
A B S T R A C T

Over the last years, Web services have become increasingly popular.
It is because they allow businesses to share data and business pro-
cess logic through a programmatic interface across networks. In order
to reach the full potential of Web services, they can be combined to
achieve specific functionalities.

Web services run in complex contexts where arising events may com-
promise the quality of the system (e.g. a sudden security attack). As
a result, it is desirable to count on mechanisms to adapt Web ser-
vice compositions (or simply called service compositions) according to
problematic events in the context. Since critical systems may require
prompt responses, manual adaptations are unfeasible in large and in-
tricate service compositions. Thus, it is suitable to have autonomic
mechanisms to guide their self-adaptation. One way to achieve this
is by implementing variability constructs at the language level. How-
ever, this approach may become tedious, difficult to manage, and error-
prone as the number of configurations for the service composition
grows.

The goal of this thesis is to provide a tool-supported framework to
guide autonomic adjustments of context-aware service compositions
using models at runtime. This framework spans over design time and
runtime to face arising known and unknown context events (i.e., fore-
seen and unforeseen at design time) in the closed and open worlds,
respectively.

At design time, we propose to create the models that guide auto-
nomic changes. In order to reach optimum adaptations, a variability
model and its possible configurations are verified at design time. At
runtime, when problematic events arise in the context, the variability
model is leveraged for guiding autonomic changes of the service com-
position. The activation and deactivation of features in the variability
model result in changes in a composition model that abstracts the un-
derlying service composition. Changes in the variability model are re-
flected into the service composition by adding or removing fragments
of Web Services Business Process Execution Language code, which are
deployed at runtime.
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Under the closed-world assumption, the possible context events are
fully known at design time. These events will eventually trigger the
dynamic adaptation of the service composition. Nevertheless, it is diffi-
cult to foresee all the possible situations arising in uncertain contexts
where service compositions run. Therefore, the proposed framework
also covers the dynamic evolution of service compositions to deal with
unexpected events in the open world. If dynamic adaptations are not
enough to solve uncertainty, the supporting models self-evolve accord-
ing to abstract tactics, which preserve expected requirements.

The proposal has been validated with a case study and simulations.
The answers to several research questions demonstrate the feasibility
of models at runtime to guide dynamic adjustments of autonomic ser-
vice compositions in the closed and open worlds.
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