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Abstract—Multicore chips are currently dominating the microprocessor market as designs that improve performance and sustain power
consumption. However, complex core features must be still considered to provide good performance for existing sequential applications.
An effective approach to reduce core complexity without dramatically sacrificing performance is to distribute critical processor structures
by using clustered microarchitectures. In these designs, communication latency among clusters is a critical performance bottleneck,
and a good steering algorithm is required to reduce inter-cluster communication.

In this paper, we propose a new energy-efficient microarchitectural approach that reduces inter-cluster communication by detecting
and generating independent chains of instructions, referred to as subtraces, from the execution of sequential programs. The devised
mechanism has been modeled on an x86-based trace-cache processor, where subtraces are built in the fill unit, stored in a trace cache,
and individually steered to different clusters. Experimental results show that the proposal reaches performance speedups around 7%
and 15% for point-to-point and bus-based interconnects, respectively, while achieving energy savings of up to 12%.

Index Terms—Clustered Processors, Subtraces, Parallelism.

1 INTRODUCTION

During nearly the last two decades, performance of superscalar
microprocessors has been improved by exploiting ILP through
increasingly more aggressive mechanisms that maintain binary
compatibility. However, continuous shrinking of the transistor
size causes an increase of power density, while performance
does not rise at the same pace. Microprocessor industry has
moved to multicore processors in order to trade off power
consumption and global performance. In these processors, the
number of cores, as well as their individual complexity, widely
differs among industry products, which range from simple in-
order execution cores [1] to complex out-of-order execution
processors implementing simultaneous multithreading [2].
Though most recent multicore-related research focuses on
a large number of cores, industry is still providing products
with a rather low number of cores. The main reason for
this situation is the limited software and operating system
scalability, as well as the fact that most current applications are
designed with traditional sequential programming techniques.
This work focuses on a new microarchitectural approach to
extract parallelism at run time from sequential applications.
To this end, we concentrate on clustered microarchitectures,
which were proposed to reduce the complexity of non-scalable
structures in superscalar processors [3]. In these architectures,

each cluster contains its own instruction queue, register file,
and functional units, whereas a common processor front-end
(fetch, decode, and renaming logic) is shared among them.
Since global complexity is reduced, a clustered architecture is
suitable both for monolithic and multicore processors.

After an instruction is renamed, a steering algorithm decides
the target cluster for that instruction. Then, if a value is con-
sumed by a cluster other than its producer, a copy instruction
is artificially generated by the steering logic, and inserted into
the ROB and the issue queue of the producer cluster. Copy
instructions are issued to a network connecting all clusters, and
their execution time depends on the interconnect architecture
and the distance between the source and destination clusters.
The inter-cluster communication latency has a critical impact
on global performance [4], and thus, keeping the number of
copy instructions as low as possible becomes a major design
concern. While sophisticated steering algorithms have been
designed for this aim, this bottleneck, as shown in this paper,
can still be further reduced.

To this end, our proposal first aims at dynamically generat-
ing independent chains of instructions (subtraces) out of traces
of sequential code, which are then steered to different clusters.
Subtraces are generated by analyzing and splitting a sequence
of committed instructions. Then, individual instructions are
replicated in several subtraces, until they become completely
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Fig. 1. Baseline microarchitecture block diagram.

independent from each other. Hereby, additional parallelism
is artificially induced as long as it helps further alleviate the
inter-cluster communication bottleneck. The proposed mecha-
nism has been evaluated on top a clustered trace-cache x86
microprocessor model, where the trace cache fill unit has
been tailored to detect and construct independent subtraces,
after the commit stage and out of the critical path. This
information is then reused by the steering logic, which might
insert instruction replicas into several clusters. Experimental
results show a considerable reduction of copy instructions,
which leads to average performance speedups between 3%
and 15% for different bus-based interconnects, and between
3% and 7% for the evaluated point-to-point networks, while
still reducing the global dissipated energy by up to 12%.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the baseline clustered architecture. Section
3 introduces the proposed algorithm, whose hardware im-
plementation is described in Section 4. Sections 5 and 6
show an experimental evaluation of performance and power,
respectively, and Sections 7 and 8 present some related work
and concluding remarks.

2 MICROARCHITECTURE OVERVIEW

This section presents the baseline clustered architecture used
to implement and evaluate our proposal. To guarantee that
our reported performance gains add up on existing common
architectural improvements, a sophisticated baseline design
has been modeled, using a trace cache, an advanced steering
algorithm, and non-trivial interconnection network topologies.
These features have been proposed in previous research, and
are summarized in this section to aid in the understanding of
the rest of the paper.

The baseline architecture is a superscalar, single-threaded,
clustered processor, whose block diagram is represented in

Figure 1. The processor front-end fetches x86 macroinstruc-
tions, decodes them, and dumps the generated microinstruc-
tions (p-ops) into a p-op queue (Figure la). Then, uops
are dispatched into a shared ROB, which tracks their global
program order until they commit. Memory uops reserve an
entry in a global LSQ, while the rest of them are steered to the
clusters and reserve a local IQ entry. The LSQ implements the
load bypassing and load forwarding optimization techniques,
and its shared design guarantees a global ordering of memory
accesses. When a non-speculative uop at the ROB head
completes, it is processed by the fill unit. This component
builds a temporary trace that is eventually sent back to the
trace cache.

After an uop is dispatched, a steering algorithm decides
its target cluster. When an arithmetic uop is steered into a
cluster lacking any input operand, a copy uop is generated
and inserted into the IQ of some of the clusters containing the
required operand. A shared register alias table (RAT) stores the
register mappings for each cluster; it is indexed by a logical
register identifier, and returns the private physical register
associated in each cluster, or a void label if the value is not
present for that cluster. Finally, each cluster contains a private
IQ, functional unit pool, and physical register file (Figure 1b).

The processor front-end of the baseline architecture uses
both a trace cache and an instruction cache (Figure 1c). The
trace cache contains sequences of predecoded uops, and on
a hit, the contents of the accessed line are directly copied
into the uop queue. The trace cache is looked up in parallel
with the instruction cache. On a trace cache miss, the fetched
instruction cache line is decoded, and the generated uops
are then inserted into the uop queue. A successful access
to the trace cache has two main benefits: on one hand,
the decode latency is avoided; on the other hand, a taken
branch does not prevent subsequent uops from being fetched
in the same cycle. Thus, a trace cache based front-end is an
effective solution to increase fetch bandwidth, especially in
architectures implementing a CISC instruction set, like the x86
ISA.

2.1

The trace cache is indexed by the program counter (eip
register) and a sequence of bits representing the predicted
behavior of the next branches. On a hit, the trace cache returns
a sequence of pre-decoded uops that can be directly dispatched
without further processing. This model relies on a multiple
branch direction prediction, that is, a branch predictor with the
capability of providing in a single cycle several predictions,
each based on the original program counter and the previous
prediction [5].

The trace cache is organized as a set-associative structure
storing trace lines. The implementation used through the
experiments is based on the original proposal by Rotenberg
et al. [6], where the fields of each trace cache line are the
listed in Table 1. Traces of non-speculative uops are stored
after the commit stage in the fill unit, which is a temporary
buffer of the same size as the maximum trace size. When a
trace is full, a new trace line is allocated, replaced, or updated

Trace cache



TABLE 1
Trace line fields (N = trace size, B = maximum number of branches per trace, ¢ = number of clusters, U = number of
bits used to represent an instruction).

[loga N']
branch_mask B
in the trace.
branch_flags B

fall_through | 32

Name Size (bits) | Meaning

valid I If set, the trace line contains a valid sequence of uops.
tag 32 Trace starting address.

uop_num Number of uops in the trace.

Bit mask with as many 1s as branches in the trace, omitting the last branch if it is the last uop

Bitmap representing the direction of the branches in the trace. Only those bits set to 1 in
branch_mask are valid in branch_flags.
Address of the next instruction to fetch after the trace.

target 32 If the last uop in the trace is a branch, address of the next instruction to fetch in case it is taken.
uop_list N-U List of uops forming the trace.
TABLE 2

Topology-aware steering.

If imbalance 2 threshold (= num. clusters * 8):
@ Exclude clusters with workload > 0.

If each input operand is available in some cluster in the machine:
@ Exclude clusters that do not minimize the longest
communication distance to copy not present operands.

Else:

9 Exclude clusters that do not maximize the number of
present operands produced in that cluster.

9 Exclude clusters that do not minimize the workload counter.

in the trace cache, and the contents of the fill unit are copied
into it. It is possible to obtain final traces smaller than the
maximum trace size for the following reasons: on one hand,
the number of branches within a trace is limited (mainly by
the multiple branch predictor width); on the other hand, uops
belonging to the same x86 macroinstruction are not allowed to
span several traces. Thus, the fill unit might be drained before
its maximum occupancy is reached.

2.2 Steering Algorithm

A major design issue of a clustered microarchitecture is the
steering algorithm. After dispatching arithmetic instructions,
the steering algorithm decides which cluster they are sent to,
aiming at trading off workload balance among clusters and
inter-cluster communication for input dependences satisfac-
tion. Likewise, the steering algorithm decides from which
cluster to copy an uop’s input operand in case it is not
present. In the modeled clustered architectures, a slightly
modified version of the topology-aware steering algorithm [7]
is implemented, which works as follows.

Before steering an uop, an initial set of candidates is created
including all clusters. This set is progressively reduced by
applying four successive filters and discarding inadequate
candidates, and finally a random cluster is selected among the
resulting set. The actions performed by each filter are listed in
Table 2. Filters 1 and 4 aim at balancing the workload among
clusters, while filters 2 and 3 try to reduce the communication
latency due to absent input operands.

Regarding the workload balance, each cluster tracks the
number of instructions dispatched to it (di;), and the average of
these counters is updated globally (diq.g). Then, each cluster

computes a private workload counter as the deviation of dis-
patched instructions d; —diq.g, and a global imbalance counter
is calculated as the maximum absolute value of the workload
counters. Filter 1 in Table 2 is applied when imbalance exceeds
a threshold, which has been empirically set as the number of
clusters multiplied by 8. Regarding uop input dependences,
an operand is said to be present in a cluster when there is a
physical register associated to it. The operand is said to be
available when it is present and the instruction producing its
value has completed.

Notice that topology-aware steering is a sophisticated al-
gorithm that effectively lowers the communication among
clusters, while still keeping a fair workload balance. Since the
technique proposed in this paper aims at further reducing inter-
cluster communication, we have opted for a powerful baseline
steering for fair comparison. Less costly and efficient steering
algorithms would lead to higher potential in communication
reduction and higher speedups for our proposal.

23

Copy uops are generated in the dispatch stage when a logical
register is not mapped in a cluster where it is consumed.
These uops are handled as arithmetic instructions, except that
they are scheduled to the interconnection network instead of
a functional unit, and their source and destination physical
registers are placed in different clusters. The interconnect can
be viewed as a black box whose interface is formed by an
injection/ejection link connected to each cluster. Once in the
instruction queue (IQ) of the source cluster, a copy uop is
woken up when the source register is ready and the injection
link is available. The interconnection network will forward the
packet to the destination cluster, and eject the contents into its
register file through a dedicated write port.

In general, the communication latency of a message depends
on the network topology, routing algorithm, and switching
mechanism. Since inter-cluster communication occurs on chip,
links can be fairly assumed as wide as the message size, which
includes a 32-bit value, a 3-bit target cluster identifier (for
an 8-cluster architecture), and a 6-bit target register identifier
(for a 64-entry register file). As messages are very short,
packet switching is used. The communication latency can be
computed as laty + lateon: = (T + T;)d + lateont, where
laty is the zero-load latency or the time required to forward
the message to the destination without contention, lat.,n:

Interconnection Network
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is the total contention delay due to packet collisions, T is
the routing and forwarding time, 7; is the link transmission
time (including its arbitration when it is shared), and d is the
number of traversed links.

The lat.,n: component is an unpredictable value computed
through simulation, while laty depends on the network topol-
ogy, and router, switch and link delays. In our experiments,
three network topologies have been evaluated —bus, crossbar,
and 2-dimensional mesh—, with different link delays between
intermediate nodes ranging from 2 to 8 cycles, intended to
be representative delays for different technologies. Figure 2
represents the block diagrams of the evaluated topologies for
a 4-cluster processor.

o In a bus topology (Figure 2a), no routing is used (1} =

0) and all nodes are at 1-link distance from each other
(d = 1). However, the bus transfer time 7; might grow
considerably for a high number of connected clusters. We
have considered laty values of 2, 4, and 8 cycles.

o The crossbar topology (Figure 2b) can be viewed as c
buses connecting ¢ clusters. Each cluster can dump a
message into ¢ — 1 different buses, and the chosen bus
depends on the message destination. The laty component
does not differ from the bus topology; there is no need
for routing (7, = 0), messages traverse only one link
(d = 1), and T; depends on the number of connected
nodes. Again, 2, 4, and 8 cycles are considered for laty.

o The two-dimensional mesh (Figure 2c) requires a router
attached to each cluster, which applies the XY routing
algorithm after a delay of T;. cycles. The link delay (7;)
can be very low, since only point-to-point connections are
used. In the largest evaluated mesh (4 x 2 for 8 clusters),
d takes a maximum value of 4 hops. In this case, 2d and
4d cycles are considered for laty, which corresponds to
T,+1;=2 and T,-+1;=4, respectively. When connecting 3,
5, and 7 clusters with a mesh topology, 2 x 2, 3 x 2, and
4 x 2 meshes are assumed, respectively, where one of the
end links is left disconnected in each case.

3 GENERATION OF SUBTRACES

Based on the architectural background presented in the previ-
ous section, the rest of this paper focuses on a novel technique
for automatic extraction of parallelism at runtime. Given an
original sequence of instructions forming a trace, subtrace-
level parallelism is obtained by decomposing it into two or
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Fig. 3. Extraction of independent subtraces.
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more independent subtraces that may have instructions in
common. Figure 3a shows a portion of code as a directed
graph, where each instruction is represented by a vertex, and
each dependence among instructions is represented by an arc.
Figure 3b and 3c show two subgraphs, each corresponding to
a subtrace, whose superposition contains all arcs and vertexes
of the original graph. Subtraces are generated in such a way
that all input dependences are satisfied for each instruction, at
the expense of probably executing some instructions in both
subtraces.

3.1 Proposed algorithm

The proposed algorithm consists of two phases implemented
in the fill unit, which is placed after the commit stage in a
superscalar processor pipeline, and out of the critical path.
After processing a trace Tr of N committed instructions, it
is split into ¢ independent subtraces (STry, STri, etc.) of
maximum size [N, where c is the number of clusters. Figure
4 represents an example using two clusters and the flow of
instructions shown in Figure 3.
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Fig. 4. Algorithm to extract subtraces.

« Phase 1. Selection of subtrace. As shown in Figure
4a, instructions from trace Tr are first split individually
among subtraces STry and STr;. When an uop commits, it
is assigned to that subtrace containing its input operands.
If the input operands are either contained in different
subtraces, or there is no subtrace containing them, then
the least loaded subtrace is chosen. Likewise, if a given
imbalance among subtraces is reached, the least loaded
subtrace is chosen and the presence of input operands is
ignored. Similarly to the steering algorithm, the subtrace
imbalance counter is based on subtrace length deviations



(see Section 2.2), and the optimal subtrace imbalance
threshold has been found to be equal to 8 in this case.

« Phase 2. Satisfying dependences. After committing NV
instructions, subtraces are processed so as to make them
independent from each other. To this end, the input
dependences of each instruction are satisfied by inserting
their producers into the same subtrace, which might cause
producer instructions to be replicated in several subtraces.
As shown in Figure 4b, subtraces are processed in this
phase from left to right, i.e., from the youngest to the
oldest instruction. Thus, each new instruction placed in
subtrace STr, will cause all its older producers to be
recursively inserted into S7r, as well. In the example,
the processing of instruction F makes A be inserted into
STry, and the processing of C makes its producer B be
inserted into STrg.

Notice that memory instructions are excluded from repli-
cations, since the LSQ is a global structure. For simplicity,
load and store instructions are treated equally as arithmetic
instructions in the subtrace generation process and the subtrace
storage in the trace cache, but the replication information
attached to them is ignored after they are dispatched. One
single copy of every memory instruction is inserted into
the global LSQ, and thus no extra pressure is incurred on
the memory hierarchy when the number of clusters or the
instruction replication increases.

4 HARDWARE IMPLEMENTATION
4.1 Instruction Numbering

To identify instruction dependences after the commit stage, an
instruction numbering mechanism is proposed, which labels
committed instructions with continuous identifiers as per pro-
gram order, and stores for each instruction the identifiers of
its input dependences. These identifiers are called sequence
numbers and are denoted as Iseqy OF Dgeq, Where I is an
instruction and D is one of its input dependences.

Lseq = seqctr

ROB
[ ]

Iseq
D2

Commit
Mispred. branch?
—»seqcir = Lgeqt]

Dispatch @
(incr. seqctr)

Read value
+ Dseq

Reg. file

value I seq

Write result
seq

Fig. 5. Sequence number assignment.

Figure 5 represents the process of sequence number assign-
ment. Each ROB entry contains three sequence numbers, one
for the contained instructions and two for its input depen-
dences. Likewise, each register file entry holds the sequence
number of the instruction that produced the associated value.
A global counter seqctr is increased and assigned to I,., when
instruction I is dispatched. When I is issued, D1seq and D2,¢q
are read from the register file jointly with the source operand

values, and I, is written into the destination physical register
when the operation finishes.

When 1 commits, all sequence numbers are available to be
used in the fill unit. If T is a mispredicted branch, the content of
the ROB is squashed, and seqctr is set to Is.,+1. By assigning
sequence numbers with this algorithm, a continuous range
of instruction sequence numbers is guaranteed, which has
the convenient property of providing a direct correspondence
between instructions and their position within the fill unit (thus
avoiding associative ports for searches).

4.2 Fill Unit

In a trace cache processor, the fill unit is a hardware structure
placed after the commit stage aimed at reconstructing a trace
of committed uops and storing it in a new trace cache line.
In the proposed architecture, the fill unit is additionally in
charge of implementing the subtrace generation algorithm.
This hardware structure consists of an N-entry buffer (/V is the
maximum trace length). Each buffer entry contains three fields:
the associated instruction bits, a c-entry bitmap representing
the presence of an instruction in each subtrace (c is the number
of clusters), and the sequence numbers of the instruction and
its input dependences.

The algorithm phases are implemented with two different
operations in the fill unit, referred to as fill-up and emptying
processes, respectively. In the former, committing instructions
are assigned to one single subtrace each, while in the latter,
subtraces are made independent by replicating instructions
to satisfy the required input operands. Each process has an
associated pointer, referred to as fillhead and emptyhead,
initially pointing to buffer positions 0 and N—1, respectively.
Below, the algorithm implementation is described using the
example shown in Figure 6.

ROB

Fill Uni
fillhead emptyhead
a) Initial state
[A[AA[A] -+ [AII(]
emptyhead
fillhead

b) Pointers aligned right

ommi I
emptyin fill-u;
b (O] (D)) I ()0

fillhead

emptyhead
c) Intermediate state

emptyhead

d) Pointers aligned left

Fig. 6. Subtrace generation algorithm implemented in the
fill unit.

Initially, the fill unit starts the fill-up process with the first
N instructions extracted from the reorder buffer (ROB) at the



commit stage (Figure 6a). The initial trace is referred to as
trace A, and associated instructions are represented as I4.
When I 4 commits, it is inserted into the fill unit at the position
pointed to by fillhead, and this pointer is incremented. In the
associated entry, the c-entry bitmap is updated by activating
the bit corresponding to the initial subtrace assignment.

Once the buffer fills up (Figure 6b), trace A is completely
held in the fill unit. At this time, phase 1 of the subtrace
generation algorithm is complete for trace A, and each entry’s
bitmap associates one instruction with one single subtrace. The
emptying process is now activated for trace A, and the fill-up
process starts for trace B, which is formed of the next N
instructions Ip placed in the ROB. From now on, both the
fillhead and emptyhead pointers are moved from right to left,
i.e., decreased.

In a subsequent intermediate state (Figure 6c¢), the fill-up
process continues for trace B, in which instructions Ip are
taken from the ROB and placed into the fill unit. At the same
time, the emptying process works on trace A, implementing
phase 2 of the subtrace generation algorithm. For each emptied
instruction I 4, the stored sequence numbers of its input depen-
dences D 4 are looked up. Then, if the buffer entries pointed by
these sequence numbers are valid (i.e., are within the emptying
range), instruction D4 is replicated in all subtraces where its
producer I4 is present. For this aim, the c-entry bitmap of
D4 is updated by activating those bits which are set in I4’s
bitmap (or operation). Each instruction extracted from the fill
unit is sent to the trace cache, where the generated independent
subtraces are stored.

When trace A finishes the emptying process (Figure 6d),
phase 2 of the subtrace generation algorithm is complete for
this trace, and the c generated independent subtraces are stored
into the corresponding trace cache line. When additionally
the fill-up process for trace B completes, the direction of the
fillhead and emptyhead pointers is switched again. The fill
unit starts the emptying process for trace B, and trace C of
instructions I waiting at the ROB head begin to enter the
fill unit from left to right.

5 EXPERIMENTAL EVALUATION

TABLE 3
Baseline machine parameters.

[ Processor Core

Decode, dispatch,

steer, commit bandwidth
Issue width

Trace cache

Global storage

resources

Private resources

per cluster

Functional units per cluster
and latency (total/issue)

8 uops/cycle

2 uops/cycle (each cluster)
256 traces (64 sets, 4 ways), 16-uop traces

256-entry ROB, 64-entry LSQ

40-entry 1Q, 92-entry RF

4 Int. add (2/1), 1 Int. mult. (5/5), 1 Int. div (20/10)
1 FP add (5/5), 1 FP mult. (10/10), 2 FP. div. (20/20)
4-way hybrid (2-level + bimodal)

2-level pred.: 8-bit history, 1-entry L1, 1K-entry L2.
Bimodal pred.: 1K 2-bit counters.

Choice pred.: 1K entries.

Branch predictor type

[ Memory Hierarchy |
32KB, 2-way, 64-byte block, 2-cycle latency
512KB, 8-way, 64-byte block, 10-cycle latency
100-cycle access time.

L1 cache
L2 cache
Main memory

This section presents a performance evaluation of the pro-
posed techniques. Experiments have been carried out on top of
the Multi2Sim 2.2 simulation framework [8], a cycle-accurate
simulator for x86-based superscalar processors, modified to
model a clustered architecture, inter-cluster network topolo-
gies, and independent subtraces generation. The simulator
accurately tracks the processor pipeline state cycle by cycle,
as well as the memory hierarchy including a trace cache. The
parameters of the modeled machine are summarized in Table
3.

The Mediabench [9] suite has been used as a workload
to evaluate the devised techniques. These applications in-
clude image and video processing, audio encoding, or speech
recognition, among others. The Mediabench suite provides a
particular potential for dynamic extraction of parallelism, since
it includes extremely parallel algorithms whose implementa-
tion is based on a traditional sequential programming model.
This is in contrast to the SPEC CPU benchmarks, which
do not provide high amounts of intrinsic parallelism, or to
SPLASH/Parsec benchmarks, which exploit their parallelism
mostly at compile time using the pthreads programming
model. The presented results include partial program execu-
tions, where simulations are stopped after the first 100 million
uops commit.

5.1

Figure 7 shows a performance study of the proposed technique,
including performance results for the baseline architecture
(7a), performance for a clustered processor with automatic
generation of subtraces (7b), and the resulting performance
speedup (7c). The number of clusters ranges from 2 to 8, and
the evaluated inter-cluster networks are a bus (with 2, 4, and 8
cycles for latg, see Section 2.3), a crossbar (or n-buses with
2, 4, and 8 cycles for laty), and a mesh (with 2 and 4 cycles
latg)'. Each bar represents the average speedups for the whole
benchmark suite (16 workloads).

e In a bus topology, the fastest configuration (laty=2)
provides speedups below 5%. However, a fast bus is only
suitable for a very low number of connected clusters.
When the zero-load latency value is increased to 4, a
4-cluster configuration provides a speedup greater than
10%, while an 8-cycle latency value makes subtraces
outperform the baseline machine by more than 15% for
some configurations. When the communication latency
increases, a reduction of copy instructions has a stronger
benefit on performance.

o Crossbar topologies eliminate packet collisions when
different pairs of clusters communicate, which improves
performance of both the baseline and proposed designs.
Since copy instructions do not incur such a high penalty,
speedups decrease. However, the hardware cost of a
crossbar grows quadratically with the number of clusters.

Performance Evaluation

1. Notice that all combinations for these values are represented for performance trends
observability, even if some of them might be impractical for a real system. For example,
a 2-cluster mesh, simulated as an indirect network with 2 intermediate switches, could
be easily replaced by a 2-cluster crossbar (i.e., 2 unidirectional links), reducing the
communication latency and the implementation cost.
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Fig. 7. Performance for different network topologies and number of clusters.

Thus, this topology might be unfeasible for a high number
of clusters.

o Finally, a mesh can afford shorter point-to-point link
delays. The main communication latency occurs in this
case when distant clusters communicate and need to
traverse several routers. A mesh with a 4-cycle zero-load
latency provides speedups above 5%, regardless of the
number of clusters.

To provide some insight into each specific benchmark’s
behavior, performance has been evaluated individually for
each benchmark for some specific configurations, as plotted in
Figure 8. Shorthand c2-bus2-base stands for 2 clusters/2-cycle
bus/baseline machine; c8-bus8-subtr means 8§ clusters/8-cycle
bus/machine with subtraces generation; etc. The bus latency
values chosen for this plot intend to be representative for
the corresponding number of clusters in each configuration,
also resembling those used in previous works on clustered
microarchitectures [7].

Performance values are given as a global IPC, i.e., number
of instructions per cycle committed from the global ROB.
Notice that an increase in the number of clusters might result
in an IPC loss in some cases (Figures 7 and 8), which
under identical circumstances would negate the reason for
using more than one cluster. However, clustering the major
microprocessor components (e.g, register files or 1Qs) helps
for a reduction of the clock cycle time, which should result
in lower global execution time. The analysis of clustered
microarchitectures and their benefits have been widely studied
in the literature and are now out of the scope of this work.
In this work. We assume these benefits and focus on the
additional performance gains obtained from subtraces.

5.2 Copy instructions and replicated uops

When independent subtraces are dispatched, the number of
copy uops decreases, reducing communication and network
contention. Instead, uop replicas are dispatched, which are
usually faster (2 cycles for very frequent integer additions or
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effective address computations), and cause dependent instruc-
tions in the IQ to be issued earlier. Figure 9 shows the number
of copy instructions (copy_base for the baseline machine
and copy_subtr for the machine implementing independent
subtraces) and the number of replicated uops, represented as
an average fraction over the total number of committed uops.
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Fig. 9. Copy and replicated uops.

These values have been obtained for a bus2 network, though
the interconnect topology does not considerably affect the
aspect of the plotted curves. When an uop at the ROB head
with several replicas commits, one of them is tracked as the
original uop, and the rest of them are counted as replicas.
Results show that the number of copy uops decreases by
about 10% in any configuration. On the other hand, uop
replicas range from 10% to 20% of the total committed uops,
depending on the number of clusters.

The results presented in this section partially explain the
performance speedups shown in Figure 7. Since inter-cluster
communication acts most of the time as a performance bottle-
neck, execution time is reduced according to the decrease in
copy instructions. Thus, the points that show a shorter distance
between the copy_base and copy_subtr curves correspond to
the highest performance speedups.

5.3 Impact of the Trace Size

We have measured the impact of different trace sizes, ranging
from 8 to 64 uops. Figure 10 shows the speedup achieved
by the proposed technique executed on top of a 4-cluster
processor model with the bus4 interconnect topology. For the
sake of clarity, only three benchmarks are plotted, including
the average curve for the whole Mediabench suite. The optimal
trace size is observed at different positions for each bench-
mark, mostly depending on the parallelism exhibited by each.
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Fig. 10. Speedups for different trace sizes.

The trace size has two main implications on performance.
On one hand, a larger trace increases the chance of extracting
existing parallelism within a given trace with a lower uop
replication rate. On the other hand, a trace cache with the
same number of larger cache lines makes the hit ratio shrink
dramatically. In our benchmark suite, the average fraction
of committed uops fetched from the trace cache is 57.9%,
52.2%, 41.7%, and 27.3% for 8-, 16-, 32-, and 64-entry traces,
respectively. The Average plotted curve represents the whole
Mediabench suite, and shows an optimal average trace size of
16 entries (used for our baseline machine).

5.4 Impact of the Sequence Number Length

During the emptying process implemented in the fill unit, each
instruction I is extracted and dumped into the trace cache.
For each dependent instruction D1 and D2 present in the fill
unit, bitmaps are updated to determine their future presence
in subtraces. The index of D1 and D2 are determined with
sequence numbers attached to I, whose length should be deter-
mined as a trade-off between performance and hardware cost.
If the sequence numbers are too short, they might generate
aliasing by detecting false dependences. On the contrary, too
large sequence numbers increase the fill unit entry size. In
any case, sequence number aliasing causes false dependence
detections, but never leaves a real dependence undetected.
Since the sequence number is used to index the N-entry fill
unit, the sequence number size should not be lower than logo N
bits.

When false dependencies are introduced, independent sub-
traces become larger than necessary, and redundant compu-
tations are performed across clusters. In Figure 11, the aver-
age subtrace size is represented for the studied benchmarks,
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number lengths.

varying the number of clusters between 2 and 8, and using
original traces of N = 32 p-ops. On one hand, it is observed
that a higher number of clusters (subtraces) provides a smaller
average subtrace length. The reason is that traces have the
means to be further split into several independent subtraces
and still reduce their length by exploiting their inner ILP. On
the other hand, results show that a sequence number length of
8 bits almost completely palliates false dependences detection,
since the average subtrace length is very similar to an ideal
design with an unbounded sequence number length.

6 POWER AND ENERGY STUDY

A detailed power and energy study has been performed to
compare the technique proposed in this paper with the baseline
machine. The results shown in this section have been obtained
with the McPAT 0.7 tool [10], a power, area, and timing model
of a complete processor pipeline and memory hierarchy, which
is based on the Cacti code [11] to compute statistics related
to data arrays and CAM structures. McPAT provides detailed
power consumption statistics for each hardware component,
including sub-threshold leakage, gate leakage, and run-time
dynamic power, based on the hardware complexity of the
computed designs and their access rates. The tool has been set
up to model our baseline and proposed schemes for a 45nm
technology and a working frequency of 3.4GHz, and it has
been extended with the following features:

o A multi-cluster architecture model has been added to
MCcPAT by replicating those structures private per cluster
(register files, instruction queues, functional units, and
results broadcast buses). The hardware characteristics and
access statistics of these components are provided by
Multi2Sim and summed up to obtain the total power con-
sumption. By using the configurable NoC implementation
provided by McPAT, the inter-cluster network has been
modeled and included in the global power results.

« Relying on the Cacti code, two trace cache models have
been added to McPAT: a baseline trace cache model
with the cache line fields presented in Table 1, and the
proposed trace cache model where an additional bitmap is
attached to every uop indicating the presence in subtraces.
Both trace cache models have a capacity of 256 traces, a
4-way associativity, and a trace size of 16 uops. We have

TABLE 4
Power consumption and total energy dissipated on
average for MediaBench on a 4-cluster processor with a
bus-4 inter-cluster network.

Baseline Subtraces
Lk. pwr [Dyn.Pwr| Total [ Lk.pwr |Dyn.Pwr| Total
mW) | mW) | E.m)) | mW) | mW) | E @m))
Front-end 376.3 909.7 19.6 376.3 953.6 18.2
Mem. subsystem 1286 229.6 249| 1286.0 239.4 23.0
Traces Support 40.1 4.1 0.7 44.5 11.5 0.8
Renaming 3.1 311.6 4.6 3.1 326.9 43
Network 0.9 19.4 0.3 0.9 18.2 0.3
Per- | RFs 13.9 109.2 1.9 13.9 129.9 1.9
cluster | 1Qs 12.7 126.5 2.1 12.7 149.4 2.2
structs | FUs 5666.1] 2599.0 137.0] 5666.1] 27584 127.7
Total 7399.2] 4308.9 191.2f 7403.5] 4587.42 178.4

made sure that the incurred hardware overhead does not
impact the global processor cycle time.

o Likewise, Cacti has been used to obtain two fill unit
models, accepting as many instructions per cycle from
the ROB as the commit width w. The baseline fill unit
has been modeled as a 16-entry buffer with w write and
w read ports. This complexity increases for the proposed
fill unit: for the fill-up process, w write ports are required
in the buffer, indexed by the fillhead pointer; for the
emptying process, w read ports are used to extract w
instructions at the location pointed by emptyhead. More-
over, 2w additional write ports are required to update the
presence of at most 2 input dependences per instruction.
In total, the proposed fill unit is implemented with w read
+ 3w write ports. Each fill unit entry is ¢ + 56 bits large
(32 uop bits + three 8-bit sequence numbers + c-entry
bitmap), being ¢ the number of clusters.

6.1 Detailed Power Consumption

Table 4 shows detailed power consumption values for a
specific processor configuration with 4 clusters and a bus-
4 network topology. For both the baseline and the proposed
machines, the columns include leakage power, dynamic power,
and the total energy dissipated on average for the execution of
the Mediabench suite. Each row represents a set of hardware
structures, including the processor front-end (BTB, branch
predictor, decoder, uop queue), the memory subsystem (TLB,
data cache, instruction cache, L2 cache, LSQ), traces support
(trace cache, fill unit), register renaming structures (front-end
RAT, retirement RAT, free list), inter-cluster network, register
files, instruction queues, and functional units (including integer
and floating-point ALUs, and result broadcast buses).

As observed, the column representing the leakage power
does not vary for the baseline and proposed machines, except
for the hardware devoted to subtraces generation. The joint
leakage power consumption of the trace cache and fill unit
(traces support) increases by 10.1% in the proposed scheme.
The dynamic power increases for all processor components
due to a higher transistor switching activity, except for the
inter-cluster network, whose activity is lowered by a reduction
of the number of copy instructions. In total, the dynamic
power consumption increases by 6.5%. However, this increase
is compensated by a reduction of the execution time, which
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leads to a global energy saving of 6.7% (bottom-right cell in
the table).

6.2 Energy Savings

The behavior exhibited by the specific architecture presented
in Table 4 is representative for all evaluated designs. Figure
12 shows the energy savings provided by each design with a
different inter-cluster network and number of clusters, where
each bar represents the average savings for the Mediabench
suite.

There is a tight relationship between the speedups shown
in Figure 7 and the energy savings. Though some components
suffer a higher leakage consumption and dynamic energy per
access in a processor with automatic subtraces generation, the
execution time is reduced in such a way that the total spent
energy in the processor core decreases (up to 12.2% in some
configurations). There are some cases with small speedups that
show an energy saving close to 0% (n-Buses-2 network), but
there is no simulation showing a higher energy dissipation for
the proposed scheme compared to its homologous baseline
processor, showing the proposed architecture as an energy-
efficient approach.

6.3 Area and Timing

The Cacti tool [11] has been used to measure the area (Figure
13a) and timing (Figure 13b) overheads incurred by the
subtraces support in the fill unit and trace cache for processors
with a different number of clusters. While the baseline fill
unit occupies about 0.005mm? using a 45nm technology, the
proposed fill unit multiplies this area by a factor of 5.5. This
considerable increase is due to the additional write ports, but
it remains a negligible fraction of the total processor area (less
than 0.01%). The fill unit access time increases by about 40%,
but it is still low enough to complete in one single cycle for
the 3.4GHz modeled processor. Additionally, there is a slight
increase in the proposed fill unit area and access time for a
growing number of clusters due to the bit mask associated to
each fill unit entry. This overhead is negligible and cannot be
visually appreciated in the figures.

Regarding the trace cache, the area and access time increase
incurred by the proposed design is induced by the bit mask

attached per uop in every stored trace. In this case, the number
of clusters has a noticeable impact on the proposed trace cache
area and access time, because there is a considerable number
of uops affected by the associated bit mask size. The area
overhead ranges from 3.1% (2 clusters) to 12.6% (8 clusters),
while the access time increase lies between 2.5% (2 clusters)
and 10.4% (8 clusters). However, the trace cache access time
does not exceed 3 cycles even for the worst case.

7 RELATED WORK

The fact that performance in a clustered architecture is very
sensitive to the inter-cluster communication latency has been
widely discussed in previous research works [4][12]. Likewise,
a large amount of research has focused on steering algorithms
trying to balance clusters’ workload, while at the same time
minimizing the number of copy instructions [13][14][12][7].

In [13], Baniasadi and Moshovos propose several steering
heuristics, classified as static and adaptive. They propose a
relatively simple method that offers a competitive performance
by just changing the target cluster every three instructions.
The work by Canal et al. [14] focuses on dynamic run-time
heuristics on heterogeneous two-cluster processors, where only
one of the clusters is able to execute floating-point instructions.
In [12], Parcerisa and Gonzalez show how to reduce both
communication and workload imbalance by applying value
prediction. Finally, the fopology-aware steering, presented in
[7] and adopted for the present work, considers complex
networks and a higher number of clusters. However, all these
proposals are constrained by the ILP present in the executed
sequential code, which imposes a lower bound in the number
of generated copy instructions for a given workload balance.

On the other hand, the trace cache was proposed as an
effective solution to fulfill high fetch bandwidth requirements
in superscalar [6] and clustered processors [15][16], and was
implemented in the Intel Celeron, Pentium 4, Pentium D, and
Xeon microprocessor families [17]. The trace cache fill unit
is a latency-tolerant component [18][19], that provides a good
chance for new optimizations. In [15], a trace preprocessing
is proposed in the fill unit, used later by the steering logic to
dispatch dependent instructions of the same trace to the same
cluster. In [16], this analysis is improved by spotting inter-trace
dependences in order to place dependent instructions from
different traces in the same cluster. Unlike this work, none
of these optimizations consider a replication of instructions to
further overcome communication delays.

The idea of introducing artificial parallelism through repli-
cation has been also employed by Madriles et al. [20]. In this
case, additional TLP (thread-level parallelism) is induced by
the compiler, which replicates basic blocks to create specu-
lative threads. These threads are created by first representing
data- and control-dependent basic blocks with a directed graph,
and then applying the multilevel graph partitioning algorithm
on it [21]. An architectural design is also proposed to undo
the execution of mispredicted threads.

Compared to previous works, our proposal provides three
main advantages: i) it provides binary compatibility with
existing sequential code, since it neither involves the compiler
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nor modifies the ISA, ) the subtraces generation algorithm
is lightweight enough to be implemented in hardware without
incurring extra latency on the critical path, and ¢¢) there is no
need for an additional recovery mechanism, since mispredicted
subtraces are not handled exceptionally. In summary, to the
best of our knowledge, our proposal is the first fully hardware-
based, binary-compatible approach that generates parallel sub-
traces out of sequential code at the instruction level.

8 CONCLUSIONS

This paper has presented an energy-efficient hardware mech-
anism that automatically detects independent subtraces of
instructions in a sequential program. An implementation of
the mechanism on top of a clustered microarchitecture has
been devised, using a trace cache with a modified fill unit.
By carefully replicating the execution of specific instructions,
inter-cluster communication is reduced, network traffic and
collisions are decreased, and global performance is benefited.
When designing a clustered architecture that boosts single-
thread performance at lower hardware costs, additional ben-
efits are shown to be reached with subtraces generation for
different number of clusters and interconnect topologies.

Experimental results show average performance speedups of
about 3%, 7%, and 15% (accompanied by 2%, 6%, and 10%
average energy savings) for the bus-based interconnects with 2,
4, and 8 transmission cycles, respectively. The evaluated point-
to-point networks provide average performance speedups of
about 3% and 7% (with 2% and 5% average energy savings)
for 2- and 4-cycle link delays, respectively. While higher
levels of performance can be achieved running multithreaded
applications on multicore processors or data-parallel programs
on GPUs, they necessarily go through a recoding process
following a less intuitive parallel programming models. Our
proposal takes especial advantage of those highly parallel
applications implemented under a sequential programming
model, whose intrinsic parallelism was not completely ex-
ploited at compile time.

As future work, we plan to extend the proposed technique
to a multicore environment, where a reduction of inter-core
communication may benefit the memory hierarchy and co-
herence actions. In this environment, an alternative hardware
implementation should be proposed, which does not rely on a
shared processor front-end with a common trace cache.
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