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Abstract— Out-of-order retirement of instructions has been
shown to be an effective technique to increase the number
of in-flight instructions. This form of runtime scheduling can
reduce pipeline stalls caused by head-of-line blocking effects
in the reorder buffer (ROB). Expanding the width of the
instruction window can be highly beneficial to multiprocessors
that implement a strict memory model, especially when both
loads and stores encounter long latencies due to cache misses,
and whose stalls must be overlapped with instruction execution
to overcome the memory latencies.

Based on the Validation Buffer (VB) architecture (a previously
proposed out-of-order retirement, checkpoint-free architecture
for single processors), this paper proposes a cost-effective, scal-
able, out-of-order retirement multiprocessor, capable of enforcing
sequential consistency without impacting the design of the mem-
ory hierarchy or interconnect. Our simulation results indicate
that utilizing a VB can speed up both relaxed and sequentially
consistent in-order retirement in future multiprocessor systems
by between 3% and 20%, depending on the ROB size.

Index Terms— QOut-of-order retirement, multicore processors,
Validation Buffer, sequential consistency.

I. INTRODUCTION

Multicore processors are now the current norm in both the
general purpose and embedded systems processor markets. The
move to multicore has mainly been prompted by the thermal
issues associated with superscalar architectures and the diffi-
culty of high frequency designs to exploit limited amounts of
instruction-level parallelism. To address some of these issues,
wider instruction windows are needed to attempt to hide long
memory delays with computation, which in turn require large
non-scalable microarchitectural structures (e.g., reorder buffers).
Thus, further sources of concurrency must be obtained with the
help of explicit parallelism.

There are still many factors present in single-thread perfor-
mance that remain challenges in multicore designs. On one hand,
the continued growth in chip integration allows complex designs
to be considered that better balance the trade-off between the
number of cores and increased core complexity. On the other
hand, the intrinsic difficulties of parallel programming and the

sequential nature of many existing applications limit the potential
of parallel architectures that sacrifice single-thread performance.

One approach that can be explored to increase performance in
single-threaded architectures is to utilize out-of-order retirement.
This class of processors were originally proposed [1][2][3] as
an effective solution to increase the instruction window size by
relaxing the conditions under which instructions are retired from
the pipeline. In this context, the Validation Buffer (VB) architec-
ture has been proposed and evaluated for superscalar microarchi-
tectures [4]. This solution works effectively while reducing the
complexity of some major microarchitecture structures, such as
the reorder buffer (ROB) or the register file. Since this technique
can be considered a cost-effective mechanism, it becomes suitable
for multicore environments, where energy dissipation is a major
concern. However, out-of-order retirement of memory instructions
raises a number of issues, specifically in terms of the memory
consistency model used on parallel architectures.

A memory consistency model defines ordering of memory
operations on shared memory multiprocessors and multi-core sys-
tems. Sequential consistency (SC) is the most restrictive memory
consistency model. SC forces memory operations to be viewed
by all processors in the same overall global order, which removes
any complexity from the programming interface. This model is
widely accepted and has been implemented in some commercial
or prototype microprocessors [S][6][7].

The VB architecture supports relaxed consistency by design,
but the implementation of an efficient checkpoint-free, sequen-
tially consistent, out-of-order retirement multiprocessor is still
an open problem. In this paper, we propose an implementation
of sequential consistency on top of a VB-based multiprocessor.
While the resulting architecture enforces strict global ordering
of memory operations, it relaxes conditions to release pipeline
resources, providing wider instruction windows that lead to per-
formance gains over ROB-based multiprocessors. Experimental
results show that 7) a sequentially consistent VB multicore pro-
cessor achieves speedups between 3% and 20% over a ROB-based
design (depending on the ROB size assumed), and ¢7) a relaxation
of the memory model (i.e., a multiprocessor based on unmodified
baseline VB uniprocessor components) increases this speedup up



to 10% for large ROB sizes.

The remainder of this paper is structured as follows. Sections
IT and IIT describe the baseline multiprocessor and the sequen-
tial consistency implementation used in this paper, respectively.
Section IV presents the proposed out-of-order retirement multi-
processor architecture. Section V shows a performance evaluation,
and finally Sections VI and VII discuss related work and provide
concluding remarks, respectively.

II. BACKGROUND
A. Out-of-Order Retirement

A traditional out-of-order execution processor uses a Reorder
Buffer (ROB) to track all instructions in flight. The main aim
of this structure is to provide the capability of recovering the
machine state during the execution of any instruction in the
case of a branch misprediction or an exception. Thus, the first
condition for an instruction to exit the ROB is that its speculative
state is resolved, that is, it becomes either non-speculative or
mispredicted. The out-of-order execution and recovery from any
of the in-flight instructions is additionally supported by a register
renaming strategy that tracks all intermediate states inside the
instruction window. Most register renaming strategies impose
a second condition that instructions must be completed before
exiting the ROB.

Our proposed out-of-order retirement architecture uses a struc-
ture called the Validation Buffer (VB). This structure has a similar
function and implementation as the ROB, but instructions can
leave it earlier. Specifically, the VB architecture implements an
aggressive register renaming strategy (detailed below) which does
not require instructions to be completed at the time they exit the
VB. Thus, an instruction at the VB head can leave it as soon as its
speculative state is resolved. An instruction leaving the VB is said
to be validated when we can confirm that it has been correctly
executed. On the contrary, it is said to be invalidated when it
leaves the VB as mispredicted, invoking recovery to a previous
processor state. As shown in previous work [4], the main benefits
of the VB architecture are workload dependent, and come from
a reduction of pipeline stalls. In a ROB-based processor, most
pipeline stalls are due to long-latency instructions blocking the
ROB head.

B. Register Renaming

Typically, modern microprocessors free a physical register
when the next instruction renaming the corresponding logical
register commits. At this point, it is known that all instructions
reading this physical register have already committed. Then, the
physical register index is placed in the free physical register list.
This method requires keeping track of the oldest instruction in
the processor pipeline, which makes it unsuitable for the VB
microarchitecture.

Instead, the VB architecture uses a register reclamation strategy
based on the counter method [8]. The hardware components used
in this scheme, as shown in Fig. 1, are the Register Alias Table
(RAT) and the Register Status Table (RST).

The RST is a table indexed by a physical register identifier.
Each entry in the table contains three fields, called pending,
unmapped, and completed, respectively. The completed bit (also
present in ROB-based microarchitectures) indicates that the in-
struction producing a value for the corresponding physical register

has finished execution (i.e., has written back its result). The
unmapped field is a bit that is set when the instruction that
renames the corresponding logical register is retired from the
VB as non-speculative. Finally, the pending field is a counter
that tracks the number of decoded instructions that consume the
corresponding physical register, but have not read it yet (i.e.,
located in the instruction queue). This counter is incremented
when the consumer instructions are dispatched, and decremented
when they are issued (i.e., after they read their source registers)!.
With this representation, a physical register can be considered
free, and thus allocatable on new reclamations, when its producer
has finished execution (i.e., completed=1), it has been remapped
by a non-speculative instruction (i.e., unmapped=1), and there is
no pending reader awaiting execution (i.e., pending=0).

The RAT is indexed by a logical register identifier and returns
the associated physical register. There are two copies of this
structure, named front-end RAT (FRAT) and retirement RAT
(RRAT), respectively. At the retirement of an instruction, the
RRAT matches the FRAT at the time this instruction was renamed.

Recovering the system from a misprediction involves restoring
both the FRAT and the RST. A simple method to recover the
FRAT is to wait until the offending instruction reaches the VB
head, and then copy the contents of the RRAT into the FRAT.
The RST can be recovered by draining the canceled instructions
from the VB and the instruction queue, while undoing the
modifications performed at the renaming stage on the RST. While
the canceled instructions are being drained, new instructions can
enter the renaming stage, provided that the FRAT has been already
recovered. Therefore, the draining overhead can be overlapped
with new processor operations.

Additional details of the VB can be found in [4]. This paper
focuses on an extension of the baseline out-of-order retirement
architecture to be integrated into a multiprocessor environment.
When reading the next sections, the VB architecture can be
abstracted as a processor pipeline with an aggressive register
renaming strategy that enables instructions to exit the VB before
being completed, as soon as their speculative state is known.

C. Memory Instructions

In the VB architecture, memory instructions are internally split
into two operations: address computation, which is inserted in
the instruction queue (IQ), and memory access, which is placed
in the load-store queue (LSQ). In the LSQ devised for the VB
architecture, stores cannot be issued before older memory in-
structions [4]. However, loads are allowed to speculatively bypass

'A possible implementation for the pending counters is based on shift
registers with 2 inc signals per decode slot and 2 dec signals per issue slot. The
contents of the counters need not be routed out of the register file, and thus
these signals are less costly than standard read/write ports. Moreover, the dec
signal is raised at the same positions where source operands are read through
standard ports in the issue stage. The pending counters take usually small
values, and thus a limited number of bits can be used for the shift registers,
stalling decode before their value overflows (4-bit shift registers have been
found to cause negligible performance loss in practice).

2Due to the slight head-of-line blocking effect in the VB, a detected
mispredicted branch takes an affordable amount of time (around 2 cycles
on average) to reach its head. However, this time would cause a considerable
penalty in a ROB-based machine if recovery was triggered at the commit stage.
Thus, performance has been compared against an aggressive state-of-the-art
ROB-based model capable of triggering recovery just after the mispredicted
branch is resolved in the writeback stage, with a constant penalty of 1 clock
cycle.
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Fig. 1. VB architecture block diagram.

both loads and stores, and can get their values forwarded from
a previous matching store. These optimizations, known as load
bypassing and load forwarding respectively, use an additional
structure, called finished load buffer, which tracks speculatively
issued loads.

ITI. DEALING WITH SEQUENTIAL CONSISTENCY

Due to the LSQ optimizations, memory accesses, as seen by
other processors in a multiprocessor system, can be reordered
in the VB architecture. This means that the originally proposed
VB architecture is suitable when only a relaxed memory consis-
tency model (RC) is imposed. In contrast, parallel programmers
intuitively assume stricter models, such as sequential memory
consistency (SC) [9], which, by definition, precludes the freedom
of the system to arbitrarily alter the order of memory accesses.
This conflict is solved in the RC models by providing pro-
grammers with mechanisms that can override the reordering of
memory accesses when the semantic of the parallel program is
compromised by this reordering. For example, it is known that if a
parallel program is data-race-free [10] and correctly labeled [11]
by synchronization operations, any reordering is allowed between
synchronizations without affecting the program semantics.

Nevertheless, supporting the SC model is encouraged, since it
allows us to reason about parallel programs assuming a simple
behavior where memory operations are executed atomically one
at a time and in program order, which is what most programmers
expect. Therefore, aggressive implementations of this consistency
model have been devised. Below, we present a formal description
of the SC model and the aggressive implementation used in this
paper as a baseline.

In a multiprocessor environment, a store is globally performed
if no load to the same address in the system can return a value
prior to it. A load is globally performed when its value is bound
(it can be used by consumers of the same thread) and the store
producing it is globally performed. Based on these definitions,
two sufficient conditions have been presented [12] for a system
to be sequentially consistent: i) every thread must issue memory
accesses in program order, i7) after a memory instruction (load
or store) is issued, the issuing thread waits for it to be globally
performed before issuing its subsequent access. In-order (z) and
atomic (i) execution of memory instructions greatly hinders our
ability to hide memory latency, and severely impacts performance.

Several techniques have been proposed to improve the per-
formance of sequential consistency implementations (see Section
VI). In this paper, speculative retirement of loads [13] is used
as baseline implementation. This technique is based on the fact
that both conditions just discussed can be speculatively ignored
as long as the results of the speculative computations appear as
if they were observed. In a modern multiprocessor system, a

simple way to prevent remote processors from observing a local
speculative computation is to monitor the state of the speculatively
accessed cache blocks, and trigger a rollback whenever one
of these blocks receives a remote invalidation (assuming an
invalidation-based coherence protocol) or is evicted. In such cases,
the processor must be able to recover its state prior to retiring the
offending memory instruction.

Therefore, speculative memory instructions and subsequent
ones must be recoverable until they are globally performed. A
straightforward solution is to hold the ROB entries associated
with the pending memory instructions until they are globally
performed. This solution holds critical resources of the execution
pipeline for recovering from memory consistency violations. For
instance, traditional register renaming disallows physical regis-
ters to be released until instructions leave the ROB. However,
as shown in Section 1V, these misprediction events are rare.
Moreover, critical resources are kept busy for long periods of
time, since globally performing a memory instruction may involve
long-latency coherence actions.

Speculative retirement of loads alleviates this waste by splitting
the instruction window into two FIFO queues: the ROB and the
History Buffer (HB). In this scheme, memory instructions and
following operations can commit (releasing execution resources
as they leave the ROB) even if they are still subject to memory
consistency violations. After being committed, instructions enter
the HB, where they remain until they are globally performed.

Each entry of the HB contains information so that we can
undo the modifications performed on the processor state by its
corresponding instruction. To support this ability, any instruction
renaming (i.e., writing to) a given logical register holds in its
HB entry two values. The first entry is the identifier [ of its
destination logical register; the second is the value of [ before
it was rewritten, that is, the contents of physical register p’ (i.e.,
RF[p']) that were produced by the nearest previous (in program
order) instruction renaming [, being p’ the previous mapping
of 3. Following this implementation, whenever a cache block
accessed by a non-globally performed memory instruction is
being remotely accessed or evicted, execution is recovered by
squashing the contents of the ROB and undoing the changes
logged in the HB.

Finally, store instructions need not be inserted into the HB,
because they do not modify the processor state, and they are
forbidden to write to the cache until they can be globally
performed, that is, until the next instruction in program order

3In a ROB-based processor, the value of RF[p'] is always available at
the commit stage. At this point in the execution, the state of register p’ is
changed to free by means of an RF write port. Notice that the construction
of the undo-log at commit needs this port to support a read/write access in
order to additionally retrieve the contents of p’.



TABLE I
FREQUENCY OF MISPREDICTION EVENTS.

[ Committed instructions | Branch mispredictions | Arithmetic exceptions |
\ 4,041,943,035 | 33,498,322 (0.8%) | 0 |

Load replay trap | Memory consistency |
331,180 (<0.01%) |  561,070(0.01%) |

\ Page faults \
| 57,425(<0.01%) |

is located at the HB head. Nevertheless, to prevent long-latency
stores (i.e., those that involve remote block invalidations) from
blocking the HB, the baseline SC implementation also includes
store prefetching [14]. This technique allows stores to perform a
read-exclusive prefetch before they are globally performed, thus
reducing the odds of needing to invalidate remote copies when
they exit the HB.

IV. OUT-OF-ORDER RETIREMENT MULTIPROCESSOR
ARCHITECTURE

A. Architecture Description

To be able to extract an instruction from the VB in a single-
core environment, the instruction must have its speculative state
resolved, that is, either a completed branch or an instruction that
is already known not to raise an exception. Table I lists different
causes of misprediction that should be checked for before an
instruction’s speculative state is considered resolved. Branch
misprediction refers to the resolution of a branch target address
and direction that does not match the branch predictor outcome.
Arithmetic exception and page fault refer to the resolution of
the respective traps. Load replay trap refers to the resolution
of the address of a store which was bypassed by a local load
to the same address. Finally, memory consistency refers to the
eviction/invalidation of an L1 cache block accessed by an in-flight
memory instruction.

Table I attaches the total frequency of occurrence of each mis-
prediction event during the execution of the SPLASH2 benchmark
suite on a machine with the configuration shown in Section V.
The table also includes the total number committed instructions.
As observed, the frequency of occurrence is negligible —or even
null for correctly written programs— relative to the number of
committed instructions, except for branch mispredictions. Based
on these results, the following sequentially consistent out-of-order
retirement architecture is proposed.

After being dispatched, instructions enter the VB. This structure
allows fast recovery on misprediction, but it prevents critical
resources such as physical registers from being released by those
instructions holding their VB entry. For this reason, the VB
is responsible for resolving only those mispredictions that are
likely to occur (i.e., branch mispredictions). After exiting the VB,
instructions enter the HB. This structure provides a less efficient
recovery mechanism, but it is decoupled from any other processor
structure, such as the register file. Thus, infrequent misprediction
events (i.e., all except branch mispredictions) can be resolved in
the HB.

Fig. 2 lists the conditions to retire instructions at the head
of each FIFO queue, both for the original uniprocessor ROB-
based and VB-based models (Figs. 2a and 2b), and for the
sequentially consistent ROB-based and VB-based multiprocessor
architectures (Figs. 2a and 2b). Focusing on the sequentially
consistent multiprocessors, the key difference observed when
transitioning from a ROB-based scheme into the VB architecture
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Fig. 2. Conditions for instructions to be retired from the ROB/VB and HB.
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Fig. 3. Implementation of delayed writebacks

is a relaxation of retirement conditions both from the ROB and
the HB, which leads to the following potential benefits:

o First, the only reason to stall an instruction at the VB head
is that it is an unresolved branch. This relaxation removes
most of the head-of-line blocking effects in the VB, enabling
physical registers to be released much earlier. This effect is
referred to hereafter as enhanced register usage.

e Second, instructions other than branches, loads, and stores
can leave the HB in the VB architecture as soon as their
speculative state is resolved, even if they are not completed
or issued. As a consequence, the sum of the VB and the HB
sizes does not limit the number of instructions in flight. This
effect is referred to as extended instruction window.

B. Hardware Support

As instructions can leave the VB uncompleted, the contents of
the physical register p’ corresponding to the previous mapping
of I (also RF[p’]) may not be available to be copied to the HB.
This problem can be solved either by blocking the VB exit until
the contents to be copied are ready (thus adding an additional
condition for instructions to leave the VB), or by allocating
an entry in the HB whose contents will be written later. We
choose the second option because it only requires little additional
hardware support (explained below) to handle delayed writebacks
to the HB. Likewise, instructions may leave the HB uncompleted,
so this mechanism must consider that the writebacks should only
occur as long as the corresponding HB entry is valid.

Fig. 3 shows a possible implementation of the supporting
hardware, which uses a small CAM called Copy-on-Writeback



(CoW) table. Each valid entry in this table contains a pair {p/,
HB entry}, which indicates that any result generated by the
functional units for physical register p’ should be forwarded to
the corresponding HB entry. Considering that VB entries contain
by design the fields ! and p’ (previous mapping of 1) for each
instruction, the mechanism works as follows.

If the contents of p’ are ready when an instruction enters
the HB (i.e., RST[p'].completed=1), they are straightforwardly
copied to the allocated HB entry, with the same procedure as in
the baseline architecture. Otherwise, a new entry in the CoW
table is created, using p’ and the index of the next free HB
entry. When a functional unit generates a value for a destination
physical register, the identifier of this register is associatively
searched in the CoW. On hit, the value is also written back in the
corresponding HB entry®. Instructions that leave the HB remove
their associated entries in the CoW if present, avoiding overly
delayed writebacks to affect the HB.

Notice that the random access at CoW positions is deadlock-
free. Let’s assume a processor state with all CoW entries occupied
and the VB head stalled, waiting for a new delayed writeback
to be scheduled in the CoW. Each current CoW entry is linked
with an instruction in the HB, which will be drained after its
final speculative state is resolved. Since the completion of in-
flight instructions will eventually happen regardless of the VB
stall, there is no cyclic dependence between events associated
with CoW accesses, and thus, no potential for deadlocks.

When recovering from a mispredicted instruction in the HB, a
sufficient condition to retrieve all the recovery information is to
wait until the CoW table is empty (i.e., all delayed writebacks
have been performed). Alternatively, the recovery process could
only wait for the contents of the HB entries of canceled instruc-
tions. Finally, although the CoW table can be implemented as
a direct-mapped table, an associative implementation is chosen,
since a small CoW table suffices to prevent it from becoming a
bottleneck for performance (see Section V).

V. PERFORMANCE RESULTS

A realistic multicore processor with § cores has been modeled
to evaluate the proposed architectures. Fig. 4 shows a block
diagram of the modeled system, whose characteristics are sum-
marized in Table II. The memory subsystem consists of three
levels of cache, where coherence adheres to the MOESI protocol.
Separate L1 instruction and data caches are modeled, whereas
L2 and L3 caches are unified (i.e., contain both code and data).
This memory hierarchy and core interconnect is based on the
recent commercial quad-core AMD Opteron 8350 processor [15].
In the figure, the gray boxes represent replicas of this same
chip. Parallel workloads with shared data, i.e., the SPLASH2
benchmark suite [16], are used for our performance evaluations to
stress shared components involved by coherence actions and long-
latency memory operations. Programs are run until completion.

A. Out-of-order Retirement and Memory Consistency Model

This section presents performance results for the VB multi-
processor architecture implementing both relaxed and sequential

4Additional accesses to the HB in the writeback stage require extra HB
write ports in the VB multicore architecture. However, one single additional
HB port can be shared by all functional units to dump their occasional
delayed writebacks. Some tests have shown a negligible performance loss
when temporarily stalling functional units that rarely contend for the shared
HB port.

TABLE II
BASELINE MULTICORE PROCESSOR PARAMETERS.

Processor Cores

Machine width (decode,
dispatch, issue, commit/
validate)

Ld/st issue width

4 inst./cycle

2 inst./cycle (limited by L1 ports)

40-entry 1Q, 20-entry LSQ, 64-entry RF,
64-entry ROB, 64-entry HB

4 Int. add (2/1), 1 Int. mult. (5/2), 1 Int. div (20/10)
2 FP add (5/2), 1 FP mult. (10/5), 1 FP. div. (30/15)

Hybrid (2-level + bimodal)

2-level pred.: 8-bit history, 1-entry L1, 1K-entry L2.
Bimodal pred.: 1K 2-bit counters.

Choice pred.: 1K entries.

Storage resources

Functional units and
latency (total/issue)

Branch predictor

Memory Hierarchy

L1 caches 32KB, 2-way, 64-byte block, 2-cycle latency
L2 caches 512KB, 8-way, 64-byte block, 10-cycle latency
L3 caches 8MB, 16-way, 64-byte block, 50-cycle latency

Main memory 200-cycle access time
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Fig. 4. Block diagram of the modeled multicore system.

consistency (referred to as VB-RC, and VB-SC, respectively),
and compares them to ROB-based multiprocessors (ROB-RC and
ROB-SC). In Figs. 5a, 5b and 5c, the results are presented as
performance speedups over the ROB-SC architecture for 2-, 4-,
and 8-core systems, respectively. The bar height represents the
speedup achieved by VB-SC, whereas the circle- and triangle-
ended lines represent the ROB-RC, and VB-RC architectures,
respectively. Each bar/line in a group belongs to a different
ROB/VB size, ranging from 8 to 128 entries, both for the
represented architecture and the baseline. The implementation of
the RC designs is modeled with the absence of an HB, as the
order of memory operations can be safely altered.

The following observations can be made from the average
results shown in the last groups of bars. Performance speedups
are especially high in the VB architecture for small VB sizes,
regardless of the memory consistency model used. The reason is
that an 8 or 16-entry ROB is a very restrictive bottleneck in most
applications, and is the main source of pipeline stalls, which are
effectively avoided by the VB architecture.

Regarding the memory consistency model, results show that
VB-SC outperforms both the ROB-SC and the ROB-RC in most
cases (exceptions are when we consider large 64 and 128-entry
ROBs for 8 processors). Compared to ROB-RC, the VB-SC
architecture introduces the history buffer, which can serve as
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an additional bottleneck; nevertheless, VB-SC speeds up the
instruction flow from the VB into the HB, and allows instructions
to be extracted early from the HB. As results show, this fact allows
SC to be enforced while maintaining better performance.

Finally, notice that best performance results are shown by
the VB-RC model, formed of individual VB-based uniprocessors
disregarding memory consistency restrictions. This model reaches
speedups of about 5% for large VB sizes, and up to 25% for
small VB sizes. In this architecture, both loads and stores can
leave the processor pipeline without being globally performed.
Since these instructions are the main source of pipeline stalls,
significant speedups are achieved, especially in memory-intensive
applications.

VI. RELATED WORK

This paper merges two mainstream research topics in the field
of processor architecture: sequential consistency (SC) implemen-
tations and out-of-order retirement of instructions. There is a
significant body of previous work in sequentially consistent multi-
processors. Performance enhancements such as store prefetching,
and speculative execution of loads are considered in [14], and
speculative retirement of loads is discussed in [13]; we have
implemented these features in our baseline architecture due to
their low complexity and effectiveness.

More sophisticated SC implementations can be found in the
literature. In [17], speculative retirement of loads is improved by
also retiring stores before their speculative state is confirmed. The
fact that stores may commit stale values to the memory hierarchy

forces a history buffer (in this context called SHiQ) to store the
previous value at the written memory address. To get this value,
SC++ requires stores to be implemented as read-modify-write
operations in the cache. On misprediction, SC++ performs a burst
of cache writes to roll back to a previous valid state. In this work,
we avoid to impose this complexity in the cache hierarchy for the
sake of generality.

SC++lite [18] is an improvement of SC++, based on the
observation that the SHiQ is usually underutilized, although its
storage is fully required during small periods of execution. To
avoid its hardware overhead, the SHiQ is implemented directly
in the memory hierarchy. On misprediction, SC++lite recovers at
a slower rate than SC++, but consistency mispredictions are rare
enough to afford it.

Finally, BulkSC [19] is another SC implementation where
memory instructions are grouped in chunks, and appear to ex-
ecute atomically and in isolation. The hardware enforces SC at
a coarser grain (i.e., chunks), obtaining performance close to
relaxed consistency implementations, by enabling optimizations
in the execution of memory instructions.

Regarding out-of-order retirement of instructions in multipro-
cessor systems, a number of key papers have addressed this
subject. In the Cherry-MP architecture [20], resources (e.g.,
physical registers) are released speculatively, entering into the
so-called cherry mode by checkpointing previous valid machine
states, which processors roll back to on future mispredictions. A
Cherry-MP system supports both release and sequential consis-
tency by setting up the conditions to release processor resources.



Unfortunately, Cherry-MP involves modifications in the cache
hierarchy, such as the adaptation of the MOESI protocol, and
also needs storage history about data shared among processors in
cherry mode. This reduces its adaptability to generic memory sys-
tems, and checkpoints needed for managing speculation involve
a considerable amount of hardware to be added to the processor
pipeline.

The Kilo-Instruction Multiprocessors (or KIMPs) [21] have
been also proposed as out-of-order retirement multiprocessor
architecture. A KIMP enables many instructions to be in-flight by
checkpointing the processor state when long-latency instructions
block the pipeline and requires an aggressive register renaming
mechanism. These checkpoints commit globally by locking a
shared snoopy bus and broadcasting memory write accesses. SC
is enforced by making remote processors roll back to previous
checkpoints when an address match is snooped on the shared
bus. This architecture imposes harsh restrictions on the system
architecture, such as the presence of a shared bus (constraining
scalability) and again the cost of several checkpoints in the
processor pipelines.

Other out-of-order retirement uniprocessor architectures have
been devised, including work by Cristal et al. [3], Akkary et al.
[1], and Bell et al. [2]. However, to the best of our knowledge,
no checkpoint-free out-of-order retirement architecture has been
adapted and evaluated in a multiprocessor environment, especially
when memory consistency is also considered.

The VB multiprocessor architecture is presented as an out-of-
order retirement approach that uses no checkpoints, and imposes
no restrictions on the underlying memory hierarchy, coherence
protocol, or interconnection network. These features allow it to
serve as a flexible and scalable approach. The differences with
a traditional ROB-based multiprocessor are found in the register
renaming strategy and the conditions for instructions to be retired
from the VB. These structures are an integral part of most
processor pipelines. The VB architecture is orthogonal to other
optimizations in the multiprocessor system, including all of the
SC implementations cited in this paper.

VII. CONCLUSIONS

In this paper, we have proposed a sequentially consistent
(SC), out-of-order retirement, multiprocessor architecture. In this
system, instructions are retired from processor pipelines out of
program order by using a Validation Buffer approach, while
still enforcing SC by using the speculative retirement of loads
technique.

Our proposal focuses on three centralized processor compo-
nents. First, conditions for instructions to leave both the VB
and HB are relaxed, with no additional hardware cost. Second,
renaming tables are handled with an alternative register renaming
strategy, which decouples register release from the commit stage
by means of little additional storage per physical registers. Finally,
a small table (CoW) is introduced to support a delayed write back
of destination operands into the HB. Since no loss of generality
is incurred regarding the memory hierarchy or interconnects, the
VB multiprocessor architecture remains highly scalable with the
number of processors.

Our results provide three main conclusions: ¢) a sequentially
consistent VB-based multiprocessor outperforms, in general, a
ROB-based system implementing release consistency, regardless
of the number of processors, i7) ROB, register file, and history

buffer sizes can be reduced in the VB multiprocessor archi-
tecture, maintaining performance and lowering complexity, and
1i7) relaxation of instruction retirement conditions and memory
model strictness can coexist without significantly impacting the
performance of the VB architecture.
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