
C O N T E N T S

i preliminaries 1

1 introduction 3

1.1 Motivation 6

1.2 Problem Statement 8

1.3 Research Challenges 9

1.4 The Approach 11

1.5 Research Methodology 14

1.6 Thesis Context 16

1.7 Outline 16

2 background 19

2.1 Enablers of Our Approach 20

2.1.1 Autonomic Computing 20

2.1.2 Model-driven Engineering 25

2.1.3 Models at Runtime 26

2.1.4 Software Product Line Engineering 28

2.2 Target of Our Research 32

2.2.1 Service Compositions 32

2.2.2 Context 42

2.3 Conclusions 45

3 state of the art 47

3.1 Research Areas 49

3.2 Taxonomy to Classify Research Works 51

3.2.1 What Change is the Cause of Adaptation 53

3.2.2 How the Service Composition Faces Changes 53

3.2.3 When Changes are Carried Out 54

3.2.4 Where Changes are Carried Out 55

3.2.5 Maturity of the Approach 55

3.3 Related Work in the Main Research Areas 56

3.3.1 Variability Constructs at the Language Level 58

3.3.2 Brokers 61

3.3.3 Models at Runtime 67

3.3.4 DSPLs 74

3.4 Related Work in the Research Subareas 76

3.4.1 Variability Modeling 77

3.4.2 Uncertainty Management in the Open World 77

xv



xvi contents

3.5 Conclusions 78

4 overview of the approach 83

4.1 Case Study 84

4.2 Main Building Blocks 87

4.2.1 Design-Related Building Blocks 88

4.2.2 Runtime-Related Building Blocks 89

4.3 A Framework for Autonomic Service Compositions 91

4.3.1 Design Phase 91

4.3.2 Dynamic Adaptation Phase 93

4.3.3 Dynamic Evolution Phase 94

4.4 Conclusions 95

ii paving the way for the dynamic adjustment of

service compositions 97

5 model-driven design for dynamic adaptation 99

5.1 Achieving Autonomic Service Compositions with MDE
and DSPLE 100

5.2 A Process to Design Dynamic Adaptations 103

5.2.1 Create the Initial Composition Model 104

5.2.2 Create the Variability Model 105

5.2.3 Set Variability at the Composition Model 107

5.2.4 Create the Context Model 109

5.2.5 Define Context Conditions 111

5.2.6 Define Resolutions 112

5.2.7 Generate the Adaptation Space 114

5.2.8 Link Features to Service Operations 115

5.2.9 Verify Reconfigurations 117

5.2.10 Model-Driven Generation of WS-BPEL Code 124

5.3 Conclusions 131

6 modeling to face uncertainty in the open world 133

6.1 Dynamic Adaptation and Dynamic Evolution of Soft-
ware 135

6.2 Conceptual Framework for Autonomic Service Compo-
sitions 137

6.3 Getting Ready to Face Uncertainty in the Open World 139

6.4 A Process to Design Dynamic Evolutions 141

6.5 Abstracting Requirements in the Requirements Model 141

6.6 Preserving the Requirements with Tactic Models 144

6.7 Reasoning about Unknown Context Events with Rule
Premises 149



contents xvii

6.8 Conclusions 151

iii dynamic adjustment of service compositions 153

7 achieving dynamic adaptation through models

at runtime 155

7.1 MoRE-WS: An Extension of MoRE for Service Compo-
sitions 157

7.2 Monitoring the Context 158

7.3 Analyzing the Context 160

7.4 Planning the Adaptation 162

7.5 Executing the Adaptation 167

7.6 Conclusions 170

8 achieving dynamic evolution through models at

runtime 173

8.1 Computing Infrastructure for Dynamic Evolutions 174

8.2 Planning the Evolution with the Evolution Planner 177

8.3 Using MoRE-WS for Dynamic Evolutions 179

8.4 Conclusions 185

iv applicability and provability 187

9 tool support and method contents 189

9.1 Plugable Method Contents 191

9.2 Designing Dynamic Adaptations 193

9.2.1 Create the Initial Composition Model 195

9.2.2 Create the Variability Model 196

9.2.3 Set Variability at the Composition Model 199

9.2.4 Create the Context Model 202

9.2.5 Define Context Conditions 203

9.2.6 Define Resolutions 203

9.2.7 Generate the Adaptation Space 204

9.2.8 Link Features to Service Operations 205

9.2.9 Verify Reconfigurations 206

9.2.10 Model-Driven Generation of WS-BPEL Code 208

9.3 Designing Dynamic Evolutions 208

9.3.1 Create the Requirements Model 209

9.3.2 Create the Tactic Models 210

9.3.3 Create the Weaving Model 211

9.3.4 Implement the Service Operations for Tactics 213

9.3.5 Create the Fragments of WS-BPEL Code to In-
voke Tactics 214

9.3.6 Create the Rule Premises 214



xviii contents

9.4 MoRE-WS 215

9.5 Conclusions 219

10 validation 223

10.1 Evaluated Aspects 224

10.2 A Brief Introduction of the GQM Paradigm 227

10.3 Computing Infrastructure for the Experiments 227

10.4 Validation in the Design Phase 229

10.4.1 Generation Efficiency of Variability Model Con-
figurations 229

10.4.2 Complexity Reduction of the Adaptation Space
230

10.4.3 Anomalies Reduction in the Variability Model
and its Configurations 231

10.4.4 Verification Efficiency 232

10.5 Validation in the Dynamic Adaptation Phase 233

10.5.1 Context Observation Efficiency 234

10.5.2 Dynamic Adaptation Efficiency 236

10.5.3 Operability under Stress 240

10.6 Validation in the Dynamic Evolution Phase 242

10.6.1 Dynamic Evolution Efficiency 243

10.6.2 Inferences Accuracy 247

10.7 Conclusions 248

v closing remarks 251

11 conclusions and future work 253

11.1 Contributions 254

11.2 Publications 258

11.3 International Collaboration 262

11.4 Codirected Master Thesis 262

11.5 Future Work 263

11.6 My Quest to Scientific Knowledge 265

vi appendices 267

a implementation details 269

a.1 Context Monitor Operations to Observe the Context 269

a.2 MoRE-WS Operations for Dynamic Adaptations 271

a.2.1 Analyze the Context 272

a.2.2 Planning the Adaptation 277

a.2.3 Executing the Adaptation 289

a.3 Operations for Dynamic Evolutions 293



contents xix

a.3.1 Planning the Evolution with the Evolution Plan-
ner 294

a.3.2 Using MoRE-WS for Dynamic Evolutions 299

b case study : book shopping process 307

b.1 Web Services 308

b.2 Context Conditions and Resolutions 309

b.3 WS-BPEL Template 312

b.4 Dynamic Adaptation Scenario 320

b.4.1 Requirements and Initial WS-BPEL Composition
Schema 320

b.4.2 Dynamic Adaptation for B&NUnavailable 324

b.4.3 Dynamic Adaptation for UPSHiExecTime 331

b.5 Dynamic Evolution Scenario 339

bibliography 351


	Dedication
	Abstract
	Abstract
	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Preliminaries
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Research Challenges 
	1.4 The Approach
	1.5 Research Methodology
	1.6 Thesis Context
	1.7 Outline

	2 Background 
	2.1 Enablers of Our Approach
	2.1.1 Autonomic Computing
	2.1.2 Model-driven Engineering
	2.1.3 Models at Runtime
	2.1.4 Software Product Line Engineering

	2.2 Target of Our Research
	2.2.1 Service Compositions
	2.2.2 Context

	2.3 Conclusions

	3 State of the Art
	3.1 Research Areas
	3.2 Taxonomy to Classify Research Works
	3.2.1 What Change is the Cause of Adaptation
	3.2.2 How the Service Composition Faces Changes
	3.2.3 When Changes are Carried Out
	3.2.4 Where Changes are Carried Out
	3.2.5 Maturity of the Approach

	3.3 Related Work in the Main Research Areas
	3.3.1 Variability Constructs at the Language Level
	3.3.2 Brokers
	3.3.3 Models at Runtime
	3.3.4 DSPLs

	3.4 Related Work in the Research Subareas
	3.4.1 Variability Modeling
	3.4.2 Uncertainty Management in the Open World

	3.5 Conclusions

	4 Overview of the Approach
	4.1 Case Study
	4.2 Main Building Blocks
	4.2.1 Design-Related Building Blocks
	4.2.2 Runtime-Related Building Blocks

	4.3 A Framework for Autonomic Service Compositions
	4.3.1 Design Phase
	4.3.2 Dynamic Adaptation Phase
	4.3.3 Dynamic Evolution Phase

	4.4 Conclusions


	Paving the Way for the Dynamic Adjustment of Service Compositions
	5 Model-Driven Design for Dynamic Adaptation
	5.1 Achieving Autonomic Service Compositions with MDE and DSPLE
	5.2 A Process to Design Dynamic Adaptations
	5.2.1 Create the Initial Composition Model
	5.2.2 Create the Variability Model
	5.2.3 Set Variability at the Composition Model 
	5.2.4 Create the Context Model
	5.2.5 Define Context Conditions
	5.2.6 Define Resolutions
	5.2.7 Generate the Adaptation Space
	5.2.8 Link Features to Service Operations
	5.2.9 Verify Reconfigurations
	5.2.10 Model-Driven Generation of WS-BPEL Code

	5.3 Conclusions

	6 Modeling to Face Uncertainty in the Open World
	6.1 Dynamic Adaptation and Dynamic Evolution of Software
	6.2 Conceptual Framework for Autonomic Service Compositions
	6.3 Getting Ready to Face Uncertainty in the Open World
	6.4 A Process to Design Dynamic Evolutions
	6.5 Abstracting Requirements in the Requirements Model
	6.6 Preserving the Requirements with Tactic Models
	6.7 Reasoning about Unknown Context Events with Rule Premises
	6.8 Conclusions


	Dynamic Adjustment of Service Compositions
	7 Achieving Dynamic Adaptation through Models at Runtime
	7.1 MoRE-WS: An Extension of MoRE for Service Compositions
	7.2 Monitoring the Context
	7.3 Analyzing the Context
	7.4 Planning the Adaptation
	7.5 Executing the Adaptation
	7.6 Conclusions

	8 Achieving Dynamic Evolution through Models at Runtime
	8.1 Computing Infrastructure for Dynamic Evolutions
	8.2 Planning the Evolution with the Evolution Planner
	8.3 Using MoRE-WS for Dynamic Evolutions
	8.4 Conclusions


	Applicability and Provability 
	9 Tool Support and Method Contents
	9.1 Plugable Method Contents
	9.2 Designing Dynamic Adaptations
	9.2.1 Create the Initial Composition Model
	9.2.2 Create the Variability Model
	9.2.3 Set Variability at the Composition Model
	9.2.4 Create the Context Model
	9.2.5 Define Context Conditions
	9.2.6 Define Resolutions
	9.2.7 Generate the Adaptation Space
	9.2.8 Link Features to Service Operations
	9.2.9 Verify Reconfigurations
	9.2.10 Model-Driven Generation of WS-BPEL Code

	9.3 Designing Dynamic Evolutions
	9.3.1 Create the Requirements Model
	9.3.2 Create the Tactic Models
	9.3.3 Create the Weaving Model
	9.3.4 Implement the Service Operations for Tactics
	9.3.5 Create the Fragments of WS-BPEL Code to Invoke Tactics
	9.3.6 Create the Rule Premises

	9.4 MoRE-WS
	9.5 Conclusions

	10 Validation
	10.1 Evaluated Aspects
	10.2 A Brief Introduction of the GQM Paradigm
	10.3 Computing Infrastructure for the Experiments
	10.4 Validation in the Design Phase
	10.4.1 Generation Efficiency of Variability Model Configurations
	10.4.2 Complexity Reduction of the Adaptation Space 
	10.4.3 Anomalies Reduction in the Variability Model and its Configurations
	10.4.4 Verification Efficiency

	10.5 Validation in the Dynamic Adaptation Phase
	10.5.1 Context Observation Efficiency
	10.5.2 Dynamic Adaptation Efficiency
	10.5.3 Operability under Stress

	10.6 Validation in the Dynamic Evolution Phase
	10.6.1 Dynamic Evolution Efficiency
	10.6.2 Inferences Accuracy

	10.7 Conclusions


	Closing Remarks
	11 Conclusions and Future Work
	11.1 Contributions
	11.2 Publications
	11.3 International Collaboration
	11.4 Codirected Master Thesis
	11.5 Future Work
	11.6 My Quest to Scientific Knowledge


	Appendices
	A Implementation Details
	A.1 Context Monitor Operations to Observe the Context
	A.2 MoRE-WS Operations for Dynamic Adaptations
	A.2.1 Analyze the Context
	A.2.2 Planning the Adaptation
	A.2.3 Executing the Adaptation

	A.3 Operations for Dynamic Evolutions
	A.3.1 Planning the Evolution with the Evolution Planner
	A.3.2 Using MoRE-WS for Dynamic Evolutions


	B Case Study: Book Shopping Process 
	B.1 Web Services
	B.2 Context Conditions and Resolutions
	B.3 WS-BPEL Template
	B.4 Dynamic Adaptation Scenario
	B.4.1 Requirements and Initial WS-BPEL Composition Schema
	B.4.2 Dynamic Adaptation for B&NUnavailable 
	B.4.3 Dynamic Adaptation for UPSHiExecTime

	B.5 Dynamic Evolution Scenario

	Bibliography
	Declaration


