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Abstract 

Accurate diagnosis of predisposition to long QT syndrome is crucial for reducing the 

risk of cardiac arrhythmias. In recent years, drug-induced provocative tests have proved 

useful to unmask some latent mutations linked to cardiac arrhythmias. In this study we 

expanded this concept by developing a prototype for a computational provocative 

screening test to reveal genetic predisposition to acquired Long-QT Syndrome 

(aLTQS).   

We developed a computational approach to reveal the pharmacological properties of IKr 

blocking drugs that are most likely to cause aLQTS in the setting of subtle alterations in 

IKr channel gating that would be expected to result from benign genetic variants. We 

used the model to predict the most potentially lethal combinations of kinetic anomalies 

and drug properties. In doing so, we also implicitly predicted ideal inverse therapeutic 

properties of K channel openers that would be expected to remedy a specific defect. We 

systematically performed “in silico mutagenesis” by altering discrete kinetic transition 

rates of the Fink et al. Markov model of human IKr channels, corresponding to 

activation, inactivation, deactivation and recovery from inactivation of IKr channels.  We 

then screened and identified the properties of IKr blockers that caused acquired Long QT 

and therefore unmasked mutant phenotypes for mild, moderate and severe variants. 

Mutant IKr channels were incorporated into the O’Hara et al. human ventricular action 

potential (AP) model and subjected to simulated application of a wide variety of IKr-

drug interactions in order to identify the characteristics that selectively exacerbate the 

AP duration (APD) differences between wild-type and IKr mutated cells. Our results 

show that drugs with disparate affinities to conformation states of the IKr channel are 

key to amplify variants underlying susceptibility to acquired Long QT Syndrome, an 

effect that is especially pronounced at slow frequencies. Finally, we developed a 

mathematical formulation of the M54T MiRP1 latent mutation and simulated a 

provocative test. In this setting, application of dofetilide dramatically amplified the 

predicted QT interval duration in the M54T hMiRP1 mutation compared to wild-type. 

 

Keywords: mutations, drug-induced long-QT syndrome, drug-induced arrhythmias, 

computer modeling, potassium channels, genetics.  

 



 2 

Abbreviations 

aLQTS: drug-induced or acquired long-QT syndrome 

AP: action potential 

APD: action potential duration   

APD90: action potential duration at 90% repolarization 

C1: closed state 1 

C2: closed state 2  

C3: closed state 3 

EAD: early-afterdepolarization 

ECG: electrocardiogram  

I: inactivated state 

IKr: rapid component of the delayed rectifier current 

LQTS: long-QT syndrome  

O: open state  

RFI: recovery from inactivation 

TdP: torsade de pointes 

WT: wild-type 

Actilide_Oc: drug binding simultaneously to both the open and closed states with lower 

affinity to the open state 

Inactilide_Oi: drug binding simultaneously to both the open and inactivated states with 

lower affinity to the open state 

Actilide_Co: drug binding simultaneously to both the closed and open states with lower 

affinity to the closed state 

Inactilide_Io: drug binding simultaneously to both the inactivated and open states with 

lower affinity to the inactivated state 
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1. Introduction  

Drug-induced or acquired long-QT syndrome (aLQTS) is a disorder characterized by 

abnormally prolonged ventricular repolarization secondary to drug application that can 

lead to potentially lethal arrhythmias, such as torsade de pointes (TdP) [1]. This side-

effect has resulted in black box warnings limiting the use of many drugs intended for 

treatment of cardiac dysrhythm, psychiatric disorders, gastrointestinal symptoms and 

infection [2] (http://www.qtdrugs.org).  Drugs have even been removed from the market 

due to unintended effects on cardiac repolarization [3].  

 

Because the rapidly activating component of the cardiac delayed rectifier current (IKr) 

arising from the gene hERG is a well-known promiscuous drug target, there has been 

deliberate focus on the off-target drug effects on hERG. Importantly, susceptibility to 

aLQTS has been linked to normally benign DNA variants in the genes encoding hERG 

and its ancillary subunits that modify risk to aLQTS and arrhythmias [1, 4, 5]. Indeed, 

approximately 15% of patients with aLQTS have been shown to exhibit allelic variants 

in coding regions of genes linked to congenital forms of long-QT syndrome (LQTS) [5]. 

 

Accurate identification of individuals who are susceptible to aLTQS is crucial for 

reducing the risk of cardiac arrhythmias [6]. Unfortunately, diagnosis based on baseline 

QT interval is not definitive [7] and genetic testing is difficult, expensive and is not 

always accessible [8]. In the last decade, drug-induced provocative tests have been 

proposed to unmask some types of latent mutation carriers. These provocative tests 

consist of the addition of a drug that uncovers an otherwise concealed disease. During 

the provocative test, the functional effects of a presumed defective ion channel are 

amplified, leading to measurable alterations in the electrocardiogram relative to changes 

observed with a normal channel. For example, catecholamines, such as epinephrine, can 

be used to reveal LQT1, which is due to IKs impairment [8], potent sodium blockers [9], 

such as flecainide, and also potent sodium blockers with calcium blockers [10] have 

been used to unmask Brugada Syndrome, and sotalol [11] and erythromycycin [12], 

potent IKr blockers, have been shown to uncover altered repolarization. 

http://www.qtdrugs.org/
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Here, we employed a mathematical modeling approach to take existing tests a step 

further. We attempt to reveal the pharmacological properties of IKr blocking drugs that 

not only reveal predisposition to aLQTS, but also reveal the specific kinetic anomaly 

underlying the increased risk. In doing so, we also implicitly predict ideal therapeutic 

properties of K+ channel openers that would be expected to remedy the defect. We 

systematically carried out “in silico mutagenesis” by altering discrete kinetic transition 

rates corresponding to activation, inactivation, deactivation and recovery from 

inactivation of IKr channels. Our model predicts the most potentially lethal combinations 

of kinetic abnormalities and drug properties. Moreover, it identifies the specific 

properties of an IKr blocker that most exacerbate mutant phenotypes arising from 

specific defective IKr kinetics (activation, deactivation, inactivation and recovery from 

inactivation). Such a test can be used to unmask the mutant phenotype for latent, mild, 

and moderate mutants. Importantly, our method consists of a library of “off-the-shelf” 

mutant and drug interaction templates that can be readily expanded to predict drug 

interactions with any identified IKr mutation. To apply our approach in a true clinical 

setting, we carried out an in silico screen for the naturally occurring hERG mutation, the 

M54T MiRP1 mutation, which has been implicated in drug-induced LQTS and 

arrhythmia. We used the model to propose a provocative test to unmask the M54T 

mutation, which the model predicts will be most successful with a drug binding 

simultaneously to both the open and closed states with lower affinity to the open state 

(Actilide_Oc) or a drug binding simultaneously to both the open and inactivated states 

with lower affinity to the open state (Inactilide_Oi), like dofetilide. We also predict that 

use of a potassium channel opener as an adjunctive therapy can effectively blunt the 

effects of dofetilide-induced action potential prolongation of the M54T hMiRP1 

mutation. Finally, the influence of heart rate and the concomitant effects of silent 

mutations in genes encoding other ionic currents were also investigated. 
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2. Methods 

The human ventricular IKr was simulated using the five-state Markov chain proposed by 

Fink et al. [13]. Transition rate constants are provided in the supplemental material 

(Table S1). The Fink IKr Markov model was incorporated into the O’Hara et al. human 

ventricular action potential (AP) model [14] and its maximum conductance was scaled 

to elicit the same peak IKr value as the original O’Hara model at 1Hz.  

 

Activation (αα), deactivation (), inactivation (αi) and recovery from inactivation (i) 

transition rates were modified to simulate genetic defects altering the activation, 

deactivation, inactivation and recovery from inactivation processes, respectively. In 

each case, transition rates were scaled to produce a 10 ms, 20 ms and 50 ms 

prolongation of action potential duration at 90% repolarization (APD90) at 1 Hz, which 

gives rise to 12 prototypical IKr mutations. Scale factors are provided in the 

supplemental material (Table S2). Moreover, additional summative effects of IKs and 

INaL silent mutations were simulated by modifying the slow component of the delayed 

rectifier current (IKs) and the late sodium current (INaL). IKs and INaL were independently 

scaled to produce a 20 ms APD90 prolongation in WT cells. Then, all possible IKr 

mutants were simulated alone or in addition to these IKs and INaL modifications to 

simulate the combined effects of IKr, IKs and INaL silent mutations. A total number of 38 

prototypical mutants, namely, 12 IKr mutations, 12 IKr mutations combined with IKs 

reduction, 12 IKr mutations combined with INaL increase, one IKs mutation alone and one 

INaL mutation alone, were simulated. 

 

The M54T hMiRP1 mutation was modeled using a modified Nelder-Mead Simplex 

Method to modify the Markov model transition rates in the Fink IKr model by 

minimizing the sum of the least-square errors between the experimental [4] and the 

simulated steady state activation curves, steady state inactivation curves and 

deactivation time constants. Then, to validate the M54T hMiRP1 mutation 

computational model, the simulated reduction of current density at -40 mV was 

compared to additional experimental results [1]. As experiments were performed at 

22ºC [4] and room temperature [1], temperature was exclusively fixed to 22ºC to 
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compare the simulated kinetics of the mutation to experiments. Physiological action 

potential simulations were subsequently performed at 37ºC. Rate transitions for WT and 

the mutated cells are available in the supplemental material (Table S1). 

 

In order to simulate known drug interactions with IKr, we used measured affinities and 

drug diffusion rates used to constrain the drug “on” and “off” rates.  Diffusion rates (D) 

indicate drug on rates “k” = [drug] * D and affinities (Kd) to discrete conformations that 

determine drug off rates “r” = Kd * D. Association (k) and dissociation (r) rate values 

for each IKr-drug interaction as tested in the model are in the supplement (Table S3). On 

and off rates were varied in simulations of “theoretical” drugs. A total number of 21 

drug interactions with IKr were simulated; dofetilide and 20 “theoretical drugs”. In 

addition, two potassium channel openers, RPR260243 and a virtually designed 

“activator” drug were simulated in some cases. In order to simulate the effects of 

RPR260243 we used the same binding and unbinding rate constants as Perry et al. [15] 

and activator bound channels were reconstructed applying the same modifications as 

Perry and coworkers to the WT channels, namely slowed deactivation, slowed 

activation and reduced inactivation [15]. The model of the virtual activator resulted 

from eliminating the reduced inactivation from the RPR260243 model and was called 

RPR260243_mod. 

 

1596 provocative tests were carried out with application of low and high concentrations 

of each simulated drug to WT cells and to every mutant at 1 Hz. For reproducibility, the 

low and high dose of a certain drug was defined as the drug concentration that produced 

the same steady state WT APD90 prolongation as 16 nM (in line with its therapeutic 

dose [3]) and 48 nM dofetilide, respectively. Low doses values for each simulated drug 

are available in the supplemental material (Table S3). 442 additional provocative tests 

were performed at 2 Hz and 0.67 Hz by applying low doses of those drugs that most 

amplified the effects of IKr mutants on ADP90 at 1 Hz to investigate the rate dependence 

of aLQTS in genetically predisposed cells. Furthermore, as APD adaptation to abrupt 

changes in pacing rate has been proposed as a clinical marker for arrhythmic risk [16], 

APD rate adaptation was also characterized by recording APD90 during the transition 

from the steady-state at 1Hz to 1.7 Hz and from 1.7 Hz to 1Hz after 10 minutes of 

pacing at 1.7 Hz. This protocol is similar to that used in clinical and experimental 
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studies [17, 18] and in other theoretical works [19, 20]. APD90 dynamics were 

characterized by the fast and slow time constants of the APD90 adaptation to the 

accelerating and decelerating rate transitions fast_accelerating,slow_accelerating,fast_decelerating 

andslow_decelerating, respectively) [19, 20]. When the duration of APD adaptation was 

longer than 10 minutes, independent prolongation of each transition was conducted to 

obtain the slow time constants. 

 

Action potential simulations were carried out in isolated endocardial cells at 1 Hz and 

pseudo-ECGs were computed using a 1-dimensional model of the transmural wedge 

preparation, as described in [14].  

 

3. Results 

We updated our previous dofetilide model [21] to additionally include the 

experimentally observed 70-fold preferential binding to the inactivated state relative to 

the open state [22] and to mimic the clinically observed 16 % prolongation of the QT 

interval produced by the therapeutic dose 8.22 nM [23] (summarized in Figure 1D). 

Figures 1 A-C show the kinetics of the simulated (lines) IKr block by 50 nM dofetilide 

(A and B) and the washout of 3 M (C) (solid lines) together with experimental results 

(symbols) for comparison: [24] (A), [25] (B) and [26](C). Protocols are described in 

[24-26]. Figures 1B and 1C show that our model also reproduces the experimentally 

observed voltage dependency of the onset of block by dofetilide [25] and the extremely 

slow and incomplete dissociation of dofetilide reported by many experimental works 

[24, 26, 27], respectively. To validate our simulations of drug interactions with IKr, the 

sensitivities of two hERG mutations, N588E and N588K, to IKr dofetilide block were 

also simulated. The N588E model was obtained by modifying the rates between the 

open and inactivated state to produce a – 36 mV shift of the conductance voltage curve 

(top panel of Figure 1E) and the N588K mutation model was obtained by applying to 

the human ventricular IKr model the same alterations as in [22]. Protocols are described 

in [22]. Bottom table of Figure 1D summarizes the modifications introduced in the IKr 

model to simulate the effects of the N588E and N588K mutations. The mutated residue 

is remote from the drug-binding pocket in the channel pore [22], and experiments 

suggest values of drug affinities for the mutated IKr channels are unchanged from WT 
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[22]. We also made this assumption in the model. The top and bottom panels of Figure 

1F include experimental data and simulation of the Hill plots of dofetilide binding for 

WT, N588E and N588K, respectively. The differential blocks in N588E and N588K 

mutated IKr produced by dofetilide predicted by our model simulations are in close 

agreement with the experiments performed in Chinese hamster ovary (CHO) cells [22].   

(Approximate position of Figure 1) 

 

As shown in Figure 2A, the Markov model representation of IKr from Fink et al. 

includes three closed states (C3, C2 and C1), a conducting open state (O) and an 

inactivation state (I). This channel model was incorporated into the O’Hara et al. human 

ventricular action potential (AP) model [14] (black traces in top row of Figure 3) and its 

maximum conductance was scaled to elicit the same peak IKr value as the original 

O’Hara model at 1Hz (black traces in middle row of Figure 3).  

(Approximate position of Figure 2) 

 

We carried out “in silico mutagenesis” by modifying discrete transition rates (orange 

arrows in model schematic Figure 3) in the computational model that led to targeted 

modification of channel activation, inactivation, deactivation or recovery from 

inactivation (from left to right) as indicated and resulting prolongation of the APD90 by 

50 ms, 20 ms and 10 ms. These changes were intended as prototypical latent, mild and  

moderate (red) allelic variants in hERG that may underlie a predisposition to aLQTS. 

The effects of moderate variants led to a 50 ms APD90 prolongation (top row), IKr 

reduction (middle row) and open state probability (bottom row). Deactivation mutants 

(second column) result in the smallest IKr among the simulated functional mutants and 

with the most altered morphology (red arrow in middle row). Deactivation mutants are 

most severe because IKr current arises at the critical late juncture in the action potential 

to cause final AP repolarization precisely because of the imbalance between rapid 

recovery from channel inactivation and subsequent slow deactivation. This imbalance 

normally results in channels residing in the open state during repolarization. Mutations 

that increase the rate of deactivation are dire: they lead to a marked reduction in channel 

open probability (red arrow in bottom row) by promoting channel closure.  

(Approximate position of Figure 3) 
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Figures 2B-F shows the IKr Markov model described above with multiple distinct drug 

bound configurations (lower row of states in each panel indicated by subscript “d”) in 

panels B though F. Because ion channel targeting drugs display complex properties 

determined by preferential binding to distinct conformation states and/or distinct 

affinity to discrete states, we simulated a wide variety of likely combinations of drug-

channel interactions (Figures 2B-F): drugs that exclusively bound in the closed (Figure 

2B), open (Figure 2C) or inactivated (Figure 2D) states, as well as drugs binding 

simultaneously to both the closed and open states, (Figure 2E), or to both the open and 

in the inactivated state, (Figure 2F) were analyzed in detail by testing a range of 

association and dissociation rates for the various drug configurations. The initial 

estimated association and dissociation rates were assumed similar to the association rate 

of dofetilide and an intermediate value of the dissociation rates of dofetilide. The values 

0.511 µM-1s-1 and 0.003606 s-1 were used as the baseline association and dissociation 

rates. Rates were then varied in the test simulations by increasing them 10-, 50-, 100-

fold or reducing rates 10- or 100-fold. 

 

3.1 Latent Defective Activation  

In first column of Figure 4, the effects of latent (blue), mild (green) and moderate (red) 

variants of activation (orange arrow in Markov diagram indicates the altered transition 

rate) led to varying degrees of APD90 prolongation (10, 20 and 50 ms, respectively), 

consistent with the degree of change to the activation rate (first row). We next carried 

out multiple simulations with 21 IKr blocking drugs spanning a variety of inherent 

kinetic properties, conformational state specificities and concentrations. The model 

predicts that most drugs were unable to differentiate between normal and mutant 

channels. Low doses of drugs that exclusively bound to a single IKr state, drugs that 

simultaneously bound to open and inactivated channels, and drugs that bound with low 

affinity to closed but high affinity to the open state produced similar APD90 

prolongation in normal and mutant channels. 

 

However, the model predicted that drugs binding to closed and open states with lower 

affinity to the open state (Actilide_Oc) amplified mutant effects on APD90 prolongation 
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in activation mutants compared to WT (the pink arrow in the Markov scheme indicate a 

lower affinity of the drug in that state). A drug (depicted in the Markovian scheme at the 

top of the first column) with these properties was identified in the simulations to best 

unmask the mutant phenotype. Exposure to 3 nM (low dose) Actilide_Oc_1 

(supplemental material, Table S3) (Figure 4, middle row of the first column) increased 

the APD90 difference between WT and impaired activation cells from 10 ms to 16 ms, 

from 20 ms to 33 ms and from 50 ms to 83 ms. Differences in APD90 between WT and 

impaired activation cells were also sensitive to Actilide_Oc_1 concentration. Indeed, 

addition of 12 nM (high dose) Actilide_Oc_1 (Figure 4, bottom row of the first column) 

increased the APD90 differences between WT and cells with defective activation from 

10 ms to 20 ms, from 20 ms to 43 ms and from 50 to 118 ms, respectively. Addition of 

other drugs binding in the closed and open state with lower affinity to the open state 

(Actilide_Oc_2, Actilide_Oc_3 and Actilide_Oc_4) but with different dissociation rates 

(supplemental material, Table S3) produced similar APD90 differences between WT and 

cells with defective activation as Actilide_Oc_1 in the steady state. However, the 

duration of the transitory period from drug application to the steady state depended on 

the specific association and dissociation rates values of the drug and faster rates led to 

shorter transitory periods.  

 (Approximate position of Figure 4) 

 

3.2 Latent Defective Deactivation  

In second column of Figure 4, the effects of latent, mild and moderate variants of 

deactivation (orange arrows in Markov diagram indicate the altered transition rate) led 

to corresponding varying degrees of APD90 prolongation (first row of the second 

column). We next simulated the effect of a wide variety of IKr blocking drugs on these 

deactivation mutants. Surprisingly, the model predicts that most drugs preferentially 

prolonged the steady state APD90 in mutated cells with marked faster deactivation. This 

result indicates that allelic variants affecting deactivation would lead to increased 

sensitivity to a wider range of IKr blockers, and consequently, an increased likelihood of 

aLQTS. This is in accordance with the fact that deactivation mutants (Figure 3, second 

column) result in the smallest IKr among the simulated functional mutants and with the 

most altered morphology (Figure 3, red arrow in middle row).  
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Drugs binding in the closed and open state with significantly lower affinity in the open 

state produced the largest APD90 differences between WT and mutated cells with faster 

deactivation, as in the case of activation mutants, but substantially longer APD90 

prolongations were observed in deactivation mutants. The second column of Figure 4 

shows the simulation results of exposure of deactivation mutations to one drug of this 

type, Actilide_Co_1. In this case, application of 3 nM (low dose) Actilide_Co_1 (Figure 

4, middle row of the second column) amplified the APD90 difference between WT and 

deactivation mutant cells from 10 ms to 113 ms (blue), from 20 ms to 181 ms (green) 

and from 50 to 294 ms (red). Addition of 12 nM (high dose) of this drug (Figure 4, 

bottom row of the second column) enhanced the APD90 difference between WT and 

deactivation mutant cells from 10 ms to 177 ms (blue) and generated patterns of early-

afterdepolarizations (EADs) in deactivation mutants whose APD90 is 20 ms and 50 ms 

longer than WT under drug-free conditions (green and red, respectively).  

 

Differential APD90 prolongation was also induced by drugs binding in the open and 

inactivated state with a much lower affinity in the open state. Indeed, addition of 3.6 nM 

(low dose) Inactilide_Oi_1 increased the APD90 differences between WT and cells with 

defective deactivation from 10 ms to 102 ms, from 20 ms to 167 ms and from 50 to 262 

ms (not shown). Exposure to 10.55 nM (high dose) of this drug also further increased 

the APD90 differences between WT and deactivation mutants from 10 ms to 164 ms and 

generated EADs in AP in deactivation mutants whose APD90 is 20 ms and 50 ms longer 

than WT under drug-free conditions (not shown). Drugs exclusively binding in one IKr 

state still unmasked this type of defect in moderate mutants, but they produced smaller 

APD prolongations in deactivation mutants than the previous drugs. For example, 

Drug_C1 (supplemental material, Table S3) produced a 96 ms APD90 difference 

between WT and the deactivation mutation cell that is 50 ms longer than WT in drug-

free conditions. Finally, drugs binding in the closed and open state with a much lower 

affinity in the closed state and drugs binding in the open and inactivated state with a 

much lower affinity in the inactivated state did not help to discern between WT and 

mutants, as 67 ms and 64 ms steady state APD90 differences between WT and the 50 ms 

APD90 prolongation mutation under drug-free conditions were observed during low 

doses drug exposure, respectively. Again, drug-induced steady-state APD prolongation 
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depended on the states where the drug bound and the preferential binding to a channel 

state, regardless of the diffusion rate of the drug. 

 

The previously explained amplification of the effects of defective IKr deactivation on 

APD90 prolongation produced by most drugs is directly related to the extent of the 

reduction in current. Indeed, Actilide_Oc, which is the type of drug that most amplifies 

defective IKr deactivation indicated by APD90 prolongation, is the one that most reduces 

the fast deactivated IKr current, closely followed by Inactilide_Oi (see supplemental 

material, Figure S2). 

 

3.3 Latent Defective Inactivation  

The first row of the third column of Figure 4 shows the time course of the APs elicited 

by WT and cells harboring three modeled inactivation mutations yielding 10 ms, 20 ms 

and 50 ms APD90 prolongation relative to WT (orange arrows in Markov diagram 

indicate the altered transition rate). Our simulations predicted that low dose of simulated 

drugs that bound exclusively to one discrete IKr state and drugs binding both the closed 

and open state with low affinity to the open state were not able to amplify differences 

between WT and inactivation mutants and were thus unable to unmask the mutations. 

Indeed, exposure to 10 nM (low dose) of Drug_C1 (supplemental material, Table S3) 

only increased in 3 ms the APD90 difference between WT and the inactivation mutant 

whose APD90 was 50 ms longer than WT in drug-free conditions and Actilide_Oc_1 

(supplemental material, Table S3) did not amplify it.  

 

Drugs interacting with low affinity to closed and high affinity to the open states 

performed somewhat better, as 750 nM (low dose) of Actilide_Co (supplemental 

material, Table S3) only increased in 7 ms the APD90 difference between WT and the 

inactivation mutant whose APD90 was 50 ms longer than WT in drug-free conditions.  

 

However, a drug with low affinity open state block (pink arrow in model schematic) and 

higher affinity inactivated state (black arrow) very effectively unmasked IKr mutants 

causing impaired inactivation. Specifically, application of 3.6 nM (low dose) and 10.55 
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nM (high dose) Inactilide_Oi_1 (supplemental material, Table S3) (Figure 4, middle 

and bottom row of the third column, respectively) enhanced the APD90 differences 

between WT and defective inactivation cells from 10 ms to 15 ms and 19 ms (blue), 

from 20 ms to 28 ms and 39 ms (green) and from 50 to 76 ms and 113 ms (red), 

respectively. In this case, the steady state APD prolongation observed during drug 

exposure also depended most on the states where the drug bound and the preferential 

binding state regardless of its diffusion rate. 

 

3.4 Latent Defective Recovery from Inactivation  

Low doses of each drug were applied to WT and cells containing a simulated 

mutagenesis affecting the rate constant controlling IKr recovery from inactivation (RFI, 

rate from I to O) indicated by the orange arrow in the schematic. Simulated mutations 

yielded 10 ms, 20 ms and 50 ms APD90 prolongation compared to WT (Figure 4, first 

row of the fourth column). As expected, this simulated defect primarily affected the 

fractions of channels in the inactivated and open state, much like mutations that affected 

the inactivation transition. A drug with low affinity block in the open state (pink arrow) 

and preferential higher affinity block in the inactivated open state (black arrow) as 

depicted in the Markovian scheme at the top of the fourth column of Figure 4, amplified 

the mutation effect, observed by more APD90 prolongation in mutated cells with 

impaired recovery from inactivation than in WT cells. In this case, application of 3.6 

nM (low dose) and 10.55 nM (high dose) Inactilide_Oi_1 (Figure 4, middle and bottom 

rows of the fourth column, respectively) augmented the APD90 difference between WT 

and RFI mutant cells from 10 ms to 15 ms and 18 ms (blue), from 20 ms to 27 ms and 

37 ms (green) and from 50 to 76 ms and 99 ms (red), respectively.   

 

3.5 M54T hMiRP1 Mutation   

We also applied this procedure to the naturally occurring hERG mutation, the M54T 

MiRP1 mutation, which has been implicated in drug-induced LQTS and arrhythmia [1, 

4]. Figure 5 compares the experimental (top row) and the simulated (bottom row) steady 

state activation curve (left column) and the deactivation time constant curve (right 

column) for WT (squares) and M54T hMiRP1 mutated channels (triangles). Protocols 

are described in Abbott et al. [4]. This mutation is known to moderately increase the 
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voltage dependence of activation by reducing the activation slope without altering the 

half activation potential [4]. The experimentally measured activation slope was 9.5 mV 

and 7.5 mV for WT and M54T hMiRP1 mutated channels, respectively [4]. Therefore, 

the activation slope of these mutated channels is 75.8 % the slope of the WT channels. 

The activation slope of the simulated M54T hMiRP1 mutated channels is 75.5 % the 

slope of the simulated WT channels. Importantly, M54T hMiRP1 mutated channels are 

also known to deactivate approximately twice as fast as WT [4]. Our simulated M54T 

hMiRP1 mutated channels reproduce this alteration (right panels). In addition, 

experimental results evidence that M54T hMiRP1 mutated channels were like wild type 

in their steady state inactivation [4]. The simulated M54T hMiRP1 mutation did not 

alter the steady state inactivation curve in our model (not shown). Moreover, additional 

experiments reported reduction of 39 % in current density at - 40 mV in M54T hMiRP1 

mutated channels [1]. The alteration of the transition rates in our simulated M54T 

hMiRP1 mutated channels caused a similar reduction in current density (not shown), 

therefore the maximum conductance of the mutated channels was not modified. Rate 

constants for the simulated M54T hMiRP1 channels are provided in the supplemental 

material (Table S2). Quantitative differences between the experimental results of the 

M54T MiRP1 latent mutation and the simulations (Figure 5) derive from the differences 

in the cells and subunits of the channels used in the characterization of the mutation and 

the data used to model the IKr used in our study. Indeed, the experimental data (shown in 

the top row of Figure 5) was obtained from hMiRP1/HERG channels expressed in 

Xenopus laevis oocytes [4] and the IKr model proposed by Fink et al. [13] and used in 

our simulations for WT cells was fitted to experimental data from hERG in HEK cells 

and human myocytes and incorporated relative changes resulting from the mutation into 

the baseline Fink model.   

(Approximate position of Figure 5) 

 

We incorporated the M54T hMiRP1 channels into the AP model. The M54T hMiRP1 

mutated (orange) APD90 was 11.6 ms longer than WT (black) APD90 in isolated 

endocardial cells (Figure 6A). As we did with the virtual mutations, we also observed 

the amplification of the APD90 differences between M54T hMiRP1 mutated and WT 

cells under drug exposure. The virtual drug types that most amplified the APD90 of 

M54T hMiRP1 mutants were Actilide_Co and Inactilide_Oi. Specifically, low doses of 
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both Actilide_cO_2 and Inactilide_Oi_2 led to a 46 ms difference between M54T 

hMiRP1 mutants and WT cells. Addition of other types of drugs did not help to 

differentiate between M54T hMiRP1 mutants and WT cells. For example, exposure to 

low dose of Drug_C_2 only produced 3 ms additional difference in APD90 between 

M54T and WT cells compared to drug-free conditions. These results resembled those 

obtained with the prototypical latent fast deactivation mutant. It supports the validity of 

our method to predict the drug types that affect a particular mutation, as fast 

deactivation is the main IKr alteration produced by M54T hMiRP1 mutation [4]. We also 

simulated the effects of the real drug dofetilide in the presence of this naturally 

occurring mutation. Exposure to 16 nM (low dose) and 48 nM (high dose) dofetilide 

increased the APD90 difference between WT (black) and mutants (orange)  from 11.5 

ms (Figure 6B) to 46 ms (Figure 6C) and  65 ms (Figure 6D), respectively. It is notable 

that dofetilide and Inactilide_Oi_2 produced similar results. Dofetilide could be 

classified as an Inactilide_Oi drug because it binds in the open and in the inactivated 

states [25] with a 70-fold preferential binding to the inactivated state relative to the open 

state [22]. 

 

As the ECG is the electrical signal used for clinical diagnosis rather than the APD in 

isolated cells, we also simulated the pseudo-ECG using a 1-dimensional model of the 

transmural wedge to investigate the potential use of this dofetilide modification to 

unmask silent mutation carriers. Our results (Figure 6, bottom row) show that the M54T 

hMiRP1 mutation produced a 6 ms prolongation of the simulated QT interval duration 

(WT QT interval duration = 392 ms, Figure 6D) under drug-free conditions. The 

presence of 16 nM (low dose) and 48 nM (high dose) of dofetilide amplified the QT 

interval duration difference between WT and mutant to 47 ms (Figure 6E) and 105 ms 

(Figure 6F), respectively. The generation of EADs in midmyocardial cells (see inset of 

Figure 6F) in the transmural strand after the application of high dose modified dofetilide 

led to more aggravated differences in the QT interval between WT and M54T mutated 

cells than in the APD90 registered in isolated cells. The development of the EAD in the 

M cell only leads to an apparent increase in dispersion of repolarization, observed on 

the simulated ECG as a broadening of the t-wave (due to very long repolarization in the 

M-cell) and also an increase in the amplitude of the t-wave (resulting from the large 
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voltage dispersion (gradient)) that occurs when the epicardial cell has repolarized and 

the M-cell is depolarized due to the EAD.  

 

Simulated pseudo-ECGs at 1 Hz for WT in the presence of high doses of every drug 

considered in this study are shown in Figure S5 in the supplemental material. Although 

they are very similar, small differences in the T-wave are observed. Indeed, the drugs 

that most increase the amplitude of the T-wave are Inactilide_Oi, Inactilide_Io and 

Actilide_Co, followed by drugs binding and unbinding in one state of the channel 

(Drug_C, Drug_O and Drug_I). Actilide_Oc caused minimal increase in the amplitude 

of the T-wave (see Figure S6 in the supplemental material).  

(Approximate position of Figure 6) 

We also simulated the addition of potassium channel activators to mitigate the effects of 

dofetilide exposure on M54T hMiRP mutated channels to dramatically prolong APD90. 

As M54T hMiRP mutated channels exhibit fast deactivation, our analysis suggests that 

a channel opener that slows deactivation would be  the postulated as the ideal channel 

opener. Therefore, type 1 agonists, which slow deactivation and attenuate inactivation, 

would be more appropriate in this case than type 2 agonists, which attenuate 

inactivation without slowing deactivation [28]. Figure 7A shows that addition of 230 

nM RPR260243 (orange thick line), a type 1 agonist, following application of 16 nM 

dofetilide in M54T hMiRP1 mutated cells at 1 Hz (orange thin line) shortened APD90 to 

the level observed in WT cells in the presence of 16 nM dofetilide at 1 Hz (black thin 

line). In other words, adjunctive therapy with a type 1 hERG channel activator 

cancelled the effects of the M54T mutation.  This also was observed at 0.67 Hz and 2 

Hz (2.3 ms and 7.8 ms APD90 difference, respectively). Importantly, the reduction in 

APD90 predicted by the model simulations in both WT and M54T hMiRP mutated cells 

in the presence of 230 nM RPR260243 was comparable (~26 ms, see Figure 7B at 1Hz) 

and the shortening was dose-dependent (see Figures 7B and 7C at 1Hz).  This prediction 

suggests that the type 1 hERG channel activator did not discriminate between WT and 

mutant channels, suggesting that the drug would not cause unexpected effects through 

interaction with the mutation.  
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Next, we used our in silico method to predict properties to improve the performance of 

this activator. Our simulations suggest that elimination of the effects of RPR260243 on 

inactivation (RPR260243_mod) would minimize the shortening of the APD90 in the 

absence of IKr blockers while reducing the APD90 prolongation of M54T hMiRP1 

mutated cells and the related in silico mutant in the presence of dofetilide. Indeed, 

addition of 1.2 mM RPR260243_mod to 16 nM dofetilide in M54T hMiRP1 mutated 

cells normalized APD90 to WT in the presence of 16 nM dofetilide at 1Hz (Figure 7D), 

0.67 Hz and 2 Hz (0.7 ms, 1.5 ms and 18.4 ms APD90 difference, respectively). 

Importantly, this concentration of RPR260243_mod did not reduce the APD90 of WT 

and M54T hMiRP1 mutated cells in the absence of dofetilide (Figure 7E), except for a 

small 4 ms reduction at 2 Hz. In addition, a ten-fold increase in RPR260243_mod 

concentration did not reduce the APD90 of WT cells in the absence of dofetilide at 1 Hz  

(Figure 7F) and only reduced it in 6 ms at 2 Hz. Similar results were obtained when 

these channel openers were added to in silico mutated cells with hastened deactivation.  

(Approximate position of Figure 7) 

 

3.6 Effects of heart rate and combination of mutations   

To further investigate the genetic predisposition to aLQTS, the influence of heart rate 

and the presence of silent mutations on other ionic currents were also analyzed. 

 

3.6.1 Heart rate  

We next tested the rate dependence of pharmacological amplification of IKr allelic 

variants on APD90 during exposure to the drugs that most amplified them at 1 Hz 

(Actilide_Oc, Inactilide_Oi and drugs exclusively binding and unbinding in the closed, 

open or inactivated states).  Drugs were tested at fast (2 Hz) and slow frequencies (0.67 

Hz). Figure 8 shows the rate dependence of the effects of activation (A), deactivation 

(B), inactivation (C) and recovery from inactivation (D) Ikr mutants producing a 50 ms 

prolongation of APD90 under drug-free conditions at 1Hz on AP90 under drug-free 

conditions (black) and under exposure to low dose Actilide_Oc_1 (red), 

Inactilide_Oi_1(green), and Drug_C1 (blue). Our simulations show that the same drugs 

that amplified mutant effects on APD90 prolongation at 1 Hz also amplified them at fast 

and slow frequencies, although the magnitude of the APD90 prolongation depended on 
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the type of the drug, the mutant and the heart rate. In general, the slower the frequency, 

the larger the mutant amplification on APD90 predicted. As observed at 1 Hz, APD90 of 

deactivation mutants were preferentially prolonged by most drugs, especially by 

Actilide_Oc and Inactilide_Oi. Low doses of these drugs produced EADs at 0.67 Hz 

and APD90 longer than 500 ms at 2 Hz (Figure 8B). Drugs binding in only one state also 

enhanced the APD differences between deactivation mutants and WT, although to a 

lesser extent (Figure 8B). In addition, the effects of impaired activation on APD90 were 

especially amplified under exposure to Actilide_Oc, regardless of the pacing rate 

(Figure 8A). Finally, Inactilide_Io was the type of drug that most amplified inactivation 

and recovery from inactivation mutant effects on APD90 prolongation at all frequencies 

(Figures 8C and 8D). 

(Approximate position of Figure 8) 

 

Differences between WT cells and IKr mutants on APD heart rate adaptation to abrupt 

changes in pacing frequency under drug-free conditions and under exposure to selected 

IKr-drug interactions were also investigated (see supplemental material, Figure S3 and 

Table S4). WT cells exhibited a biphasic APD accommodation to abrupt changes in 

pacing rates under drug-free conditions as observed experimentally. Notably, the 

simulated time constants (shown in Figure S3 and Table S4) were close to the values 

experimentally recorded [17, 20] and simulated in other works [19, 20]. The biggest 

differences between WT cells and IKr mutants on APD adaptation to abrupt changes in 

pacing rate under drug exposure were found in slow_decelarating and slow_accelarating under 

Inactilide_Oi_1 exposure, especially between WT cells and activation IKr mutants (see 

supplemental material, Figure S3 and Table S4). 

 

3.6.2 Combination with other silent mutations  

APD90 of control cells and IKr mutants under drug free conditions were prolonged in the 

presence of IKs or INaL silent mutations, although the extent of APD90 prolongation 

depended on the specific combination of mutations. Indeed, APD90 of activation, 

deactivation, inactivation and recovery from inactivation IKr mutants whose APD90 was 

50 ms longer than WT under drug-free conditions exhibited a 18 ms, 24 ms, 29 ms and 

29 ms prolongation in the presence of IKs silent mutations and a 18 ms, 25 ms, 25 ms 
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and 25 ms prolongation in the presence of INaL mutations, respectively (see 

supplemental material, Figure S4). 

 

Amplification of the effects of IKr mutants on APD90 under drug exposure was further 

enhanced when IKr mutants were combined with IKs or INaL mutations, although INaL 

silent mutations exerted a smaller influence (Figure S4 and Table S5). Importantly, 

deactivation defective mutants in combination with IKr and INaL silent mutations 

routinely developed EADs under exposure to low doses of Actilide_Oc and 

Inactilide_Oi (Figure S4). It is to be noted that Inactilide_Oi amplified the effects of 

impaired inactivation and recovery from inactivation IKr in APD90 prolongation much 

more effectively in combination with latent IKs mutants (Figure S4). Indeed, 3.6 nM 

(low dose) of Inactilide_Oi_1 prolonged the effects of IKr inactivation and recovery 

from inactivation mutants on APD90 prolongation from 50 ms to 73 ms in the absence of 

IKs latent mutants (Figure 4) and from 49 ms to 96 ms in the presence of IKs latent 

mutants (Figure S4). The bigger influence of IKs silent mutants on the effects of 

defective IKr on APD90 than INaL silent mutants may be related to the fact that both IKr 

and IKs contribute to the repolarization reserve of the cells, so a reduction of both 

currents can create a synergistic effect on APD90 prolongation. 

 

4. Discussion 

4.1 Main findings 

We used a computational approach to identify characteristics of drugs that selectively 

unmask latent, mild and moderate IKr mutations. The simulations predicted that drugs 

exhibiting high affinity closed-state and low affinity open-state block (Actilide_Oc) or 

high affinity inactivated-state and low affinity open-state block (Inactilide_Oi) unmask 

aLQTS arising from IKr gene variants. Exposure to such drugs caused dramatic APD 

prolongation in the setting of mutations causing faster IKr deactivation. By contrast, cells 

with impaired activation were predicted to develop the longest APDs following 

exposure to drugs exhibiting high affinity closed-state binding and low affinity open 

state block (Actilide_Oc). Addition of drugs with other properties to cells with impaired 

activation produced less APD prolongation. Defects in channel inactivation and 
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recovery from inactivation were revealed with drugs exhibiting high affinity 

inactivated-state binding and low affinity open-state block (Inactilide_Oi) while they 

were hidden under exposure to other type of drugs. Importantly, our method could be 

expanded and used to predict which type of drug would most affect any characterized 

IKr mutation.  We have constructed a comprehensive library of mutant and drug 

interaction templates that can be readily modified to predict interactions of interest.   

 

To our knowledge, this is the first time that a provocative test has been shown to 

selectively differentiate mutations in an ionic channel. This study, which is supported 

by experimental evidence, intends to be a proof of concept for future provocative tests 

in IKr and for the design of provocative tests in other ionic currents.  

 

Our results suggest the specific properties of IKr blocking drugs most likely to cause 

aLQTs and amplify the impact of allelic variants in IKr genes in those at risk of 

development of drug-induced arrhythmias. This study reinforces a widely understood 

concept – that not all IKr block is the same. But, our results also suggest specific 

properties of IKr block that should be included in pre-clinical screening to ensure 

cardiac safety of all commercial therapeutics. Our study strongly suggests that an 

observation of reduction of current comprises insufficient information to evaluate 

cardiac safety: Screening must include kinetic measurements of hERG block.  

 

4.2 Latent mutations  

Despite the work done on the identification of proarrhythmic risk factors, prediction of 

the development of arrhythmic episodes in an individual subject remains unattainable 

[29]. It is well-known that genetic factors may increase the proarrhythmic risk, 

however, the importance of altered gene expression in drug-induced TdP development 

is not clear [29]. Our work intends to begin to shed light on these questions and it could 

be used to predict the characteristics of the drugs that are more proarrhythmic in the 

presence of any characterized IKr mutation. In our simulations the longest drug-induced 

APD prolongations were observed in deactivation mutated cells (Figure 3, second 

column) and most prototypical drugs preferentially prolonged APD in deactivation 

mutants than in WT cells, especially Actilide_cO and Inactilide_Oi, dofetilide being 
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notably similar to the latter. Clinical and experimental observations relating accelerated 

deactivation to aLQTS support our results. One patient with normal QT interval that 

suffered procainamide-induced arrhythmia had the M54T-hMiRP1 mutation that 

accelerates deactivation [1], which has been also observed in one patient among 230 

patients with sporadic LQTS but not in 1010 controls [4]. Our study suggests that this 

latent mutation is prone to develop aLQTS especially under provocation with dofetilide-

like drugs and Actilide_cO. In addition, the S706F/KCNH2 and M756V/KCNH2 

mutations have been associated to aLQTS [30]. These mutations accelerate channel 

deactivation and inactivation and alter the steady state inactivation curve [30]. Our 

study suggests that these alterations on IKr kinetics could lead to aLQTS especially in 

the presence of Inactilide_Oi (like dofetilide), as observed in the virtual inactivation, 

recovery from inactivation and deactivation mutants, and Actilide_cO, similar to the 

prototypical deactivation mutants. In addition, the A561P HERG mutation, which 

significantly accelerates the deactivation and shifts the steady state activation curve, has 

been linked to LQTS and clobutinol-induced arrhythmic episodes [31]. The alterations 

in deactivation and activation kinetics produced by this mutation also suggest a 

preferential prolongation of the APD in the presence of Actilide_cO and Inactilide_Oi. 

 

Other IKr kinetic defects have also been implicated in aLQTS and arrhythmias, 

consistent with our predictions of APD prolongation resulting from altered activation, 

inactivation and recovery from inactivation in the presence of certain drugs (Figure 4, 

first, third and fourth column). In principle, our work suggests that these mutations 

would be less proarrhythmic than deactivation mutants, although it also depends on the 

severity of the IKr alterations. The D342V/KCNH2 and H492Y/KCNH2 mutations 

mostly alter inactivation kinetics and have been associated with aLQTS [30]. According 

to our study, only analogs of drugs like Inactilide_Oi and dofetilide, would amplify the 

effects of these mutants. As previously mentioned, the S706F/KCNH2 and 

M756V//KCNH2 in addition to accelerate deactivation they also accelerate inactivation 

[30]. Moreover, the polymorphism R104L in hERG causes defects in activation and 

inactivation and has been related to the incidence of TdP induced by dofetilide [32]. 

Indeed, our study suggests that Inactilide_Oi, like dofetilide, and Actilide_cO could 

significantly prolong the APD in this mutation due to its defective inactivation and 

activation, respectively. 
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4.3 Provocative tests 

Potent sodium blockers, like flecainide, have been used to unmask Brugada Syndrome 

in patients with concealed forms of the disease [9]. More recently, combined sodium 

and calcium block has been shown to be more effective for revealing this disease [10]. 

In addition, epinephrine and isoproterenol, which enhance beta-adrenegic stimulation, 

unmasked some silent LQT1 mutation carriers [8, 33]. Sotalol, a potent IKr blocker, has 

been shown to uncover altered repolarization [11], while another, erythromycycin, 

prolonged the T peak-to-end interval in LQT2 mutations, causing only modest QT 

prolongation in LQT1 and LQT2 mutations with normal QT interval [12]. In the 

aforementioned works drugs were used to reveal the genetic defects by reducing the 

repolarization reserve. However, in our study IKr-drug interactions are designed to 

reveal the specific impaired IKr kinetics. Our results indicate that unmasking of specific 

impaired IKr kinetics would be possible using drugs with disparate affinities in the 

binding states of the IKr channel. Our results suggest that dofetilide could be used to 

unmask defects in channel deactivation, inactivation and recovery from inactivation as it 

exhibits high affinity inactivated-state binding and low affinity open-state block 

(Inactilide_Oi). 

 

When a drug exhibits variable state affinity, the extent of IKr reduction depends on the 

affinity of the drug in each state and the probability of residency of the channel in 

conformations where the drug interacts. Therefore, a mutation increasing the probability 

of the state where the drug is more potent will favor the block of the channel while a 

genetic defect decreasing that probability would minimize the block. Importantly, this 

mechanism could also permit the selective unmasking of silent mutations of other ionic 

currents, such as INa or IKs, which would improve diagnostic of all types of LQTS and, 

subsequently, the therapy of the LQTS.  

 

Major advances in the pharmacological field have occurred including the automated 

patch-clamp, which allows high-throughput compound screening [34]. In addition, 

molecular modeling techniques have been implemented for the assessment of the 

blocking ability of drugs to the hERG1 pore domain [35]. Moreover, crystal structures 
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of different conformational states of a K+ channel in bacteria have been identified [36], 

which would allow the estimation of the differences of drug affinity in the different 

states of the channel. These and other new advances could be used in combination with 

our computational approach for drug and disease screening and identification and 

production of drugs or small molecules for provocative tests. 

 

4.4 Drug safety 

Our results indicate that drugs with disparate affinities to conformational states are 

more likely to amplify APD differences between WT and mutated cells than drugs with 

similar affinities to all states. Examples of drugs with disparate affinities to 

conformational states and related to drug-induced QT prolongation and arrhythmia are 

dofetilide (which exhibits a 70-fold preferential binding to the inactivated state relative 

to the open state), astemizole, cisapride, dl-sotalol, and terfenadine [22]. Our results also 

suggest that exactly these kinds of drugs should be avoided in pharmacological 

therapies or accompanied by IKr openers, as they could favor the appearance of aLQTS 

and arrhythmias in patients with common allelic variants in genes encoding the proteins 

constituting IKr. Therefore, the relative potency of block in the states that the drug 

interacts with the channels should be measured in the process of pre-clinical drug 

screening. Indeed, our simulations suggest that if these potencies were realized in the 

preclinical screen, then appropriate adjunctive therapy with a hERG channel activator 

could be employed to cancel any additive effects of a mutation. 

 

Our results confirm that the risk of TdP is not solely determined by degree of blockade 

of IKr [3, 29]. Pharmacokinetic–pharmacodynamic relationships are known to be 

relevant for the development of TdP [29]. In this study, we show that the kinetics of 

block is crucial for amplifying the kinetic defects of the channel that prolong the APD, 

which may favor the generation of arrhythmias. 

 

4.5 Limitations  

In this work we used the same values of drug affinities for WT and mutated IKr cells. 

Severe mutations themselves can, however, modify the affinity of the drug [27] by 
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indirect allosteric modifications in the structure of the channel protein [27]. The subtle 

mutations, as simulated here, would not be expected to significantly modify the 

structure of the channel. It is also worth mentioning that some IKr blocking drugs have 

been shown to modify channel trafficking [37]. In this paper, this effect has not been 

specifically taken into account, but would be interesting to consider with sufficient data 

to inform the model in future studies [37].  

In this study a wide variety of virtual drugs has been simulated in order to predict the 

most potentially lethal combinations of drug properties and IKr kinetic abnormalities. 

Our results show that amplification of IKr kinetic defects on APD is observed under 

exposure to drugs with disparate affinities to conformational states of the IKr channel 

because of the differences in the residence of the channels in the binding states between 

the mutated and WT channels. Our study could be extended by considering an almost 

infinite possibility of additional virtual drugs, for example drugs with varying affinities 

to discrete closed states. Tools utilized in this study for simulating the effects of drugs 

and mutations on AP will be available upon request.  

Finally, our in silico simulation approach allows investigations that would be difficult 

to undertake in vitro, such as precise kinetic drug properties and mutations, and the use 

of human cells. Our model of IKr drug interaction has been experimentally validated as 

it successfully reproduced drug sensitivities of two hERG mutations, N588E and 

N588K, to IKr dofetilide block.  Although it is outside of the scope if this paper, the 

performance of experiments to compare drug block for WT and KCNE2 mutants at 

different dofetilide concentrations would be also interesting. These experiments could 

also be used to validate Markov simulations of channel block. 

 

Appendix A. Supplementary data 

Supplementary data related to this article can be found in the online version. 
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Figure legends 

Figure 1. Dofetilide IKr block in WT and IKr mutant cells. Onset of WT IKr block by 50 

nM dofetilide (A, B) and 3 M dofetilide washout (C), conductance voltage curves (E) 

and Hill plots (F) of dofetilide-binding to WT, N588E-hERG and N588K-hERG  

mutants. In panels A-C, symbols correspond to experimental results [24] (A), [25] (B) 

and [26] (C) and solid lines represent the model predictions. Top panels and bottom 

panels in E and F represent the experimental [22] and the predicted results, respectively. 

Panel D summarizes the association (k, µM-1s-1) and dissociation (r, 10-3s-1) rates for 

dofetilide-IKr interaction, the values of clinical [23] and simulated QT intervals at 60 

bpm under drug-free and under a therapeutic dofetilide dose and the alterations 

introduced in the IKr model to simulate the effects of the N588E and N588K mutations. 

In each case, ionic concentrations and temperature (37 ºC, 28 ºC and 22 ºC for Panels A, 

B and C, E and F, respectively) were fixed to mimic the experimental conditions.  

Experimental data from [22] is reproduced with permission. Experimental data from 

[24] (http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2001.013296/full, DOI: 

10.1113/jphysiol.2001.013296) is reproduced with permission. Experimental data from 

[25] is reproduced with kind permission from Springer Science and Business Media. 

The onset of block by 0.5 μM dofetilide with repetitive pulsing is voltage-

dependent.Two-second depolarizing pulses to –40, 0 or +60 mV were applied with a 12-

s interpulse interval (IPI). Pulses to –40 mV were applied for a longer period to allow 

for steady-state inhibition. All values are mean ±SEM (n=4, 3 and 4 for –40, 0 and +60 

mV respectively). Experimental data from [26] is reproduced by permission of Oxford 

University Press.  

 

Figure 2. Fink et al. Markov model of the human IKr channels [13] (A) and simulated 

drug-IKr interaction models (B, C, D, E, F) with nondrug bound and drug bound estates 

(d), kC, kO and kI are the association rates constants in the closed, open and inactivated 

states, respectively, D is the drug concentration and rC, rO and rI are the dissociation rate 

constants in the closed, open and inactivated states, respectively. Binding states are red 

colored.  
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Figure 3. Simulated steady state AP (top row), IKr (middle row) and open state 

probability (bottom row) for endocardial WT (black) and mutated cells with altered IKr 

activation (first column), deactivation (second column), inactivation (third column) and 

recovery from inactivation (forth column) producing a 50 ms (red) APD90 prolongation 

under drug-free conditions. Markovian schemes of the simulated IKr mutants are 

depicted at the top. The orange arrows represent the transition rate that has been altered 

to simulate each mutation. 

Figure 4. Simulated steady state AP for endocardial WT (black) and mutated cells with 

altered IKr activation (first column), inactivation (second column), deactivation (third 

column) or recovery from inactivation (fourth column) producing a 10 ms (blue), 20 ms 

(green) and 50 ms (red) APD90 prolongation under drug-free conditions (top row) and in 

the presence of low (middle row) and high (bottom row) dose of  Actilide_Oc_1 (first 

and second column) or Inactilide_Oi_1 (third and fourth column) (supplemental 

material, Table S3). Markovian schemes of the simulated drug-channel interactions are 

depicted at the top. The orange arrows represent the transition rate that has been altered 

to simulate each mutation and the pink arrow indicates that the drug has a low affinity 

in that binding state.  

Figure 5. Experimental (top panels) [4] and simulated (bottom panels) steady-state 

activation (A and C) and deactivation time constants for WT (squares) and M54T 

hMiRP1 mutated (triangles) channels at 22ºC. Top panels are reprinted from [4] with 

permission from Elsevier. 

Figure 6. Simulated steady state AP of isolated endocardial cells (top row) and pseudo-

ECG (bottom row) for WT (black) and M54T hMiRP1 cells (orange) in the absence 

(left column) and in the presence of 16 nM (low dose) and 48 nM (high dose) of 

dofetilide (middle and right column, respectively). Inset of panel F shows the AP of 

midmyocardial cell #85 of the 1D model of the mutated transmural wedge preparation. 

Figure 7. Simulated steady state AP for endocardial WT (black) and M54T hMiRP1 

cells (orange) in the absence (thin) and in the presence (thick) of real (top row) and 

prototypical (bottom row) IKr activators under different conditions: in the presence of 

low dose (16nM) dofetilide (first column) and under IKr blocker drug free conditions 

(middle and last column). IKr activator dose is indicated in each panel. 
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Figure 8. Rate dependence of the effects of IKr mutants on ADP90 under drug-free 

conditions (black) and under exposure to low doses of those drugs that significantly 

amplify them, namely Actilide Oc_1 (red), Inactilide_Oi_1 (green) and Drug_C1 (blue) 

(supplemental material, Table S3). ADP90 differences between WT cells and mutated 

cells with altered IKr activation (A), deactivation (B), inactivation (C) and recovery from 

inactivation (D) producing a 50 ms (red) APD90 prolongation under drug-free conditions 

at 1 Hz. ADP90 differences between WT cells and mutated cells with altered IKr 

deactivation under exposure to low doses of Actilide Oc_1 (red) and Inactilide_Oi_1 

(green) at 2 Hz is not shown as mutated cells were stimulated before the repolarization 

process was completed. Markovian schemes of the simulated IKr mutants are depicted at 

the top. The orange arrows represent the transition rate that has been altered to simulate 

each mutation. 
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Table S1. Wild-Type (second column) and M54T hMiRP1 mutation (third column) transition 

rate constants. Tbase corresponds to 310 K. 

  



APD90 

prolongation 
Activation  
(αα factor) 

Deactivation 
( factor) 

Inactivation 
(αi factor) 

Recovery from 
inactivation 
(i factor) 

50 0.23 50 1.7 0.6 
20 0.41 23 1.25 0.81 
10 0.57 13 1.12 0.9 
 

Table S2. Scale factors in the rate constants used to simulate the concealed mutations (activation, 

deactivation, inactivation and recovery from inactivation, first, second, third and fourth column, 

respectively) depending on the observed APD90 prolongation (first column). 

  



 Name Low Dose 
(nM) 

Closed Open Inactivated 
k(µM-1s-1) r (s-1) k(µM-1s-1) r (s-1) k(µM-1s-1) r (s-1) 

B Drug_C1 10 0.511 0.003606     
Drug_C2 10 25.55 0.18030     
Drug_C3 10 51.1 0.3606     

C Drug_O1 10   0.511 0.003606   
Drug_O2 10   25.55 0.18030   
Drug_O3 10   51.1 0.3606   

D Drug_I1 10     0.511 0.003606 
Drug_I2 10     25.55 0.18030 
Drug_I3 10     51.1 0.3606 

E Actilide_Oc_1 3 0.511 3.606e-5 0.511 0.003606   
Actilide_Oc_2 290 0.511 0.003606 0.511 0.3606   
Actilide_ Oc_3 30 0.511 3.606e-4 0.511 0.03606   
Actilide_ Oc_4 30 0.511 3.606e-5 0.511 0.03606   
Actilide_Co 750 0.511 0.3606 0.511 0.003606   

F Dofetilide 16   0.511 0.016227 0.511 2.318 e-4 
Inactilide_Oi_1 3.6   0.511 0.003606 0.511 3.606e-5 
Inactilide_ Oi_2 340   0.511 0.3606 0.511 0.003606 
Inactilide_ Oi_3 35   0.511 0.03606 0.511 3.606e-4 
Inactilide_ Oi_4 35   0.511 0.03606 0.511 3.606e-5 
Inactilide_ Io 690   0.511 0.003606 0.511 0.3606 

 

Table S3. Kinetic rates of the simulated drug-IKr interactions. Markovian models (first 

column) are shown in Figure 2 and k and r are the association and dissociation rate 

constants, respectively.  

 

 

  



 

Figure S1. Impact of IKr Markovian transition rates (top row) on IKr electrophysiology (left 

column) analyzed using a version of the sensitivity analysis proposed in [1]. Relative sensitivities 

of the electrophysiological properties of IKr (left column) to changes in its transition rates (top 

row) are represented using a gray color scale. White indicates that the transition rate (column) is 

the most influential transition rate for that current characteristic (row). Negative signs designate 

that the IKr property and the transition rate vary inversely. The sensitivity analysis was performed 

by multiplying or dividing by five one transition rate at a time. The increment of each IKr 

electrophysiological property was calculated as the difference between the value observed when 

the rate is five-folded and the value obtained when the rate is divided by five. Then, the relative 

sensitivity of a certain IKr electrophysiological property to a certain transition rate was calculated 

by dividing the corresponding increment by the maximum absolute value of the increments 

observed for that IKr property. Protocols are defined as in [2]. 

  



 

 

Figure S2. Simulated steady state AP (top row) and IKr (bottom row) and open state 

probability (bottom row) for endocardial WT (black) and mutated cells with altered IKr 

deactivation producing a 50 ms (red) APD90 prolongation under drug-free conditions 

(first column) and in the presence of 3 nM Actilide_Oc_1 (low dose, second column), 3.6 

nM Inactilide_Oi_1 (low dose, second column) and 10 nM Drug_C1 (low dose, forth 

column) (supplemental material, Table S3). Markovian schemes of the simulated drug-

channel interactions are depicted at the top. The orange arrows represent the transition 

rate that has been altered to simulate the deactivation mutation and the pink arrow 

indicates that the drug has a low affinity in that binding state.  

 

 

  



 

 

 

Figure S3. Simulated APD90 rate adaptation to abrupt changes in pacing frequency for 

endocardial WT (black) cells and mutants (red) with altered IKr activation (first row), 

deactivation (second row), inactivation (third row) and recovery from inactivation (fourth 

row) producing a 50 ms APD90 prolongation at 1Hz under drug-free conditions (left 



column) and in the presence of low doses of the types of drugs that most prolong the 

APD90 of each IKr mutated cell: 3 nM of Actilide_Oc_1 (first row), 10 nM Drug_C1 

(second row) or 3.6 nM of Inactilide_Oi_1 (third and fourth row) (supplemental material, 

Table S3). Drug_C1 is the drug that most prolongs the APD90 of the defective 

deactivation mutant without producing an AP longer than the basic cycle length at 1.7 

Hz. Time constants of the fast and slow phases of APD90 adaptation to accelerating and 

decelerating pacing rates are indicated in each panel. All mutants had shorter 

fast_decelerating than WT cells (18.6 s), with the activation mutant being the one that most 

shortens it (11.8 s) followed by the inactivation and recovery from inactivation mutants 

(13.7 s and 13.9 s, respectively). fast_accelerating was also prolonged by most mutations, 

although to a lesser extent. When WT cells and IKr mutants were exposed to the selected 

drugs, both slow time constants were prolonged, especially under Actilide_Oc_1 and 

Inactilide_Oi_1 exposure (second column and Table S4). The biggest differences 

between WT cells and IKr mutants on APD adaptation to abrupt changes in pacing rate 

under drug exposure were found in slow_decelarating and slow_accelarating when WT cells and 

activation IKr mutants were exposed to low dose of Inactilide_Oi_1. Indeed,slow_decelarating 

of WT cells and the activation IKr mutant was 114.7 s and 114.2 s under drug-free 

conditions and 71.4 s and 579 s after Inactilide_Oi_1 application, respectively, and  

slow_accelarating of WT cells and activation IKr mutants was 109.1 s and 114.6 s under drug-

free conditions and 97.6 s and 720.7 s after Inactilide_Oi_1 application. A dramatic 

increase on the difference in slow_accelarating between WT cells (109.1 s) and defective 

inactivation (115.2 s) and recovery from inactivation (109.5 s) mutants was also observed 

in the presence of Inactilide_Oi_1 (slow_accelarating = 97.6 s, 573.3 s and 581 s, 

respectively).  It is to be noted that negligible differences between the effects of Drug_C1 

and Drug_C2 on dynamics of APD rate adaptation of WT cells and IKr mutants were 

found (Table S4). 

 

  



 Drug-free Drug_C1 Drug_C2 Actilide_Oc_1 Inactilide_Io_1 

fast accelerating (s) 

WT 5.5 4.6 4.6 4.6 4.6 

Activation Mutant 4.8 3.3 3.3 2.9 3.8 

Deactivation Mutant 5.9 3.8 3.8   

Inactivation Mutant 5.1 3.9 3.9 3.9 3.9 
Recovery from Inactivation Mutant 5.2 3.9 3.9 3.9 4.0 

slow accelerating (s) 

WT 109.1 120.3 116.8 359.8 97.6 

Activation Mutant 114.6 121.3 121.4 357.7 720.7 

Deactivation Mutant 110.4 119.6 118.1   

Inactivation Mutant 115.2 115.1 119.5 402.6 573.3 

Recovery from Inactivation Mutant 109.5 116.8 120.8 402.9 581 

fast decelerating (s) 

WT 18.6 10.5 10.5 12.1 10.2 

Activation Mutant 11.8 7.1 7.1 7.0 7.7 

Deactivation Mutant 15.9 7.3 7.2   

Inactivation Mutant 13.7 8.0 8.0 9.3 7.4 

Recovery from Inactivation Mutant 13.9 8.1 8.1 9.4 7.5 

slow decelerating (s) 

WT 114.7 119.1 119.1 477.2 71.4 

Activation Mutant 114.2 122.7 123.2 351.8 579 

Deactivation Mutant 116 126.4 127.2   

Inactivation Mutant 114.9 126.6 125.1 515.8 119.6 

Recovery from Inactivation Mutant 114.5 123.6 122.6 510.2 119.0 
 

Table S4. Dynamics of APD adaptation to abrupt changes in pacing rate for endocardial  

WT cells and mutants with altered IKr activation, deactivation, inactivation and recovery 

from inactivation producing a 50 ms prolongation at 1 Hz (rows) under drug-free 

conditions and in the presence of selected drugs (columns) (Table S3). fast_accelerating, 

slow_accelerating, fast_decelerating and slow_decelerating are the time constant of the fast and the 

slow phase of the APD accommodation to the change in pacing rate from 1Hz to 1.7 Hz 

and from 1.7 Hz to 1 Hz, respectively. 

 

  



 

 

Figure S4. Simulated steady state AP for endocardial mutated cells with reduced IKs and 

increased INaL and in combination with altered IKr activation (first column), deactivation 

(second column), inactivation (third column) and recovery from inactivation (fourth 

column) under drug-free conditions in the presence of 3 nM (low dose) Actilide_Oc_1 

(first and second columns) or 3.6 nM (low dose) Inactilide_Io_1 (third and fourth 

column) (supplemental material, Table S3). Markovian schemes of the simulated IKr 

mutations are depicted at the top. The orange arrows represent the transition rate that has 

been altered to simulate each defective IKr. 

  



 
 IKr concealed mutants 
 Activation 

 
Deactivation 

 
Inactivation 

 
Recovery 

from 
inactivation 

Defective IKs 52 54 59 59 
Defective INaL 47 54 53 53 
Defective IKs + Drug_C1 55 120 69 69 
Defective INaL + Drug_C1 49 113 59 59 
 

Table S5. APD90 difference (ms) between WT and IKr activation, deactivation, inactivation 

and recovery from inactivation mutants (first, second, third and fourth column, respectively) 

combined with IKs or INaL silent mutations under drug-free conditions and under exposure 

to low dose of Drug_C1. 

  



 

 

Figure S5. Simulated pseudo-ECG for WT at 1 Hz in the presence of high dose of every 

drug considered in this study (see Table S3). Horizontal dashed lines indicate the baseline 

and vertical dashed lines highlight the instant 600 ms after the stimulation. 

  



 

Figure S6. Simulated pseudo-ECG (left) and APD along the 1D transmural wedge (right) 

for WT at 1 Hz in the presence high dose of certain drugs (see Table S3). Horizontal 

dashed lines indicate the baseline and vertical dashed lines highlight the instant 600 ms 

after the stimulation. 
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