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Abstract

Matrices with distances between pairs of locations are essential for solving vehicle
routing problems like the Capacitated Vehicle Routing Problem (CV RP), Traveling
Salesman Problem (7'SP) and others. This work deals with the complex reality of
transportation networks and asymmetry. Through a series of comprehensive and
thorough computational and statistical experiments we study the effect that many
factors like asymmetry, geographical location of the depot and clients, demand, ter-
ritory and maximum vehicle capacity have in the solution of CV RP instances. We
examine both classical heuristics as well as current state-of-the-art metaheuristics
and show that these methods are seriously affected by the studied factors from a
solution time and quality of solutions perspective. We systematically compare the
solutions obtained in the symmetric scenario with those obtained in the real asym-
metric case at a quantitative as well as a qualitative level, with the objective of

carefully measuring and understanding the differences between both cases.

Keywords: Asymmetry, Capacitated Vehicle Routing Problem, Algorithms, Road Transporta-
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1 Introduction

In many vehicle routing problems and also in several other aspects of logistics, a dis-
tance matrix between pairs of locations is needed. This matrix is needed for the Trav-
eling Salesman Problem (T'SP) (Flood, [1956), Capacitated Vehicle Routing Problem
(CV RP) (Clarke and Wright, [1964), and for almost any other variant of routing prob-
lem (Toth and Vigo, 2001). In particular, in the CV RP each client or location j from
the location set V' is associated with a given demand quantity or requirement d; that is
known in advance, non-negative and deterministic. The demand models a requirement
of d; units of product by client j that has to be delivered by a single truck, i.e., without
splitting the demand into various trucks. A fleet K of homogeneous vehicles is available,
each one of them with a given capacity of service C' which obviously has to be higher than
all demand d;, Vj € V. The fleet is stationed at a central depot, usually referred to as
node 0 (or node 1)with no demand. All clients must be served by exactly one vehicle. This
classic problem entails no further constraints apart from the capacity of all vehicles, which
cannot be exceeded. The objective in the C'V RP is to obtain a set of routes, usually one
per vehicle, so that the total cost, measured as the total distance traveled by all vehicles,
is minimized. Other objectives could be to minimize travel time, costs, etc. (Laport,
2007).

Given an instance of the CV RP with n locations or nodes, the distance matrix between
node pairs o,d, where o,d € V,0 # d, is denoted by C}, ). The diagonal of this matrix
contains zeros and is usually disregarded. As a result, the matrix contains n x (n — 1)
elements with all the distances between nodes.

In the vast majority of the routing literature (Laporte, 2009), locations or nodes are de-
termined by simple coordinates on the 2D plane and the distances are calculated by the
Euclidean formula. A more elaborate calculation can be done by taking the geographical
locations of the nodes in the terrestrial surface (geolocations in latitude and longitude)
and measuring the orthodromic distance between them using the great-circle distance for-
mula of Vincenty (1975). In both cases, the distances between nodes o and d is the same
as the distance between d and o, i.e., co,q = Cqo,V0,d € V,0 # d. As a result, matrix
C is symmetric and can be reduced to either the upper or lower triangular with w
elements. Symmetric matrices result in symmetric problems where the orthodromic arc or
distance (c,q = ¢qo) in many cases a weak lower bound of the real shortest route between
two locations when this route is calculated considering transportation networks. When
one takes into account the intricate reality of transportation networks with roads, traffic

circles, streets, one way streets, etc., the distance matrix is inevitably more complex and



asymmetric where generally, c,q # cg4, and distances are usually larger than symmetric
Euclidean distances (Laporte et alJ, |L9§_d)

In the 1970s, some authors set about estimating real distances (which were, at the time,

challenging to obtain as the Geographical Information Systems or GIS were yet to be de-

veloped) by transforming orthodromic calculations (Christofides and Eilon, |L9ﬁd) Other

authors developed mathematical functions in order to approximate real distances like

h‘g_w_and_MQLuA (|l9_ﬂ After the work ofh:laganzd (|198_4 h‘g_w_and_MQLuA (|_L9_8§ and

is an m (IL%%I) it is concluded that such approximations are not practical for

daily and operational use by companies. Furthermore, and most importantly, the degree
of asymmetry in the distance matrix cannot be easily estimated as it greatly depends
on various factors (Iﬂagami M) Nodes separated by large distances usually result in

more symmetric matrices as long distance transportation entails using two-way highways.

However, nodes located inside cities, and particularly cities with old historic centers, result
in highly asymmetric distance matrices.

Despite this reality, there is a widespread usage of Euclidean matrices, mainly motivated
by the difficulty and cost of obtaining real distance matrices. Calculating real distances
requires a big computational effort as n x (n — 1) shortest paths between nodes have to be
obtained. Each shortest path is a complex calculation comprising of hundreds of roads,
turns, etc. In a problem with a thousand nodes, almost a million shortest paths are needed.

While the computational cost is still large, fortunately since the 1990s researchers have

had powerful GIS systems (such as Google Maps) at their disposal (IMM@MMA,
@l)). Together with geo-spatial databases and their Advanced Programming Interfaces
(APIs), calculating real distance matrices is today a reality.

This piece of research studies the CV RP from a very different perspective. A sizeable
chunk of the literature has focused on developing efficient algorithms and methods for
optimizing the symmetric and Euclidean C'V RP. This paper follows a different direction
as we set out to study the effect that the asymmetry of the distance matrix, as well as
many other factors, have over the effectiveness and efficiency of relevant heuristic and
metaheuristic methods for the CV RP. We closely examine how the quality of the solu-
tions and the quantity of CPU time employed by the studied methods is affected. We
also compare the solutions obtained using symmetric and asymmetric matrices, in order
to ascertain how different these solutions are and to what extent using Euclidean matrices
is acceptable for real environments.

This work is a natural extension of a previous study by the same authors on the effect of

the asymmetric and other factors over heuristic methods for the much simpler Traveling

Salesman Problem (T'SP) (IBQSlLl’gusz_a.n.d_BMiA, |2£lll|) One objective of the present pa-




per is to corroborate if the conclusions obtained in the previous study also apply to more
complex routing problems. In order to do so, we will carry out a comprehensive study with
different transportation networks, locations of clients and depots, problem sizes, asymme-
try degrees, levels of demand and transport capacity, solution methods and CPU time.

The rest of the paper is organized as follows: Section 2] presents the research hypothe-
ses and questions, as well as a more formal definition of the studied factors, variables
and the experimental design. Section [B] summarizes the main obtained results as regards
computational time, quality of solutions and a comparison of solutions quantitatively and

qualitatively. Lastly, Section [4] concludes the paper.

2 Impact of the asymmetry and other factors

The following hypotheses are studied in this paper: Asymmetry affects the effectiveness
and efficiency of C'V RP heuristics and metaheuristics. The geographical location of clients
and the central depot in the territory translates into different degrees of asymmetry in the
distance matrix and in turn affects the effectiveness and efficiency of the studied methods.
The asymmetry of the transportation network has a specific effect over those methods
based on the planar Euclidean geometry. Furthermore, the following research questions are
raised: To what extent are the solutions obtained in symmetric and asymmetric scenarios
similar? What is the result of taking the symmetric solution (solution calculated with a
symmetric distance matrix) and calculating it with the real asymmetric distance matrix
and vice versa?

In order to either confirm or to refute the previous hypotheses and to answer the posed
questions we carry out a comprehensive computational and statistical testing campaign

with a set of C'V RP instances, whose details are explained next.

2.1 Studied factors

Territory: It is the real geographical region where the clients and central depot are
located. A boundary is created by two opposed geographical coordinates (latitude and
longitude) that induce a quadrant. The region of choice, related to the Iberian peninsula,
is studied at three territory variants, namely short, medium and large distance. In the
short distance territory routes have to deal with urban transportation (mostly Madrid
and its surroundings) Medium distance includes routes in cities plus longer routes that
communicate other cities through highways. Lastly, large distance deals with a large

national territory and includes heavy usage of highways. More details about this factor,



Figure 1: Location correction according to the transportation network. Left picture: a
node placed in an innaccesible location (A). Right picture: final corrected location (B).

including longer explanations and graphical examples are given in riguez an i
(2011).

Location: This factor determines how the clients or nodes are distributed inside
the territory. Three variants are studied: random placement, grid placement and ra-
dial placement. This factor was also studied previously and all details are given in

Rodriguez and B]]iﬁ (2011). In all cases, including the random variants, all nodes (and

depot) are located in accessible places inside the transportation network. Furthermore,

we also make sure that a path exists between each node and all others. This is further
explained by means of the following example, supported by Figure[I} Let us suppose that,
when building the instance and after a random placement of nodes, a node (A) has been
placed in a geographically inaccessible place. Inaccessible places are, for example, and as
depicted in the Figure, a forest. Other examples could be in the middle of a field, or even
inside of a block of apartments. We use a GIS function which basically moves the client
to the nearest accessible location, shown on the right picture in Figure[[l This movement
normally is within a few meters from the original inaccessible location. Note that this

final location could perfectly correspond to a real client.

Number of nodes: This factor is just the number of clients in a given territory. It is
a quantitative factor with 10 levels n = {50, 100, 150, ...,500}. Note that this is the last
factor employed in this paper that was also studied as it is by Emlagugz_a.m_ﬂud (IZOﬂ)

Depot location: This is a nominal qualitative factor that studies the effect of the

placement of the depot respective to the territory and clients. We have defined three
variants: Random: The depot is chosen randomly among the n nodes. Centered: It is the

node which is closest to the orthodromic center of the territory. Peripheral: The depot is



the node which is farthest away from the orthodromic center and closest to the boundaries
of the territory.

Symmetry: From the territory and node locations we calculate the distance matrices.
In Rodriguez and Ruiz (2011), the authors calculated these matrices in five different ways.
However, only two of them are of interest for the CV RP. As a result we only have two
variants for this nominal factor: Orthodromic: A symmetric distances matrix obtained
by calculating the orthodromic distances between pairs of nodes using their geolocations.
Asymmetric: real distances matrix using a GIS (Google Maps) and calculating the shortest
route between any two clients, similarly as any turn-by-turn navigation system would do.

Demand and maximum capacity (DemCap): Service demand d; of each client j
and the maximum transport capacity C' of the trucks are so intimately related that they
are considered as a single factor in this study. Service demand is modeled as a two level
quantitative factor where demand d; is sampled from a uniform random distribution in
two intervals: Small (P) using U[1, 10] and Large (L) using U[50, 100] as demand units,
respectively. Usually, large distance transportation requires relatively big demands served
by big trucks, usually of three axels. Conversely, short distance comprises the delivery of
demands in greater number but smaller volume and with smaller trucks. This is translated
into longer routes for large distance with a smaller number of stops during the route (s)
and relatively shorter routes in short distance transportation but with a higher number of
stops s. In order to model this situation and to calculate the maximum vehicle capacity
C', we employ a number of stops generator G(p) defined in equation (Il) with a probability
following a triangular distribution as a function of a parameter p € U|0, 1]. Table Table[I]
shows the selected values a, b, ¢ of the triangular distribution related to G(p) according to

the territory factor.

N R e e N = 0
b= A -p)b-a)b—c) p> i
Territory Minimum (a) Maximum (b) Mode (c)
Short distance 10 25 25
Medium distance 10 25 17.5
Large distance 10 25 10

Table 1: Number of stops s according to the territory and triangular distribution.

From G(p) and the average service demand J] of all clients 7 € V we define the

maximum capacity C' as in equation (2)):



C =maxd; + (G(p) — 1)d; VjeV (2)

In the set of proposed instances, service demand d;, the related vehicle capacity C
and the number of stops s are rounded to the nearest integer. It is important to note
that the number of stops s, number of nodes n and the number of routes k& will be
in the interval {n = 50,k = 5,s = 10, ..., n = 500,k = 20,s = 25}. This is in
concordance with what can be found in the most common benchmarks from the literature
like those of IChristofides and Eilon (1969),/Golden et al. (1977), TSPLI , Taillard (1993),
and [Fisher (1994) among others; where completely random instances and some real cases

from industries are used.

2.2 Experimental design and response variables

The six studied factors, along with the studied levels and variants are summarized in
Table 2. Note that the last row shows the total number of levels or variants for each
factor and that the service demand and vehicle capacity is considered as a single factor

“DemCap”.

Territory (T) Location (L) Symmetry (M) Number of nodes (n) Depot location DemCap

Short distance Random Orthodromic 50 Random Small
Medium distance  Grid Asymmetric 100 Centered Large
Large distance Radial Peripheral

500
3 3 2 10 3 2

Table 2: Factors and their corresponding studied levels or variants.

In this paper we employ a full factorial experimental design. All combinations of the
levels and variants of the factors are studied which results in 3 x 3 x 2 x 10 x 3 X 2 =
1,080 treatments. For each treatment, five different random instances are generated which
produces a grand total of 5,400 C'V RP instances. The full factorial design allows for the
study of the effects of each factor as well as the interactions of any level over the following
response variables:

Deviation from best known solution AS;: According to equation (3) it is the
percentage relative deviation of the total distance traveled by the vehicles in the solution
obtained with algorithm A for instance i (S; 4) with respect to the best solution known

for that very same instance (.S}).

Thttp://comopt.ifi.uni-heidelberg.de/software/ TSPLIB95 /
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AS; = L.100 (3)

*
(2

Success rate: Calculated as the number of times a given algorithm attains the best
known solution.

CPU time: For each instance i it is the real CPU time employed by a given algorithm
to obtain a solution. It does not consider input/output operations or other operating
system times as recommended by ). For stochastic algorithms in which every
instance is run several times, this CPU time will be an average of all runs.

Finally, a very important studied factor, not related with the instances, is the algo-
rithm. We have selected the following C'V RP methods:

o Algorithm of|Clarke and Wrighﬂ M) (CW). It is a very well known and thoroughly

studied heuristic that will serve as a baseline indicator of performance.

e Sweep algorithm bylﬁiil]ﬁ_t_t_am_Mil]&d (|19_7_4|) (SW). Another simple well known con-

structive method that works over two phases and that is strongly based in the planar

properties of the 2D plane for the first phase. For the second phase, our implementa-

tion uses the well known efficient implementation of the Lin-Kernighan heuristic by

|H£J.sga.1m| (IZDDLJ) which is currently considered among the highest performing heuris-
tics for the T'SP. For this later heuristic we employed the following parameters:

recommended parameters by the author.

e General heuristic of [Pisinger and BkagJ (IZODj) (PR). It is a unified heuristic that

works for several variants of routing problems and that uses an Adaptive Large
Neighborhood Search (ALNS). It is a very capable and robust method. Parameters:

recommendations from the author according to the original paper for both compilation

and execution.

e Memetic algorithm of (IM) (NA). Similar to PR, NA is a very powerful
and recent C'V RP metaheuristic. Parameters: recommendations from the author
according to the original paper; 10 trials, population size = 100, 30 children, 2

parents.

The previous algorithms have been selected by their performance and recognition. We
have strived for a balance between simple classical techniques and current and state-of-
the-art methods. Algorithms NA and PR were run from the original code which was
kindly provided by their respective authors. No code modification was carried out and

the methods were run according to their recommendations. Initially, we set no time limit



on computational times, i.e., algorithms have a stopping criterion set by their original
authors. The metaheuristics PR and NA are stochastic and therefore, five different runs

are carried out for each instance. In total, there are 64,800 computational results.

2.3 Computational setting

All experiments are run on a cluster of 30 blade severs, each one containing two Intel
XEON 5254 processors running at 2.5 GHz with 16 GB of RAM memory. Each cluster
has two processors with four cores each (8 cores per cluster) but experiments are carried out
in virtualized Windows XP machines, each one with one virtualized processor and 2 GB
of RAM memory. For the generation and calculation of the 2,700 matrices, (symmetric
and assymetric) we needed a single blade equivalent wall time of 4,708 hours, almost
solely employed for the calculation of the asymmetric matrices as the symmetric distances
are almost instantaneously calculated. The single blade equivalent wall time needed for
obtaining the results of 64, 800 experiments was of 12,704 (almost 530 days!). As a result,
a possible contribution of this paper is in the form of a freely available benchmark of
real asymmetric C'V RP instances (more than 2.15 GBytes of data) which can be seen as
complementary to existing and well recognized benchmarks. The instances are available

at http://soa.iti.es/problem-instances.

3 Experimental results

After running all experiments, and in order to understand the effect of the asymmetry
and all other factors over the response variables, several multifactor Analyses of Variance
(ANOVA) were carried out. ANOVA is a parametric statistical model. As such, there
are three main hypotheses that must be met, all of them require the residuals from the
experiment to follow a normal distribution, to be homocesdastic and to be independent
(not self correlated). In an experiment with such a large dataset, such hypotheses are

easily met and we did not observe any serious deviation.

3.1 CPU time

Some of the most interesting conclusions come after analyzing the CPU time response
variable. After all, one could think that, apart from the number of nodes n, no other
studied factor should have a large effect on the CPU time that a given algorithm needs to
solve an instance. Recall that no CPU time limit was established for all methods. We are

working with a significance level of & = 0.05. The resulting multifactor ANOVA produced


http://soa.iti.es/problem-instances

27 statistically significant relations, including single factors and two way interactions.
Table Bl shows a summary of the ANOVA table, including the p-values. Due to limitations

on space, only single factor effects are shown.

Source Sum of Degrees Mean F-Ratio p-value
squares of freedom square

Main effects

A:DemCap 1.934E8 1 1.934E8 1,519.73  0.0000
B:Depot location 4.385E7 2 2.192E7 172.24 0.0000
C:Territory (T) 9.311E6 2 4.655FE6 36.57 0.0000
D:Location (L) 2.062E7 2 1.026 E7 80.61 0.0000
E:Symmetry (M) 617,811 1 617,811  4.85 0.0276
F:Number of nodes (n) 4.3056E9 9 4.784E8 3,757.57  0.0000
G:Algorithm 2.893E£10 3 9.645E9 75,756.96 0.0000
Residual 8.228E9 64,631 127,319

Total (corrected) 8.590F10 64,799

Table 3: Results of the analysis of variance for CPU time response variable.

As we can see, the strongest effect (larger F-Ratios, which are the quotient between
the variance generated by the different levels of the factor and the residual variance,
calculated as a quotient between the mean squares) is due to the factors Algorithm and
number of nodes (n). These two are obvious factors. Quick heuristics like CW and SW are
almost instantaneous while complex metaheuristics like PR and NA are much more time
consuming. The same can be said about n, i.e., the larger the problem, the longer the CPU
time. What is of interest is how these two strong factors interact with all other factors and
the behavior of other factors themselves. For example, the Location (L) factor strongly
affects CPU time (F-Ratio= 80.61, p-value= 0.00). Furthermore, this factor affects the
NA algorithm much more than all other studied methods as CPU time increases a 15%
in the grid and radial locations with respect to random locations. Comparatively, PR’s
CPU time are barely affected by this factor, as shown in Table d. Also of interest is the
simple CW heuristic, whose CPU times, albeit small, increase by more than 34% for the

radial locations with respect to random.

Algorithm Random Grid Radial average
CwW 2.17 2.56 2.91 2.55

NA 1,351.49  1,552.47 1,572.91 1,492.29
PR 207.46 198.20 196.99 200.88
SW 1.27 1.24 1.28 1.26
average 649.85 729.77 737.81

Table 4: Average CPU time as a function of the Algorithm and Location (L) factors.

10
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Figure 2: CPU time for the combinations of Algorithm, Location (L), Depot location and
Number of nodes (n).

Figure 2 depicts a series of scatter plots for all combinations of algorithms and node
locations. The x-axis shows the number of nodes n and the y-axis the CPU time in seconds
in a logarithmic scale. Different colors and symbols are used for the Depot location factor.
From the ANOVA it can be observed that the Depot location has a significant effect on
the CPU time (F-Ratio= 172.24, p-value= 0.00), especially for the NA method. When
the depot is located peripherically, CPU times increase by 22% with respect to a centrally
located depot. Once again PR is robust with respect to the depot location with a meager
2% increase in CPU time from the central to the peripheral. Both CW and SW increase
their CPU times by about 5% with a peripherically located depot with respect to a central
depot. The location of the nodes (factor L) also affects CPU time in a significant way.
According to our results, this effect is more pronounced with the NA method (an increase
of CPU time of about 15% in Grid and Radial with respect to Random location). PR
is again robust regarding this factor. In relation to the number of nodes n, our experi-
ments confirm the direct and exponential effect that the size of the problem has on CPU

time. This effect is observed in all cases both for symmetric as well as for asymmetric cases.

Territory has a small, but, definitely statistically significant effect over CPU time

11



(F-Ratio= 36.57). This result was already observed in our previous work for the T'SP
(Rodriguez and Ruiz, 2011). Large distance territories have less asymmetric matrices and
less variability between nodes, which results in longer CPU times for the methods. This
effect is observed for the algorithm CW and Large distances where CPU times are in-
creased by 68% when compared with the times obtained for the Short distance territory
(with more variability and asymmetry in the distances, which helps when searching for

good solutions quickly).

A strong factor specific to the CVRP is the DemCap factor which, as we recall,
it models the relationship between the service demand and vehicle capacity (F-Ratio=
1,519.73, p-value= 0.00). For Small DemCap the average CPU time is increased by 40%
for the whole dataset. A possible interpretation of these results, when relating DemCap,
Territory and Asymmetry, is that for Short distance and Small DemCap the complexity of
the problem increases and CPU times worsen when compared to Medium-Large distances
and Large DemCap. In other words, the higher the number of stops per vehicle, the
higher the complexity and hence, CPU time needed. Furthermore, if the Territory is
Short distance, the CPU times increase even further. However, if each vehicle has less
stops and has to travel Medium-Large distances, the problem ends up easier to solve.
Our results point to the idea that the different degree of asymmetry in the transportation
networks clearly and statistically affect the CPU time (p-value = 0.02). As detailed in
Table Bl while for NA and PR the CPU times increase by a measly 2%, simple algorithms

increase CPU times by as much as 15%.

Algorithm Asymmetric Orthodromic average

CW 2.42 2.67 2.55

NA 1,507.47 1,477.12 1,492.29
PR 202.57 199.19 200.88
SW 1.09 1.43 1.26
average 712.81 698.81

Table 5: Average CPU time as a function of the Algorithm and Symmetry (M) factors.

We finally provide a means plot with confidence intervals. We employ the most re-
strictive technique for calculating the confidence intervals around the means: the Tukey’s
Honest Significant Difference (HSD) intervals. As shown in Figure[3] the means and their
corresponding Tukey’s HSD intervals at a 95% confidence level for the Symmetry (M)

factor do not overlap. Therefore, the difference is statistically significant.

12
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Figure 3: Means plot for CPU time with Tukey’s Honest Significant Difference (HSD) 95%
confidence intervals for the Symmetry (M) factor.

3.2 Quantitative and qualitative comparison

In order to observe the differences between the symmetric and asymmetric solutions we
employ some indicators. These are based on the following data:

SO: TIs the objective value (in our case total traveled distance) after taking the routes
obtained by an algorithm using the symmetric distance matrix.

SA: Ts the total traveled distance after taking the routes obtained by an algorithm
using an asymmetric distance matrix.

SO 4: Total traveled distance of the routes obtained by an algorithm using the symmet-
ric distance matrix but recalculated using the real asymmetric matrix, i.e., the algorithm
works with a symmetric matrix but after the solution has been obtained it is recalculated
with the real distance matrix.

SAp: Is the opposite of SO,. Take a solution obtained with an asymmetric matrix
and recalculate the total distance with the orthodromic distances.

The indicators are therefore the following:

I, percentage increase of SA with respect to SO:

_ SA-S0

I
! SO

100 (4)
I, percentage increase of SO, with respect to SA. It can be negative.

I3 percentage increase of SAp with respect to SO. It can also be negative.

In the following we further detail the previous indicators by means of a simple example.
We show below the distance matrices between the depot and four clients: O contains the

symmetric orthodromic distances and A the real distances, all measured in kilometers.

13



0.000 2.218 2.545 1.305 2.585 0.000 2.788 3.122 3.193 3.508

2.218 0.000 4.503 3.193 2.682 3.023 0.000 5.341 b5.412 3.722
O = 2.544 4.503 0.000 1.313 3.105 A= 3.188 5.684 0.000 2.124 4.561
1.305 3.193 1.313 0.000 2.255 2,571 4.349 3.852 0.000 2.705
2.585 2.682 3.105 2.255 0.000 3.742  4.041 4.592 3.665 0.000

(5)

The demands of the clients are all equal to one and the vehicles have a maximum
capacity of C'= 3. We used an exact Mixed Integer Linear Programming (MILP) model
in order to obtain the optimal solution, after which SO and S A are calculated. The results

are as follows:

Symmetric: route 1 (7.485 km.) sequence {1,2,5, 1}, route 2 (5.162 km.), sequence
{1,4,3,1}. Total distance SO = 12.647 km.

Asymmetric: route 1 (5.811 km.) sequence {1,2,1}, route 2 (11.693 km.), sequence
{1,3,4,5,1}. Total distance SA = 17.504 km.

We can see that for this small example, both scenarios result in two routes. However,
the routes are different and the total traveled distance is much higher in the asymmetric

case. Figured shows a graphical representation of the solutions.

1 1
2 2
3 4 3 4
5 5

Figure 4: An example solution with symmetric routes on the left and asymmetric real
routes on the right.

The indicator I; takes a value of 37.22% which shows the increase in the distance S A
with respect to SO. Similarly, SO 4 = 20.485 km. and reciprocally, SAp = 13.134 km. As
a result, I, = 17.03% and I3 = 3.85%, clearly demonstrating that both solutions are far
from being interchangeable. Furthermore, when closely looking at the resulting routes in
both scenarios (Figure [) we realize that the solutions are very different.

The previous SO, SA, SO, and SAp values were calculated for all 64, 800 experimental

results. All three indicators were then geberated, obtaining 32,400 results (each one

14



comparing asymmetric and symmetric results). The main statistics for the three indicators
are given in Table One striking result is the average of I; with a value of 59.86%,
which clearly indicates that there is a large quantitative difference between the cost of the
asymmetric routes with respect to the cost of the symmetric ones. Note the maximum
value for I of 239.35%, which is more than double the total distance. Recall that the
nodes are placed in the same locations, the only thing that is changing is the matrix
that is being fed to the algorithms. The clear conclusion is that for almost all cases, the

asymmetric and symmetric problems are indeed, two different problems.

I I I3
Average 59.86 10.28 8.38
Standard deviation 21.36 13.12 8.44
Minimum 0.3 —58.46 —31.46
Maximum 239.35 71.74 154.36

Table 6: Statistics of the proposed comparison indicators.

Furthermore, I and I3 allow us to quantify what happens if we compare the symmetric
solution calculated with the asymmetric matrix with the real asymmetric solution and vice
versa. In other words, a I, = 0 for all instances would mean that it really does not matter
if we use asymmetric matrices or not since the total traveled distance of the symmetric
solution calculated with the asymmetric matrix would be the same as the asymmetric
solution. Table [ clearly shows that I values are, on average, greater than 10%. This
means that it is simply not valid to take an algorithm that only works with symmetric
matrices and then, once the routes have been obtained, “recalculate” them with the real
distances. Likewise just ignoring real distances altogether and hoping that the very good
routes obtained with orthodromic distances will be equally good in practice is not a viable
approach. Our results attest to the fact that a bold 10% in total distance is being lost,
compared to the solution obtained with real asymmetric distances. A similar conclusion
is reached in the case of I3 as I3 has an average value of 8.38%. Again the conclusion is
that orthodromic solutions are not related to asymmetric solutions.

Figure [l depicts the frequency distribution histograms for all three indicators. For I; the
majority of the cases have values between 30% and 90%. For I, most cases lie between
10% and 30%. Lastly, for I3 we see that most data stays between 7% and 40%. All these
indicators and results are in stark contrast with the narrow margins (usually less than 1%)
within which most current state-of-the-art algorithms compete in the benchmarks from
the literature.

All these findings corroborate those from our previous study on the T'SP. Similarly to the

TSP case, here the differences go beyond the presented indicators and objective function
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values. Usually, the routes obtained with asymmetric matrices have little in common with

the routes obtained in the symmetric case (different number of routes, different sequences

of nodes, etc.).
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Figure 5: Frequency distribution histograms for indicators Iy, I, and I3.

In order to better understand the relations between indicator I; and the other studied
factors, we carried out an ANOVA. The results of the F-Ratios and p-values indicate 18

statistically significant effects: 6 factors and 12 two-way interactions. The full ANOVA

table is omitted due to limitations of space. A significant effect is due to the Territory
factor, (F-Ratio= 27355.7, p-value= 0.00). For Large distance territories, the differences

between the symmetric and asymmetric scenarios (as regards I;) are a bit less than 44%.

These differences increase to 55% for Medium distance and up to 81% for Short distance.

As previously mentioned, the asymmetry level increases for short distances and this is

confirmed for all algorithms, as shown in Table [

Algorithm Short distance Medium distance Large distance average
Ccw 78.49 51.99 43.69 58.06
NA 78.93 51.61 43.52 58.03
PR 79.58 51.81 43.67 58.35
SW 103.74 87.68 43.75 78.39
average 81.24 54.73 43.62

Table 7: Average of I; as a function of the Algorithm and Territory (T) factors.

Another noteworthy effect corresponds to the Depot location factor (F-Ratio= 3, 603.5,

p-value= 0.00). As shown in Table [§ the differences in I; are smaller when the depot is

located in the periphery of the territory when compared to a centrally located depot
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(average of 65%). One possible explanation is that the degree of asymmetry depends on
the average distance between arcs. Since all routes start and finish at the depot, it is more
likely that a centrally located depot has smaller distances to the first and last stops of
every route and hence a larger asymmetry effect is observed, which increases the values of

the I; indicator.

Algorithm Centered Random Peripheral average

CW 62.32 59.27 52.58 58.06
NA 62.79 59.29 51.98 58.03
PR 63.14 59.63 52.29 58.35
SW 91.53 80.45 63.18 78.39
average 65.29 61.19 53.09

Table 8: Average of I; as a function of the Algorithm and Depot location factors.

Lastly, the Location factor also has a significant effect over /;. Radial locations increase
I; with respect to Grid and Random, as shown in Table @ This confirms the previous
findings of our T'S P study.

Algorithm Random Grid Radial average

CwW 57.02 55.18 61.97 58.06
NA 55.82 57.14 61.10 58.03
PR 56.20 57.37 61.49 58.35
SW 75.02 75.93 84.20 78.39
average 57.68 58.64 63.26

Table 9: Average of I; as a function of the Algorithm and Location (L) factors.

To close this section we show two randomly chosen examples. The objective is to
graphically show the big differences between the symmetric and asymmetric solutions.
Figure [0l shows instance G-C-MR-100 on the left with 100 radially located customers
in a Medium distance territory, large DemCap and a centrally located depot. Symmetric
solutions are shown in blue while asymmetric routes are in red. Both solutions have five
routes but this is where the similarities end. The total traveled distance in the symmetric
solution is 2,149.4 km. versus the 3,385.6 km. of the real asymmetric solution with a
I, = 57.51% and notable differences in the visitation sequence of the nodes at each route.
On the right of Figure[6] we have instance P-A-CA-350 with 350 randomly located nodes
in a short distance territory with a small DemCap and a randomly placed depot. In this
second example the differences are huge. The total symmetric traveled distance is 864.17
km. which pales in comparison with the 2,140.7 km. of the asymmetric distance and I

equaling 147.71%. In this case, there are 17 symmetric routes and 16 asymmetric routes.
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Note that in real life, doing without one truck is, apart from the total traveled distance,

a huge saving.

Figure 6: Symmetric solutions (in blue) and asymmetric (in red) for instances G-C-MR-100
with algorithm PR (left) and P-A-CA-350 with algorithm NA (right).

3.3 Quality of solutions

In previous sections we have studied that asymmetry and other studied factors have a sta-
tistically significant effect on the efficiency of the studied algorithms. However, it remains
to be seen if effectiveness is affected. In our previous experiments, no CPU time limit was
imposed on the different algorithms. As a result, the differences in the quality of solutions
were hard to observe. Basically, algorithms were taking longer to reach comparable high
quality solutions, regardless of the studied factors.

In order to study the effects on the quality of solutions we carried out additional experi-
ments. Among the tested algorithms, NA allowed modifications in the stopping criterion.
A good way of studying the effectiveness is to run NA independently for different stopping
times. We define a new factor pt as the percentage of allowed CPU time with respect to
the original CPU time used by NA in the previous experiments where no CPU time limit
was imposed (pt = 100%). The levels studied are pt = {10%, 20%, 40%, 60%, 80%, 100%}.
The subset of 5,400 results of the NA method for pt = 100% was enlarged to 32,400 re-
sults. Each instance 7 is run from scratch, with a different random seed, for each pt value
in order to ensure the independence of the results and to avoid self correlation. Under this
new experiment we study the response variable pS according to equation (). A positive

pS; e value indicates the deterioration in the total traveled distance for instance ¢ when
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NA is stopped at relative time pt with respect to the total distance traveled when NA is
run without CPU time limit (pt = 100% or S; 100)-

Sipt — Si,100

4,100

DSipt = -100 Vi, pt (6)

An ANOVA is obtained for all previous studied factors, except the factor algorithm
(since we are now only studying NA) and adding the factor pt. We now summarize the
results, from highest to lowest statistical significance indicating the F-Ratios and p-values
between parenthesis: pt factor (5,996, 0.00), Number of nodes (n) (357.3, 0.00), interac-
tion between n and pt (122.61, 0.00), Symmetry (M) (98.55, 0.00), interaction between
pt and asymmetry (35.17, 0.00), interaction between pt and Territory (T) (31.44, 0.00),
interaction between pt and DemCap (30.63, 0.00), interaction between pt and Location (L)
(28.43, 0.00), DemCap (27.05, 0.00), interaction between pt and Depot location (21.04,
0.00), Depot location (20.75, 0.00), Territory (15.47, 0.00) and interaction between Ter-
ritory and Symmetry (10.7, 0.00). As we can see, all studied factors are statistically
significant, either in isolation or by means of a two way interaction.

Figure[dshows the means plot and Tukey’s Honest Significant Difference (HSD) confidence

intervals of the interaction between n and pt.
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Figure 7: Means plot for pS with Tukey’s Honest Significant Difference (HSD) 95% con-
fidence intervals for the interaction between n and pt factors. NA algorithm.

For lower pt values, NA gives solutions of a much lower quality and this effect is
markedly significant for greater n values. The observed deterioration in results is around
2%, in line with the findings of [Toth and Viga (2001), where it is indicated that modern
metaheuristics, albeit time consuming, yield results that deviate from optimum solutions
between 2% and 0.5%. It is observed that for small values of pt of 10% and 20% the results

are worse for 20% when compared to those of 10% for some n values. This is due to the
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divergence in the solutions as regards total traveled distance and number of routes. Note
that NA was run from scratch each time and it is possible that, in some cases, the result
at the first stages of evolution is worse for pt = 20% than for pt = 10%. In any case,
NA is a flexible and robust metaheuristic which adapts very well to asymmetric scenarios.

Figure B shows the effect of the Symmetry factor.

0.56 [~ S 7
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0.48 = -
Asymmetric Orthodromic

Type of distance matrix

Figure 8: Means plot for pS with Tukey’s Honest Significant Difference (HSD) 95% con-
fidence intervals for the Symmetry (M) factor. NA algorithm.

We see that the level of asymmetry has an effect over the NA method and pS response
variable. This effect is small albeit statistically significant. These differences are much
greater for pt = 10% but are non-existent for pt > 40%.

According to Figure [@ the Territory factor also affects NA in a similar way as in
the previous experiments. In this new experiment though, the differences are no longer
statistically significant when pt > 40%.

We also confirm that the DemCap factor is also affected for smaller processing times
(pt < 40%), shown in Figure [0l

Similarly, Figure [[1] shows that the Location factor is affected by the allowed CPU
time. Another significant factor is the Depot location depicted in Figure[I2l Peripherically
located depots pose increased difficulties for NA in short allowed CPU times (pt < 20%).

To close the study we provide in Table [I0] the results of the number of successes (5*)
by the algorithms, number of results (Exp.) and the success rates %S* according to the
type of matrix (Asymmetric as A and Orthodromic as O). For the asymmetric case we
see how the success rate of NA decreases by 1.52%, 2.53% for PR and 0.02% for SW. The
algorithm with the highest success rate is NA followed by PR.

Lastly, and according to the several ANOVA experiments carried out, the AS} indicator

is influenced in a statistically significant way by all studied factors. This confirms the
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Figure 9: Means plot for pS with Tukey’s Honest Significant Difference (HSD) 95% con-
fidence intervals for the Territory (T) factor. NA algorithm.
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Figure 10: Means plot for pS with Tukey’s Honest Significant Difference (HSD) 95%
confidence intervals for the DemCap factor. NA algorithm.

Algorithm S* (O) Exp. (O) % S* (0O) S* (A) Exp. (A) % S* (A)

CW 0 5,400 0.00% 0 5,400 0.00%
NA 10,237 27,000 37.91% 9,827 27,000 36.40%
PR 2,874 27,000 10.64% 2,192 27,000 8.12%
SW 2 5,400 0.03% 1 5,400 0.01%
Total 13,113 64,800 12,020 64,800

Table 10: Number of successes (S*), number of results (Exp.) and the success rates %5*
as a function of the Symmetry factor (Asymmetric as A and Orthodromic as O) for the
tested methods.

known fact that the orthodromic scenario is more amenable to work with but that all

other factors have to be closely observed as well, as they also significatively affect the
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Figure 11: Means plot for pS with Tukey’s Honest Significant Difference (HSD) 95%
confidence intervals for the interaction between Location (L) and pt factors. NA algorithm.

0.56 7

1 :
R 052 I .

0.50 [~ I 7

0.48 = -
Random Central Peripheral

Depot location

Figure 12: Means plot for pS with Tukey’s Honest Significant Difference (HSD) 95%
confidence intervals for the Depot location factor. NA algorithm.

methods. A noteworthy result is the effect that the Depot location factor has over the
AS? response variable, especially for the SW heuristic which is strongly based in the planar
properties of the 2D plane. In this case, the results of the heuristic deteriorate by a large
60% when the depot is peripherically located with respect to the centrally located depot

in the asymmetric scenario.

4 Conclusions

In this work we have studied the effect of the asymmetry of transportation networks and
other factors over real C'V RP instances. We have studied the Territory, Number of nodes

(n), Location, Depot location, Asymmetry, client demand and maximum truck capacity as
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factors. All these factors have been examined during thorough computational and statisti-
cal experiments. Several heuristic and state-of-the-art metaheuristics have been tested. In
a first phase no CPU time limit has been imposed. Later, in a second phase, different CPU
time limits have been tested for the NA metaheuristic. Different response variables have
been investigated, namely CPU time, quantitative and qualitative comparison of solutions
and the quality of solutions, under different indicators.

This paper is a natural extension of the previous study on the much simpler T'S P setting
(Rodriguez and Ruiz, 2011). The results obtained in the more complex CV RP corrobo-
rate previous findings: A higher asymmetry degree in the instances affects in a statistically
significant way the CPU time needed by the algorithms and deteriorates the quality of the
solutions obtained.

The asymmetry and the number of nodes in a given problem instance are not the only fac-
tors affecting the complexity of the C'V RP. Short distance territories in urban networks
and the distribution of the clients in the territory are decisive factors as well. The Depot
location is also of paramount importance from a logistics point of view. The demand and
truck capacity strongly interact. The result is that routes with a higher number of stops
in asymmetric transportation (as in city distribution) challenge routing algorithms.

The main contribution of this work is the demonstration that under the complex real-
ity of the transportation network, the level of asymmetry surfaces and asymmetry have a
large effect over the solution methods for the C'V RP. This effect is many times larger than
the outperformance margins between competing state-of-the-art methods when traditional
Euclidean distance benchmarks are employed. Given that these results hold true for both
the T'S P and now for the C'V RP, it can be inferred that this effect will be present in most
derived routing problems. As a final conclusion, we postulate that the scientific commu-
nity should consider asymmetry and other asymmetry inducing factors when proposing
and improving routing algorithms in order for such methods to prove useful in real life

environments.
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