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tMatri
es with distan
es between pairs of lo
ations are essential for solving vehi
lerouting problems like the Capa
itated Vehi
le Routing Problem (CVRP ), TravelingSalesman Problem (TSP ) and others. This work deals with the 
omplex reality oftransportation networks and asymmetry. Through a series of 
omprehensive andthorough 
omputational and statisti
al experiments we study the e�e
t that manyfa
tors like asymmetry, geographi
al lo
ation of the depot and 
lients, demand, ter-ritory and maximum vehi
le 
apa
ity have in the solution of CV RP instan
es. Weexamine both 
lassi
al heuristi
s as well as 
urrent state-of-the-art metaheuristi
sand show that these methods are seriously a�e
ted by the studied fa
tors from asolution time and quality of solutions perspe
tive. We systemati
ally 
ompare thesolutions obtained in the symmetri
 s
enario with those obtained in the real asym-metri
 
ase at a quantitative as well as a qualitative level, with the obje
tive of
arefully measuring and understanding the di�eren
es between both 
ases.Keywords: Asymmetry, Capa
itated Vehi
le Routing Problem, Algorithms, Road Transporta-tion Networks

∗Corresponding author. Tel/Fax: +34 96 652 84 891



1 Introdu
tionIn many vehi
le routing problems and also in several other aspe
ts of logisti
s, a dis-tan
e matrix between pairs of lo
ations is needed. This matrix is needed for the Trav-eling Salesman Problem (TSP ) (Flood, 1956), Capa
itated Vehi
le Routing Problem(CV RP ) (Clarke and Wright, 1964), and for almost any other variant of routing prob-lem (Toth and Vigo, 2001). In parti
ular, in the CV RP ea
h 
lient or lo
ation j fromthe lo
ation set V is asso
iated with a given demand quantity or requirement dj that isknown in advan
e, non-negative and deterministi
. The demand models a requirementof dj units of produ
t by 
lient j that has to be delivered by a single tru
k, i.e., withoutsplitting the demand into various tru
ks. A �eet K of homogeneous vehi
les is available,ea
h one of them with a given 
apa
ity of servi
e C whi
h obviously has to be higher thanall demand dj, ∀j ∈ V . The �eet is stationed at a 
entral depot, usually referred to asnode 0 (or node 1)with no demand. All 
lients must be served by exa
tly one vehi
le. This
lassi
 problem entails no further 
onstraints apart from the 
apa
ity of all vehi
les, whi
h
annot be ex
eeded. The obje
tive in the CV RP is to obtain a set of routes, usually oneper vehi
le, so that the total 
ost, measured as the total distan
e traveled by all vehi
les,is minimized. Other obje
tives 
ould be to minimize travel time, 
osts, et
. (Laporte,2007).Given an instan
e of the CV RP with n lo
ations or nodes, the distan
e matrix betweennode pairs o, d, where o, d ∈ V, o 6= d, is denoted by C[n×n]. The diagonal of this matrix
ontains zeros and is usually disregarded. As a result, the matrix 
ontains n × (n − 1)elements with all the distan
es between nodes.In the vast majority of the routing literature (Laporte, 2009), lo
ations or nodes are de-termined by simple 
oordinates on the 2D plane and the distan
es are 
al
ulated by theEu
lidean formula. A more elaborate 
al
ulation 
an be done by taking the geographi
allo
ations of the nodes in the terrestrial surfa
e (geolo
ations in latitude and longitude)and measuring the orthodromi
 distan
e between them using the great-
ir
le distan
e for-mula of Vin
enty (1975). In both 
ases, the distan
es between nodes o and d is the sameas the distan
e between d and o, i.e., cod = cdo, ∀o, d ∈ V, o 6= d. As a result, matrix
C is symmetri
 and 
an be redu
ed to either the upper or lower triangular with n×(n−1)

2elements. Symmetri
 matri
es result in symmetri
 problems where the orthodromi
 ar
 ordistan
e (cod = cdo) in many 
ases a weak lower bound of the real shortest route betweentwo lo
ations when this route is 
al
ulated 
onsidering transportation networks. Whenone takes into a

ount the intri
ate reality of transportation networks with roads, tra�

ir
les, streets, one way streets, et
., the distan
e matrix is inevitably more 
omplex and2



asymmetri
 where generally, cod 6= cdo and distan
es are usually larger than symmetri
Eu
lidean distan
es (Laporte et al., 1986).In the 1970s, some authors set about estimating real distan
es (whi
h were, at the time,
hallenging to obtain as the Geographi
al Information Systems or GIS were yet to be de-veloped) by transforming orthodromi
 
al
ulations (Christo�des and Eilon, 1969). Otherauthors developed mathemati
al fun
tions in order to approximate real distan
es likeLove and Morris (1972). After the work of Daganzo (1984), Love and Morris (1988) andDubois and Semet (1995) it is 
on
luded that su
h approximations are not pra
ti
al fordaily and operational use by 
ompanies. Furthermore, and most importantly, the degreeof asymmetry in the distan
e matrix 
annot be easily estimated as it greatly dependson various fa
tors (Daganzo, 1984). Nodes separated by large distan
es usually result inmore symmetri
 matri
es as long distan
e transportation entails using two-way highways.However, nodes lo
ated inside 
ities, and parti
ularly 
ities with old histori
 
enters, resultin highly asymmetri
 distan
e matri
es.Despite this reality, there is a widespread usage of Eu
lidean matri
es, mainly motivatedby the di�
ulty and 
ost of obtaining real distan
e matri
es. Cal
ulating real distan
esrequires a big 
omputational e�ort as n× (n−1) shortest paths between nodes have to beobtained. Ea
h shortest path is a 
omplex 
al
ulation 
omprising of hundreds of roads,turns, et
. In a problem with a thousand nodes, almost a million shortest paths are needed.While the 
omputational 
ost is still large, fortunately sin
e the 1990s resear
hers havehad powerful GIS systems (su
h as Google Maps) at their disposal (Good
hild and Kemp,1990). Together with geo-spatial databases and their Advan
ed Programming Interfa
es(APIs), 
al
ulating real distan
e matri
es is today a reality.This pie
e of resear
h studies the CV RP from a very di�erent perspe
tive. A sizeable
hunk of the literature has fo
used on developing e�
ient algorithms and methods foroptimizing the symmetri
 and Eu
lidean CV RP . This paper follows a di�erent dire
tionas we set out to study the e�e
t that the asymmetry of the distan
e matrix, as well asmany other fa
tors, have over the e�e
tiveness and e�
ien
y of relevant heuristi
 andmetaheuristi
 methods for the CV RP . We 
losely examine how the quality of the solu-tions and the quantity of CPU time employed by the studied methods is a�e
ted. Wealso 
ompare the solutions obtained using symmetri
 and asymmetri
 matri
es, in orderto as
ertain how di�erent these solutions are and to what extent using Eu
lidean matri
esis a

eptable for real environments.This work is a natural extension of a previous study by the same authors on the e�e
t ofthe asymmetri
 and other fa
tors over heuristi
 methods for the mu
h simpler TravelingSalesman Problem (TSP ) (Rodríguez and Ruiz, 2011). One obje
tive of the present pa-3



per is to 
orroborate if the 
on
lusions obtained in the previous study also apply to more
omplex routing problems. In order to do so, we will 
arry out a 
omprehensive study withdi�erent transportation networks, lo
ations of 
lients and depots, problem sizes, asymme-try degrees, levels of demand and transport 
apa
ity, solution methods and CPU time.The rest of the paper is organized as follows: Se
tion 2 presents the resear
h hypothe-ses and questions, as well as a more formal de�nition of the studied fa
tors, variablesand the experimental design. Se
tion 3 summarizes the main obtained results as regards
omputational time, quality of solutions and a 
omparison of solutions quantitatively andqualitatively. Lastly, Se
tion 4 
on
ludes the paper.2 Impa
t of the asymmetry and other fa
torsThe following hypotheses are studied in this paper: Asymmetry a�e
ts the e�e
tivenessand e�
ien
y of CV RP heuristi
s and metaheuristi
s. The geographi
al lo
ation of 
lientsand the 
entral depot in the territory translates into di�erent degrees of asymmetry in thedistan
e matrix and in turn a�e
ts the e�e
tiveness and e�
ien
y of the studied methods.The asymmetry of the transportation network has a spe
i�
 e�e
t over those methodsbased on the planar Eu
lidean geometry. Furthermore, the following resear
h questions areraised: To what extent are the solutions obtained in symmetri
 and asymmetri
 s
enariossimilar? What is the result of taking the symmetri
 solution (solution 
al
ulated with asymmetri
 distan
e matrix) and 
al
ulating it with the real asymmetri
 distan
e matrixand vi
e versa?In order to either 
on�rm or to refute the previous hypotheses and to answer the posedquestions we 
arry out a 
omprehensive 
omputational and statisti
al testing 
ampaignwith a set of CV RP instan
es, whose details are explained next.2.1 Studied fa
torsTerritory: It is the real geographi
al region where the 
lients and 
entral depot arelo
ated. A boundary is 
reated by two opposed geographi
al 
oordinates (latitude andlongitude) that indu
e a quadrant. The region of 
hoi
e, related to the Iberian peninsula,is studied at three territory variants, namely short, medium and large distan
e. In theshort distan
e territory routes have to deal with urban transportation (mostly Madridand its surroundings) Medium distan
e in
ludes routes in 
ities plus longer routes that
ommuni
ate other 
ities through highways. Lastly, large distan
e deals with a largenational territory and in
ludes heavy usage of highways. More details about this fa
tor,4
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Figure 1: Lo
ation 
orre
tion a

ording to the transportation network. Left pi
ture: anode pla
ed in an inna

esible lo
ation (A). Right pi
ture: �nal 
orre
ted lo
ation (B).in
luding longer explanations and graphi
al examples are given in Rodríguez and Ruiz(2011).Lo
ation: This fa
tor determines how the 
lients or nodes are distributed insidethe territory. Three variants are studied: random pla
ement, grid pla
ement and ra-dial pla
ement. This fa
tor was also studied previously and all details are given inRodríguez and Ruiz (2011). In all 
ases, in
luding the random variants, all nodes (anddepot) are lo
ated in a

essible pla
es inside the transportation network. Furthermore,we also make sure that a path exists between ea
h node and all others. This is furtherexplained by means of the following example, supported by Figure 1: Let us suppose that,when building the instan
e and after a random pla
ement of nodes, a node (A) has beenpla
ed in a geographi
ally ina

essible pla
e. Ina

essible pla
es are, for example, and asdepi
ted in the Figure, a forest. Other examples 
ould be in the middle of a �eld, or eveninside of a blo
k of apartments. We use a GIS fun
tion whi
h basi
ally moves the 
lientto the nearest a

essible lo
ation, shown on the right pi
ture in Figure 1. This movementnormally is within a few meters from the original ina

essible lo
ation. Note that this�nal lo
ation 
ould perfe
tly 
orrespond to a real 
lient.Number of nodes: This fa
tor is just the number of 
lients in a given territory. It isa quantitative fa
tor with 10 levels n = {50, 100, 150, . . . , 500}. Note that this is the lastfa
tor employed in this paper that was also studied as it is by Rodríguez and Ruiz (2011).Depot lo
ation: This is a nominal qualitative fa
tor that studies the e�e
t of thepla
ement of the depot respe
tive to the territory and 
lients. We have de�ned threevariants: Random: The depot is 
hosen randomly among the n nodes. Centered: It is thenode whi
h is 
losest to the orthodromi
 
enter of the territory. Peripheral: The depot is5



the node whi
h is farthest away from the orthodromi
 
enter and 
losest to the boundariesof the territory.Symmetry: From the territory and node lo
ations we 
al
ulate the distan
e matri
es.In Rodríguez and Ruiz (2011), the authors 
al
ulated these matri
es in �ve di�erent ways.However, only two of them are of interest for the CV RP . As a result we only have twovariants for this nominal fa
tor: Orthodromi
: A symmetri
 distan
es matrix obtainedby 
al
ulating the orthodromi
 distan
es between pairs of nodes using their geolo
ations.Asymmetri
: real distan
es matrix using a GIS (Google Maps) and 
al
ulating the shortestroute between any two 
lients, similarly as any turn-by-turn navigation system would do.Demand and maximum 
apa
ity (DemCap): Servi
e demand dj of ea
h 
lient jand the maximum transport 
apa
ity C of the tru
ks are so intimately related that theyare 
onsidered as a single fa
tor in this study. Servi
e demand is modeled as a two levelquantitative fa
tor where demand dj is sampled from a uniform random distribution intwo intervals: Small (P ) using U [1, 10] and Large (L) using U [50, 100] as demand units,respe
tively. Usually, large distan
e transportation requires relatively big demands servedby big tru
ks, usually of three axels. Conversely, short distan
e 
omprises the delivery ofdemands in greater number but smaller volume and with smaller tru
ks. This is translatedinto longer routes for large distan
e with a smaller number of stops during the route (s)and relatively shorter routes in short distan
e transportation but with a higher number ofstops s. In order to model this situation and to 
al
ulate the maximum vehi
le 
apa
ity
C, we employ a number of stops generator G(p) de�ned in equation (1) with a probabilityfollowing a triangular distribution as a fun
tion of a parameter p ∈ U [0, 1]. Table Table 1shows the sele
ted values a, b, c of the triangular distribution related to G(p) a

ording tothe territory fa
tor.

G(p) =

{

a+
√

p(b− a)(c− a) p ≤ c−a
b−a

b−
√

(1− p)(b− a)(b− c) p > c−a
b−a

(1)Territory Minimum (a) Maximum (b) Mode (
)Short distan
e 10 25 25Medium distan
e 10 25 17.5Large distan
e 10 25 10Table 1: Number of stops s a

ording to the territory and triangular distribution.From G(p) and the average servi
e demand d̄j of all 
lients j ∈ V we de�ne themaximum 
apa
ity C as in equation (2): 6



C = max dj + (G(p)− 1)d̄j ∀j ∈ V (2)In the set of proposed instan
es, servi
e demand dj, the related vehi
le 
apa
ity Cand the number of stops s are rounded to the nearest integer. It is important to notethat the number of stops s, number of nodes n and the number of routes k will bein the interval {n = 50, k = 5, s = 10, . . . , n = 500, k = 20, s = 25}. This is in
on
ordan
e with what 
an be found in the most 
ommon ben
hmarks from the literaturelike those of Christo�des and Eilon (1969), Golden et al. (1977), TSPLIB1, Taillard (1993),and Fisher (1994) among others; where 
ompletely random instan
es and some real 
asesfrom industries are used.2.2 Experimental design and response variablesThe six studied fa
tors, along with the studied levels and variants are summarized inTable 2. Note that the last row shows the total number of levels or variants for ea
hfa
tor and that the servi
e demand and vehi
le 
apa
ity is 
onsidered as a single fa
tor�DemCap�.Territory (T) Lo
ation (L) Symmetry (M) Number of nodes (n) Depot lo
ation DemCapShort distan
e Random Orthodromi
 50 Random SmallMedium distan
e Grid Asymmetri
 100 Centered LargeLarge distan
e Radial ... Peripheral5003 3 2 10 3 2Table 2: Fa
tors and their 
orresponding studied levels or variants.In this paper we employ a full fa
torial experimental design. All 
ombinations of thelevels and variants of the fa
tors are studied whi
h results in 3 × 3 × 2 × 10 × 3 × 2 =

1, 080 treatments. For ea
h treatment, �ve di�erent random instan
es are generated whi
hprodu
es a grand total of 5, 400 CV RP instan
es. The full fa
torial design allows for thestudy of the e�e
ts of ea
h fa
tor as well as the intera
tions of any level over the followingresponse variables:Deviation from best known solution ∆S∗

i : A

ording to equation (3) it is theper
entage relative deviation of the total distan
e traveled by the vehi
les in the solutionobtained with algorithm A for instan
e i (Si,A) with respe
t to the best solution knownfor that very same instan
e (S∗

i ).1http://
omopt.i�.uni-heidelberg.de/software/TSPLIB95/7

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/


∆S∗

i =
Si,A − S∗

i

S∗

i

· 100 (3)Su

ess rate: Cal
ulated as the number of times a given algorithm attains the bestknown solution.CPU time: For ea
h instan
e i it is the real CPU time employed by a given algorithmto obtain a solution. It does not 
onsider input/output operations or other operatingsystem times as re
ommended by Alba (2006). For sto
hasti
 algorithms in whi
h everyinstan
e is run several times, this CPU time will be an average of all runs.Finally, a very important studied fa
tor, not related with the instan
es, is the algo-rithm. We have sele
ted the following CV RP methods:
• Algorithm of Clarke and Wright (1964) (CW). It is a very well known and thoroughlystudied heuristi
 that will serve as a baseline indi
ator of performan
e.
• Sweep algorithm by Gillett and Miller (1974) (SW). Another simple well known 
on-stru
tive method that works over two phases and that is strongly based in the planarproperties of the 2D plane for the �rst phase. For the se
ond phase, our implementa-tion uses the well known e�
ient implementation of the Lin-Kernighan heuristi
 byHelsgaun (2000) whi
h is 
urrently 
onsidered among the highest performing heuris-ti
s for the TSP . For this later heuristi
 we employed the following parameters:re
ommended parameters by the author.
• General heuristi
 of Pisinger and Røpke (2007) (PR). It is a uni�ed heuristi
 thatworks for several variants of routing problems and that uses an Adaptive LargeNeighborhood Sear
h (ALNS). It is a very 
apable and robust method. Parameters:re
ommendations from the author a

ording to the original paper for both 
ompilationand exe
ution.
• Memeti
 algorithm of Nagata (2007) (NA). Similar to PR, NA is a very powerfuland re
ent CV RP metaheuristi
. Parameters: re
ommendations from the authora

ording to the original paper; 10 trials, population size = 100, 30 
hildren, 2parents.The previous algorithms have been sele
ted by their performan
e and re
ognition. Wehave strived for a balan
e between simple 
lassi
al te
hniques and 
urrent and state-of-the-art methods. Algorithms NA and PR were run from the original 
ode whi
h waskindly provided by their respe
tive authors. No 
ode modi�
ation was 
arried out andthe methods were run a

ording to their re
ommendations. Initially, we set no time limit8



on 
omputational times, i.e., algorithms have a stopping 
riterion set by their originalauthors. The metaheuristi
s PR and NA are sto
hasti
 and therefore, �ve di�erent runsare 
arried out for ea
h instan
e. In total, there are 64, 800 
omputational results.2.3 Computational settingAll experiments are run on a 
luster of 30 blade severs, ea
h one 
ontaining two IntelXEON 5254 pro
essors running at 2.5 GHz with 16 GB of RAM memory. Ea
h 
lusterhas two pro
essors with four 
ores ea
h (8 
ores per 
luster) but experiments are 
arried outin virtualized Windows XP ma
hines, ea
h one with one virtualized pro
essor and 2 GBof RAM memory. For the generation and 
al
ulation of the 2, 700 matri
es, (symmetri
and assymetri
) we needed a single blade equivalent wall time of 4, 708 hours, almostsolely employed for the 
al
ulation of the asymmetri
 matri
es as the symmetri
 distan
esare almost instantaneously 
al
ulated. The single blade equivalent wall time needed forobtaining the results of 64, 800 experiments was of 12, 704 (almost 530 days!). As a result,a possible 
ontribution of this paper is in the form of a freely available ben
hmark ofreal asymmetri
 CV RP instan
es (more than 2.15 GBytes of data) whi
h 
an be seen as
omplementary to existing and well re
ognized ben
hmarks. The instan
es are availableat http://soa.iti.es/problem-instan
es.3 Experimental resultsAfter running all experiments, and in order to understand the e�e
t of the asymmetryand all other fa
tors over the response variables, several multifa
tor Analyses of Varian
e(ANOVA) were 
arried out. ANOVA is a parametri
 statisti
al model. As su
h, thereare three main hypotheses that must be met, all of them require the residuals from theexperiment to follow a normal distribution, to be homo
esdasti
 and to be independent(not self 
orrelated). In an experiment with su
h a large dataset, su
h hypotheses areeasily met and we did not observe any serious deviation.3.1 CPU timeSome of the most interesting 
on
lusions 
ome after analyzing the CPU time responsevariable. After all, one 
ould think that, apart from the number of nodes n, no otherstudied fa
tor should have a large e�e
t on the CPU time that a given algorithm needs tosolve an instan
e. Re
all that no CPU time limit was established for all methods. We areworking with a signi�
an
e level of α = 0.05. The resulting multifa
tor ANOVA produ
ed9
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27 statisti
ally signi�
ant relations, in
luding single fa
tors and two way intera
tions.Table 3 shows a summary of the ANOVA table, in
luding the p-values. Due to limitationson spa
e, only single fa
tor e�e
ts are shown.Sour
e Sum of Degrees Mean F -Ratio p-valuesquares of freedom squareMain e�e
tsA:DemCap 1.934E8 1 1.934E8 1, 519.73 0.0000B:Depot lo
ation 4.385E7 2 2.192E7 172.24 0.0000C:Territory (T) 9.311E6 2 4.655E6 36.57 0.0000D:Lo
ation (L) 2.052E7 2 1.026E7 80.61 0.0000E:Symmetry (M) 617, 811 1 617, 811 4.85 0.0276F:Number of nodes (n) 4.305E9 9 4.784E8 3, 757.57 0.0000G:Algorithm 2.893E10 3 9.645E9 75, 756.96 0.0000Residual 8.228E9 64, 631 127, 319Total (
orre
ted) 8.590E10 64, 799Table 3: Results of the analysis of varian
e for CPU time response variable.As we 
an see, the strongest e�e
t (larger F-Ratios, whi
h are the quotient betweenthe varian
e generated by the di�erent levels of the fa
tor and the residual varian
e,
al
ulated as a quotient between the mean squares) is due to the fa
tors Algorithm andnumber of nodes (n). These two are obvious fa
tors. Qui
k heuristi
s like CW and SW arealmost instantaneous while 
omplex metaheuristi
s like PR and NA are mu
h more time
onsuming. The same 
an be said about n, i.e., the larger the problem, the longer the CPUtime. What is of interest is how these two strong fa
tors intera
t with all other fa
tors andthe behavior of other fa
tors themselves. For example, the Lo
ation (L) fa
tor stronglya�e
ts CPU time (F -Ratio= 80.61, p-value= 0.00). Furthermore, this fa
tor a�e
ts theNA algorithm mu
h more than all other studied methods as CPU time in
reases a 15%in the grid and radial lo
ations with respe
t to random lo
ations. Comparatively, PR'sCPU time are barely a�e
ted by this fa
tor, as shown in Table 4. Also of interest is thesimple CW heuristi
, whose CPU times, albeit small, in
rease by more than 34% for theradial lo
ations with respe
t to random.Algorithm Random Grid Radial averageCW 2.17 2.56 2.91 2.55NA 1, 351.49 1, 552.47 1,572.91 1, 492.29PR 207.46 198.20 196.99 200.88SW 1.27 1.24 1.28 1.26average 649.85 729.77 737.81Table 4: Average CPU time as a fun
tion of the Algorithm and Lo
ation (L) fa
tors.10
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Figure 2: CPU time for the 
ombinations of Algorithm, Lo
ation (L), Depot lo
ation andNumber of nodes (n).Figure 2 depi
ts a series of s
atter plots for all 
ombinations of algorithms and nodelo
ations. The x-axis shows the number of nodes n and the y-axis the CPU time in se
ondsin a logarithmi
 s
ale. Di�erent 
olors and symbols are used for the Depot lo
ation fa
tor.From the ANOVA it 
an be observed that the Depot lo
ation has a signi�
ant e�e
t onthe CPU time (F -Ratio= 172.24, p-value= 0.00), espe
ially for the NA method. Whenthe depot is lo
ated peripheri
ally, CPU times in
rease by 22% with respe
t to a 
entrallylo
ated depot. On
e again PR is robust with respe
t to the depot lo
ation with a meager
2% in
rease in CPU time from the 
entral to the peripheral. Both CW and SW in
reasetheir CPU times by about 5% with a peripheri
ally lo
ated depot with respe
t to a 
entraldepot. The lo
ation of the nodes (fa
tor L) also a�e
ts CPU time in a signi�
ant way.A

ording to our results, this e�e
t is more pronoun
ed with the NA method (an in
reaseof CPU time of about 15% in Grid and Radial with respe
t to Random lo
ation). PRis again robust regarding this fa
tor. In relation to the number of nodes n, our experi-ments 
on�rm the dire
t and exponential e�e
t that the size of the problem has on CPUtime. This e�e
t is observed in all 
ases both for symmetri
 as well as for asymmetri
 
ases.Territory has a small, but, de�nitely statisti
ally signi�
ant e�e
t over CPU time11



(F -Ratio= 36.57). This result was already observed in our previous work for the TSP(Rodríguez and Ruiz, 2011). Large distan
e territories have less asymmetri
 matri
es andless variability between nodes, whi
h results in longer CPU times for the methods. Thise�e
t is observed for the algorithm CW and Large distan
es where CPU times are in-
reased by 68% when 
ompared with the times obtained for the Short distan
e territory(with more variability and asymmetry in the distan
es, whi
h helps when sear
hing forgood solutions qui
kly).A strong fa
tor spe
i�
 to the CV RP is the DemCap fa
tor whi
h, as we re
all,it models the relationship between the servi
e demand and vehi
le 
apa
ity (F -Ratio=
1, 519.73, p-value= 0.00). For Small DemCap the average CPU time is in
reased by 40%for the whole dataset. A possible interpretation of these results, when relating DemCap,Territory and Asymmetry, is that for Short distan
e and Small DemCap the 
omplexity ofthe problem in
reases and CPU times worsen when 
ompared to Medium-Large distan
esand Large DemCap. In other words, the higher the number of stops per vehi
le, thehigher the 
omplexity and hen
e, CPU time needed. Furthermore, if the Territory isShort distan
e, the CPU times in
rease even further. However, if ea
h vehi
le has lessstops and has to travel Medium-Large distan
es, the problem ends up easier to solve.Our results point to the idea that the di�erent degree of asymmetry in the transportationnetworks 
learly and statisti
ally a�e
t the CPU time (p-value = 0.02). As detailed inTable 5, while for NA and PR the CPU times in
rease by a measly 2%, simple algorithmsin
rease CPU times by as mu
h as 15%.Algorithm Asymmetri
 Orthodromi
 averageCW 2.42 2.67 2.55NA 1, 507.47 1, 477.12 1, 492.29PR 202.57 199.19 200.88SW 1.09 1.43 1.26average 712.81 698.81Table 5: Average CPU time as a fun
tion of the Algorithm and Symmetry (M) fa
tors.We �nally provide a means plot with 
on�den
e intervals. We employ the most re-stri
tive te
hnique for 
al
ulating the 
on�den
e intervals around the means: the Tukey'sHonest Signi�
ant Di�eren
e (HSD) intervals. As shown in Figure 3, the means and their
orresponding Tukey's HSD intervals at a 95% 
on�den
e level for the Symmetry (M)fa
tor do not overlap. Therefore, the di�eren
e is statisti
ally signi�
ant.12
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Type of distance matrixFigure 3: Means plot for CPU time with Tukey's Honest Signi�
ant Di�eren
e (HSD) 95%
on�den
e intervals for the Symmetry (M) fa
tor.3.2 Quantitative and qualitative 
omparisonIn order to observe the di�eren
es between the symmetri
 and asymmetri
 solutions weemploy some indi
ators. These are based on the following data:
SO: Is the obje
tive value (in our 
ase total traveled distan
e) after taking the routesobtained by an algorithm using the symmetri
 distan
e matrix.
SA: Is the total traveled distan
e after taking the routes obtained by an algorithmusing an asymmetri
 distan
e matrix.
SOA: Total traveled distan
e of the routes obtained by an algorithm using the symmet-ri
 distan
e matrix but re
al
ulated using the real asymmetri
 matrix, i.e., the algorithmworks with a symmetri
 matrix but after the solution has been obtained it is re
al
ulatedwith the real distan
e matrix.
SAO: Is the opposite of SOA. Take a solution obtained with an asymmetri
 matrixand re
al
ulate the total distan
e with the orthodromi
 distan
es.The indi
ators are therefore the following:

I1 per
entage in
rease of SA with respe
t to SO:
I1 =

SA− SO

SO
· 100 (4)

I2 per
entage in
rease of SOA with respe
t to SA. It 
an be negative.
I3 per
entage in
rease of SAO with respe
t to SO. It 
an also be negative.In the following we further detail the previous indi
ators by means of a simple example.We show below the distan
e matri
es between the depot and four 
lients: O 
ontains thesymmetri
 orthodromi
 distan
es and A the real distan
es, all measured in kilometers.13



O =













0.000 2.218 2.545 1.305 2.585

2.218 0.000 4.503 3.193 2.682

2.544 4.503 0.000 1.313 3.105

1.305 3.193 1.313 0.000 2.255

2.585 2.682 3.105 2.255 0.000













A =













0.000 2.788 3.122 3.193 3.508

3.023 0.000 5.341 5.412 3.722

3.188 5.684 0.000 2.124 4.561

2.571 4.349 3.852 0.000 2.705

3.742 4.041 4.592 3.665 0.000











(5)The demands of the 
lients are all equal to one and the vehi
les have a maximum
apa
ity of C = 3. We used an exa
t Mixed Integer Linear Programming (MILP) modelin order to obtain the optimal solution, after whi
h SO and SA are 
al
ulated. The resultsare as follows:Symmetri
: route 1 (7.485 km.) sequen
e {1, 2, 5, 1}, route 2 (5.162 km.), sequen
e
{1, 4, 3, 1}. Total distan
e SO = 12.647 km.Asymmetri
: route 1 (5.811 km.) sequen
e {1, 2, 1}, route 2 (11.693 km.), sequen
e
{1, 3, 4, 5, 1}. Total distan
e SA = 17.504 km.We 
an see that for this small example, both s
enarios result in two routes. However,the routes are di�erent and the total traveled distan
e is mu
h higher in the asymmetri

ase. Figure 4 shows a graphi
al representation of the solutions.
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5Figure 4: An example solution with symmetri
 routes on the left and asymmetri
 realroutes on the right.The indi
ator I1 takes a value of 37.22% whi
h shows the in
rease in the distan
e SAwith respe
t to SO. Similarly, SOA = 20.485 km. and re
ipro
ally, SAO = 13.134 km. Asa result, I2 = 17.03% and I3 = 3.85%, 
learly demonstrating that both solutions are farfrom being inter
hangeable. Furthermore, when 
losely looking at the resulting routes inboth s
enarios (Figure 4) we realize that the solutions are very di�erent.The previous SO, SA, SOA and SAO values were 
al
ulated for all 64, 800 experimentalresults. All three indi
ators were then geberated, obtaining 32, 400 results (ea
h one14




omparing asymmetri
 and symmetri
 results). The main statisti
s for the three indi
atorsare given in Table 6. One striking result is the average of I1 with a value of 59.86%,whi
h 
learly indi
ates that there is a large quantitative di�eren
e between the 
ost of theasymmetri
 routes with respe
t to the 
ost of the symmetri
 ones. Note the maximumvalue for I1 of 239.35%, whi
h is more than double the total distan
e. Re
all that thenodes are pla
ed in the same lo
ations, the only thing that is 
hanging is the matrixthat is being fed to the algorithms. The 
lear 
on
lusion is that for almost all 
ases, theasymmetri
 and symmetri
 problems are indeed, two di�erent problems.
I1 I2 I3Average 59.86 10.28 8.38Standard deviation 21.36 13.12 8.44Minimum 0.3 −58.46 −31.46Maximum 239.35 71.74 154.36Table 6: Statisti
s of the proposed 
omparison indi
ators.Furthermore, I2 and I3 allow us to quantify what happens if we 
ompare the symmetri
solution 
al
ulated with the asymmetri
 matrix with the real asymmetri
 solution and vi
eversa. In other words, a I2 = 0 for all instan
es would mean that it really does not matterif we use asymmetri
 matri
es or not sin
e the total traveled distan
e of the symmetri
solution 
al
ulated with the asymmetri
 matrix would be the same as the asymmetri
solution. Table 6 
learly shows that I2 values are, on average, greater than 10%. Thismeans that it is simply not valid to take an algorithm that only works with symmetri
matri
es and then, on
e the routes have been obtained, �re
al
ulate� them with the realdistan
es. Likewise just ignoring real distan
es altogether and hoping that the very goodroutes obtained with orthodromi
 distan
es will be equally good in pra
ti
e is not a viableapproa
h. Our results attest to the fa
t that a bold 10% in total distan
e is being lost,
ompared to the solution obtained with real asymmetri
 distan
es. A similar 
on
lusionis rea
hed in the 
ase of I3 as I3 has an average value of 8.38%. Again the 
on
lusion isthat orthodromi
 solutions are not related to asymmetri
 solutions.Figure 5 depi
ts the frequen
y distribution histograms for all three indi
ators. For I1 themajority of the 
ases have values between 30% and 90%. For I2 most 
ases lie between

10% and 30%. Lastly, for I3 we see that most data stays between 7% and 40%. All theseindi
ators and results are in stark 
ontrast with the narrow margins (usually less than 1%)within whi
h most 
urrent state-of-the-art algorithms 
ompete in the ben
hmarks fromthe literature.All these �ndings 
orroborate those from our previous study on the TSP . Similarly to the
TSP 
ase, here the di�eren
es go beyond the presented indi
ators and obje
tive fun
tion15



values. Usually, the routes obtained with asymmetri
 matri
es have little in 
ommon withthe routes obtained in the symmetri
 
ase (di�erent number of routes, di�erent sequen
esof nodes, et
.).

0

1000

2000

3000

4000

0 50 100 150 200 −60 −40 −20 0 20 40 60

3

0 50 100 150

Frequency
0

1000
2000
3000
4000

I1 2I IFigure 5: Frequen
y distribution histograms for indi
ators I1, I2 and I3.In order to better understand the relations between indi
ator I1 and the other studiedfa
tors, we 
arried out an ANOVA. The results of the F -Ratios and p-values indi
ate 18statisti
ally signi�
ant e�e
ts: 6 fa
tors and 12 two-way intera
tions. The full ANOVAtable is omitted due to limitations of spa
e. A signi�
ant e�e
t is due to the Territoryfa
tor, (F -Ratio= 27355.7, p-value= 0.00). For Large distan
e territories, the di�eren
esbetween the symmetri
 and asymmetri
 s
enarios (as regards I1) are a bit less than 44%.These di�eren
es in
rease to 55% for Medium distan
e and up to 81% for Short distan
e.As previously mentioned, the asymmetry level in
reases for short distan
es and this is
on�rmed for all algorithms, as shown in Table 7.Algorithm Short distan
e Medium distan
e Large distan
e averageCW 78.49 51.99 43.69 58.06NA 78.93 51.61 43.52 58.03PR 79.58 51.81 43.67 58.35SW 103.74 87.68 43.75 78.39average 81.24 54.73 43.62Table 7: Average of I1 as a fun
tion of the Algorithm and Territory (T) fa
tors.Another noteworthy e�e
t 
orresponds to the Depot lo
ation fa
tor (F -Ratio= 3, 603.5,
p-value= 0.00). As shown in Table 8, the di�eren
es in I1 are smaller when the depot islo
ated in the periphery of the territory when 
ompared to a 
entrally lo
ated depot16



(average of 65%). One possible explanation is that the degree of asymmetry depends onthe average distan
e between ar
s. Sin
e all routes start and �nish at the depot, it is morelikely that a 
entrally lo
ated depot has smaller distan
es to the �rst and last stops ofevery route and hen
e a larger asymmetry e�e
t is observed, whi
h in
reases the values ofthe I1 indi
ator. Algorithm Centered Random Peripheral averageCW 62.32 59.27 52.58 58.06NA 62.79 59.29 51.98 58.03PR 63.14 59.63 52.29 58.35SW 91.53 80.45 63.18 78.39average 65.29 61.19 53.09Table 8: Average of I1 as a fun
tion of the Algorithm and Depot lo
ation fa
tors.Lastly, the Lo
ation fa
tor also has a signi�
ant e�e
t over I1. Radial lo
ations in
rease
I1 with respe
t to Grid and Random, as shown in Table 9. This 
on�rms the previous�ndings of our TSP study.Algorithm Random Grid Radial averageCW 57.02 55.18 61.97 58.06NA 55.82 57.14 61.10 58.03PR 56.20 57.37 61.49 58.35SW 75.02 75.93 84.20 78.39average 57.68 58.64 63.26Table 9: Average of I1 as a fun
tion of the Algorithm and Lo
ation (L) fa
tors.To 
lose this se
tion we show two randomly 
hosen examples. The obje
tive is tographi
ally show the big di�eren
es between the symmetri
 and asymmetri
 solutions.Figure 6 shows instan
e G-C-MR-100 on the left with 100 radially lo
ated 
ustomersin a Medium distan
e territory, large DemCap and a 
entrally lo
ated depot. Symmetri
solutions are shown in blue while asymmetri
 routes are in red. Both solutions have �veroutes but this is where the similarities end. The total traveled distan
e in the symmetri
solution is 2, 149.4 km. versus the 3, 385.6 km. of the real asymmetri
 solution with a
I1 = 57.51% and notable di�eren
es in the visitation sequen
e of the nodes at ea
h route.On the right of Figure 6 we have instan
e P-A-CA-350 with 350 randomly lo
ated nodesin a short distan
e territory with a small DemCap and a randomly pla
ed depot. In thisse
ond example the di�eren
es are huge. The total symmetri
 traveled distan
e is 864.17km. whi
h pales in 
omparison with the 2, 140.7 km. of the asymmetri
 distan
e and I1equaling 147.71%. In this 
ase, there are 17 symmetri
 routes and 16 asymmetri
 routes.17



Note that in real life, doing without one tru
k is, apart from the total traveled distan
e,a huge saving.

Figure 6: Symmetri
 solutions (in blue) and asymmetri
 (in red) for instan
es G-C-MR-100with algorithm PR (left) and P-A-CA-350 with algorithm NA (right).3.3 Quality of solutionsIn previous se
tions we have studied that asymmetry and other studied fa
tors have a sta-tisti
ally signi�
ant e�e
t on the e�
ien
y of the studied algorithms. However, it remainsto be seen if e�e
tiveness is a�e
ted. In our previous experiments, no CPU time limit wasimposed on the di�erent algorithms. As a result, the di�eren
es in the quality of solutionswere hard to observe. Basi
ally, algorithms were taking longer to rea
h 
omparable highquality solutions, regardless of the studied fa
tors.In order to study the e�e
ts on the quality of solutions we 
arried out additional experi-ments. Among the tested algorithms, NA allowed modi�
ations in the stopping 
riterion.A good way of studying the e�e
tiveness is to run NA independently for di�erent stoppingtimes. We de�ne a new fa
tor pt as the per
entage of allowed CPU time with respe
t tothe original CPU time used by NA in the previous experiments where no CPU time limitwas imposed (pt = 100%). The levels studied are pt = {10%, 20%, 40%, 60%, 80%, 100%}.The subset of 5, 400 results of the NA method for pt = 100% was enlarged to 32, 400 re-sults. Ea
h instan
e i is run from s
rat
h, with a di�erent random seed, for ea
h pt valuein order to ensure the independen
e of the results and to avoid self 
orrelation. Under thisnew experiment we study the response variable pS a

ording to equation (6). A positive
pSi,pt value indi
ates the deterioration in the total traveled distan
e for instan
e i when18



NA is stopped at relative time pt with respe
t to the total distan
e traveled when NA isrun without CPU time limit (pt = 100% or Si,100).
pSi,pt =

Si,pt − Si,100

Si,100

· 100 ∀i, pt (6)An ANOVA is obtained for all previous studied fa
tors, ex
ept the fa
tor algorithm(sin
e we are now only studying NA) and adding the fa
tor pt. We now summarize theresults, from highest to lowest statisti
al signi�
an
e indi
ating the F -Ratios and p-valuesbetween parenthesis: pt fa
tor (5, 996, 0.00), Number of nodes (n) (357.3, 0.00), intera
-tion between n and pt (122.61, 0.00), Symmetry (M) (98.55, 0.00), intera
tion between
pt and asymmetry (35.17, 0.00), intera
tion between pt and Territory (T) (31.44, 0.00),intera
tion between pt and DemCap (30.63, 0.00), intera
tion between pt and Lo
ation (L)(28.43, 0.00), DemCap (27.05, 0.00), intera
tion between pt and Depot lo
ation (21.04,
0.00), Depot lo
ation (20.75, 0.00), Territory (15.47, 0.00) and intera
tion between Ter-ritory and Symmetry (10.7, 0.00). As we 
an see, all studied fa
tors are statisti
allysigni�
ant, either in isolation or by means of a two way intera
tion.Figure 7 shows the means plot and Tukey's Honest Signi�
ant Di�eren
e (HSD) 
on�den
eintervals of the intera
tion between n and pt.
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Figure 7: Means plot for pS with Tukey's Honest Signi�
ant Di�eren
e (HSD) 95% 
on-�den
e intervals for the intera
tion between n and pt fa
tors. NA algorithm.For lower pt values, NA gives solutions of a mu
h lower quality and this e�e
t ismarkedly signi�
ant for greater n values. The observed deterioration in results is around
2%, in line with the �ndings of Toth and Vigo (2001), where it is indi
ated that modernmetaheuristi
s, albeit time 
onsuming, yield results that deviate from optimum solutionsbetween 2% and 0.5%. It is observed that for small values of pt of 10% and 20% the resultsare worse for 20% when 
ompared to those of 10% for some n values. This is due to the19



divergen
e in the solutions as regards total traveled distan
e and number of routes. Notethat NA was run from s
rat
h ea
h time and it is possible that, in some 
ases, the resultat the �rst stages of evolution is worse for pt = 20% than for pt = 10%. In any 
ase,NA is a �exible and robust metaheuristi
 whi
h adapts very well to asymmetri
 s
enarios.Figure 8 shows the e�e
t of the Symmetry fa
tor.
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Figure 8: Means plot for pS with Tukey's Honest Signi�
ant Di�eren
e (HSD) 95% 
on-�den
e intervals for the Symmetry (M) fa
tor. NA algorithm.We see that the level of asymmetry has an e�e
t over the NA method and pS responsevariable. This e�e
t is small albeit statisti
ally signi�
ant. These di�eren
es are mu
hgreater for pt = 10% but are non-existent for pt ≥ 40%.A

ording to Figure 9, the Territory fa
tor also a�e
ts NA in a similar way as inthe previous experiments. In this new experiment though, the di�eren
es are no longerstatisti
ally signi�
ant when pt ≥ 40%.We also 
on�rm that the DemCap fa
tor is also a�e
ted for smaller pro
essing times(pt < 40%), shown in Figure 10.Similarly, Figure 11 shows that the Lo
ation fa
tor is a�e
ted by the allowed CPUtime. Another signi�
ant fa
tor is the Depot lo
ation depi
ted in Figure 12. Peripheri
allylo
ated depots pose in
reased di�
ulties for NA in short allowed CPU times (pt ≤ 20%).To 
lose the study we provide in Table 10 the results of the number of su

esses (S∗)by the algorithms, number of results (Exp.) and the su

ess rates %S∗ a

ording to thetype of matrix (Asymmetri
 as A and Orthodromi
 as O). For the asymmetri
 
ase wesee how the su

ess rate of NA de
reases by 1.52%, 2.53% for PR and 0.02% for SW. Thealgorithm with the highest su

ess rate is NA followed by PR.Lastly, and a

ording to the several ANOVA experiments 
arried out, the∆S∗

i indi
atoris in�uen
ed in a statisti
ally signi�
ant way by all studied fa
tors. This 
on�rms the20
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Figure 9: Means plot for pS with Tukey's Honest Signi�
ant Di�eren
e (HSD) 95% 
on-�den
e intervals for the Territory (T) fa
tor. NA algorithm.
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Figure 10: Means plot for pS with Tukey's Honest Signi�
ant Di�eren
e (HSD) 95%
on�den
e intervals for the DemCap fa
tor. NA algorithm.Algorithm S∗ (O) Exp. (O) % S∗ (O) S∗ (A) Exp. (A) % S∗ (A)CW 0 5, 400 0.00% 0 5, 400 0.00%NA 10, 237 27, 000 37.91% 9, 827 27, 000 36.40%PR 2, 874 27, 000 10.64% 2, 192 27, 000 8.12%SW 2 5, 400 0.03% 1 5, 400 0.01%Total 13, 113 64, 800 12, 020 64, 800Table 10: Number of su

esses (S∗), number of results (Exp.) and the su

ess rates %S∗as a fun
tion of the Symmetry fa
tor (Asymmetri
 as A and Orthodromi
 as O) for thetested methods.known fa
t that the orthodromi
 s
enario is more amenable to work with but that allother fa
tors have to be 
losely observed as well, as they also signi�
atively a�e
t the21
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Figure 11: Means plot for pS with Tukey's Honest Signi�
ant Di�eren
e (HSD) 95%
on�den
e intervals for the intera
tion between Lo
ation (L) and pt fa
tors. NA algorithm.
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Figure 12: Means plot for pS with Tukey's Honest Signi�
ant Di�eren
e (HSD) 95%
on�den
e intervals for the Depot lo
ation fa
tor. NA algorithm.methods. A noteworthy result is the e�e
t that the Depot lo
ation fa
tor has over the
∆S∗

i response variable, espe
ially for the SW heuristi
 whi
h is strongly based in the planarproperties of the 2D plane. In this 
ase, the results of the heuristi
 deteriorate by a large
60% when the depot is peripheri
ally lo
ated with respe
t to the 
entrally lo
ated depotin the asymmetri
 s
enario.4 Con
lusionsIn this work we have studied the e�e
t of the asymmetry of transportation networks andother fa
tors over real CV RP instan
es. We have studied the Territory, Number of nodes(n), Lo
ation, Depot lo
ation, Asymmetry, 
lient demand and maximum tru
k 
apa
ity as22



fa
tors. All these fa
tors have been examined during thorough 
omputational and statisti-
al experiments. Several heuristi
 and state-of-the-art metaheuristi
s have been tested. Ina �rst phase no CPU time limit has been imposed. Later, in a se
ond phase, di�erent CPUtime limits have been tested for the NA metaheuristi
. Di�erent response variables havebeen investigated, namely CPU time, quantitative and qualitative 
omparison of solutionsand the quality of solutions, under di�erent indi
ators.This paper is a natural extension of the previous study on the mu
h simpler TSP setting(Rodríguez and Ruiz, 2011). The results obtained in the more 
omplex CV RP 
orrobo-rate previous �ndings: A higher asymmetry degree in the instan
es a�e
ts in a statisti
allysigni�
ant way the CPU time needed by the algorithms and deteriorates the quality of thesolutions obtained.The asymmetry and the number of nodes in a given problem instan
e are not the only fa
-tors a�e
ting the 
omplexity of the CV RP . Short distan
e territories in urban networksand the distribution of the 
lients in the territory are de
isive fa
tors as well. The Depotlo
ation is also of paramount importan
e from a logisti
s point of view. The demand andtru
k 
apa
ity strongly intera
t. The result is that routes with a higher number of stopsin asymmetri
 transportation (as in 
ity distribution) 
hallenge routing algorithms.The main 
ontribution of this work is the demonstration that under the 
omplex real-ity of the transportation network, the level of asymmetry surfa
es and asymmetry have alarge e�e
t over the solution methods for the CV RP . This e�e
t is many times larger thanthe outperforman
e margins between 
ompeting state-of-the-art methods when traditionalEu
lidean distan
e ben
hmarks are employed. Given that these results hold true for boththe TSP and now for the CV RP , it 
an be inferred that this e�e
t will be present in mostderived routing problems. As a �nal 
on
lusion, we postulate that the s
ienti�
 
ommu-nity should 
onsider asymmetry and other asymmetry indu
ing fa
tors when proposingand improving routing algorithms in order for su
h methods to prove useful in real lifeenvironments.A
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