56 0.94 0.59 -0.64 0.52 -0.44 -0.11 0.81 0.92 0.97 0.98 0.99 1.00 0.99 0.97 0.92 0.88 0.84 0.74 0.69

P50 0.59 0.96 0.65 -0.58 0.61 -0.43 -0.15 0.77 0.88 0.94 0.96 0.97 0.99 1.00 0.99 0.95 0.92 0.89 0.80 0.74

P60 0.63 0.98 0.74 -0.49 0.71 -0.40 -0.17 0.75 0.84 0.90 0.92 0.93 0.97 0.99 1.00 0.98 0.96 0.94 0.87 0.81

P70 0.67 0.99 0.84 -0.35 0.82 -0.32 -0.18 0.72 0.77 0.83 0.86 0.87 0.92 0.95 0.98 1.00 0.99 0.98 0.94 0.90

P80 0.71 0.97 0.92 -0.20 0.89 -0.23 -0.17 0.67 0.70 0.75 0.77 0.79 0.84 0.89 0.94 0.98 1.00 1.00 0.98 0.95

P90 0.74 0.92 0.97 -0.05 0.93 -0.11 -0.14 0.62 0.61 0.65 0.68 0.68 0.74 0.80 0.87 0.94 0.96 0.98 1.00 0.99

P95 0.77 0.89 0.98 0.04 0.92 0.00 -0.07 0.61 0.58 0.60 0.63 0.63 0.69 0.74 0.81 0.90 0.93 0.95 0.99 1.00

Cv -0.04 -0.38 0.17 1.00 0.16 0.61 0.10 -0.53 -0.66 -0.69 -0.68 -0.68 -0.64 -0.58 -0.49 -0.35 -0.28 -0.20 -0.05 0.04  

As with the LiDAR data, we defined three groups of variables for spectral information 

(Fig. 3b). The first group included: minimum values of the IR, R, and G, and mean 

value of IR; the second group: maximum values and standard deviation of IR, R, and G 

bands, mean of the R and B, and standard deviation of the NDVI. The third group 



included: the minimum, maximum, and mean of the NDVI band. High correlation 

among the variables of each group was observed in the correlation matrix (Table 3). We 

selected one variable from each group. In addition to the spectral and height variables 

derived from the LiDAR point cloud and airborne image, we considered the variables 

related to the canopy point density: 0.25 m to 0.5 m, 0.5 m to 0.75 m, 0.75 m to 1 m, 

and the percentage of points higher than 1 m.  

 

Fig 3. Dendrogram of variables derived from LiDAR height metrics (a) and of the 

spectral image (b). 

Table 3.Correlation matrix of spectral variables 

 

3.3 Estimation of Biomass 

The results of the stepwise regressions for estimating dry biomass are shown in Table 4 

for each group of the explanatory variables selected. Namely: statistics derived only 

Statistic IR_Min IR_Max IR_Mean IR_std R_Min R_Max R_Mean R_Std G_Min G_Max G_Mean G_Std NDVI_Min NDVI_Max NDVI_Mean NDVI_Std

IR_Min 1.00 -0.07 0.53 -0.69 0.63 -0.26 -0.12 -0.38 0.82 -0.25 -0.07 -0.38 0.33 -0.22 0.35 -0.37

IR_Max -0.07 1.00 0.44 0.60 0.17 0.85 0.36 0.70 0.02 0.86 0.34 0.72 -0.65 -0.20 -0.10 0.50

IR_Mean 0.53 0.44 1.00 0.09 0.44 0.30 0.36 0.42 0.46 0.32 0.47 0.42 -0.14 -0.07 0.19 0.34

IR_std -0.69 0.60 0.09 1.00 -0.19 0.76 0.63 0.86 -0.49 0.76 0.61 0.88 -0.66 -0.17 -0.54 0.49

R_Min 0.63 0.17 0.44 -0.19 1.00 0.27 0.47 0.13 0.91 0.27 0.46 0.14 -0.29 -0.78 -0.30 -0.12

R_Max -0.26 0.85 0.30 0.76 0.27 1.00 0.68 0.86 0.00 0.99 0.65 0.87 -0.88 -0.43 -0.51 0.51

R_Mean -0.12 0.36 0.36 0.63 0.47 0.68 1.00 0.71 0.20 0.67 0.98 0.73 -0.70 -0.65 -0.84 0.22

R_Std -0.38 0.70 0.42 0.86 0.13 0.86 0.71 1.00 -0.14 0.85 0.71 0.99 -0.77 -0.25 -0.44 0.72

G_Min 0.82 0.02 0.46 -0.49 0.91 0.00 0.20 -0.14 1.00 0.02 0.22 -0.14 -0.03 -0.56 -0.02 -0.22

G_Max -0.25 0.86 0.32 0.76 0.27 0.99 0.67 0.85 0.02 1.00 0.65 0.87 -0.86 -0.42 -0.49 0.50

G_Mean -0.07 0.34 0.47 0.61 0.46 0.65 0.98 0.71 0.22 0.65 1.00 0.74 -0.66 -0.58 -0.76 0.25

G_Std -0.38 0.72 0.42 0.88 0.14 0.87 0.73 0.99 -0.14 0.87 0.74 1.00 -0.77 -0.27 -0.47 0.67

NDVI_Min 0.33 -0.65 -0.14 -0.66 -0.29 -0.88 -0.70 -0.77 -0.03 -0.86 -0.66 -0.77 1.00 0.42 0.64 -0.54

NDVI_Max -0.22 -0.20 -0.07 -0.17 -0.78 -0.43 -0.65 -0.25 -0.56 -0.42 -0.58 -0.27 0.42 1.00 0.68 0.25

NDVI_Mean 0.35 -0.10 0.19 -0.54 -0.30 -0.51 -0.84 -0.44 -0.02 -0.49 -0.76 -0.47 0.64 0.68 1.00 0.02

NDVI_Std -0.37 0.50 0.34 0.49 -0.12 0.51 0.22 0.72 -0.22 0.50 0.25 0.67 -0.54 0.25 0.02 1.00

 
  a)    b) 



from LiDAR data; metrics derived from the spectral variables; metrics derived from 

merging both LiDAR data and spectral variables. The model which gave the lowest R2 

value (0.34) was the one which used only spectral data, which indicated the low 

explanatory power of spectral data for predicting shrub biomass. This finding is in line 

with previous findings on the low ability of this data to describe canopy height 

variations and the vertical distribution of canopy elements [29,43]. In contrast, spectral 

images can be used to map forest species composition [26]. We achieved better results 

for models in which LiDAR metrics were used, as evidenced by the explained variance 

(R2 = 0.67). Previous research has demonstrated the ability of LiDAR data to predict 

biomass for several forest types: Douglas-fir, western hemlock, dry ponderosa pine, and 

birch and spruce forest [18]. Good results were also obtained in forests whose main 

species were black pine, Spanish juniper, and Holm oak [38].  

 

Table 4. Estimation of dry biomass in plots 

Input data Model R2 RMSE (kg) 

LiDAR Bd = -656.5 + 3067.4 H_Std + 3102.9* H_Median - 47.1 p1  

- 18.7 p0.75-1 - 29.2 p0.5-0.75 
0.67 118.2 

Airborne image Bd = 783.5 + 935.5 NDVI_Max - 3.2 IR_Max 0.34 157.1 

LiDAR and 

airborne image 

Bd = -371.5 + 3200.4 H_Std + 2919.1 H_Median - 47.5  p1  

-17.8 p0.75-1 - 32.9 p0.5-0.75 - 7.4 G_Std 
0.79 96.6 

p<0.05  

Bd dry biomass in kg in 100 m2 plots; Independent variables derived from LiDAR data by plots: Median 

of the heights (H_Median) and Standard deviation of the heights (H_Std); variables derived from the 

point distribution in height by plots (density metrics): percentage of points in a plot whose height is 

above 1 m (p1), percentage of points in a plot whose height is between 0.75 m to 1 m (p0.75-1); percentage 

of points in a plot whose height is between 0.50 m to 0.75 m (p0.5-0.75); Variables derived from the 

airborne image by  plots: Standard deviation of the green band (G_Std), maximum value of the infrared 

band (IR_Max), maximum value of the NDVI image (NDVI_Max). 



The best model was obtained when we combined the metrics derived from the LiDAR 

data and the airborne image, which gave R2 and RMSE values of 0.79 and 96.55 kg, 

respectively. LiDAR predicted versus field-measured biomass showed a good linear 

relationship close to the 1:1 line (Fig. 4). Although LiDAR metrics explained the 

majority of the variability in this model, biomass prediction fraction improved by 1 % 

when spectral data was added.    

 

Fig. 4. Scatterplots of predicted biomass versus observed biomass (a) and predicted 

volume versus observed volume (b). 

 

An improvement in the prediction of forest variables when both data are combined was 

also found in other tree studies [35, 44, 45]. This stepwise model included six 

significant variables, the most important of which in terms of the contribution in the 

explicative variation of biomass was standard deviation of heights (H_Std). This 

variable characterizes the canopy structure [38] and describes the variability of the 

vegetation heights in a plot. In our study we observed that the higher the standard 

deviation, the more biomass was estimated. Here, we must emphasise the importance of 

the density metrics for biomass prediction. This finding was in line with other forest 



studies in which variables derived from density metrics were used for predicting 

biomass variation [16,18,37]. We observed that when density metrics were removed 

from the stepwise model, the value of R2 decreased to 0.57. Fig. 5 shows the 

distribution of the points for the plots with the maximum percentage of heights greater 

than 1 m (5a); with the maximum percentage of heights in the interval 0.75 m to 1 m 

(5b); and with the maximum percentage of heights in the interval 0.5 m to 0.75 m (5c). 

As expected, the biomass of the first plot was larger than the rest of the plots. The plot 

with the lowest percentage of points in the intervals 1 m to 2.75 m and 0.75 m to 1 m 

showed the lowest biomass.  

 



Fig. 5. Plot with the highest percentage of points with height greater than 1 m (a); plot 

with the highest percentage of points in the interval 0.75 m to 1 m (b); plot with the 

highest percentage of points in the interval 0.50 m to 0.75 m (c). 

 

Only one variable derived from spectral data was used: standard deviation of the green 

band (G_Std). The results of this were in line with [44]. Fig. 6 shows the relationship 

between the value of the G_Std and the biomass in two plots with maximum and 

minimum presence of vegetation. The upper plot showed a high presence of vegetation. 

This was indicated by the red colour of the plot and the narrow range of low digital 

values for the histogram of the green band. In contrast, the bottom plot showed a 

minimum presence of vegetation. In this case, the histogram of the green band revealed 

two concentrations of digital values: the first one, with low digital values, meant 

presence of vegetation; the second one, with a wider range of higher digital values, was 

related with the soil spectral response (the white colour in the image). In this case, the 

G_Std value was higher. The plot with lower G_Std value showed more presence of 

shrub vegetation (more biomass). This variable in our model contributed to explaining 

the differences between areas with more and less vegetation as well as the differences 

between vegetation areas and the soil. Although the dominant species for the plots was 

Q. coccifera, there were some plots with presence of C. albidus L. We found that in 

plots where the presence of this vegetation was important, the G_Std value was higher 

than for the plots with predominance of Q. coccifera with a higher value of biomass. 

This result may be because the C. albidus L species is characterized by an open canopy 

and therefore the influence of the soil response is higher. 

 

 



In addition to the models shown, we proved that when the standard deviation and 

median of the heights were replaced by the mean and the 10th percentile, R2 and RMSE 

values of 0.77 and 101.1 kg were obtained, respectively. The selection of mean height is 

congruous with earlier work indicating that mean height of LiDAR data is a strong 

predictive variable in tree biomass studies [18,24].  

 

 

Fig. 6. Green band histograms and images in false color (RGB: infrared, red, green) of 

two plots with maximum (upper) and minimum presence of vegetation (bottom). Upper 

plot with dry biomass of 821.27 kg and standard deviation of the green band 26.90; 

bottom plot with dry biomass of 275.5 kg and 38.33 for the value of standard deviation 

of the green band. 



The map of dry biomass (Fig. 7) of the study area was generated by selecting the model 

with the highest coefficient of determination (combination of LiDAR data and the 

airborne image). Clear areas on the image indicate open areas with no vegetation, and 

tree areas. The values of biomass are concentrated on north facing slopes and show a 

great degree of concordance with the field data. It is hoped that this map will contribute 

to improving knowledge of Mediterranean forests and be applied to create fuel-type 

maps for better accuracy in fire behavior modeling, biodiversity, forest management, 

and carbon dynamics. 

 

 

Fig. 7. Map of dry biomass of the study area. Dark green colour shows the areas with 

more biomass, light green areas with less biomass, and light brown areas without shrub 

biomass.  

 



The coefficients of determination for predicting wet biomass (Table 5) were slightly 

lower than those obtained for dry biomass (Table 4). This could be explained 

considering that wet biomass of shrubs is more variable as their irrigation can be very 

different depending on the slope and heatstroke, as it was demonstrated in [5]. This fact 

does not affect in the variability of dry biomass, which produced more accurate models. 

This means that every shrub has the approximately same density and the dry biomass 

only depends on the plant sizes, that area estimated using LiDAR techniques. As with 

dry biomass, the best models were found when variables derived from both LiDAR and 

spectral data were used with R2 and RMSE values of 0.77 and 150.2 kg, respectively.  

 

Table 5. Estimation of wet biomass 

p<0.05  

Bw wet biomass in kg in 100 m2 plots; Independent variables derived from LiDAR data by plots: Median 

of the heights (H_Median) and Standard deviation of the heights (H_Std); variables derived from the 

point distribution in height by plots (density metrics): percentage of points in a plot whose height is 

above 1 m (p1), percentage of points in a plot whose height is between 0.75 m to 1 m (p0.75-1); percentage 

of points in a plot whose height is between 0.50 m to 0.75 m (p0.5-0.75); Variables derived from the 

airborne image by  plots: Standard deviation of the green band (G_Std), maximum value of the infrared 

band (IR_Max), maximum value of the NDVI image (NDVI_Max). 

 

 

Input data Model R2 
RMSE 

(kg) 

LiDAR 
Bw = -932.9 + 4411.5 H_Std + 4782 H_Median - 71.4 p1 – 

27.9p0.75-1 - 44.7 p0.5-0.75  
0.64 185.9 

Airborne image Bw = 1428.6 + 1191.7 NDVI_Max - 5.3 IR_Max  0.32 239.3 

LiDAR and 

airborne image 

Bw = -475.1 + 4625 H_Std + 4486.7 H_Median - 71.9 p1 –      

26.6 p0.75-1 - 50.8 p0.5-0.75 - 11.9 G_Std  
0.77 150.2 



3.4 Estimation of volume 

The stepwise regression models for each group of selected variables are shown in Table 

6. The model with the lowest R2 value was found when only variables derived from 

spectral data were used. These data were only able to explain 0.29 of the variance 

associated with the total volume. As with biomass, these results indicated the low 

ability of spectral data to predict structural variables of shrub vegetation when it is used 

alone. In contrast, better results were obtained when LiDAR data was used for 

predicting volume (R2 = 0.55).  

 

The combination of variables derived from LiDAR and spectral data provided the best 

fit (Fig. 4b), with values of R2 and RMSE of 0.84 and 0.1 m3, respectively. This 

stepwise model included seven significant variables derived from image (G_Std, 

NDVI_Mean), metrics height (H_Std, H_Median) and density metrics of LiDAR data 

(p1, p0.75-1, p0.5-0.75). The most important of which in terms of explanation of variance 

was standard deviation of the green band (G_std), followed by the percentage of points 

whose height was between 0.50 m to 0.75 m (p0.50 and p0.75) and median height 

(H_Median). What was interesting was the contribution of the spectral data for 

predicting volume: when G_Std and NDVI_Mean were added, the R2 value increased 

from 0.55 to 0.84. These variables explained differences between soil and vegetation. 

These results revealed spectral data showed complementary information to the LiDAR 

data for predicting volume.  

 

As with biomass, density metrics showed a strong explanatory power for predicting 

shrub volume. The plots with the maximum number of points in the intervals 0.50 m to 

075 m, 0.75 m to 1 m, and heights greater than 1 m are shown in Fig. 5. As expected, 



the plot with the greatest percentage of points in the interval 0.50 m to 075 m had lower 

volume. In contrast the plot with the maximum percentage of points whose height was 

greater than 1 m had the maximum volume. Consequently, the distribution of the points 

was related to the plot volume occupied by shrub vegetation. 

 

Table 6. Estimation of volume 

p<0.05  

Volume in m3 in 100 m2 plots; Independent variables derived from LiDAR data by plots: Median of the 

heights (H_Median) and Standard deviation of the heights (H_Std); variables derived from the point 

distribution in height by plots (density metrics): percentage of points in a plot whose height is above 1 m 

(p1), percentage of points in a plot whose height is between 0.75 m to 1 m (p0.75-1); percentage of points in 

a plot whose height is between 0.50 m to 0.75 m (p0.5-0.75); Variables derived from the airborne image by  

plots: Standard deviation of the green band (G_Std), maximum value of the infrared band (IR_Max), 

mean of the NDVI image (NDVI_Mean). 

 

4. Conclusions  

This study demonstrates the potential of LiDAR and spectral data to estimate the 

biomass and volume of shrub vegetation. The best results for biomass and volume 

estimation were found when LiDAR data and an airborne image with high spatial 

resolution were combined. We must highlight here the importance of the density 

metrics to estimate biomass and volume. Our study also shows the importance of 

Input data Model R2 
RMSE 

(m3) 

LiDAR 
V = -0.47 + 2.53 H_Std + 3.07 H_Median - 0.064 p1 - 0.02 p0.75-1    

- 0.03 p0.5-0.75  
0.55 0.16 

Airborne image V = 1.77 – 0.01 IR_Max  0.29 0.19 

LiDAR and 

airborne image 

V = 0.12 + 3.00 H_Std + 4.08 H_Median - 0.06 p1 - 0.02 p0.75-1       

- 0.04 p0.5-0.75 - 0.01 G_Std – 1.58 NDVI_Mean 

0.84 0.01 



adding spectral data to LiDAR data variables to explain above all, the variation of 

volume. We also noted that the accuracy in predicting volume was lower than for 

biomass when only LiDAR data was used. This could be because field volume is an 

indirect calculation from a base diameter and height measurements, whereas biomass is 

a direct measurement. However when LiDAR and spectral data are combined, the 

volume is predicted with more accuracy.  

 

The results of this study show how biomass and volume estimation and mapping can be 

obtained in shrub forests in Mediterranean areas using medium density LiDAR data, 

visible and NIR aerial images, and applying an appropriate variable selection 

procedure. The models proposed could be used in similar dense forest having a 

restricted number of similar species and low shrub. 

 

5. References 

[1] Rango A, Chopping M, Ritchie J, Havstad K, Kustas W, Schmugge, T. 

Morphological characteristics of shrub coppice dunes in desert grasslands of southern 

New Mexico derived from scanning LiDAR. Remote Sens Environ 2000;74(1): 26-44.  

[2] Mundt JT, Streutker DR, Glenn NF. Mapping sagebrush distribution using fusion of 

hyper spectral and LiDAR classifications. Photogramm Eng Remote Sens 2006;72(1): 

47-54. 

[3] Riaño D, Chuvieco E, Ustin SL, Salas J, Rodríguez-Pérez JR, Ribeiro LM et al. 

Estimation of shrub height for fuel-type mapping combining airborne LiDAR and 

simultaneous color infrared ortho imaging. Int J Wildland Fire 2007;16(3): 341-48.  



[4] Mikšys V, Varnagiryte-Kabasinskiene I, Stupak I, Armolaitis K, Kukkola M, 

Wójcik J. Above-ground biomass functions for Scots pine in Lithuania. Biomass 

Bioenerg 2007;31(10): 685-92. 

[5] Velázquez-Martí B, Fernández-González E, Estornell J, Ruiz LA. Dendrometric and 

dasometric analysis of the bushy biomass in Mediterranean forests. For Ecol Manage 

2010;259(5): 875-82. 

[6] Zheng D, Rademacher J, Chen J, Crow T, Bresee M, Le Moine J, et al. Estimating 

aboveground biomass using Landsat 7 ETM+ data across a managed landscape in 

northern Wisconsin, USA. Remote Sens Environ 2004;93(3): 402-11. 

[7] Top N, Mizoue N, Ito S, Kai S, Nakao T, Ty S. Re-assessment of woodfuel supply 

and demand relationships in Kampong Thom Province, Cambodia. Biomass Bioenerg 

2006;30(2): 134-43.  

[8] Cremer T, Velázquez-Martí B. Evaluation of two harvesting systems for the supply 

chips in Norway spruce forest affected by bark beetles. Croat J For Eng 2007;28(2): 

145-55. 

[9] Mani S, Parthasarathy N. Above-ground biomass estimation in ten tropical dry 

evergreen forest sites of peninsular India. Biomass Bioenerg 2007;31(5): 284-90.  

[10] Popescu SC. Estimating biomass of individual pine trees using airborne LiDAR. 

Biomass Bioenerg 2007;31(9): 646-55.  

[11] Means JE, Acker SA, Brandon JF, Renslow M, Emerson L, Hendrix CJ. Predicting 

forest stand characteristics with airborne scanning LiDAR. Photogramm Eng Remote 

Sens 2000;66(11): 1367-71.  

[12] Hyyppä J, Kelle O, Lehikoinen M, Inkinen MA segmentation-based method to 

retrieve stem volume estimates from 3-d tree height models produced by laser scanners. 

IEEE Trans Geosci Remote Sensing 2001;39(5): 969-75.  



[13] Lefsky MA, Cohen WB, Harding DJ, Parker GG, Acker SA, Gower ST. LiDAR 

remote sensing of above-ground biomass in three biomes. Glob Ecol Biogeogr 

2002;11(5): 393–99.  

[14] Hyyppä J, Hyyppä H, Leckie D, Gougeon F, Yu X, Maltamo M. Review of 

methods of small-footprint airborne laser scanning for extracting forest inventory data 

in boreal forests. Int J Remote Sens 2008;29(5): 1339-66.  

[15] Nelson R, Krabill W, Tonelli J. Estimating forest biomass and volume using 

airborne laser data. Remote Sens Environ 1988;24(2): 247- 67.  

[16] Næsset E. Accuracy of forest inventory using airborne laser scanning: evaluating 

the first Nordic full-scale operational project. Scand J Forest Res 2004;19(6): 554-57.  

[17] Andersen H-E, McGaughey RJ, Reutebuch SE. Estimating forest canopy fuel 

parameters using LiDAR data. Remote Sens Environ 2005;94(4): 441-49.  

[18] Li Y, Andersen H-E, McGaughey RA. A comparison of statistical methods for 

estimating forest biomass from light detection and ranging data. West J Appl For 

2008;23(4): 223-31. 

[19] Persson A, Holmgren J, Söderman U. Detecting and measuring individual trees 

using an airborne laser scanner. Photogramm Eng Remote Sens 2002;68(9): 925-32.  

[20] Maltamo M, Eerikäinen K, Pitkänen J, Hyyppä J, Vehmas M. Estimation of timber 

volume and stem density based on scanning laser altimetry and expected tree size 

distribution functions. Remote Sens Environ 2004;90(3): 319-30.  

[21] Streutker DR, Glenn NF. LiDAR measurement of sagebrush steppe vegetation 

heights. Remote Sens Environ 2006;102(1-2): 135-45.  

[22] Popescu SC, Wynne RH, Nelson RF. Estimating plot-level tree heights with 

LiDAR: local filtering with a canopy-height based variable window size. Comput 

Electron Agric 2002;37(1-3): 71-95.  



[23] Holmgren J, Nilsson M, Olsson H. Estimation of tree height and stem volume on 

plots using airborne laser scanning. For Sci 2003;49(3): 419-/28.  

[24] Kim Y, Yang Z, Cohen WB, Pflugmacher D, Lauver CL, Vankat JL. 

Distinguishing between live and dead standing tree biomass on the North Rim of Grand 

Canyon National Park, USA using small-footprint LiDAR data. Remote Sens Environ 

2009;113(11): 2499-510.  

[25] Gaveau DLA, Hill RA. Quantifying canopy height underestimation by laser pulse 

penetration in small-footprint airborne laser scanning data. Can J Remote Sens 

2003;29(5): 650-57.  

[26] Hill RA, Thomson AG. Mapping woodland species composition and structure 

using airborne spectral and LiDAR data. Int J Remote Sens 2005;26(17): 3763-79.  

[27] Hopkinson C, Chasmer LE, Sass G, Creed IF, Sitar M, Kalbfleisch W, et al. 

Vegetation class dependent errors in LiDAR ground elevation and canopy height 

estimates in a boreal wetland environment. Can J Remote Sens 2005;31(2): 191-206.  

[28] Patenaude G, Hill RA, Milne R, Gaveau DLA, Briggs BBJ, Dawson TP. 

Quantifying forest above ground carbon content using LiDAR remote sensing. Remote 

Sens Environ 2004;93(3): 368-80.  

[29] Su JG, Bork EW. Characterization of diverse plant communities in Aspen Parkland 

rangeland using LiDAR data. Appl Veg Sci 2007;10(3): 407-16.  

[30] Estornell J, Ruiz LA, Velázquez-Marti B. Study of shrub cover and height using 

Lidar data in a Mediterranean area. For Sci 2011;57(3): 171-79.  

[31] Martinuzzi S, Vierling LA, Gould WA, Falkowski MJ, Evans JS, Hudak AT, 

Vierling KT. Mapping snags and understory shrubs for a LiDAR-based assessment of 

wildlife habitat suitability. Remote Sens Environ 2009;113(12): 2533-46.  



[32] Bork EW, Su JG. Integrating LiDAR data and multispectral imagery for enhanced 

classification of rangeland vegetation: A meta analysis. Remote Sens Environ 

2007;111(1): 11-24.  

[33] Mutlu M, Popescu SC, Stripling C, Spencer T. Mapping surface fuel models using 

LiDAR and multispectral data fusion for fire behavior. Remote Sens Environ 

2008;112(1): 274-85.  

[34] Verrelst J, Geerling GW, Sykora KV, Clevers JGPW. Mapping of aggregated 

floodplain plant communities using image fusion of CASI and LiDAR data. Int J Appl 

Earth Obs Geoinf 2009;11(1): 83-94. 

[35] Popescu SC, Wynne RH, Scrivani JA. Fusion of small-footprint LiDAR and 

multispectral data to estimate plot-level volume and biomass in deciduous and pine 

forests in Virginia, USA. For Sci 2004;50(4): 551-65.  

[36] Hyde P, Dubayah R, Walker W, Blair JB, Hofton M, Hunsaker C. Mapping forest 

structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, 

Quickbird) synergy. Remote Sens Environ 2006;102(1-2): 63-73. 

[37] Van Aardt JAN, Wynne RH, Oderwald RG. Forest volume and biomass estimation 

using small-footprint LiDAR-distributional parameters on a per-segment basis. For Sci 

2006;52(6): 636-49.  

[38] García M, Riaño D, Chuvieco E, Danson FM. Estimating biomass carbon stocks 

for a Mediterranean forest in central Spain using LiDAR height and intensity data. 

Remote Sens Environ 2010;114(4): 816-30.  

[39] Velázquez-Martí B, Annevelink E. GIS application to define biomass collection 

points as sources for linear programming of delivery networks. Trans. ASABE 

2009;52(4):1069-78  



[40] Velázquez-Martí B, Fernandez-Gonzalez E. Mathematical algorithms to locate 

factories to transform biomass in bioenergy focused on logistic network construction. 

Renew Energy 2010;35(9):2136-42.  

[41] Clark ML, Clark DB, Roberts DA. Small-footprint LiDAR estimation of sub-

canopy elevation and tree height in a tropical rain forest landscape. Remote Sens 

Environ 2004;91(1): 68-89.  

[42] Estornell J, Ruiz LA, Velázquez-Martí B, Hermosilla T. Analysis of the factors 

affecting LiDAR DTM accuracy in a steep shrub area. Int J Digit Earth 2011;4(6); 521–

38 (2011). 

[43] Hudak AT, Crookston NL, Evans JS, Falkowski MJ, Smith AMS, 

Gessler PE, et al. Regression modeling and mapping of coniferous forest basal area and 

tree density from discrete-return LiDAR and multispectral satellite data. Can J Remote 

Sens 2006;32(2): 126-38.  

[44] McCombs JW, Roberts SD, Evans DL. Influence of fusing LiDAR and 

multispectral imagery on remotely sensed estimates of stand density and mean tree 

height in a managed loblolly pine plantation. For Sci 2003; 49(3): 457-66.  

[45] Erdody TL, Moskal LM. Fusion of LiDAR and imagery for estimating forest 

canopy fuels. Remote Sens. Environ 2010; 114(4): 725-37.  


