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Abstract

Maritime container terminals are facilities where cargo containers are transshipped between ships or between ships and
land vehicles (tucks or trains). These terminals involve a large number of complex and combinatorial problems. One
of them is related to the Container Stacking Problem. A container yard is a type of temporary store where containers
await further transport by truck, train or vessel. The main efficiency problem for an individual stack is to ensure easy
access to containers at the expected time of transfer.

Stacks are ’last-in, first-out’ storage structures where containers are stocked in the order they arrive. But they should
be retrieved from the stack in the order (usually different) they should be shipped. This retrieval operation should be
efficiently performed, since berthing time of vessels and the terminal operations should be optimized. To do this, cranes
can relocate containers in the stacks to minimize the rearrangements required to meet the expected order of demand for
containers.

In this paper, we present a domain-dependent heuristically guided planner for obtaining the optimized reshuffling
plan, given a stacking state and a container demand. The planner can also be used for finding the best allocation of
containers in a yard-bay in order to minimize the number of reshuffles as well as to be used for simulation tasks and

obtaining conclusions about possible yard configurations.
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1. Introduction

Maritime container terminals are the most important
locations for transshipment and intermodal container trans-
fers (Figure M). [5] shows how this transshipment market
is growing fast (container throughput has increased by 58
per cent over 2000-2004) and needs further studies to an-
alyze it. In order to ensure reliability, e.g. delivery dates
or handling times, to the different shipping companies as
well as increasing productivity and container throughput
from the quayside and landside and vice versa, there are
several issues which need optimization. [I8, I'1] provide
an extensive survey about operations at seaport container
terminals and methods for their optimization. Moreover,
other problems could be faced as for instance planning
the routes for liner shipping services to obtain the maxi-
mal profit [2]. Another important issue for the success at
any container terminal is to forecast container throughput
accurately []. With this data they could develop better
operational strategies and investment plans.

Containers are an ISO standardized metal box and can
be stacked on top of each other. Loading and offloading
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containers on the stack is performed by cranes following a
'last-in, first-out’ (LIFO) storage. In order to access a con-
tainer which is not at the top of its pile, those above it must
be relocated. It occurs since other ships have been un-
loaded later or containers have been stacked in the wrong
order due to lack of accurate information. This reduces
the productivity of the cranes. Maximizing the efficiency
of this process leads to several requirements:

1. Each incoming container should be allocated a place
in the stack which should be free and supported at
the time of arrival.

2. Each outgoing container should be easily accessible,
and preferably close to its unloading position, at the
time of its departure.

In addition, there exist a set of hard/soft constraints re-
garding the container locations, for example, small differ-
ences in height of adjacent yard-bays, dangerous containers
must be allocated separately by maintaining a minimum
distance and so on.

Nowadays, the allocation of positions to containers is
usually done manually. Therefore, using appropriate Ar-
tificial Intelligent techniques is possible to achieve signif-
icant improvements of lead times, storage utilization and
throughput.

Figure @ left shows a container yard. A yard consists
of several blocks, and each block consists of 20-30 yard-
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Figure 1: Container Terminal at Valencia

bays [I0]. Each yard-bay contains several (usually 6) rows.
Each row has a maximum allowed tier (usually tier 4 or
tier 5 for full containers). Figure B right shows a gantry
crane that is able to move a container within a stacking
area or to another location on the terminal. For safety
reasons, it is usually prohibited to move the gantry crane
while carrying a container [[2], therefore these movements
only take place in the same yard-bay.

Figure 2: A container yard (left) and gantry cranes (right) (Photos
by Stephen Berend)

When a container arrives at the terminal port, a trans-
fer crane picks it up and stacks it in a yard-bay. During
the ship loading operation, a transfer crane picks up the
container and transfers it to a truck that delivers it to a
quay crane.

In container terminals, the loading operation for export
containers is pre-planned by load planners. For load plan-
ning, a containership agent usually transfers a load profile
(an outline of a load plan) to a terminal operating com-
pany several days before a ship’s arrival. The load profile
specifies only the container group. In order to have an ef-
ficient load sequence, storage layout of export containers
must have a good configuration.

The main focus of this paper is to present a planning
system which optimally reallocates outgoing containers for
the final storage layout from which a load planner can con-
struct an efficient load sequence list. In this way, the ob-

jective is therefore to plan the movement of the cranes so
as to minimize the number of reshuffles of containers in
a complete yard. To this end, the yard is decomposed in
yard-bays, so that the problem is distributed into a set of
subproblems. Thus, each yard-bay generates a subprob-
lem, but containers of different yard-bays must satisfy a
set of constraints among them, so that subproblems will
be sequentially solved taken into account the set of con-
straints with previously solved subproblems.

In the literature, generally this problem can be seen in
two different ways according to when it should be done the
optimization:

1. minimizing the number of relocations during the pickup

operation.

2. getting a desirable layout for the bay before the pickup

operation is done in order to minimize (or eliminate)
the number of relocations during this process.

[I1] proposes a methodology to estimate the expected
number of rehandles to pick up an arbitrary container and
the total number of rehandles to pick up all the containers
in a bay for a given initial stacking configuration. In a sim-
ilar way, [d] compares two methods, branch-and-bound al-
gorithm and a heuristic rule based on an estimator, which
they minimize the number of relocations during the pickup
operation.

In [8], they also propose a methodology to convert the
current bay layout into the desirable layout by moving the
fewest possible number of containers (remarshalling) and
in the shortest possible travel distance although it takes
a considerable time since they use mathematical program-
ming techniques. Cooperative coevolutionary algorithms
have been developed in [I3] to obtain a plan for remar-
shalling in automated container terminals.

This paper focuses on this latter issue. But we present
a new heuristic with a set of optimization criteria in or-
der to achieve efficiency and take into account constraints
that should be considered in real-world problems in the
provided solutions.

2. Problem description (The Container Stacking
Problem)

The Container Stacking Problem can be viewed as a
modification of the Blocks World planning domain [T9],
which is a well-known domain in the planning community.
This domain consists of a finite number of blocks stacked
into towers on a table large enough to hold them all. The
Blocks World planning problem is to turn an initial state
of the blocks into a goal state, by moving one block at a
time from the top of a tower onto another tower (or on a
table). The optimal Blocks World planning problem is to
do so in a minimal number of moves.

Blocks World problem is closed to the Container Stack-
ing Problem, but there are some important differences:

e The number of towers is limited to 6 because a yard-
bay contains usually 6 rows.



e The height of a tower is also limited to 4 or 5 tiers
depending on the employed cranes.

e There exist a set of constraints that involve differ-
ent rows such as balanced adjacent rows, dangerous
containers located in different rows, etc.

e The main difference is in the problem goal specifi-
cation. In the Blocks World domain the goal is to
get the blocks arranged in a certain layout, specify-
ing the final position of each block. In the container
stacking problem the goal state is not defined as ac-
curately, so many different layouts can be a solution
for a problem. The goal is that the most immedi-
ate containers to load are in the top of the towers,
without indicating which containers must be in each
tower.

We can model our problem by using the standard en-
coding language for classical planning tasks called PDDL
(Planning Domain Definition Language) [3] whose purpose
is to express the physical properties of the domain un-
der consideration and it can be graphically represented by
means of tools as [d]. A classical Al planning problem can
be defined by a tuple (A, I, G), where A is a set of actions
with preconditions and effects, I is the set of propositions
in the initial state, and G is a set of propositions that hold
true in any goal state. A solution plan to a problem in this
form is a sequence of actions chosen from A that when ap-
plied transform the initial state [ into a state of which G
is a subset.

Following the PDDL standard, a planning task is de-
fined by means of two text files. The domain file, which
contains the common features for problems of this domain
and the problem file, which describes the particular char-
acteristics of each problem. These two files will be de-
scribed in the following subsections.

2.1. Domain specification

In this file, we will specify the objects which may ap-
pear in the domain as well as the relations among them
(propositions). Moreover, in order to make changes to the
world state, actions must be defined.

o Object types: containers and rows, where the rows
represent the areas in a yard-bay in which a tower
or stack of containers can be built.

o Types of propositions:

— Predicate for indicating that the container 7x
is on 7y, which can be another container or,
directly, the floor of a row (stack).

on ?x - container 7y - (either row container)
— Predicate for indicating that the container 7x
is in the tower built on the row 7r.

at ?x - container ?r - row

— Predicate for stating that ?x, which can be a
row or a container, is clear, that is, there are no
containers stacked on it.

clear ?x - (either row container)
— Predicate for indicating that the crane used to

move the containers is not holding any con-
tainer.
crane-empty

— Predicate for stating that te crane is holding
the container 7x.
holding ?x - container

— Predicates used to describe the problem goal.
The first one specifies the most immediate con-
tainers to load, which must be located on the
top of the towers to facilitate the ship loading
operation. The second one becomes true when
this goal is achieved for the given container.
goal-container ?x - container and ready ?x -

container

— Numerical predicates. The first one stores the
number of containers stacked on a given row
and the second one counts the number of con-
tainer movements carried out in the plan.

height ?s - row and num-moves
e Actions:

— The crane picks the container ?x which is in the
floor of row 7r.

pick (7x - container 7r - row)

— The crane puts the container ?x, which is hold-
ing, in the floor of row 7r.
put (?x - container 7r - row)

— The crane unstacks the container ?x, which is
in row ?r, from the container ?y.
unstack (?x - container 7y - container ?r -

— The crane stacks the container 7x, which is cur-
rently holding, on container 7y in the row 7r.

row)

stack (7x - container 7y - container 7r - row)

— Finally, we have defined two additional actions
that allow to check whether a given (goal) con-
tainer is ready, that is, it is in a valid position.
When a container is clear:
fict-checkl (?x - container)

The container is under another (goal) container
which is in a valid position.

fict-check2 (7x - container 7y - container)

As an example of PDDL format, we show in Figure
B the specification of the stack operator. Preconditions
describe the conditions that must hold to apply the action:
crane must be holding container 7x, container 7y must be
clear and at row ?r, and the number of containers in that



row must be less than 4. With this constraint we limit
the height of the piles. The effects describe the changes in
the world after the execution of the action: container 7x
becomes clear and stacked on 7y at row ?r, and the crane
is not holding any container. Container 7y becomes not
clear and the number of movements and the containers in
?r is increased in one unit.

(:action stack
:parameters (?x - container ?y - container ?r - row)
:precondition (and
(holding ?x) (clear 7?y)
(at 7y 7r) (< (height 7r) 4))
:effect (and
(clear 7x)  (on ?7x 7y)
(at ?x ?r) (crane-empty)
(not (holding ?7x))
(not (ready 7y))
(not (clear ?7y))
(increase (num-moves) 1)
(increase (height 7r) 1)))

Figure 3: Formalization of the stack operator in PDDL.

2.2. Problem specification

Once the problem domain has been defined, we can de-
fine problem instances. These files describe the particular
characteristics of each problem:

e Objects: the rows available in the yard-bay (usually
6) and the containers stored in them.

e [nitial state: the initial layout of the containers in
the yard.

o The goal specification: the selected containers to be
allocated at the top of the stacks or under other se-
lected containers.

e The metric function: the function to optimize. In
our case, we want to minimize the number of reloca-
tion movements (reshuffles).

Since the Container Stacking Problem can be formal-
ized with these two files, we can use a general domain
independent planner to solve our problems as Metric FF
[i7]. The plan, which is returned by the planner, is a totally
ordered sequence of actions or movements which must be
carried out by the crane to achieve the objective. Fig-
ure B shows an example of the obtained plan for a given
problem. The performance of this general planner will be
analyzed in Section B, which will be compared with the
domain-oriented planner presented in next Sections.

3. A Domain-Dependent Heuristically Guided Plan-
ner

Metric FF planner might obtain plans, but it is very in-
efficient. Therefore, we propose a domain-dependent plan-

Plan number: |3 =

o)

Plan actions:

0: unstack x5 x14 53 -~
1: stack x5S x4 51

2: unstack x15 %3 52
3: stack x15 x12 s4
4: unstack x14 x1 53
5

&

7

1 stack x14 %15 s4
: unstack %7 x2 56
1 shack x7 x9 59

Figure 4: The obtained plan solution to be carried out by the transfer
crane.

ner in order to provide more efficiency, it means at least re-
ducing the number of crane operations required to achieve
a desirable layout.

The proposed planner is built on the basis of a lo-
cal search domain-independent planner called Simplanner
[I6]. This planner has several interesting properties for the
container stacking problem:

e It is an anytime planning algorithm. This means
that the planner can found a first, probably subopti-
mal, solution quite rapidly and that this solution is
being improved while time is available.

e It is complete, so it will always find a solution if
exists.

e It is optimal, so that it guarantees finding the opti-
mal plan if there is time enough for computation.

It follows an enforced hill-climbing [B] approach with
some modifications:

e It applies a best-first search strategy to escape from
plateaux. This search is guided by a combination of
two heuristic functions and it allows the planner to
escape from a local minima very efficiently.

e If a plateau exit node is found within a search limit
imposed, the hill-climbing search is resumed from the
exit node. Otherwise, a new local search iteration is
started from the best open node.

The initial approach, based on Simplanner, was firstly
used to solve individual subproblems (yard-bays). To im-
prove the solutions obtained by Simplanner we have fur-
ther developed a domain-dependent heuristic to guide the
search in order to accelerate and guide the search toward
a optimal or sub-optimal solutions.

This heuristic (called hy) was developed to efficiently
solve one yard-bay. h; computes an estimator of the num-
ber of container movements that must be carried out to
reach a goal state (see Algorithm mM). The essential part
of this algorithm is to count the number of containers lo-
cated on the selected ones, but also keeps track of the



containers that are held by the crane distinguishing be-
tween whether they are selected containers or not. When
the crane is holding a selected container, the value h has a
smaller increase since, although this state is not a solution,
this container will be at the top of some row in the next
movement.

Algorithm 1: Pseudo-code of the domain-

dependent heuristic hy

Data: b: state of the yard-bay;
Result: h: heuristic value of b;
h + 0;
// Container hold by the crane
if 3x—container / Holding(z) € b then
if GoalContainer(z) then
| h<« 0.1;
else
| h« 0.5;
end

end
// Increasing the Ah value
for r < 1 to numRows(b) do
Ah «+ 0;
for x—container / At(x,r) A GoalContainer(z) € b do
if Aly—container / GoalContainer(y) A On(y,z) € b then
|  Ah + max(Ah, NunContainersOn(z));
end
end
h « h+ Ah;

end

4. Optimization criteria for one-bay yards

Despite we are able to obtain good solutions (layouts)
from Simplanner enhanced with hy, we also want solu-
tions more realistic for instance taking into account safety
standards.

From this heuristic hy, we have developed some opti-
mization criteria each one of them achieving one of the
requirements we could face at Container Terminals [IH].
These criteria are centered in the next issues:

1. Reducing distance of the goal containers to the cargo
side (OC1q).

2. Increasing the range of the move actions set for the

cranes allowing to move a container to 5th tier (OCh;).

3. Applying different ways of balancing within the same
bay in order to avoid sinks (OC1p).

These criteria have been easily incorporated in our
planner by defining a heuristic function as a linear combi-
nation of two functions:

h(s) = a-hi(s) + B - ha(s) (1)

being this secondary function a combination of these three
criteria described:

ha(s) = OC14 + OC1y + OCyy (2)

Note that although we want to guarantee balancing
with this last optimization criterion, unbalanced states
(states with sinks) are allowed during this process of re-
marshalling in order to get better solutions according to
the number of reshuffles done.

4.1. OC14: Placing goal containers close to cargo side

Given an initial state, several different layouts can be
usually achieved making the same number of reshuffles and
some of them can be more interesting than the rest accord-
ing to other important questions. In this case, since the
transfer crane is located at the right side of the yard-bay,
we want to obtain a layout where it is minimized the dis-
tance of the goal containers to this side of the yard-bay.
Achieving this we can spend considerably less time during
the truck loading operations.

A I |
H}'hﬂi'h

Final

Initial
Figure 5: Obtained plan with the initial domain-dependent heuristic.

Following the heuristic function presented in Equation
m:

e h1(s) is the main heuristic function, which estimates
the number of movements required to reach the goal
layout (outlined in Algorithm m). Since this is the
main optimization function, « value should be sig-
nificantly higher than 3.

e ha(s) is the secondary function we want to optimize.
In this case, it is just OC14. This means the sum of
the distances of the selected containers to the right
side of the yard-bay, which can be computed as Al-
gorithm B shows.

Algorithm 2: Pseudo-code to calculate the distance

Data: s: state to evaluate
Result: d: distance value of s
d + 0;
for r < 1 to numRows(s) do
for x—container / At(x,r) € s A GoalContainer(x) do
| d< d+ (numRows(s) — 7);
end
end

The benefits of using this combined heuristic function
can be observed in Figure B and Figure B. In the first one
we want only to minimize the number of reshuffles, i.e.
h(s) = hi(s). In the second one, we also want to minimize



the distance of the selected containers to the forklift truck,
so we have set h(s) = 9 % hi(s) + ha(s). As a result,
none of the selected containers (the red ones) are placed
in the most left rows, reducing the required time to load
the truck.

iy
| B | '-
IL-. ® |l o

ol

Initial Final

Figure 6: Obtained plan with the distance optimization function.

4.2. OC1y: Allowing the 5th tier during the remarshalling
process

In this optimization criterion as well as the next ones,
we will include the new given heuristic value with the same
factor as the initial one. One of the decisions that must be
done in Container Terminals is about which cranes have to
be bought depending on how many tiers cranes work. This
topic has been considered in [I2]. But, another approach
is to reach the fifth tier only during the remarshalling pro-
cess. Thereby, there would be 4 tiers at the beginning and
the end keeping the first requirements.

Following this concept, we will use instances of prob-
lems < n,4 > with a domain whose move actions allow 5
tiers at the stacks. This function is showed in Algorithm
B and it follows the same steps than the original but in-
creasing the value of h when the height of one of the stacks
is higher than 4. Thereby, we assure that the final layout
will always have 4 tiers.

4.8. OC1y: Balancing one yard-bay

In this section we present an extension for the heuris-
tic hy (Algorithm M) to include the balancing of the stacks
within one yard-bay as a requirement. It is considered
that there is a sink when the height difference between
two adjacent stacks in the same yard-bay is greater than a
maximum number of containers, in our case two contain-
ers.

Considering the time when the goal containers are re-
moved from the yard, we can distinguish three ways to get
balanced one yard-bay presented in the next subsections.
The last mode is the consequence of applying the first two
ones.

1. Balanced before loading operation In this case,
we consider that the layout must be balanced before
the goal containers are removed from that yard-bay.
This function is showed in Algorithm B, it compares
the height of each row of the yard-bay with the next

Algorithm 3: Pseudo-code of the domain-
dependent heuristic function to allow 5 tiers

R T— TN

Data: s: state to evaluate
Result: h: heuristic value of s
h + 0;
if 3z—container / Holding(z) € s then
if GoalContainer(z) then
| h<+0.1;
else
| h <+ 0.5
end
end
for r < 1 to numRows(s) do
Ah + 0;
if Height[r, s] > 4 then
if x—container / Clear(z,r) € s A GoalContainer(x)
then
| Ah <+ 0.5;
else
| Ah <+ 1;
end
end
for x—container / At(z,r) € s A GoalContainer(xz) do
if Aiy—container / GoalContainer(y) A On(y,z) € s then
|  Ah + max(Ah, NumContainersOn(z));
end

end
h < h + Ah;

end

one, and if the difference is higher than 2, the value
heuristic h is increased. As it appears in Figure @,
this criterion avoids the sinks in the final layout while
all the containers are still in the yard-bay.

However, when these containers are removed, it might
cause that the new layout is unbalanced as it hap-

pens in Figure [[{c].

Algorithm 4: Pseudo-code to balance before the
goal containers are removed

Data: s: state to evaluate; h: Initial heuristic;
Result: h: heuristic value of s;
for r < 1 to numRows(s) — 1 do
Ah + Abs(Height[r, s] — Height[r + 1, s]) — 2;
if Ah > 0 then
|  h<+ h+ Ah;
end
end

2. Balanced after loading operation In contrast to
the method seen above, we can consider that the
layout must remain balanced after the goal containers
are removed from the yard-bay. Figure B shows the
layouts we get after execute the plan returned by our
planner.

Algorithm B shows this function. It uses the Func-
tion Heights WithoutGoals (Algorithm H) in order to
calculate for the yard-bay b the height for each stack
where the first no-goal container is. These values
are employed to get the difference of height between
two adjacent stacks once the goal containers have
been removed from the yard. Heights of each row
are stored as soon as the planner gets the final so-
lution plan for one yard-bay. After we obtain these
values, we increase the heuristic value h according to
whether or not there are goal containers on the floor.
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Figure 7: Effects of using function seen in Algorithm @

Algorithm 6: Pseudo-code to balance after the goal
containers are removed

Data: s: state to evaluate; h: Initial heuristic;
Result: h: heuristic value of s;
HeightsWithoutGoals(s);
Ah + 0;
// Not allow containers on the floor
for r < 1 to numRows(s) do
if 3x—container / On(zx, r) A GoalContainer(x) then
if MinHeight[r, s] > 0 then
| Ah <+ Ah + NumContainersOn(z);
end
end
end
h < h + Ah;
for r < 1 to numRows(s) — 1 do
Ah < Abs(MinHeight[r, s|] — MinHeight[r + 1, s]);
if Ah > 2 then
| h< h+Ah—2;
end

end

Algorithm 5: Function HeightsWithoutGoals to
calculate heights of each row without taking into ac-
count the goal containers at the top

Data: b: state of the yard-bay;
Result: MinHeight, heights calculated;
for r < 1 to numRows(b) do

ot 1]

(a) Initial Layout (b) With goal containers

MinHeight[r, b] < Height[r, b];
// Decrease till the first no goal-container
while MinHeight[r, b] > 0 A
GoalContainer(MinHeight[r, b],7) € b do

| MinHeight[r, b] < MinHeight[r, b] — 1;
end

end

Then, we use the values given by Heights Without-
Goals to calculate the difference between two adja-
cent stacks, when this difference is higher than 2 we
consider that there is a sink, so h is increased again.
However, this process might also cause some unbal-
anced layouts (Figure B(b})). But in this case, non-
desirable layouts will appear while the goal contain-
ers are in the yard-bay. Once they have been re-
moved from it, these layouts will be balanced ones
(Figure B(c]).

. Balanced before and after loading operation
Finally, we present an optimization criterion which
obtains a layout where is balanced both before and
after the goal containers are removed from this yard-
bay. With this function we want to solve the prob-
lems seen in the last subsections as we can see it in
Figure Q.

This function (Algorithm @) is a mixture of the last
two ones. First, we increase h when there are goal
containers on the floor. When this is achieved, we in-
crease h when the difference between the heights val-
ues obtained by the function Heights WithoutGoals
(Algorithm B) are higher than 2 for two contiguous
rows. And finally, if h value is low enough (in our
case lower than 1), we increase h again if the differ-

I
I

(c) Without goal containers

Figure 8: Effects of using function seen in Algorithm B

ence between the actual heights of two contiguous
rows is higher than 2.

5. Optimization criteria for one block

This initial heuristic (h;) was unable to solve a com-
plete yard or block (in our case, one block consists of 20
yard-bays) due to the fact that they only solve individual
yard-bays. In this paper, we also have developed two opti-
mization criteria that include new constraints that involve
several yard-bays. These constraints are:

e Balancing contiguous yard-bays: rows of adjacent
yard-bays must be balanced, that is, the difference
between the number of containers of row j in yard-
bay ¢ and row j in yard-bay ¢ — 1 must be lower
than a maximum (in our case lower than 3). Figure
M shows which rows must be get balanced when we
consider one yard-bay and Figure I left shows an
example of non-balanced yard-bays (rows in dotted
points).



Algorithm 7: Pseudo-code to balance the yard-bay
before and after the goal containers are removed

Data: s: state to evaluate; h: Initial heuristic;
Result: h: heuristic value of s;
HeightsWithoutGoals(s);
Ah <+ 0;
// Not allow containers on the floor
for r < 1 to numRows(s) do
if Jx—container / On(z, r) A GoalContainer(x) then
if MinHeight[r,s] > 0 then
|  Ah <+ Ah + NumContainersOn(z);
end

end
nd
< h+ Ah;
h < 2 then

Ah «+ 0;

// Balancing with containers which are not objective

for r < 1 to numRows(s) — 1 do
Ah < Abs(MinHeight[r, s] — MinHeight[r + 1, s]);
if Ah > 2 then

| h<+ h+0.6x (Ah—2);

end

50

end
if h < 2 then
// Balancing with containers which are objective
for r < 1 to numRows(s) — 1 do
Ah < Abs(Height[r, s] — Height[r + 1, s]);
if Ah > 2 then
| h<+ h+04x (Ah—2);
end

end

end
end

|
e ol

(a) Initial Layout

(b) With goal containers

(c) Without goal containers

Figure 9: Effects of using function seen in Algorithm @

e Dangerous containers: two dangerous containers must
maintain a minimum security distance. Figure [
right shows an example of two dangerous containers
that does not satisfy the security distance constraint.

These constraints interrelate the yard-bays so the prob-
lem must be solved as a complete problem. However, it
is a combinatorial problem and it is not possible to find
an optimal or sub-optimal solution in a reasonable time.
Following the previous philosophy of solving each subprob-
lem independently (each yard-bay separately), we can dis-

(1) <1 (ij) (i+1.])

Stacks

Bays

Figure 10: Balancing scheme

tribute the problem into subproblems and solve them se-
quentially taken into account related yard-bays. Thus a
solution to the first yard-bay is taken into account to solve
the second yard-bay. A solution to the second yard-bay is
taken into account to solve the third yard-bay. Further-
more, if there exist a dangerous container in a first bay,
its location is taken into account to solve a dangerous con-
tainer located in the third yard-bay (if it exists); and so
on. Taken into account this distributed and synchronous
model, we present two different optimization criteria to
manage these types of constraints.

These two criteria are added to the heuristic function
seen in Equation O as hs (Equation B); and Equation @
shows the exact combination of them. This makes possible
to follow a criterion with major priority than the other one.

h=a-hi+ B -ho+v-hs (3)

hg = (51 . OCnB + 52 : OCnD (4)

As a consequence of the solving mode followed, depend-
ing on the order the yard-bays are resolved may not be
possible to achieve a solution. Moreover, as mentioned in
Section @, although we want to guarantee balancing and/or
minimum distance between dangerous containers, during
relocation of container process we will allow the presence
of non-desirable sates, e.g. with some sinks between two
contiguous rows or bays. These intermediate states are
allowed because through them we will be able to get bet-
ter solutions taking into account as metric function the
number of reshuffles done.

5.1. OCy,p: Balancing contiguous yard-bays

In this section we present an extension for the heuristic
hi (Algorithm M) to include the balancing of continuous
yard-bays as a requirement. It is considered that there is
a sink when a difference higher than two containers exists
between two adjacent rows in contiguous yard-bays. This
criterion is an extension of the balanced heuristic presented
in Algorithm @, which avoids sinks in the same yard-bay
(horizontal balance) both before and after the outbound



— d=\(i-i-2) +(3-2) +(2-2)

Figure 11: (Left) Non-balanced yard-bays. (Right) Proximity of two
dangerous containers.

containers have been removed from the yard. However,
in this case a sink represents a constraint between two
subproblems. Thus, we also consider that there is a sink
when a difference of two exits between the same row r in
two contiguous yard-bays (vertical balance).

This process is showed in Algorithm B. This also uses
the Function Heights WithoutGoals (Algorithm B) in order
to calculate for the yard-bay b the height for each stack
where the first no-goal container is. Heights of each row
are stored as soon as the planner gets the final solution
plan for one yard-bay.

First, we apply the criterion seen in Algorithm @ on the
yvard-bay b. Through heights’ calculated by Algorithm
B and the real heights of the actual yard-bay we obtain
the differences between the row r and r — 1 to calculate
the value of h. When this value is zero (the yard-bay b is
horizontally balanced), then we introduce our function to
balance it with respect to the last yard-bay b;. To do so, we
must also calculate the heights’ through the Algorithm B
over b; and use the real heights of it in order to obtain the
differences between the row r situated in b and b;. When
these differences are higher than 2, we increase h propor-
tionally. After that process, b will be balanced horizontally
with respect to their rows, and vertically with respect to
the last yard-bay. Repeating this process for each yard-bay
in the block, this will be completely balanced.

5.2. OC,p: Dangerous containers

Within a block, there are different types of contain-
ers depending on the goods they transport, being some of
them dangerous. If they do not satisfy certain restrictions,
it may become a hazard situation for the yard since e.g. if
one of them explodes and they are not enough far between
them, it will set off a chain of explosions.

With this added objective, the next optimization cri-
terion (Algorithm H) ensures a minimum distance (D, )
between every two dangerous containers (Cy) in the yard.
D,in is set as one parameter for the planner and the dis-
tance is calculated as the Euclidean distance, considering
each container located in a 3-dimensional space (X,Y,Z)

Algorithm 8: Pseudo-code to balance two adjacent
yard-bays

Data: b: state of the actual yard-bay; h: Initial heuristic; b;: last
yard-bay;

Result: h: heuristic value of b
// Getting the balance horizontally
HeightsWithoutGoals(b);
h < h + BalBeforeAfter(b);
// This heuristic will be executed after a partial solution
if h < 1 A NumBay(b) # 1 then

Ah H
HeightsWithoutGoals(b;);
// Balancing with containers which are not objective
for r < 1 to numRows(b) do
Ah < Abs(MinHeight[r, b;] — MinHeight[r, b]);
if Ah > 2 then

| h<+ h+4+0.6x (Ah—2);

end
end
if h =0 then
// Balancing with containers which are objective
for r < 1 to numRows(b) do

Ah < Abs(Height[r, b;] — Height[r, b]);

if Ah > 2 then

| h<+ h+4+04x (Ah—2);

end

end

end

end

where X is the number of yard-bays, Y is the number of
rows and Z is the tier.

Generally, in container terminals, at most, there is only
one dangerous container in two contiguous yard-bays, so
that we take into account this assumption in the develop-
ment of this function.

This function increases h value when a dangerous con-
tainer Cy; exists in a yard-bay b and the distance con-
straints between dangerous containers are not hold. Thereby,
for each dangerous container Cys allocated in the previous
D,,in yard-bays is calculated by Euclidean distance to Cy.
If this distance is lower than D,,;,, for any dangerous con-
tainer Cyg, then h value is increased with the number of
containers n on Cy; because it indicates that removing
those n containers is necessary to reallocate the container

Car.

6. Evaluation

In this section, we evaluate the behavior of the heuris-
tic with the set of optimization criteria presented in this
paper. The experiments were performed on random in-
stances. A random instance of a yard-bay is characterized
by the tuple < n, s >, where n is the number of containers
in a yard-bay and s is the number of selected containers
in the yard-bay. Each instance is a random configuration
of all containers distributed along six stacks with 4 tiers.
They are solved on a personal computer equipped with a
Core 2 Quad Q9950 2.84Ghz with 3.25Gb RAM.

First, we present a comparison between our basic do-
main dependent heuristic h; against a domain independent
one (Metric FF). Thus, Table 0 presents the average run-
ning time (in milliseconds) to achieve a first solution as
well as the best solution found (number of reshuffles) in 10



Algorithm 9: Pseudo-code to avoid locating two
dangerous containers closer to a distance D,y

Data: B: whole block; b: state of the actual yard-bay; h:
Initial heuristic; D, in: Minimum distance;
Result: h: heuristic value of b;
nBay < NumBay(b);
if nBay > 1 A 3Cq41 € b then
Ah + 0;
Ly - Location(Cyg1);
foreach
by € Y / NumBay(b;) € {max(nBay — Dymin +1,1),nBay — 1}
do
if 3C42 € b; then
Ly < Location(Cg2);
dist < EuclideanDistance(L1, L2);
if dist < D.,in then
Ah < Ah + NumContainers0On(Cyg4z);
if Clear(C41) € b then
| Ah < Ah+ (Dmin — dist);
end
end
end

end
h + h + Ah;

end

Algorithm 10: Sinks within a whole block

Data: B: whole block;
Result: nSinks: number of Sinks;
nSinks < 0;
for b + 1 to numYards(B) do
for r < 1 to numRows(b) — 1 do
Ah < Abs(Height[r, b] — Height[r + 1, b]);
if Ah > 2 then
| nSinks < nSinks + 1;
end
end
if NumBay(b) > 1 then
for r < 1 to numRows(b) do
Ah < Abs(Height[r, b] — Height[r, b — 1]);
if Ah > 2 then
| nSinks < nSinks + 1;
end
end

end
end

Algorithm 11: Unfeasible relationships between
two dangerous containers within a whole block

Data: B: whole block;
Result: nDang: number of Sinks;
nDang < 0;
for b +— 1 to numYards(B) do
nBay < NumBay(b);
if nBay > 1 A3C41 € b then
L, < Location(Cg41);
foreach b; € Y / NumBay(b;) €
{max(nBay — Dmin + 1,1),nBay — 1} do
if 3C42 € b; then
Ly < Location(Cg2);
dist < EuclideanDistance(L1, L2);
if dist < Dpin then
| mDang < nDang + 1;
end
end
end

end
end

seconds for our domain-dependent planner and the aver-
age running time (in milliseconds) and the quality of the
solution for Metric FF. Both planners have been tested in
problems < n,4 > evaluating 100 test cases for each one.
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Thus, we fixed the number of selected containers to 4 and
we increased the number of containers n from 15 to 21.

It can be observed that our new domain-dependent
heuristic is able to find a solution in a few milliseconds,
meanwhile the domain-independent planner (Metric FF)
needs much time for finding a solution and also, this solu-
tion needs more moves to get a goal state. Furthermore,
due to the fact that our tool is an anytime planner, we
evaluate the best solution found in a given time (10 sec-
onds).

Table 1: Average number of reshuffles and running time of Metricp F'
and hj in problems < n,4 >.

Metric FF Heuristic (h1)

Instance | Running | Solution | Time first | Best Solution
time solution in 10 secs

< 13,4 > 22 3.07 2 3.07
<15,4>| 3102 4.04 5 3.65
<17,4>1| 4669 5.35 11 4.35
< 19,4 > 6504 6.06 22 4.72
< 20,4 >| 22622 7.01 33 5.22
<21,4>1| 13981 6.82 62 5.08

Now we show the effects of using each one of the criteria
described in Section @ separately. In Table B, we present
the average sum of distances between the selected contain-
ers and the right side of the layout in both our domain-
independent heuristic and our domain-dependent heuristic
with distance optimization for problems < n,4 >. As men-
tioned above, we fixed the number of selected containers
to 4 and we increased the number of containers n from 13
to 21. It can be observed that distance optimization func-
tion helps finding solution plans that place the selected
containers closer to the cargo side of the yard-bay.

Table 2: Average distance obtained by considering distance or not in
our domain-dependent heuristic < n,4 > with 4 tiers.

Instance Metric FF 0OCq4
Distance | Reshuffies | Distance | Reshuffles

<13,4>| 11.28 3.07 10.91 3.07
<15,4>| 10.60 4.04 9.21 3.65
<17,4>| 10.58 5.35 8.87 4.46
<19,4>| 12.28 6.06 8.33 4.85
<20,4>1] 1271 7.01 7.75 5.55
<2L,4>1| 1220 6.82 8.22 5.33

Applying the criterion or function showed in Algorithm
B we obtain the results appeared in Table B. These results
are the comparison between the number of solved problems
over 100 problems < n,4 > using or not that criterion in
just one second. Through this table we can conclude that:

e The greater number of containers, the fewer prob-
lems are solved. This is because as we increase the
number of containers there are less positions or gaps
where containers could be remarshalled.



e Allowing movements to the 5* helps us to solve more
problems. It is remarkable with instances < 23,4 >
with H; only three problems could be solved, how-
ever OC'; solves 84 over 100 problems.

Table 3: Number of solved problems < n,4 > with 4 and 5 tiers
during the process.

Instance | 4 tiers hy | 5 tiers OCy;
< 19,4 > 100 100
< 20,4 > 100 100
< 21,4 > 95 99
< 23,4 > 3 84

Last criterion for solving problems where we only take
into account one yard-bay is showed in Section B=3. As we
mentioned in this section, since the last function (Algo-
rithm @) presents the best results after the whole process
of remarshalling, we do the comparison in Table B among
the solutions given by Metric FF' planner, the initial one
hy and OCyy, (Both) in 50 test cases. These results are the
average of the best solutions found given a time limit of 1
second for the instances of both < 15,4 > and < 17,4 >.

Sinks are calculated by Algorithm . As we men-
tioned above, we consider that there is a sink where the
difference in tiers between two adjacent rows is higher than
2. Thereby, in this algorithm we are counting sinks pro-
duced between two contiguous stacks at the same yard-
bay as well as between two rows in one yard-bay and the
previous one. This process takes into account the goal
containers in final yard-bays.

Table 4: Average number of movements, sinks and time for the first
solution in problems < 15,4 > (1) and < 17,4 > (2) using or not
balanced heuristics.

Metric FF hq OC1y
1) (2) 1) (2) 1) (2)
Reshuflles 3.72 | 424 | 3.42 | 3.72 | 4,76 | 5.04
Sinks 0.62 | 0.50 | 0.94 | 0.66 0 0
Time First | 2621 | 2961 5 9 32 44

From here we realize an evaluation for the criteria pre-
sented in Section B. Table B shows the performance of the
criteria for solving the whole block of yard-bays. These
experiments were performed in blocks of 20 yard-bays and
each one of them are instances < 15,4 >. This evaluation
was carried out in a yard with 2 blocks of 20 yard-bays.
Thus, the results showed in Table B represent the average
number of reshuffles, the average number of sinks gener-
ated along the block and the average number of unsatisfied
dangerous containers. Results given by these optimization
criteria are the average of the best solutions found in 10
seconds.

The number of unfeasible relationships between dan-
gerous containers is calculated by means of Algorithm I
Basically, we look for those pairs of dangerous containers
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whose distance between them is shorter than minimum
distance (Dpin)-

In this table, it can be observed that h; still outper-
forms Metric FF in the average number of reshuffles. How-
ever, due to the fact that they do not take into account the
balancing constraints, Metric FF generated an average of
18.00 sinks in the block of yard-bay and h; generated and
average of 29.50 sinks. And the same thing happens for
the average number of unfeasible constraints for dangerous
containers, Metric FF gives us 16.00 and h; obtains 7.50.

Taking into account that OCy is a junction of OC,p
and OC},p, both OC,,p and OC,,p solved their problems,
that is, OC,,p obtained its solutions with no sinks and
OC, p obtained its solutions by satisfying all dangerous
constraints. Furthermore, OCy was able to solve its prob-
lems by satisfying both types of constraints. However we
could state that balancing problem is harder than the
problem related to dangerous containers because OC,p
needs more reshuffles to obtain a solution plan than OC,,p.
Moreover, we observe with OC,, g, OC,,p and OCy ensure
the established requirements however the average reshuf-
fles is increased with respect to hi.

Table 5: Average results with blocks of 20 yard-bays each one being
a < 15,4 > problem.

Metric FF| hy |OC,B|0OC,p|OCnN
Reshuflles 3.65 3.38 4.85 4.00 5.65
Sinks 18.00 29.50 0 40.33 0
Non-Safe 16.00 750 | 8.00 | 0 0
Dangerous

7. Conclusions

This paper presents domain-dependent heuristics and a
set of optimization criteria for solving the Container Stack-
ing problem by means of planning techniques from Artifi-
cial Intelligence. We have developed a domain-dependent
planning tool for finding optimized plans to obtain an ap-
propriate configuration of containers in a yard-bay. Thus,
given a set of outgoing containers, our planner minimizes
the number of necessary reshuffles of containers in order
to allocate all selected containers at the top of the stacks.
This proposed planner is able to satisfy both balancing
constraints and keeping a security distance between dan-
gerous containers, as well as reducing the distance of the
goal containers to the cargo side or allowing a fifth tier
during the remarshalling process.

Additional criteria have been defined for management
of blocks of yard-bays. However, as the problems involve a
larger number of constraints, the solution becomes harder
and the number of reshuffles increases. Due to the fact
that a solution of a yard-bay influences on the solution of
the following yard-bay, the order of solving the yard-bays
will vary and determine the minimal number of reshuffles.



This proposed planner with a domain-dependent heuris-
tic allows us obtaining optimized and efficient solutions.
This automatic planner can help to take decisions in the
port operations dealing with real problems. Moreover,
it can help to simulate operations to obtain conclusions
about the operation of the terminal, evaluate alternative
configurations, obtain performance measures, etc. Partic-
ularly, in [4] the proposed planner has been applied for
obtaining an evaluation of alternative 4 or 5 tiers stacks
configuration.
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