
A B S T R A C T

Over the last years, Web services have become increasingly popular.
It is because they allow businesses to share data and business pro-
cess logic through a programmatic interface across networks. In order
to reach the full potential of Web services, they can be combined to
achieve specific functionalities.

Web services run in complex contexts where arising events may com-
promise the quality of the system (e.g. a sudden security attack). As
a result, it is desirable to count on mechanisms to adapt Web ser-
vice compositions (or simply called service compositions) according to
problematic events in the context. Since critical systems may require
prompt responses, manual adaptations are unfeasible in large and in-
tricate service compositions. Thus, it is suitable to have autonomic
mechanisms to guide their self-adaptation. One way to achieve this
is by implementing variability constructs at the language level. How-
ever, this approach may become tedious, difficult to manage, and error-
prone as the number of configurations for the service composition
grows.

The goal of this thesis is to provide a tool-supported framework to
guide autonomic adjustments of context-aware service compositions
using models at runtime. This framework spans over design time and
runtime to face arising known and unknown context events (i.e., fore-
seen and unforeseen at design time) in the closed and open worlds,
respectively.

At design time, we propose to create the models that guide auto-
nomic changes. In order to reach optimum adaptations, a variability
model and its possible configurations are verified at design time. At
runtime, when problematic events arise in the context, the variability
model is leveraged for guiding autonomic changes of the service com-
position. The activation and deactivation of features in the variability
model result in changes in a composition model that abstracts the un-
derlying service composition. Changes in the variability model are re-
flected into the service composition by adding or removing fragments
of Web Services Business Process Execution Language code, which are
deployed at runtime.

vii



Under the closed-world assumption, the possible context events are
fully known at design time. These events will eventually trigger the
dynamic adaptation of the service composition. Nevertheless, it is diffi-
cult to foresee all the possible situations arising in uncertain contexts
where service compositions run. Therefore, the proposed framework
also covers the dynamic evolution of service compositions to deal with
unexpected events in the open world. If dynamic adaptations are not
enough to solve uncertainty, the supporting models self-evolve accord-
ing to abstract tactics, which preserve expected requirements.

The proposal has been validated with a case study and simulations.
The answers to several research questions demonstrate the feasibility
of models at runtime to guide dynamic adjustments of autonomic ser-
vice compositions in the closed and open worlds.

viii


	Dedication
	Abstract
	Abstract
	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Preliminaries
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Research Challenges 
	1.4 The Approach
	1.5 Research Methodology
	1.6 Thesis Context
	1.7 Outline

	2 Background 
	2.1 Enablers of Our Approach
	2.1.1 Autonomic Computing
	2.1.2 Model-driven Engineering
	2.1.3 Models at Runtime
	2.1.4 Software Product Line Engineering

	2.2 Target of Our Research
	2.2.1 Service Compositions
	2.2.2 Context

	2.3 Conclusions

	3 State of the Art
	3.1 Research Areas
	3.2 Taxonomy to Classify Research Works
	3.2.1 What Change is the Cause of Adaptation
	3.2.2 How the Service Composition Faces Changes
	3.2.3 When Changes are Carried Out
	3.2.4 Where Changes are Carried Out
	3.2.5 Maturity of the Approach

	3.3 Related Work in the Main Research Areas
	3.3.1 Variability Constructs at the Language Level
	3.3.2 Brokers
	3.3.3 Models at Runtime
	3.3.4 DSPLs

	3.4 Related Work in the Research Subareas
	3.4.1 Variability Modeling
	3.4.2 Uncertainty Management in the Open World

	3.5 Conclusions

	4 Overview of the Approach
	4.1 Case Study
	4.2 Main Building Blocks
	4.2.1 Design-Related Building Blocks
	4.2.2 Runtime-Related Building Blocks

	4.3 A Framework for Autonomic Service Compositions
	4.3.1 Design Phase
	4.3.2 Dynamic Adaptation Phase
	4.3.3 Dynamic Evolution Phase

	4.4 Conclusions


	Paving the Way for the Dynamic Adjustment of Service Compositions
	5 Model-Driven Design for Dynamic Adaptation
	5.1 Achieving Autonomic Service Compositions with MDE and DSPLE
	5.2 A Process to Design Dynamic Adaptations
	5.2.1 Create the Initial Composition Model
	5.2.2 Create the Variability Model
	5.2.3 Set Variability at the Composition Model 
	5.2.4 Create the Context Model
	5.2.5 Define Context Conditions
	5.2.6 Define Resolutions
	5.2.7 Generate the Adaptation Space
	5.2.8 Link Features to Service Operations
	5.2.9 Verify Reconfigurations
	5.2.10 Model-Driven Generation of WS-BPEL Code

	5.3 Conclusions

	6 Modeling to Face Uncertainty in the Open World
	6.1 Dynamic Adaptation and Dynamic Evolution of Software
	6.2 Conceptual Framework for Autonomic Service Compositions
	6.3 Getting Ready to Face Uncertainty in the Open World
	6.4 A Process to Design Dynamic Evolutions
	6.5 Abstracting Requirements in the Requirements Model
	6.6 Preserving the Requirements with Tactic Models
	6.7 Reasoning about Unknown Context Events with Rule Premises
	6.8 Conclusions


	Dynamic Adjustment of Service Compositions
	7 Achieving Dynamic Adaptation through Models at Runtime
	7.1 MoRE-WS: An Extension of MoRE for Service Compositions
	7.2 Monitoring the Context
	7.3 Analyzing the Context
	7.4 Planning the Adaptation
	7.5 Executing the Adaptation
	7.6 Conclusions

	8 Achieving Dynamic Evolution through Models at Runtime
	8.1 Computing Infrastructure for Dynamic Evolutions
	8.2 Planning the Evolution with the Evolution Planner
	8.3 Using MoRE-WS for Dynamic Evolutions
	8.4 Conclusions


	Applicability and Provability 
	9 Tool Support and Method Contents
	9.1 Plugable Method Contents
	9.2 Designing Dynamic Adaptations
	9.2.1 Create the Initial Composition Model
	9.2.2 Create the Variability Model
	9.2.3 Set Variability at the Composition Model
	9.2.4 Create the Context Model
	9.2.5 Define Context Conditions
	9.2.6 Define Resolutions
	9.2.7 Generate the Adaptation Space
	9.2.8 Link Features to Service Operations
	9.2.9 Verify Reconfigurations
	9.2.10 Model-Driven Generation of WS-BPEL Code

	9.3 Designing Dynamic Evolutions
	9.3.1 Create the Requirements Model
	9.3.2 Create the Tactic Models
	9.3.3 Create the Weaving Model
	9.3.4 Implement the Service Operations for Tactics
	9.3.5 Create the Fragments of WS-BPEL Code to Invoke Tactics
	9.3.6 Create the Rule Premises

	9.4 MoRE-WS
	9.5 Conclusions

	10 Validation
	10.1 Evaluated Aspects
	10.2 A Brief Introduction of the GQM Paradigm
	10.3 Computing Infrastructure for the Experiments
	10.4 Validation in the Design Phase
	10.4.1 Generation Efficiency of Variability Model Configurations
	10.4.2 Complexity Reduction of the Adaptation Space 
	10.4.3 Anomalies Reduction in the Variability Model and its Configurations
	10.4.4 Verification Efficiency

	10.5 Validation in the Dynamic Adaptation Phase
	10.5.1 Context Observation Efficiency
	10.5.2 Dynamic Adaptation Efficiency
	10.5.3 Operability under Stress

	10.6 Validation in the Dynamic Evolution Phase
	10.6.1 Dynamic Evolution Efficiency
	10.6.2 Inferences Accuracy

	10.7 Conclusions


	Closing Remarks
	11 Conclusions and Future Work
	11.1 Contributions
	11.2 Publications
	11.3 International Collaboration
	11.4 Codirected Master Thesis
	11.5 Future Work
	11.6 My Quest to Scientific Knowledge


	Appendices
	A Implementation Details
	A.1 Context Monitor Operations to Observe the Context
	A.2 MoRE-WS Operations for Dynamic Adaptations
	A.2.1 Analyze the Context
	A.2.2 Planning the Adaptation
	A.2.3 Executing the Adaptation

	A.3 Operations for Dynamic Evolutions
	A.3.1 Planning the Evolution with the Evolution Planner
	A.3.2 Using MoRE-WS for Dynamic Evolutions


	B Case Study: Book Shopping Process 
	B.1 Web Services
	B.2 Context Conditions and Resolutions
	B.3 WS-BPEL Template
	B.4 Dynamic Adaptation Scenario
	B.4.1 Requirements and Initial WS-BPEL Composition Schema
	B.4.2 Dynamic Adaptation for B&NUnavailable 
	B.4.3 Dynamic Adaptation for UPSHiExecTime

	B.5 Dynamic Evolution Scenario

	Bibliography
	Declaration


