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Chaos of the differentiation operator on weighted
Banach spaces of entire functions

José Bonet and Antonio Bonilla

Abstract. Motivated by recent work on the rate of growth of frequently hyper-
cyclic entire functions due to Blasco, Grosse-Erdmann and the second author,
we investigate conditions to ensure that the differentiation operator is chaotic
or frequently hypercyclic on generalized weighted Bergman spaces of entire
functions studied by Lusky, whenever the differentiation operator is continu-
ous. As a consequence we partially complete the knowledge of possible rates
of growth of frequently hypercyclic entire functions for the differentiation o-
perator.

Primary: 47A16, Secondary: 46E15, 47B38
Weighted spaces of entire functions, differentiation operator, hypercyclic

operator, chaotic operator, frequently hypercyclic operator.

1. Introduction and notation

In this note we are concerned with the behaviour of the orbits of entire functions
under the action of the differentiation operator Df = f ′ on generalized weighted
Bergman spaces of entire functions studied by Lusky [18] and [19]. Our study is
related to the study of the rate of growth of entire functions which are hypercyclic
or frequently hypercyclic for the differentiation operator on the space H(C) of
entire functions endowed with the compact open topology; see [4], [7], [8], [11],
[13], [21] and [23]. Our present research is especially motivated by [6] and [9]. Our
main result is Theorem 2.3 that provides a condition on the weight to ensure that
the differentiation operator is frequently hypercyclic. As a consequence, we obtain
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is supported by MICINN and FEDER Project MTM2008-05891.
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that there is an entire function f with

Mp(f, r) ≤ ϕ(r)
er

r
1
2p

that is frequently hypercyclic for the differentiation operator, for 1 ≤ p ≤ ∞,
whenever ϕ(r) is a positive function with lim

r→∞
ϕ(r) = ∞. Thus we give a partial

answer to the first open problem in Section 6 of [6]. Extensions of results of [9]
concerning hypercyclic, topologically mixing or chaotic differentiation operators
are also given. A key observation is that while Mp(zn, r), n ∈ N, is the same for
all 1 ≤ p ≤ ∞, this is no longer the case for Mp(eθz, r), |θ| = 1. The dependence
with respect to p is explained in Lemma 2.2.

A continuous and linear operator T from a Banach space X into itself is
called hypercyclic if there is a vector in X, called hypercyclic vector, such that its
orbit is dense in X. An operator T on a separable Banach space X is hypercyclic if
and only if it is topologically transitive, that is, for every pair of non-empty open
subsets U and V of X there is n ∈ N such that TnU ∩V 6= ∅. A stronger condition
is to be topologically mixing, that is, for every pair of non-empty open subsets U
and V of X there is N ∈ N such that TnU ∩ V 6= ∅ for all n > N . A operator T is
called chaotic if it is hypercyclic and has a dense set of periodic points. A vector
x ∈ X is called frequently hypercyclic for T if, for every non-empty open subset U
of X,

dens {n ∈ N : Tnx ∈ U} > 0.

The operator T is called frequently hypercyclic if it possesses a frequently hyper-
cyclic vector. The lower density of a subset A of N is defined as

dens (A) = lim inf
N→∞

#{n ∈ A : n ≤ N}
N

,

here # denotes the cardinality of a set. A useful characterization [8] is that a
vector x ∈ X is frequently hypercyclic for T if and only if, for every non-empty
open subset U of X, there is a strictly increasing sequence (nk)k of positive integers
and some C > 0 such that nk ≤ Ck and Tnkx ∈ U for all k ∈ N.

For more details about the dynamical behaviour of continuous linear opera-
tors on Banach spaces, we refer the reader to the survey papers by Grosse-Erdmann
[12], [14] and the recent books by Bayart and Matheron [3] and by Grosse-Erdmann
and Peris [16].

A weight v on C is a strictly positive continuous function on C which is radial,
i.e. v(z) = v(|z|), z ∈ C, such that v(r) is non-increasing on [0,∞[ and satisfies
limr→∞ rmv(r) = 0 for each m ∈ N. For an entire function f and 1 ≤ p < ∞ we
set

Mp(f, r) :=
( 1

2π

∫ 2π

0

|f(reit)|pdt
)1/p

, r > 0

and
M∞(f, r) := sup

|z|=r

|f(z)|, r > 0.
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We define, for 1 ≤ p ≤ ∞ and a weight function v, the following spaces as in [19]:

Bp,∞ = Bp,∞(C, v) := {f ∈ H(C) : sup
r>0

v(r)Mp(f, r) < ∞}

and
Bp,0 = Bp,0(C, v) := {f ∈ H(C) : lim

r→∞
v(r)Mp(f, r) = 0}.

These spaces are Banach spaces with the norm

‖f‖p,v = ‖f‖p,∞,v := sup
r>0

v(r)Mp(f, r).

For p = ∞, the spaces Bp,∞ and Bp,0 are usually denoted by Hv(C) and Hv0(C),
respectively; see [5], [9] and [20] for example. By Theorem 2.1 in [19] (see also
[18, Proposition 2.1]), the polynomials are contained and dense in Bp,0 for all
1 ≤ p ≤ ∞. In particular, Bp,0 is separable.

The inclusion Bp,∞ ⊂ H(C) is continuous. To see this, take r > 0, select
R0 > r, fix |z| ≤ r and apply the Cauchy formula, integrating around the circle
of center 0 and radius R0, to get (R0 − r)|f(z)| ≤ M1(f, R0) ≤ Mp(f,R0). This
implies

sup
|z|≤r

|f(z)| ≤ 1
(R0 − r)v(R0)

v(R0)Mp(f,R0) ≤ 1
(R0 − r)v(R0)

||f ||p,v.

Accordingly, the inclusion Bp,0 ⊂ H(C) is continuous, too.

2. Main results

The continuity of the differentiation operator D on the space B∞,∞ and B∞,0 was
characterized by Harutyunyan and Lusky in [17]. The following result provides us
with enough examples for the purposes of this paper.

Proposition 2.1. Let v be a weight function such that sup
r>0

v(r)
v(r + 1)

< ∞. Then the

differentiation operators D : Bp,∞ → Bp,∞ and D : Bp,0 → Bp,0 are continuous.

Proof. We have, for R > r,
( 1

2π

∫ 2π

0

|f ′(reiθ)|pdθ
) 1

p

=

=
( 1

2π

∫ 2π

0

| 1
2πi

∫ 2π

0

f(Reiϕ)iReiϕ

(Reiϕ − reiθ)2
dϕ|pdθ

) 1
p

≤
( 1

2π

∫ 2π

0

(
1
2π

∫ 2π

0

|f(Reiϕ)|R
|Reiϕ − reiθ|2 dϕ)pdθ

) 1
p

=
R

R2 − r2

( 1
2π

∫ 2π

0

(
1
2π

∫ 2π

0

|f(Reiϕ)| R2 − r2

R2 + r2 − 2Rr cos(θ − ϕ)
dϕ)pdθ

) 1
p

.

By Jensen’s inequality this is less or equal than

≤ R

R2 − r2

( 1
2π

∫ 2π

0

1
2π

∫ 2π

0

|f(Reiϕ)|p( R2 − r2

R2 + r2 − 2Rr cos(θ − ϕ)
dϕ)dθ

) 1
p

.
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We can apply Fubini’s theorem to conclude that this coincides with

=
R

R2 − r2

( 1
2π

∫ 2π

0

|f(Reiϕ)|p 1
2π

∫ 2π

0

R2 − r2

R2 + r2 − 2Rr cos(θ − ϕ)
dθdϕ

) 1
p

=
R

R2 − r2

( 1
2π

∫ 2π

0

|f(Reiϕ)|pdϕ
) 1

p

.

This implies

Mp(f ′, r) ≤ R

R2 − r2
Mp(f, R).

Letting R = r + 1 we get

Mp(f ′, r) ≤ r + 1
2r + 1

Mp(f, r + 1).

By assumption, C := sup
r>0

v(r)
v(r + 1)

< ∞. Therefore, for r > 0,

v(r)Mp(f ′, r) ≤ v(r)
r + 1
2r + 1

Mp(f, r + 1) ≤ Cv(r + 1)Mp(f, r + 1).

This yields ‖Df‖p,v ≤ C‖f‖p,v, hence D : Bp,∞ → Bp,∞ is continuous.
Moreover, D(Bp,0) ⊂ Bp,0 and D : Bp,0 → Bp,0 is continuous, too. ¤

Observe that the assumption that sup
r>0

v(r)
v(r + 1)

< ∞ in Lemma 2.1 can be

replaced by sup
r>0

v(r)
v(r + r0)

< ∞ for some r0 > 0, since it is easy to see that

sup
r>0

v(r)
v(r + r0)

< ∞ for some r0 > 0 holds if and only if for each r1 > 0 we have

sup
r>0

v(r)
v(r + r1)

< ∞.

Clearly v(r) = e−ar, r > 0, a > 0, satisfies the assumptions of Lemma 2.1.

According to Bayart and Grivaux [2], a bounded operator T on a Banach
space X is said to have a perfectly spanning set of eigenvectors associated to uni-
modular eigenvalues if there exists a continuous probability measure σ on the unit
circle T such that for every σ -measurable subset A of T which is of σ-measure 1,
span(∪{Ker(T − λI) : λ ∈ A}) is dense in X.

Lemma 2.2. The following conditions are equivalent for a weight v and 1 ≤ p < ∞:

(i) {eθz : |θ| = 1} ⊂ Bp,0.
(ii) There is θ ∈ C, |θ| = 1, such that eθz ∈ Bp,0.
(iii) limr→∞ v(r) er

r
1
2p

= 0
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Proof. For each θ ∈ C with |θ| = 1 we have ‖eθz‖p,v = ‖ez‖p,v, as is easy to see.
Thus we consider f(z) = ez, z ∈ C, and write z = r(cos t + i sin t). Now, we can
apply the Laplace methods for integrals as in formula (2.31) in page 33 in [22] to
conclude, for r > 0,

2πMp(f, r)p =
∫ 2π

0

erp cos tdt =
( π

2rp

)1/2

erp + erpO
( 1

rp

)
.

This yields, for a certain constant cp > 0 depending only on p,

Mp(f, r) = cp
er

r
1
2p

+ erO
( 1

r
1
p

)
.

This implies that for each 1 ≤ p < ∞ there are dp, Dp > 0 and r0 > 0 such that
for each |θ| = 1 and each r > r0

dp
er

r
1
2p

≤ Mp(eθz, r) ≤ Dp
er

r
1
2p

(2.1)

Now the equivalence of conditions (i), (ii) and (iii) in the statement follows easily.
¤

It is easy to see that {eθz : |θ| = 1} ⊂ B∞,0 if and only if limr→∞ v(r)er = 0;
and the statement of Lemma 2.2 remains valid for p = ∞, if we set 1/∞ := 0.

Theorem 2.3. Let v be a weight function such that limr→∞ v(r) er

r
1
2p

= 0 for some

1 ≤ p ≤ ∞. If the differentiation operator D : Bp,0 → Bp,0 is continuous, then D
is frequently hypercyclic.

Proof. By Grivaux [10, Theorem 1.4], if a bounded operator T on a Banach space X
has a perfectly spanning set of eigenvectors associated to unimodular eigenvalues,
then T is frequently hypercyclic on X. Accordingly, to complete the proof it is
enough to show that the differentiation operator D on Bp,0 has a perfectly spanning
set of eigenvectors associated to unimodular eigenvalues. The proof follows ideas
of the proof of [9, Theorem 2.1].

As a probability measure we consider the normalized Lebesgue measure on T.
We first observe that if a subset A of T has Lebesgue measure 1, then A is dense in
T. Thus, we fix a dense set A in T and show that EA = span({eθz : |θ| = 1, θ ∈ A})
is contained and dense in Bp,0. By our assumption on the weight v and Lemma 2.2,
EA ⊂ Bp,0. To prove the density, we define the following vector valued functions
on the closed unit disc D:

H : D→ Bp,0, H(ζ)(z) := eζz, ζ ∈ D.

The function H is clearly well defined and bounded, since there is a constant
D > 0, depending on Dp and r0 in (2.1), such that

‖H(ζ)‖p,v = sup
r>0

v(r)Mp(eζz, r) ≤ D sup
r>0

v(r)
er

r
1
2p

for each ζ ∈ D. Now we prove that H is holomorphic on D. Since H is locally
bounded (even bounded), by a result due to Grosse-Erdmann [15, Theorem 1], it is
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enough to find a σ((Bp,0)′, Bp,0)-dense subset G of (Bp,0)′ such that u◦H : D→ C
is holomorphic for each u ∈ G. Denote by G the linear span of the evaluation
functionals uz : f → f(z), z ∈ C. These functionals are continuous on Bp,0, since
the embedding Bp,0 ⊂ H(C) is continuous. It is clear that the subspace G is
σ((Bp,0)′, Bp,0)-dense in (Bp,0)′ and that u ◦ H is holomorphic for each u ∈ G.
This implies that H : D→ Bp,0 is holomorphic as we claimed.

The function H : D → Bp,0 is continuous. To see this, it is enough to prove
the continuity at each ζ0 in the boundary of D. Fix a sequence (ζj)j in D converging
to ζ0. We have

||H(ζj)−H(ζ0)||p,v = sup
r>0

v(r)Mp(eζjz − eζ0z, r).

Fix ε > 0. Since limr→∞ v(r) er

r
1
2p

= 0, there is r1 > r0 such that v(r) er

r
1
2p

<

ε/(4Dp), with Dp > 0 and r0 > 0 as in (2.1). We can apply the second inequality
in (2.1) which is also valid for |θ| ≤ 1, to conclude

sup
r>r1

v(r)Mp(eζjz − eζ0z, r) < ε/2.

Since the map C→ H(C), ζ → eζz, is continuous, we find δ > 0 such that |ζ−ζ0| <
δ implies

sup
|z|≤r1

|eζz − eζ0z| < ε

2v(0)
.

Find j0 ∈ N with |ζj − ζ0| < δ for j ≥ j0. Therefore, for r ≤ r1 and j ≥ j0, we get

v(r)Mp(eζjz − eζ0z, r) ≤ v(r)M∞(eζjz − eζ0z, r) < ε/2.

This implies ||H(ζj)−H(ζ0)||p,v < ε, and H is continuous.
At this point, we proceed with the proof that EA is dense in Bp,0 and apply

again the Hahn-Banach theorem. Assume that u ∈ (Bp,0)′ vanishes on EA. We
must show u = 0. Since the function u ◦ H is holomorphic in D, continuous at
the boundary and vanishes at the points ζ ∈ A, it is zero in D. In particular
(u◦H)(n) = u(H(n)(0)) = u(zn) = 0, hence u vanishes on the polynomials. As the
polynomials are dense in Bp,0 (cf. [19, Theorem 2.1 (i)]), we conclude u = 0. ¤

As a consequence of Theorem 2.3 and Proposition 2.1, we can give a partial
answer to the first open problem in Section 6 of [6].

Corollary 2.4. Let ϕ(r) be a positive function with lim
r→∞

ϕ(r) = ∞. For each 1 ≤
p ≤ ∞ there is an entire function f such that

Mp(f, r) ≤ ϕ(r)
er

r
1
2p

that is frequently hypercyclic for the differentiation operator D on H(C).

Proof. Given ϕ(r) as in the statement, it is not hard to find a positive increasing

continuous function ψ(r) ≤ ϕ(r) with lim
r→∞

ψ(r) = ∞ and sup
r>0

ψ(r + 1)
ψ(r)

< ∞.
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Define v(r) =
r

1
2p

ψ(r)er
for r ≥ r0, with r0 large enough to ensure that v(r) is

non increasing on [r0,∞[, and v(r) = v(r0) on [0, r0]. One can take r0 = 1
2p . By

Proposition 2.1, the differentiation operator D : Bp,0 → Bp,0 is continuous. We
can apply Theorem 2.3 to find a frequently hypercyclic entire function f ∈ Bp,0.
This entire function f satisfies the requirements of the statement. ¤

The following diagram represents our present knowledge of possible or im-
possible growth rates er/ra for frequent hypercyclicity with respect to the differ-
entiation operator D. Compare it with Figure 1 in page 47 of [6].

The following question remains open.

Question: Does there exist a D-frequently hypercyclic entire function f sat-
isfying

Mp(f, r) ≤ C
er

r1/2p
for r > 0

with 1 < p ≤ ∞?

For p = 1 the answer is negative, as can be concluded from [6, Theorem 2.1
(b)].

Theorem 2.5. Let v be a weight function such that the differentiation operator
D : Bp,0 → Bp,0 is continuous for some 1 ≤ p ≤ ∞. The following conditions are
equivalent:

(i) D : Bp,0 → Bp,0 is chaotic.
(ii) D : Bp,0 → Bp,0 has a periodic point different from 0.
(iii) limr→∞ v(r) er

r
1
2p

= 0.

Proof. Clearly (i) implies (ii). If (ii) holds, there are f ∈ Bp,0, f 6= 0, and n ∈ N
such that Dnf = f . Using the trivial decomposition Dn−I = (D−θ1I)...(D−θnI),
θn

j = 1, j = 1, ..., n, we conclude that there is θ ∈ C, |θ| = 1, such that eθz ∈ Bp,0.
We can apply Lemma 2.2 to obtain (iii).

Finally we assume that condition (iii) holds. By the proof of Theorem 2.3
the differentiation operator D : Bp,0 → Bp,0 has a perfectly spanning set of eigen-
vectors associated to unimodular eigenvalues. We can apply Bayart, Grivaux [1,
Theorem 0.2] to get that D is hypercyclic on Bp,0. On the other hand, since the
set {w : wn = 1, n ∈ N} is dense in T, again the proof of Theorem 2.3 yields that
the set span({ewz : wn = 1, n ∈ N}) of periodic points of D is dense in Bp,0. Thus
D is chaotic on Bp,0. ¤
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Corollary 2.6. Assume that 1 ≤ p ≤ ∞. If v(r) =
r

1
2p

ϕ(r)er
for r large enough,

where ϕ(r) is a positive increasing continuous function with lim
r→∞

ϕ(r) = ∞ and

sup
r>0

ϕ(r + 1)
ϕ(r)

< ∞, then D : Bp,0 → Bp,0 is chaotic.

Corollary 2.7. If v(r) =
r

1
2p

er
, 1 ≤ p ≤ ∞, for r large enough, then D : Bp,0 → Bp,0

has no periodic points.

Proceeding similarly as in the proofs of Theorem 2.3 and Theorem 2.4 in
[9], it is possible to obtain the following results. The only necessary observation is
that a direct calculation shows that for each 1 ≤ p < ∞ and each n ∈ N, we have
Mp(zn, r) = M∞(zn, r) for each r > 0.

Theorem 2.8. Assume that the differentiation operator D : Bp,0 → Bp,0 is contin-
uous, 1 ≤ p < ∞. The following conditions are equivalent:

(i) D : Bp,0 → Bp,0 satisfies the hypercyclicity criterion.
(ii) D : Bp,0 → Bp,0 is hypercyclic.
(iii) lim infn→∞

‖zn‖∞,v

n! = 0

Theorem 2.9. Assume that the differentiation operator D : Bp,0 → Bp,0 is contin-
uous, 1 ≤ p < ∞. The following conditions are equivalent:

(i) D : Bp,0 → Bp,0 is mixing.
(ii) limn→∞

‖zn‖∞,v

n! = 0

Corollary 2.10. Assume that 1 ≤ p ≤ ∞. Then

(a) If v(r) =
r

1
2

ϕ(r)er
, for r large enough, where ϕ(r) is a positive increasing

continuous function with lim
r→∞

ϕ(r) = ∞ and sup
r>0

ϕ(r + 1)
ϕ(r)

< ∞, then D :

Bp,0 → Bp,0 is mixing.

(b) If v(r) =
r

1
2

er
, for r large enough, then D : Bp,0 → Bp,0 is continuous but not

hypercyclic.
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