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Algorithms for permutability in finite groups
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Abstract

In this paper we describe some algorithms to identify permutable
and Sylow-permutable subgroups of finite groups, Dedekind and Iwas-
awa finite groups, and finite T-groups (groups in which normality is
transitive), PT-groups (groups in which permutability is transitive),
and PST-groups (groups in which Sylow permutability is transitive).
These algorithms have been implemented in a package for the com-
puter algebra system GAP.
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1 Introduction
In this paper we will only deal with finite groups. Therefore the word group
will be understood as a synonym of finite group.

Many papers have recently dealt with the classes of groups in which nor-
mality, permutability, and Sylow permutability are transitive relations, the
so-called T-groups, PT-groups, and PST-groups, respectively. Chapter 2 of
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the book [6] contains an introduction to these classes of groups, as well as
many other references about them. On the other hand, the current devel-
opment of computational group theory has made of computational algebra
systems like GAP [11] a powerful tool in the research in group theory.

In this paper we present some algorithms to identify permutable and
S-permutable subgroups in finite groups, to find whether a group has all
subgroups normal or permutable, and to check whether a soluble group is
a T-group, a PT-group, and a PST-group. These algorithms have been
implemented in a package for GAP [11] (see [4]).

2 Permutability
Recall that two subgroups A and B of a group G permute when AB = BA
or, equivalently, when AB is a subgroup of G. Recall also that a subgroup H
of a group G is permutable (respectively, S-permutable in G) if it permutes
with all subgroups (respectively, all Sylow subgroups) of G.

2.1 A test to check whether two subgroups permute

We can apply the following result in order to check whether two subgroups
of a group permute.

Theorem 2.1 (see [6, Lemma 1.1.3]). Two subgroups A and B of a group
G permute if and only if

|〈A,B〉| = |A||B|
|A ∩B|

.

Remark 2.2. The efficiency of this test depends strongly on the implement-
ation of good algorithms to compute the intersection of two subgroups of a
group with a given representation.

2.2 Dedekind groups

Recall that a Dedekind group is a group with all subgroups normal. By [12,
Chapter III, Satz 7.12], Dedekind groups are nilpotent and their Sylow p-
groups for a prime p are abelian or direct products of a quaternion group of
order 8 and an elementary abelian 2-group (the latter only if p = 2). The
next result characterises non-abelian Dedekind 2-groups.

Theorem 2.3. A non-abelian 2-group G is Dedekind if and only if the Frat-
tini subgroup Φ(G) of G has order 2, the centre Z(G) of G has exponent 2 and
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index 4, and the preimages of the generators of G/Z(G) under the natural
epimorphism from G onto G/Z(G) have order 4.

Proof. By [12, Chapter III, Satz 7.12], a non-abelian Dedekind 2-group is
isomorphic to a direct product of a quaternion group of order 8 and an
elementary abelian 2-group. Hence these groups satisfy all conditions of the
theorem.

Conversely, suppose that G is a 2-group such that Φ(G) has order 2 and
Z(G) has exponent 2 and index 4. Note that G/Z(G) cannot be cyclic, since
otherwise G would be abelian. Therefore G/Z(G) is an elementary abelian
group of order 4. Let xZ(G) and yZ(G) be non-trivial different elements of
G/Z(G). By hypothesis, x and y have order 4. Since in a 2-group Φ(G) =
G′G2, where G2 denotes the subgroup of G generated by the squares of
the elements of G, we conclude that x2 = y2 = z and [x, y] ∈ 〈z〉, where
Φ(G) = 〈z〉. Assume now that [x, y] = 1. Since G = 〈Z(G), x, y〉, we
conclude that x ∈ Z(G), contrary to the choice of x. It follows that [x, y] = z.
Let Q = 〈x, y〉. Then xy = x[x, y] = xz = x3 and so Q is isomorphic to the
quaternion group of order 8. Let E be a complement of 〈z〉 in the elementary
abelian group Z(G). Since Q ∩ Z(G) = 〈z〉, it follows that Q ∩ E = 1.
Moreover, [Q,E] = 1. Hence G = Q×E is a non-abelian Dedekind group by
[12, Chapter III, Satz 7.12]. This completes the proof of the theorem.

2.3 Iwasawa groups

An Iwasawa group is a group with all subgroups permutable. It is clear that
Iwasawa groups are nilpotent. In fact, they coincide with the nilpotent groups
whose subgroup lattice is modular. A nilpotent group is Iwasawa if and only
if its Sylow p-subgroups for all primes p are Iwasawa. The following result
(see [16, Theorem 2.3.1]) is basic to identify whether a p-group is Iwasawa.

Theorem 2.4. A p-group G has modular subgroup lattice if and only if

• G is a direct product of a quaternion group Q8 of order 8 with an
elementary abelian 2-group, or

• G contains an abelian normal subgroup A with cyclic factor group G/A;
further there exists an element b ∈ G with G = A〈b〉 and a positive
integer s such that b−1ab = a1+p

s for all a ∈ A, with s ≥ 2 in case
p = 2

As in [16, page 60], we say that a triple (A, b, s) is an Iwasawa triple if A
is an abelian normal subgroup of G, b ∈ G, and s is a positive integer which
is at least 2 in case p = 2 such that G = A〈b〉 and b−1ab = a1+p

s for all a ∈ A.
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In order to find an Iwasawa triple for an Iwasawa group G, we define a
function that computes an Iwasawa triple in which a given normal abelian
subgroup A appears, if this triple exists. This is done in the following way:

Algorithm IwasawaTripleWithSubgroup

Input: a p-group G and a normal abelian subgroup A such that G/A is
cyclic

Output: an Iwasawa triple (A, b, s) of G containing A or fail if it there is
no such triple

Method:

• Check that each generator ai of A = 〈a1, . . . , am〉 generates a
normal subgroup 〈ai〉 of G. If this does not happen, return fail.

• Take a representative b of a generator bA of G/A = 〈bA〉.
• Take an element a of A whose order is the exponent of A. Note

that s ≤ r = logp
(
o(a)

)
.

• For each generator c of 〈b〉:
– Define s to be the first t between 1 and r such that ac = a1+p

t

(if it exists).
– If this value exists, check whether aci = a1+p

s

i for all i ∈
{1, 2, . . . ,m}. If this happens, return the triple (A, c, s).

• If in the previous step we do not obtain any Iwasawa triple, return
fail.

Now we are in a position to present the algorithm used to search for an
Iwasawa triple in a p-group G. The main part of the algorithm consists of
identifying the normal subgroupsN ofG such thatG/N is cyclic. In this case,
there exists a series of normal subgroups N = Nr E Nr−1 E · · · E N0 = G
such that |Ni−1/Ni| = p and G/Ni is cyclic for 1 ≤ i ≤ r. Therefore these
subgroups will be found as a part of a chain of subgroups beginning with
G, each maximal in the previous one and such that the smallest subgroup is
normal and the quotient is cyclic. This search will be performed by means
of a “depth first search” style algorithm. Now this computation can be very
expensive in groups with large Frattini quotient, because the number of max-
imal subgroups is very large.

Algorithm IwasawaTriple
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Input: a p-group P

Output: an Iwasawa triple (A, b, s) of G if there exists one, an empty list []
if the group is non-abelian Dedekind (for p = 2), or fail if there is no
such triple

Method:

• If P is abelian, return (P, 1, logp expP ).
• If P is not metabelian, return fail.
• If p = 2 and expP = 4, if P is Dedekind, return an empty list

[] (the group is Iwasawa, but no Iwasawa triple can exist), else
return fail.
• Otherwise:

– Let l = {P}.
– Repeat (until the list l is empty)
∗ Let X be the last element of the list l.
∗ Delete X from l.
∗ Compute the list l1 of all maximal subgroups T of X such

that T is normal in P and P/T is cyclic.
∗ Append to l the list l1.
∗ Select the list l2 composed of the abelian groups in l1.
∗ For each X in l2, look for an Iwasawa triple with X in it

(if it exists). If there exists one, return this value.
– Return fail.

Iwasawa p-groups are then identified as the groups in which this last func-
tion returns a value different from fail. This value can be either the empty
list (for the case of non-abelian Dedekind 2-groups) or an Iwasawa triple. Be-
fore applying this algorithm, it might be convenient to compute a few pairs
of cyclic subgroups of the p-group and to check that they permute, because
otherwise the p-group cannot be Iwasawa. Note that in nilpotent groups
with a nice computer representation this checking is not very expensive in
general.

A normal subgroup with cyclic quotient can only appear as a “descendant”
subgroup of a unique series of maximal subgroups, because the cyclic p-groups
have a unique chief series. Therefore there can be no repetitions in the list
l. The sequence followed by the algorithm ensures that the orders of the
normal subgroups with cyclic quotient are decreasing while possible before
taking another such subgroup of bigger order.
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2.4 S-permutable subgroups

In order to give an algorithm which allows us to decide whether or not a
subgroup H of a group G is S-permutable in G, we use the following fact
proved by Schmid [15] (see also [6, Proposition 1.2.18]).

Theorem 2.5. The subgroup H of a group G is S-permutable in G if and
only if for each prime p there exists a Sylow p-subgroup Hp/HG of H/HG

such that Op(G) ≤ NG(Hp).

Here the computation of the core can be expensive because the usual
algorithms involve the calculation of intersections of subgroups. The com-
putation of the quotient group can also be expensive, especially in insoluble
groups.

The following result of Deskins and Kegel (see [6, Theorem 1.2.14]) gives
a necessary condition for S-permutability and can be applied before in order
to show that some subgroups are not S-permutable.

Theorem 2.6. If H is an S-permutable subgroup of G, then H/HG is a
nilpotent subnormal subgroup of G/HG.

Algorithm IsSPermutable

Input: a group G and a subgroup H of G

Output: true if H is S-permutable in G, false otherwise

Method:

• If H is normal in G, return true.
• If H is known to be permutable in G, return true.
• If H/HG is not nilpotent, return false.
• Let π = π(H/HG). For each p ∈ π:

– Compute a Sylow p-subgroup Hp of H.
– Compute the p-residual Op(G).
– If 〈HOp(G)

p 〉 6≤ HpHG, return false.
• Return true.

In this context, the expression “H is known to be permutable in G” means
that we have previously computed whether H is permutable in G, that this
information is stored, and that we know that the answer to this question
is affirmative. If this information is not available, this test is skipped. In
this way we take advantage of the mechanism of attributes and properties of
GAP ([11]). Note that this algorithm does not require checking whether two
subgroups permute (Theorem 2.1).
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2.5 Permutable subgroups

Our next goal is to give an algorithm to determine whether a subgroup H of
a group G is permutable.

Theorem 2.7 (see [6, Theorem 1.2.2]). If a subgroup H of a group G per-
mutes with the subgroups X and Y of G, then it also permutes with their join
〈X, Y 〉.

It follows that H is permutable in G if and only if H permutes with
all cyclic subgroups of prime power order of G. However, the number of
such cyclic subgroups in a given group can be very large and this can make
such a test unsuitable. Moreover, as stated in Remark 2.2, checking that two
subgroups permute can be an expensive operation because of the computation
of intersections, especially when many such tests are required. Therefore we
need some arguments in order to reduce, at least in some cases, the number
of these tests.

First of all, the fact that permutable subgroups are S-permutable and
subnormal can help us to show that some subgroups are not permutable.
The fact that normal subgroups are permutable can be also used to give an
affirmative answer in the case of normal subgroups.

The following result of Maier and Schmid [13] (see also [6, Corollary 1.5.6])
gives an interesting necessary condition for permutability.

Theorem 2.8. If H is a permutable subgroup of a group G, then H/HG ≤
Z∞(G/HG).

Here, for a group K, Z∞(K) denotes the hypercentre of K, that is, the
limit of the upper central series of K. The test for permutability is based on
the following result.

Theorem 2.9. Let G be a group, H be a subgroup of G, and for every prime
p let Hp be a Sylow p-subgroup of H. Then H is permutable in G if and only
if H/HG is nilpotent and for every prime p dividing |H : HG|, Op(G/HG)
centralises HpHG/HG and HpHG/HG permutes with all cyclic subgroups of
all Sylow p-subgroups of G/HG.

Proof. Suppose that H is permutable in G. Then H/HG is permutable in
G/HG by [6, Lemma 1.2.7]. By Theorem 2.8, H/HG ≤ Z∞(G/HG). Since
HpHG/HG is a Sylow p-subgroup of H/HG, Op(G/HG) ≤ CG(HpHG/HG)
by [6, Lemma 1.2.22]. Moreover H/HG permutes with all cyclic subgroups
of G/HG. Let xHG be an element of p-power order of G/HG. Then H/HG

permutes with 〈xHG〉. By [6, Theorem 1.1.19] and the fact that H/HG is
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nilpotent, there exists a Sylow p-subgroup Zp/HG of (H/HG)〈xHG〉 such that
Zp/HG = (HpHG/HG)〈xHG〉. Thus HpHG/HG permutes with 〈xHG〉.

Conversely, suppose that H/HG is nilpotent and that for all primes p
dividing |H : HG|, Op(G) normalises HpHG and HpHG/HG permutes with
all cyclic subgroups of all Sylow p-subgroups of G/HG. It is enough to check
that all cyclic subgroups of prime power order of G permute with H. Let
C = 〈x〉 be a cyclic subgroup of p-power order of G. Let q be a prime dividing
|H : HG| different from p. Since Oq(G/HG) = Oq(G)HG/HG centralises
HqHG/HG, CHG/HG permutes with HqHG/HG. By hypothesis, CHG/HG

permutes with HpHG/HG. It follows that CHG/HG permutes with H/HG.
In particular, C permutes with H, as desired.

The last part of the algorithm (checking that the Sylow p-subgroup of
H/HG permutes with all cyclic subgroups of p-power order of G/HG) can
be speeded up in the case G/HG has an Iwasawa Sylow p-subgroup. We
consider that enforcing this test could help saving some time when there
are many elements of p-power order in G, but there is no need to check
permutability of all these subgroups. We also check whether the number of
conjugate subgroups of the Sylow p-subgroup of H/HG is smaller than the
number of conjugate subgroups of a Sylow p-subgroup of G/HG. In this last
case, it is enough to verify that all conjugates of the Sylow p-subgroup of
H/HG permute with all cyclic subgroups of a given Sylow p-subgroup of G.

Algorithm IsPermutable

Input: a group G and a subgroup H of G

Output: true if H is permutable in G, false otherwise

Method:

• If H is normal in G, return true.

• If H is known to be non-S-permutable in G, return false.

• If G is nilpotent and known to be an Iwasawa group, return true.

• Repeat for MaxPermutTries times: Take a random element u of
G. If H does not permute 〈u〉, then return false.

• If H is not subnormal in G, return false.

• Compute Ḡ = G/HG and H̄ = H/HG.

• If H̄ is not nilpotent, return false.

• Let π = π(H/HG). For each p ∈ π:
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– Compute a Sylow p-subgroup H̄p of H̄.
– Compute the p-residual Op(G).
– If Op(G) does not centralise H̄p, return false.
– Compute a Sylow p-subgroup Ḡp of G.
– If Ḡp is not known to be Iwasawa, check whether H̄p permutes

with all cyclic subgroups of p-power order of G or whether all
conjugates of H̄p permute with all cyclic subgroups of Gp,
whatever needs less calculations. If any of this checks gives a
false result, return false.

• Return true.

Once more, the computations of the core and the quotient can be ex-
pensive operations because they involve the calculation of intersections of
subgroups. This is especially relevant in the case of insoluble groups. The
algorithm also relies on effective algorithms for the identification of a few
random elements of the group. The value of MaxPermutTries has been set
by default to 10.

3 T-groups, PT-groups, and PST-groups
Groups in which normality (respectively, permutability, Sylow permutabil-
ity) is transitive are called T-groups (respectively, PT-groups, PST-groups).
These classes have been widely studied, especially in the soluble universe
(see, for instance, [6, Chapter 2]). We will present some algorithms to check
whether a group is a T-group, a PT-group, or a PST-group.

For soluble groups, we will use a local approach. As in Robinson [14],
we say that a group G satisfies Cp whenever if T is a subgroup of a Sylow
p-subgroup P of G, then T is normal in NG(P ). According to Beidleman,
Brewster, and Robinson [9], we say that a group G satisfies Xp if every
subgroup of a Sylow p-subgroup P of G is permutable in the correspond-
ing Sylow normaliser NG(P ). Finally, according to Ballester-Bolinches and
Esteban-Romero [5], we say that a group G satisfies Yp if whenever H ≤ K
are two p-subgroups of G, then H is S-permutable in NG(K).

3.1 Soluble PST-groups

We begin with the identification of soluble PST-groups. We will use the
following results of Ballester-Bolinches and Esteban-Romero [5] (see [6, The-
orems 2.2.9 and 2.2.13]):
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Theorem 3.1. A group G is a soluble PST-group if and only if for all primes
p, G satisfies Yp.

Theorem 3.2. Let p be a prime. A group G satisfies Yp if and only if G is
p-nilpotent or G has abelian Sylow p-subgroups and G satisfies Cp.

The latter condition is equivalent to saying that the elements of NG(P ) in-
duce power automorphisms in P . We will give an algorithm to check whether
a group with abelian Sylow p-subgroups satisfies Cp.

Note that if the Sylow p-subgroup P of a groupG is abelian andG satisfies
Cp, then the p′-elements of NG(P ) act as power automorphisms on P . These
automorphisms are universal by [6, Theorem 1.3.2]. Furthermore, the order
of the group of automorphisms of a cyclic group of order pn is pn−1(p−1), and
it is cyclic if p 6= 2 by [12, Chapter I, Satz 4.6 and Satz 13.19]. In particular,
NG(P )/CG(P ) must be a cyclic group. If p is the smallest prime dividing |G|,
in particular, if p = 2, then G must be p-nilpotent by a result of Ballester-
Bolinches and Esteban-Romero ([5], see also [6, Corollary 2.2.18]). Hence
we can consider an element b such that CG(P )〈b〉 = NG(P ), an element a of
a set of generators of P of the largest possible order, and we determine an
element r such that 1 ≤ r ≤ o(a) − 1 and ab = ar. Then we check whether
for all generators c of P the relation cb = cr holds. In algorithmic form:

Algorithm IsAbCp

Input: a group G and a prime p

Output: true or false, according to whether G has an abelian Sylow p-
subgroup and G satisfies the property Cp

Method:

• If p does not divide |G|, return true.

• Let P be a Sylow p-subgroup of G.

• If P is not abelian, return false.

• If p is the smallest prime dividing |G|, return true if the group is
p-nilpotent, and false otherwise.

• If for some of the generators c of P , 〈c〉 is not normal in NG(P ),
return false.

• Consider NG(P )/CG(P ). If this quotient is trivial, return true.

• If this quotient is not cyclic, return false.

• Take an element a of P of the largest possible order.
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• Take an element b of NG(P ) such that CG(P )〈b〉 = NG(P ).

• Compute a value r such that 1 ≤ r ≤ exp(P )− 1 and ab = ar.

• If for all generators t of P tb = tr, return true, else return false.

In order to check whether a soluble group is a PST-group, we only test
that for all primes p dividing its order, G is p-nilpotent or G as an abelian
Sylow p-subgroup and satisfies Cp.

Note that the property Yp can be also defined for insoluble groups. Since
currently the methods to check p-nilpotency in GAP work only for soluble
groups, we have introduced a method to check p-nilpotency in insoluble
groups in which a chief series has been computed.

3.2 Soluble PT-groups and T-groups

Let p be a prime. The following theorem (see, for instance, [6, Theorems 2.2.2
and 2.2.4]) gives a local characterisation of soluble T-groups and soluble PT-
groups:

Theorem 3.3. A group G is a soluble T-group (respectively, PT-group) if
and only if G satisfies Cp (respectively, Xp) for all primes p.

Other interesting properties which characterise soluble T- and PT-groups
are equivalent to these properties, at least in the p-soluble universe. Our
functions to check whether a group satisfies Cp or Xp for a prime p are based
on the following result ([6, Theorems 2.2.4]):

Theorem 3.4. A group G satisfies Xp (respectively, Cp) if and only if G
satisfies Yp and the Sylow p-subgroups of G are Iwasawa (respectively, Dede-
kind)

Therefore we can use the algorithm to check whether a group has an
abelian Sylow p-subgroup and satisfies Cp as well as the algorithms to check
whether the Sylow p-subgroups are Dedekind or Iwasawa in order to determ-
ine whether a group satisfies Cp, Xp, or Yp.

3.3 Insoluble PST-, PT-, and T-groups

For insoluble groups, we first observe that PST-, PT-, and T-groups have all
chief factors simple. The default method for T-groups searches all normal
subgroups of normal subgroups and checks whether they are normal. For in-
soluble PST-groups, we check that normal subgroups of normal subgroups are
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S-permutable, since this characterises PST-groups as shown in [7, 8]. Nev-
ertheless, this approach is not valid for insoluble PT-groups, as the example
in [1] shows. In this case, we just check the permutability of all subnormal
subgroups. Other possible methods could include some of the ideas present
in [2, 3, 10]. However, we have not implemented these methods so far be-
cause they require the computation of the p-radicals of all possible quotients
of insoluble groups, which could be a time-consuming task for groups of large
order.

4 Some computations
The use of random elements in the algorithms to check the property Cp and
that a group is Dedekind seems to reduce the time for the computation. For
instance, the determination of all PT-groups of order up to 200 without this
randomness has taken 660 seconds on a computer with an Intel R© CoreTM i5
M430@2.27GHz CPU and 4 Gb of RAM, while randomness has decreased
this time to only 167 seconds.

Let N = 〈n1, n2, n3, n4〉 be an elementary abelian group with ni of order
3i, 1 ≤ i ≤ 4. Let α be the power automorphism of N defined as nαi = ni,
1 ≤ i ≤ 4, and let G1 = [N ]〈α〉 be the corresponding semidirect product, of
order 313 and Frattini subgroup of index 35. The algorithm to check that this
group is Iwasawa takes about 45 seconds. Another way of proving that this
group is Iwasawa is by checking that all pairs of cyclic subgroups permute.
However, this computation was interrupted by the authors after more than
24 hours without any result. The check that all subnormal subgroups of
defect two are permutable does not seem very promising here, because of the
large number of such subgroups. The corresponding computation was also
interrupted after more than 24 hours.

Now consider the automorphism β of the same group N defined by nβ1 =
n1, nβ2 = n4

2, n
β
3 = n4

3, n
β
4 = n10

4 . Let G2 = [N ]〈β〉 be the corresponding
semidirect product. Checking that this group of order 312 and with G2/Φ(G2)
of order 35 is not Iwasawa has required 93.5 seconds without the use of
random elements. In this case, all abelian normal subgroups with cyclic
factor group have had to be computed. With the help of pairs of random
elements the time has been reduced to only 52 milliseconds. The search for
a subnormal subgroup of defect two which is not permutable has taken 203
seconds.
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