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Abstract  

 The heterogeneity of local segmental dynamics in a polymer system was 

analysed by computer simulation with the Bond Fluctuation Model. In a previous work 

we showed the difficulties encountered in characterizing this heterogeneity by means of 

a distribution of relaxation times. In this work a different approach is proposed based on 

the concept of Dynamically Accessible Volume (DAV). A DAV value was assigned to 

each polymer chain as the fraction of cells in its surroundings that could be occupied in 

one Monte Carlo step. In this way it was possible to relate the mobility of a chain with 

the accessible volume around it, due to the relationship between DAV and diffusion 

coefficient. As temperature decreases in equilibrium the DAV distribution shifts 

towards lower values, its width decreases and the number of frozen molecules increases. 

The methodology proposed also provides a  way of characterizing the evolution of 

segmental dynamics distribution in out of equilibrium states below glass transition 

temperatures. 
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1.-Introduction 

 

Polymeric materials in liquid and glassy states have physical properties that are 

unique with respect to other materials, including: 700% elastic deformations, change of 

mechanical response rate in several orders of magnitude with small changes in 

temperature, memory effect, a swelling capacity in certain solvents of several hundred 

per cent without dissolving and many others. As is well known, the key feature behind 

these particular properties is their special molecular mobility. Conformational 

rearrangements of the main chains in the equilibrium liquid or rubber-like state allow 

deformation of the polymer chain coils to such an extent that the above-mentioned 

macroscopic deformation occurs. The response time, which can be characterized by an 

average relaxation time, depends exponentially on temperature, in accordance with a 

law that can be described by the Williams-Landel-Ferry (WLF) or Vogel-Fulcher-

Tamman-Hesse (VFTH) equations. The representation of the logarithm of the relaxation 

time against reciprocal temperature shows a characteristic curvature with two 

asymptotes. At high temperatures the relaxation times tend to the reciprocal of natural 

vibration frequencies, around -14 [1,2] while they tend to infinity around 50 degrees 

below the glass transition temperature Tg, at which temperatures the high slope of the 

log τ vs. 1/T plot means that a 3-degree temperature change produces a change in the 

order of a decade in the relaxation time [3]. The exponential dependence of mobility on 

temperature is quite intuitive and common to other thermally activated phenomena. 

However, the special conformational mobility of polymers (and low molecular weight 

glass-formers) is that relaxation times also depend exponentially on the packing density 

of molecules or polymer segments. This means that, at a given temperature, the 

relaxation time in a microscopic region of the material could be more than 6 orders of 

magnitude longer than other regions, due to the spatial heterogeneity of the material. 

Relatively small density fluctuations across the material volume yield considerable 

heterogeneity of the local dynamic response. This feature has been characterized by 

distributions of relaxation times since the first studies on relaxation processes in 

polymeric materials [3-5].  

 

Broad asymmetric distributions of relaxation times have been determined for the 

co-operative conformational motions of  polymer chain segments from studies of 

viscoelastic or dielectric main or alpha relaxation that takes place at temperatures 
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immediately above the glass transition or from studies of the kinetics of structural 

relaxation. The heterogeneity of conformational mobility at temperatures around and 

below the glass transition region is another interesting phenomenon. A glass-forming 

material, in particular an amorphous polymer in a glassy state, at temperatures below or 

in the range of the glass transition is in a non-equilibrium state with higher specific 

volume, enthalpy and entropy than those of thermodynamical equilibrium. Under 

constant environmental conditions it evolves into an equilibrium state, a process known 

as structural relaxation or physical ageing. This process involves the close packing of 

the molecules or chain segments by means of conformational rearrangements. During 

structural relaxation, specific volume continuously decreases and, as a consequence, 

relaxation times increase. An interesting and open question is how local dynamics 

heterogeneity evolves during this isothermal process. One might hypothesize that the 

regions with the longest relaxation times, i.e., with the most closely packed molecules 

could collapse at the beginning of the process and undergo no further evolution, while 

the more loosely packed regions would be responsible for contraction and consequently 

become slower and slower. The shape of the relaxation time distribution could then be 

expected to evolve. However, the contrary can also be assumed: the evolution of the 

relaxation time of each individual microscopic region during structural relaxation would 

be parallel to each other in the logarithm of the relaxation time plot, leaving the 

distribution of relaxation times unchanged. The latter case has been assumed by most  

structural relaxation phenomenological models.    

  

Experimental research in this subject is hindered by the fact that the 

experimental time necessary to reach conclusions only a few degrees below the glass 

transition becomes unrealistic and also because the distribution of relaxation times is 

not a measurable magnitude but is calculated from the time evolution of physical 

variables, a calculation that needs the hypothesis that it is intended to prove. 

   

In this work we studied this problem using the Bond Fluctuation Model, BFM, a 

coarse-grained Monte-Carlo model that has proved capable of reproducing some 

essential features of glass transition and structural relaxation in previous studies [6]. The 

distribution of relaxation times was determined by analysing segmental self-diffusion in 

 a number of small regions of the model lattice, as explained below. These distributions 

have been calculated in other studies by means of Molecular Dynamics [7,8], but to our 
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knowledge this is the first time that this problem has been analyzed by the BFM.  Model 

simulations showed that the distribution shifted toward longer times as the temperature 

decreased while broadening [9]. Nevertheless, due to the definition of the relaxation 

time in Monte-Carlo simulation [9], the simulation time required to calculate the 

relaxation time is in the order of the relaxation time itself and thus grows as temperature 

decreases. This limits calculations to temperatures above the glass transition.  

 

In this work we aim at a different approach and try to analyse the relationship 

between free volume distribution (or static heterogeneity) and dynamic heterogeneity, 

which will be characterized through the dynamic accessibility of the available free 

volume.  

 

2.-Simulations 

 

The Bond Fluctuation Model is a Monte Carlo simulation model that reproduces 

the main features of polymeric materials [10-15]. It consists of a cubic lattice in which 

molecular groups that represent segments of the main chain occupy the empty space 

forming cubes. These molecular groups are bonded to form the polymeric material and 

the distance allowed for the bonds can fluctuate between 2 and 10 lattice units. The 

dynamics of the model consist of randomly choosing a molecular group and a direction 

of movement.  The movement is finally performed with a probability that is given by 

the Metropolis criterion [12]:  
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This expression takes into account the variation of energy ∆E caused by the 

evaluated movement and temperature: kb is Boltzmann’s constant and T is the 

temperature of the system. In this work we employed two potentials in order to 

represent the energy. First, a Lennard-Jones potential calculated for all non-bonded 

monomers up to a distance of four lattice units [11]:  
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where σ was 2.0, in order to be consistent with the excluded volume imposed by the 

lattice conditions of the Bond Fluctuation Model.  The second was a bond length 

potential [11]: 
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in which the minimal energy distance was l0=3.0 lattice units. 

 

 In our previous work [9] we followed the dynamics of each polymer chain 

through the time correlation function of its center of mass, whose position is defined by 

cmr
r
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The relaxation time of the chain is the time at which g3(t) equals the squared 

radius of gyration [11]: 
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where N is the number of monomeric groups in the chains, and ir
r

 is the position of each 

group in the chain. Thus, if τ is the relaxation time 

2
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In [9] all the relaxation times τ were calculated simultaneously for all the 

polymer chains, taking into account their own mobility. These calculations made it 

possible to build the shape of the distribution of the relaxation times, obtaining a more 

accurate representation of the evolution of the system as a function of time. 

 

Nevertheless, this characterization of the heterogeneity of local dynamics 

presents certain problems inherent in relaxation time calculations. The method was 

limited to high temperatures as the simulation time required to calculate τ in Equation 6 

was as long as the relaxation time itself, so that simulation time increased dramatically 

as temperature decreased.  Furthermore, the definition was not appropriate when the 
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system was out of equilibrium, since the radius of gyration changes during the 

calculations due to the relaxation process. In fact, the method required more simulation 

time for out of equilibrium situations than the process that we wanted to observe and the 

results were not reliable. 

 

We propose in this work another approach  based on the concept of 

Dynamically Accessible Volume (DAV) [16-18] and its formulation for thermal 

systems [19]. DAV calculates the probability (taking into account the Metropolis 

criterion) of every empty cell being occupied in one Monte Carlo Step and labels the 

empty space in the simulation box with a probabilistic map of occupation. The average 

value of this probability provides a measure of the available empty space in the system 

that can contribute to the diffusion of the molecules. The DAV calculates the fraction of 

cells that can be occupied in one Monte Carlo Step, contributing to the diffusion of the 

system: 
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L is the box simulation size, nn the number of neighbours a cell has and ijE∆  is 

the variation in the energy of the system caused by a movement of a monomer from cell 

i to cell j. This parameter offers a landscape of the available space in the system that 

aids in diffusion. We associate each empty accessible cell with the polymer chain that 

can occupy it in one Monte-Carlo step and thus, a DAV value can be assigned to each 

polymer chain as the fraction of the cells in its surroundings that can be occupied. The 

rationale for this treatment is to relate the mobility of a chain with the accessible volume 

around it due to the relationship between DAV and the diffusion coefficient [20].  

A DAV distribution arises due to the different neighbourhoods of the different chains 

imposed for local molecular packing.  A histogram is built in 0.025 DAV units step and 

the distribution, normalized to the number of chains in the system, is calculated from 

the histogram.  The main advantage of this approach is that the DAV distribution can be 

calculated from a static image of the system, so that long simulations are not needed to 

build the distribution. Furthermore, this method can be applied to systems that relax out 

of equilibrium, monitoring the dynamics of the system during the process.  
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In order to validate the concept we performed simulations in a L=40 lattice with 

periodic boundary conditions, occupied by chains consisting of ten molecular groups. 

Density was φ=0.5, so the system consisted of 400 chains. Energy parameters were 

ε=0.25, U0=0.75, σ=2.0 and l0=3.0. Simulation with these parameters have shown [21] a 

glass transition in cooling ramps and structural relaxation in isothermal annealing below 

the glass transition interval. Every simulation was repeated 20 times in order to obtain 

reliable data.  

 

The thermal history began with an initial equilibration period of 105 Monte 

Carlo Steps (MCS) at kbT=5, which led to a liquid in equilibrium. After this initial 

period, a cooling rate of 0.1 units of kbT per every 1000 MCS was applied until reaching 

different temperatures, followed by isothermal annealing for 107 MCS. The DAV 

distribution was calculated at different times during the isotherms and at different 

temperatures throughout the cooling ramp between kbT=5 and kbT =0.01.  

 

3.-Results and discussion 

 

Energy and DAV evolution during the cooling ramp are shown in Figures 1 and 

2, respectively. Both show the equilibrium liquid line at high temperatures, with 

decreasing energy and accessible free volume as temperature decreases. The departure 

from equilibrium starts around kBT =0.4 and gradually changes to the glassy state, 

characterized by a temperature-independent energy value and DAV values almost zero,  

which highlights the lack of mobility of the system at low temperatures in the glassy 

state. The extrapolation of the equilibrium liquid line in the DAV against 1/kBT plot 

allows the definition of the glass transition temperature from its intersection with the 

DAV=0 axis. This is the same value obtained by extrapolation of liquid and glass lines 

in the energy plot. In this simulation we obtain kBTg around 0.25. In order to define the 

temperature interval of the glass transition more precisely, simulations of isothermal 

annealing were performed at different temperatures. The first temperature at which 

evolution of total energy or average DAV was detected was kBT =0.35. At higher 

temperatures the system must be considered in equilibrium in the state reached on 

cooling. At the lowest temperatures no DAV or energy evolution is detected because of 

the extreme lack of mobility of the frozen chains. We can arbitrarily fix the lowest limit 
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of the glass transition when no changes in DAV are detected after 107 MonteCarlo steps. 

In this way the glass transition interval can be defined between kBT =0.35 and a 

temperature around kBT =0.2 when accessible volume is already nearly zero.  

 

Figures 3 to 5 present the DAV distribution for a set of selected temperatures, 

calculated for the state attained by the system when reaching this temperature in the 

cooling ramp.  It is worth noting that all curves had the same area, since all simulations 

had the same number of molecules. This highlights the fact that the height of the 

distribution also characterizes its width:  an increase in the peak height also implies that 

the distributions become narrower, which makes it easier to follow the evolution of the 

DAV distribution. The inset in Figure 3, shows the ratio of totally blocked molecules 

(DAV=0) according to the reciprocal temperature. The number of blocked molecules 

was representative of the transition that was previously shown in Figures 1 and 2 and 

highlights the lack of available volume as the driving force of the transition. 

 

Since the DAV value is calculated as a fraction of the total cells, the figures 

calculated for the total system and shown in Figure 2 can be compared with those 

appearing in the abscissa of the plots representing the DAV distribution in Figures 3 to 

6. At the highest equilibrium temperatures the distribution is more or less symmetrical 

for kBT =5 (Figure 3) and roughly covers the DAV interval between 0 and 0.35. This 

range is even larger than that covered by the average DAV value for the complete 

system when temperature changes from kBT = 5 to kBT =0.01. This means that at this 

temperature there are some chains in the system whose neighbourhood is so dense that 

they lack any mobility, while others behave as if they were at the highest temperatures 

due to a very loose local chain packing. The most frequent DAV value, that of the peak 

of the distribution, is 0.175 (Figure 3). 

 

As temperature decreases while the system is in equilibrium, for 0.4 ≤ kBT ≤5, 

the whole distribution shifts towards lower DAV values. The most frequent value 

moves from 0.175 to 0.05 when kBT changes from 5 to 0.4. At the same time the 

distributions become narrower, the peaks increase and become slightly asymmetrical. It 

should be noted that, since the lower DAV limit is zero, after a certain temperature the 

distribution begins to accumulate at its lower limit. The value of the intersection of the 

distribution with the DAV=0 axis gives a measurement of the number of fully frozen 
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chains, i.e., chains in which all the segments have no available space in their 

neighbouring lattice sites to move in one Monte Carlo step.  Since the plot of Figure 3 is 

a normalized histogram, it can be seen that even in equilibrium there is a fraction of 

frozen chains which can be up to 10% in the case of kBT =0.4. The inset in Figure 3 

shows the fraction of frozen chains as a function of temperature. 

 

The distribution in the glass transition temperature range (thus both above and 

below the glass transition temperature kBT =0.25) are presented in Figure 4. 

Interestingly, during transition the fraction of blocked chains increases rapidly, as 

shown in the inset of Figure 3. However, the right hand side of the distribution 

continues shifting towards lower DAV values, as expected. If we take the glass 

transition temperature as reference, at this temperature the maximum of the distribution 

is nearly zero and roughly speaking no chain has an accessible volume in its 

neighbourhood above 0.15. At lower temperatures the DAV distribution is a 

monotonously decreasing function of DAV.  In this range of temperatures most, though 

not all, of the chains are frozen and structural relaxation can therefore take place if the 

system is maintained in isothermal conditions.  

 

At temperatures below the glass transition range, for kBT ≤0.2 the mobility of the 

system is very restricted, with a fraction of fully frozen chains above 60% (which 

increases to 100% at kBT=0.05) and maximum DAV values of 0.075. This explains why 

structural relaxation cannot be observed in our 107 Monte Carlo steps simulation.  

 

The final goal of the work was to determine the effect of structural relaxation on 

chain mobility.  As mentioned in the introduction, the characterization of chain mobility 

in out of equilibrium states by means of a distribution of relaxation times has serious 

limitations. In our previous work [9] we showed that the simulation time needed to 

build the distribution of the relaxation was so long that it interferes with the structural 

relaxation itself. On the other hand, on the right hand side of the distribution there 

appear a number of chains that move too fast for the simulation time required to 

evaluate their relaxation time.  The situation is different if the characterization of chain 

mobility is performed in terms of free volume availability in its neighbouring lattice 

sites. In this way we take a picture of the lattice at a given time and calculate the 

probability of each empty site being occupied to obtain the DAV per molecule.  
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The change in the DAV distribution after 107 MCS is shown in Figure 6 for 

kBT=0.35, 0.3 and 0.2. At  kBT=0.35 (Figure 6a), the highest temperature at which 

structural relaxation takes place, the distribution shifts towards lower DAV values while 

the height of the peak increases and the fraction of fully frozen chains increases 

significantly, from around 0.15 to 0.25. At kBT=0.3 (Figure 6b) the evolution during 

isothermal annealing is clear: the fraction of frozen chains increases from 0.25 to more 

than 0.55 and there are no chains with local DAV values above 0.1. At kBT=0.2 (Figure 

6c) mobility is completely lost after the isothermal annealing.    

 

4.-Conclusions  

 

The DAV distribution characterizes the chain mobility of a system calculated 

from a static image and can offer a landscape of the dynamics of the system. This 

approach shows that at any given time, even at temperatures well above the glass 

transition, part of the polymer chains have no free volume around them in which to 

move, while others move as freely as they would do at the highest temperatures. The 

fraction of frozen chains rapidly increases when the behaviour of the system separates 

from the equilibrium state in the glass transition. The fact that mobility is deduced from 

an instantaneous image of the system structure means that the evolution of the material 

can be studied out of equilibrium. Structural relaxation in the glass transition range 

makes the distribution shift towards lower DAV values but mainly increases the fraction 

of chains without any mobility.  
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Figure 1: Energy per molecular group (mg) according to the reciprocal of temperature 

during the cooling ramp. Lines are shown only as a guide. 
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Figure 2: Total Dynamically Accessible Volume of the system according to the 

reciprocal of temperature during the cooling ramp. Lines are shown only as a guide. 
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Figure 3: DAV distribution for different equilibrium temperatures during the cooling 

ramp (from right to left kBT=3, kBT=0.9, kBT=0.7, kBT=0.5 and kBT=0.4). The inset 

shows the ratio of totally blocked molecules (DAV=0) according to the reciprocal 

temperature during the cooling ramp. Lines are shown only as a guide. 
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Figure 4: The DAV distribution for different temperatures in the glass transition region 

during the cooling ramp (from right to left kBT=0.4, kBT=0.35, kBT=0.3, kBT=0.25 and 

kBT=0.2). Lines are shown only as a guide. 
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Figure 5: The DAV distribution for different temperatures below the glass transition 

region during the cooling ramp (from right to left kBT=0.2, kBT=0.16, kBT=0.14, 

kBT=0.12, kBT=0.1 and kBT=0.01). Lines are shown only as a guide. 
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Figure 6: The DAV distribution before (continuous line) and after (dotted line) 

annealing at kBT=0.35 (a), kBT=0.3 (b) and kBT=0.2 (c). Lines are shown only as a guide. 

 

 

 


