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Abstract. Shrub vegetation is a key element of Mediterranean forest areas and it is necessary to
develop tools that allow a precise knowledge of this vegetation. This study aims to predict shrub
volume and analyze the factors affecting the accuracy of these estimations in small stands using
airborne discrete-return LiDAR data. The study was performed over 83 circular stands with
0.5 m radius located in Chiva (Spain) mainly occupied by Quercus coccifera. The vegetation
inside each area was clear cut, and the height and the diameter of each plant was measured to
compute the volume of shrub vegetation per stand. Volume values were related with maximum
height values derived from LiDAR data reaching a coefficient of determination value R2 ¼ 0.26.
Afterwards, factors affecting the quality of volume estimations were analyzed, i.e., vegetation
type, LiDAR density, and accuracy of the digital terrain model (DTM). Significant accuracy
improvements (R2 ¼ 0.71) were detected for stands with 0.5 m, LiDAR data density greater
than 8 points∕m2, vegetation Q. coccifera, and error associated to the DTM less than
0.20 m. These results show the feasibility of using LiDAR data to predict shrub volume
under certain conditions, which can contribute to improved forest management and character-
ization. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JRS.6
.063544]
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1 Introduction

The presence of shrub vegetation is widely spread in Mediterranean ecosystems. From an
environmental point of view these areas play a significant role as they prevent soil erosion
and desertification, which can help refill aquifers1 or contribute to wildlife habitat preservation.2

In addition, an accurate knowledge of these areas enables the creation of fuel-type maps to
improve the fire behavior modeling accuracy.3 Therefore, defining and developing tools that
allow a better understanding of these areas is necessary in order to improve their management
and maintenance. LiDAR data have been widely used in forestry for estimating forest canopy
fuels;4–6 estimating forest parameters;7–9 creation of inventories;10,11 estimation of forest carbon
stocks;12,13 analysis of forest dynamics.14–16 According to,17 forest studies based on LiDAR data
are usually developed following two approaches: by estimating dendrometric variables such as
stem diameter, volume, biomass, height,18–20 which requires a preceding identification of indi-
viduals; and by estimating dasometric variables at plot or stand level. A common denominator of
these studies is the requirement of the computation of a digital terrain model (DTM), which
constitutes the reference surface to which all the LiDAR data are normalized.
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Despite the large number of studies developed in forestry based on LiDAR data, few studies
have been focused on shrub vegetation, yet less conducted in the estimation of variables, such as
biomass and volume. Most studies aim to perform classifications and mapping shrub areas,2,21,22

and to estimate shrub heights.3,23,24 In order to study the areas occupied by shrub, from the two
approaches foreseen for forestry applications, dendrometric characterization of individual shrubs
is very complex, as shrubs often occupy a continuous area in which the crown definition is quite
difficult. Therefore, the approach based on estimation of dasometric parameters seems more
plausible. However, some studies have shown the potential to estimate the height and biomass
in small stands (radius ¼ 0.5 m).25 Streutker and Glenn23 compared the field height of shrub
vegetation and the maximum height derived from LiDAR data, obtaining the maximum correla-
tion value when the maximum LiDAR height was calculated considering an area with radius
1.5 m around the point measured at field. These results agreed with those obtained by26 that
pointed out that the radius value depends on several factors, such as accuracy of LiDAR system,
GPS unit employed, DTM error, slope, or density of LiDAR data. All of them affect the accuracy
of the statistics derived from LiDAR data.

The objective of this study is to attain an estimation of shrub volume in small stands
(radius ¼ 0.5 m) using LiDAR data. The influence of vegetation species, error associated to
DTM, and density of LiDAR data on the accuracy of the models obtained is also analyzed.
Additionally, the effect on volume estimations when statistics derived from LiDAR data are
calculated using greater radii is tested, as well as the relationships between the values of
these radii and the above-mentioned factors.

2 Materials and Methods

2.1 Study Area

The study area is located in the municipality of Chiva (Spain), covering an area of 10 km2,
included in a rectangle defined by UTM coordinates Xmaximum, Ymaximum, Xminimum, and
Yminimum (689800, 4376028, 683800, 4373000), zone 30N, in the reference system European
Datum 1950 (Fig. 1). The area is mountainous and predominantly covered by shrub vegetation,
in which the height varies between 442 and 1000 m with an average slope of 45%. The most
abundant species is Quercus coccifera (Fig. 2), widely spread in the Mediterranean region.27,28

2.2 LiDAR Data

The airborne discrete-return LiDAR data were acquired during a flight in December 2007, using
an Optech ALTM 2050 system. The technical parameters can be found in Table 1. The altimetry
accuracy of LiDAR data was assessed by means of 60 checkpoints located in flat areas without

Fig. 1 Location of study area in Chiva (Spain).
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vegetation and measured using a real time kinematic (RTK) GPS system (Leica System 1200).
The root mean square error (RMSE) of the set of measurements was 6 cm. The horizontal
accuracy of LiDAR points was 0.5 m according to the specifications of the technical report
of the vendor company.

In order to calculate statistics derived from LiDAR data that are used as explanatory variables
in the regression models, it is necessary to previously compute a DTM. Then, raw LiDAR data
and the DTM are combined to convert point elevations into heights above ground. This DTM
was done using iterative processes for selecting minimum elevations in decreasing analysis win-
dows and height thresholds for removing vegetation points. Several tests were carried out to set
the optimal parameters (further information can be found in Ref. 29). A set of 1397 checkpoints
randomly located across the study area were measured with a RTK-GPS system. The DTM with
the minimum root mean square error (RMSE ¼ 0.19 m) was achieved using the following
parameters: analysis window sizes of 10, 5 and 2.5 m, and height thresholds equal or greater
than 1.5 m.

Fig. 2 Image of the study area showing a dense presence of kermes oak (Quercus coccifera).

Table 1 ALTM 2050 laser scanner performance parameters.

Parameter

Flight height 700 m above ground

Pulse frequency 50 kHz

Scan frequency 47 Hz

Scan angle �18°

Speed flight 70 m∕s

Swath width 400 m

Distance between a scanning trajectory flight 300 m

Number of strips 10

Total points obtained for the test area 78,919,301

Pulse density 8 points∕m2

Number of echoes 2
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2.3 Volume Field Data

To obtain field data volume, 83 circular stands of 0.5 m radius were randomly located throughout
the study area in different bioclimatic layers (elevation), slopes and aspects. Field work was
timed to practically coincide with the acquisition of LiDAR data. It was performed within a
period of three months after the LIDAR data acquisition, remaining the structure of vegetation
invariable for this period of time. In each stand, a clearing was performed and the length and base
diameter of each plant was measured. In addition, the species of each plant were also identified.
It should be pointed that stands larger than 0.5 m radius could not be clear cut because of envi-
ronmental reasons. To determine field volume it was necessary to characterize the dendrometry
of the plants, following the next steps:1

Step 1 Determination of a global form factor, f. This factor is calculated as quotient of the actual
volume of the plant and the volume of a geometric model taken as reference [Eq. (1)].
The actual volume of each plant was obtained by submerging it in water and determining
the volume displaced. The volume model was calculated as a solid of revolution from the
diameter of the main stem and the plant height. In this study, a cylinder was used as a
solid of revolution, as it was the best adapted to the species studied.1

f ¼ Real volume of the plant

Model volume of the plant
: (1)

Step 2 Estimation of the actual volume of each plant from variables such as height and stem
diameter, the values of form factor calculated in the previous step and using Eq. (2).

Vi ¼
π · d2

4
· h · f; (2)

where Vi is the real volume of the whole plant, d is the base diameter of the main stem, h
the height of the individual plant measured for each plant in the sample group, and f the
form factor.

Step 3 Estimation of the actual volume of each stand adding the actual volume of each indi-
vidual from the diameter and length measurements in the field and applying Eq. 2. In
Table 2 the statistics of dominant heights and volume of stands are presented.

2.4 Analysis of the Factors that Affect the Accuracy of Volume Estimation

To estimate the volume of shrub vegetation from LiDAR data, the maximum height from the
LiDAR point cloud within each stand was calculated. This statistic was used as the only expla-
natory variable in the regression model. Previously, the bare-earth surface elevation was first
subtracted from each LiDAR point by using the DTM.

Then, the affection of the vegetation type, error associated to the DTM, and the density of
LiDAR data on the accuracy of volume estimations in small stands was analyzed. In order to
analyze the vegetation factor in the prediction models the stands were grouped into two classes:
stands with Q. coccifera (n ¼ 47) and stands with others species, i.e., Rosmarinus officinalis,
Ulex parviflorus, Cistus albidus L. and Erica multiflora L. (n ¼ 36) The number of LiDAR

Table 2 Statistics of height and volume derived from field data.

Statistic Height (m) Volume (dm3)

Mean 1.27 4568.86

Minimum 0.80 1130.76

Maximum 2.50 11095.16

Standard deviation 0.29 2201.84
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points per stand was calculated to study the density factor, then the stands were classified into
two classes: density > 8 points∕m2 (n ¼ 47) and density < 8 points∕m2 (n ¼ 36). The mean
density and standard deviation of the stands belonging to the first group were 12 points∕m2

and 4 points∕m2, respectively. For the second group, the mean and the standard deviation
were 4.36 points∕m2 and 1.79 points∕m2, respectively. In order to study how the error asso-
ciated to DTM affects the estimation of volume, the differences between the coordinate z of
each stand center measured with GPS-RTK and the coordinate z of the DTM were calculated.
Then, the stands were grouped into two classes. Stands with differences lower than 0.20 m in
absolute value belonged to the first group (n ¼ 52) and stands with differences greater than
0.20 m in absolute value belonged to the second group (n ¼ 31). This threshold value was
the RMSE of DTM computed. The volume for each group of stands classified by vegetation
type, density and DTM error was estimated, then the values of R2 and RMSE compared.
All possible combinations considering two factors were also analyzed (Table 3). Finally,
shrub volume was predicted considering the best conditions i.e., stands with Q. coccifera,
density > 8 points∕m2, and DTM error lower than 0.20 m.

One of the main restrictions to analyze the capability of the LiDAR technology to study shrub
vegetation in small areas is the low number of points available per stand. In addition, the above
factors can affect the performance of the estimations. To overcome this difficulty, statistics for
areas with homogenous vegetation type and density were calculated by extracting LiDAR points
in larger radii. The following concentric radii were analyzed (in meters): 0.5, 0.75, 1, 1.25, 1.5,
1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, and 3.5. Linear regressions were computed to estimate the
volume of the plants, and the R2 of the models obtained were compared.

To study the relationships between the factors (point density, error associated to DTM, vege-
tation type) and the radius value, the variation of R2 for different radii was calculated considering
the following cases: all the stands (n ¼ 83); stands with density greater than 8 points∕m2

(n ¼ 47); stands with DTM error lower than 0.20 m (n ¼ 52); stands withQ. coccifera (n ¼ 47);
stands with density greater than 8 points∕m2 and DTM error lower than 0.20 m (n ¼ 39); stands
with Q. coccifera and DTM error lower than 0.20 m (n ¼ 30); stands with Q. coccifera and
density greater than 8 points∕m2(n ¼ 32); and finally by combining the above three factors
(n ¼ 26).

3 Results and Discussion

As observed in Table 3, a low coefficient of determination value was obtained when shrub
volume was estimated considering all the stands (R2 ¼ 0.26). The models with the lowest
R2 value were found when shrub volume was estimated in stands having DTM error greater
than 0.20 m, other species (R. officinalis, U. parviflorus, C. albidus L. and E. multiflora L.)

Table 3 Shrub volume estimation in each stand of 0.5 m radius considering all the stands and the
factors vegetation, DTM error, and LiDAR density. The column n indicates the number of stands
considered in each case.

Case n Models R2 RMSE (dm3)

All stands 83 V ¼ 1803.3þ 3062.7 · Hmax 0.26 1929

Quercus coccifera 47 V ¼ 704.9þ 3951.7 · Hmax 0.38 1971

Other species 36 V ¼ 3033.4þ 1966.5 · Hmax 0.14 1790

Density > 8 points∕m2 47 V ¼ 489.4þ 4073.1 · Hmax 0.36 1922

Density < 8 points∕m2 36 V ¼ 2597.7þ 2553.2 · Hmax 0.19 1859

ErrorDTM < 0.20 m 52 V ¼ 755.4þ 3803.6 · Hmax 0.38 1877

ErrorDTM > 0.20 m 31 V ¼ 2871.1þ 2401.5 · Hmax 0.14 1895
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as vegetation type, and density data less than 8 points∕m2 (R2 ¼ 0.14 to 0.19). These results can
be explained taking into account that in the selection of points within each stand of 0.5 m radius,
it was found that several stands had very few points, making it unlikely that some of them
belonged to the canopy. Besides, unlike forests composed by old growth trees, our study
area is mainly occupied by shrub vegetation with average height of 1.27 m. It is also character-
ized by rough terrain with high slopes, which requires high accuracy in the computation of the
DTM. Consequently, these facts may explain the low R2 in stands with DTM error greater than
0.20 m. Regarding the low results in the prediction of volume in stands with other vegetation
types, some of them were occupied by C. albidus L., characterized by an open canopy, which
makes more difficult LiDAR pulse to be intercepted by the top of the canopy. This effect can be
more significant in small area stands where the number of LiDAR points is low. In addition
to these factors, the recent development of small footprint full-waveform LiDAR systems is
expected to improve the performance of discrete-return LiDAR systems based on first/last
pulse registration, by increasing the number of points or values registered per footprint. Some
authors report a higher effective point density (factor of two to three) achieved using these
LiDAR systems compared to first/last pulse data in forestry areas composed by trees.30 These
technical advantages may improve the characterization of tree shape and structure, but further
research is required to test if full-waveform LiDAR systems improve the estimation of shrub
vegetation volume, especially in small stands.

Better results were obtained for predicting volume when the stands were grouped combining
the above factors (Table 4). For stands with vegetation Q. coccifera and density greater than
8 points∕m2, the R2 value was 0.62. For stands with vegetation Q. coccifera and error associated
to DTM lower than 0.20 m the R2 value was 0.60. The best model was obtained when shrub
volume was estimated combining these three factors (R2 ¼ 0.71). These results show the fea-
sibility of predicting shrub volume in small areas (radius ¼ 0.5 m) occupied by Q. coccifera
using accurate DTM and high-density LiDAR data. Stratification of shrub vegetation type should
be considered for the selective application of models to different strata. This may be done by
combining LiDAR data and high-resolution imagery (spectral and spatial). Good results in shrub
species have been obtained using these data and applying object-based vegetation classification

Table 4 Shrub volume estimation in a stand of 0.5 m combining the factors vegetation, DTM error,
and LiDAR density.

Case n Models R2

RMSE
(dm3)

Quercus
coccifera

Density < 8 points∕m2 15 V ¼ 2396.0þ 2843.6 · Hmax 0.14 2386

Density > 8 points∕m2 32 V ¼ −1126.0þ 5313.5 · Hmax 0.62 1573

ErrorDTM > 0.20 m 17 V ¼ 2571.7þ 2378 · Hmax 0.09 2268

ErrorDTM < 0.20 m 30 V ¼ −757.9þ 5008.6 · Hmax 0.60 1672

Other
species

Density < 8 points∕m2 21 V ¼ 2710.3þ 2396.2 · Hmax 0.27 1509

Density > 8 points∕m2 14 V ¼ 2525.6þ 2054.4 · Hmax 0.14 1534

ErrorDTM > 0.20 m 14 V ¼ 3171.3þ 2516.0 · Hmax 0.31 1390

ErrorDTM < 0.20 m 21 V ¼ 1954.9þ 2468.4 · Hmax 0.26 1403

Density > 8
points∕m2

ErrorDTM > 0.20 m 8 V ¼ 5321.0 − 1603.5 · Hmax 0.04 1565

ErrorDTM < 0.20 m 39 V ¼ 144.899þ 4369.5 · Hmax 0.40 1973

Density < 8
points∕m2

ErrorDTM > 0.20 m 23 V ¼ 2803.6þ 2874.3 · Hmax 0.23 1931

ErrorDTM < 0.20 m 13 V ¼ 2115.4þ 2157.3 · Hmax 0.22 1538

Quercus
coccifera

Density > 8 points∕m2

ErrorDTM < 0.20 m
26 V ¼ −1957.1þ 5952.6 · Hmax 0.71 1477
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techniques.31 Thus, the previous detection of areas with Q. coccifera may allow the efficient
application of the obtained models for volume estimation. Nevertheless, some areas are covered
by vegetation associations, making the classification processes difficult. Other factors, such as
LiDAR density and DTM accuracy, are being improved by the progressive development of more
accurate systems. In addition, to obtain an accurate DTM in areas densely covered by shrub
vegetation it would be necessary to use filters allowing the selection of appropriate parameters
to remove LiDAR points belonging to vegetation.

As reported above, using greater radii to extract LiDAR data in homogenous areas to derive
explanatory variables can produce better results in biomass and height estimation.23,26 The influ-
ence of the radius size in the estimation of the volume considering statistics derived from LiDAR
data was analyzed. Using all stands, the maximum R2 is found between the radii 1.25 and 2.5 m
(R2 0.38 to 0.43). A significant increase in terms of R2 can be observed between the radii 0.5 m
and 1.25 m for all the cases [Fig. 3(a)]. Those radii (1.25 to 2.5 m) also produced better results for
stands with LiDAR density higher than 8 points∕m2 (R2 0.53), type vegetation Q. coccifera (R2

0.49 to 0.56), and DTM error lower than 0.2 m (R2 0.55 to 0.60). It is remarkable that when using
a density greater than 8 points∕m2, the maximum R2 value is obtained for a lower radius size
(r ¼ 1.25 m). In contrast, for the stands with DTM error lower than 0.20 m the optimal radius
was 2.5 m. This fact can be explained considering that 13 of the 52 stands with DTM
error lower than 0.20 m have a density lower than 8 points∕m2. Hence, greater radii are required
for obtaining the best model (R2 ¼ 0.60). In this case, an important decrease from radii 2.75
upwards is also observed. From this radius value the homogeneity of the areas seems to decrease
and vegetation height tends to be different to that with a 0.5-m radius.

As observed in Fig. 3(b) sharp increases of R2 are obtained when the stands are grouped
considering more than one factor. In addition, these results are obtained for smaller radii.
Practically for all cases in which factors are combined the optimal radii are found between
0.5 and 1.25 m. The highest R2 values are found when the shrub volume is estimated in stands
with Q. coccifera, density greater than 8 points∕m2, and DTM error 0.20 m (R2 0.71 to 0.75).
This result indicates that the radius may not be a relevant factor given these conditions. This
conclusion can also be drawn for the stands with Q. coccifera and density greater than
8 points∕m2. The model obtained considering these factors shows lower R2 values, varying from
0.61 to 0.62 for the radii 0.5 to 1.25 m. Comparing the results obtained in both cases, there is a
noticeable increase of the R2 value, remarking the importance of the accurate computation of
DTM to study shrub vegetation. For stands with DTM error lower than 0.2 m and density greater
than 8 points∕m2, the maximum R2 was obtained for a radius of 1.25 m (R2 ¼ 0.62).

Fig. 3 (a) Coefficients of determination (R2) of linear regression models for estimating volume
considering the maximum height of LiDAR data in concentric areas of radius ranging from 0.5 to
3.5 m from the stand centre in stands with: DTM error lower than 0.20 m (n ¼ 52); data density
higher than 8 points∕m2 (n ¼ 47); vegetation type Q. coccifera (n ¼ 47); for all the stands
(n ¼ 83). (b) Combining the following factors: DTM error lower than 0.20 m and density higher
than 8 points∕m2 (n ¼ 39); Q. coccifera and DTM error lower than 0.20 m (n ¼ 30); Q. coccifera
and density higher than 8 points∕m2 (n ¼ 32); Q. coccifera, density higher than 8 points∕m2, and
DTM error lower than 0.20 m (n ¼ 26).
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4 Conclusions

The restrictions of LiDAR data to estimate shrub volume in small stands has been proved.
However, significant improvements in the estimations can be obtained on Q. coccifera shrub
areas under certain conditions (use of accurate DTM with error lower than 0.20 m, and use
LiDAR density data greater than 8 points∕m2). The results of this study reveal that using greater
radii for deriving statistics of LiDAR data in homogenous areas can be useful to estimate the
volume in stands with DTM error lower than 0.20 m and combining stands with this DTM
accuracy and presence of Q. coccifera. Nevertheless, for stands with the tree factors mentioned
above, radii greater than 0.50 m do not produce a noticeable increase in the accuracy of the
predicted models. The results of this study could be applied to improve the knowledge of
shrub vegetation, characteristic of Mediterranean forests. Moreover, the volume estimated
can be used to determine the biomass of the area, multiplying by the density of the vegetation.
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