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Abstract. The Hyperbolic Heat Transfer Equation describes heat processes
in which extremely short periods of time or extreme temperature gradients

are involved. It is already known that there are solutions of this equation

which exhibit a chaotic behaviour, in the sense of Devaney, on certain spaces
of analytic functions with certain growth control. We show that this chaotic

behaviour still appears when we add a source term to this equation, i.e. in the

Hyperbolic Bioheat Equation. These results can also be applied for the Wave
Equation and for a higher order version of the Hyperbolic Bioheat Equation.

1. Preliminaries.

1.1. Introduction. Nowadays, surgery uses high temperature ablative techniques,
such as laser, radiofrequency, microwave, or ultrasound energy to heat biological tis-
sues to over 50◦C in a localized and safe way. Theoretical modeling can provide
information about the biophysics of these techniques quickly and cheaply. Specif-
ically, the thermal problem is modeled using the Bioheat Equation (BE) as the
governing equation [25]

− uxx +
1

α
ut =

1

k
g , (1)

where u represents the temperature and α and k the thermal diffusivity and con-
ductivity of the material. The source term g refers to internal heat sources and
represents different contributions for the heat sources in a biological tissue:

g = gs + gp + gm. (2)

The subscript s denotes a surgical heat source (e.g. laser or radiofrequency
treatment), p refers to blood perfusion, and m to any source related with metabolic
activity. The presence of g in equation (1) differences BE from the classic heat
equation.

BE, as the classic heat equation, is based on the Fourier Theory which assumes an
infinite thermal energy propagation speed. Although this theory might be suitable
for modeling most ablative procedures, there are other surgical procedures in which
extremely short periods of time or extreme temperature gradients are involved and
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2 J.A. CONEJERO, F. RODENAS AND M. TRUJILLO

it is necessary to consider a non-Fourier model: The Hyperbolic Bioheat Equation
(HBE) [24],

− uxx +
1

α
(ut + τ utt) =

1

k
(g + τ gt) , (3)

where τ is the thermal relaxation time, which depends on the material and repre-
sents the time that goes by since the temperature gradient is imposed until the heat
flux is produced. Again, the presence of internal heat sources differences HBE from
the hyperbolic heat equation.

The expression of the internal heat sources varies according to the ablative tech-
nique employed. Such expression is a function of spatial and temporal variables.
The spatial dependence is related with the type of ablative technique employed (ra-
diofrequency, laser, microwaves, or ultrasound). The time-dependence refers to the
energy delivering mode (e. g. continuous or pulsed). Therefore, equation (3) can
present many different formulations. In [27], the laser heating heat source term in
the one-dimensional case for a pulsed protocol was:

gs(t, x) = M e−bx (H(t)−H(t−∆t)) x ∈ R, t ≥ 0 (4)

where M and b are physical parameters, H(t) is the Heaviside function and ∆t is
the time that the laser pulse is applied to the tissue. Figure 1 shows an schematic
representation of this kind of source.

Figure 1. Schematic representation of the application of a laser source.

In [28] the authors presented the expression for a spherical laser source

gs(t, R) =
N e−dR

R
ω(t), (5)

and for an infinitely long cylindrical laser source

gs(t, R) =
P e−qR

R
1
2

ω(t), (6)

being N , d, P and q biophysical parameters and R, the radial coordinate. ω(t)
refers to any type of time-dependent protocol for energy delivering. In [21] there



CHAOS FOR THE HYPERBOLIC BIOHEAT EQUATION 3

is another example of a source coming from radiofrequency, where the heat of a
continuous source in the spherical coordinates was

gs(t, r) =
Q

R4
H(t) R > 0, t ≥ 0, (7)

being Q a physical parameter.
And in [20] we found the expression for a spherical microwave or ultrasound

source

gs(t, R) =
Z e−mR

R2
ω(t) (8)

and for an infinitely long cylindrical microwave or ultrasound source

gs(t, R) =
V e−wR

R
ω(t) (9)

Z, m, V and w being biophysical parameters.
The kind of tissue determines the ablation technique and the consideration or

not of gp and gm in equation (2). In this sense, gp = 0 in non-perfused organs like
the cornea, but gp is a temperature-dependent expression in well perfused organs
like the liver. In the case of gm only in organs which can generate metabolic heat
is taking into account usually with a constant value.

The dynamical behaviour presented by the solutions of the heat equation, when
there is no heat source, has been studied on certain spaces of analytic functions with
certain growth control [18]. Similar results were also obtained for the Hyperbolic
Heat Transfer Equation (HHTE) in the absence of heat sources [9, 17]. Certainly,
it is also interesting to know some aspects of the dynamical behaviour of the HBE.
In this sense the aim of this note is to study the chaotic asymptotic behaviour of
certain solutions of a Cauchy problem in which the governing equation is the HBE,
that is  τutt + ut = αuxx + g(t, x)

u(0, x) = ϕ1(x), x ∈ R
ut(0, x) = ϕ2(x), x ∈ R

 , (10)

where g(t, x) represents the corresponding term to the heat source in equation (3),
ϕ1(x) represents the initial temperature and, and ϕ2(x), the initial variation of
temperature. We consider a general case, but with gp = 0, since we consider a linear
problem. To develop this study, we will represent the solutions of (10) in terms of
the solutions of the HHTE which are expressed by a C0-semigroup generated by
certain first order equation. The solutions of (10), and the associated C0-semigroup,
will be considered on the product of a certain function space X of analytic functions
with certain growth control with itself, i.e. X ⊕X. The general treatment of the
problem shows that our results could be meaningful for all types of sources used in
ablative therapies.

1.2. C0-semigroups. A family {Tt}t≥0 of linear and continuous operators on a
Banach space X is said to be a C0-semigroup if T0 = Id, TtTs = Tt+s for all
t, s ≥ 0, and limt→s Ttx = Tsx for all x ∈ X and s ≥ 0.

Let {Tt}t≥0 be an arbitrary C0-semigroup onX. It can be shown that an operator
defined by Ax := limt→0

1
t (Ttx − x) exists on a dense subspace of X; denoted by

D(A). Then A, or rather (A,D(A)), is called the (infinitesimal) generator of the
semigroup. It can also be shown that the infinitesimal generator determines the
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semigroup uniquely. If the generator A is defined on X (D(A) = X), the semigroup
is expressed as {Tt}t≥0 = {etA}t≥0 [14].

The link between semigroups and differential equations is via the infinitesimal
generator. The unique solution of the abstract Cauchy problem{

ut = Au
u(0, x) = ϕ(x)

}
, (11)

where A is a linear operator defined on X, is given by u(t, x) = etAϕ(x). In that
sense, u(t, x) is called a classical solution of the abstract Cauchy problem (11) and
the semigroup {Tt}t≥0 = {etA}t≥0 is called the solution semigroup of (11), whose
infinitesimal generator is A.

In the case of a non-homogeneous Cauchy problem of the form{
ut = Au+ g(t, x)

u(0, x) = ϕ(x)

}
, (12)

where g(t, x) is a source term, we have the (classical) unique solution given by the
following expression:

u(t, x) = etAϕ(x) +

∫ t

0

e(t−s)Ag(s, x)ds. (13)

1.3. Linear dynamics of C0-semigroups. Given a family of operators {Tt}t≥0,
we say that this family of operators is transitive if for every pair of non-void open
sets U, V ⊂ X there exists some t > 0 such that Tt(U) ∩ V 6= ∅. Furthermore, if
there is some t0 such that the condition Tt(U) ∩ V 6= ∅ holds for every t ≥ t0 we
say that it is topologically mixing.

A family of operators {Tt}t≥0 is said to be universal if there exists some x ∈ X
such that {Ttx : t ≥ 0} is dense in X. When {Tt}t≥0 is a C0-semigroup we refer
to it as hypercyclic instead of universal. In this setting, transitivity coincides with
universality, but it is strictly weaker than topologically mixing [6].

In addition, two notions of chaos are introduced: Devaney chaos and distribu-
tional chaos. First, we recall that an element x ∈ X is said to be a periodic point
of {Tt}t≥0 if there exists some t0 > 0 such that Tt0x = x.

On the one hand, a family of operators {Tt}t≥0 is said to be chaotic in the sense of
Devaney if it is hypercyclic (universal) and there exists a dense set of periodic points
in X. On the other hand, it is distributionally chaotic if there are an uncountable
set S ⊂ X and δ > 0, so that for each ε > 0 and each pair x, y ∈ S of distinct points
we have

Dens{s ≥ 0 : ||Tsx− Tsy|| ≥ δ} = 1 and

Dens{s ≥ 0 : ||Tsx− Tsy|| < ε} = 1,

where Dens(B) is the upper density of a Lebesgue measurable subset B ⊂ R+
0

defined as

lim sup
t→∞

µ(B ∩ [0, t])

t
,

with µ standing for the Lebesgue measure on R+
0 . A vector x ∈ X is said to be

distributionally irregular for the C0-semigroup {Tt}t≥0 if for every δ > 0 we have

Dens{s ≥ 0 : ||Tsx|| ≥ δ} = 1 and
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Dens{s ≥ 0 : ||Tsx|| < δ} = 1.

Such vectors were considered in [7] so as to get a further insight into the phe-
nomenon of distributional chaos, showing the equivalence between a distributionally
chaotic operator and an operator having a distributionally irregular vector. This
equivalence has been shown for C0-semigroups in [1].

A criterion for Devaney chaos in terms of the abundance of eigenvectors of the
infinitesimal generator of a C0-semigroup was stated in [13] by Desch, Schappacher,
and Webb. Since then, this criterion has been reformulated and applied to several
examples of C0-semigroups which are solution of certain partial differential equa-
tions, see for instance [2, 10, 17]. The following version can be found in [17, Th.
7.30].

Theorem 1.1. Desch-Schappacher-Webb criterion Let X be a complex sepa-
rable Banach space and {Tt}t≥0 a C0-semigroup on X with intinitesimal generator
(A,D(A)), where D(A) denotes its domain. Assume that there exists a nonempty
open connected subset U of C and weakly holomorphic functions fj : U → X, j ∈ J ,
such that

1. U ∩ iR 6= ∅,
2. fj(λ) ∈ ker(λI −A) for every λ ∈ U , j ∈ J ,
3. for any x∗ ∈ X∗, if 〈fj(λ), x∗〉 = 0 for all λ ∈ U and j ∈ J then x∗ = 0.

Then {Tt}t≥0 is topologically mixing and Devaney chaotic.

The third condition in this result is used in order to prove the density of the span
of certain sets of eigenvectors associated to eigenvalues of A with real part greater,
equal, and smaller than 0. A criterion stated in these terms was firstly stated for
operators by Godefroy and Shapiro in [15].

Theorem 1.2. Eigenvalue criterion for chaos. Let X be a complex separable
Banach space and {Tt}t≥0 a C0-semigroup on X. Suppose that the sets

X0 := span{x ∈ X : ∃λ > 0, Ttx = eλtx, ∀t ≥ 0},

X1 := span{x ∈ X : ∃λ < 0, Ttx = eλtx, ∀t ≥ 0},

Xp := span{x ∈ X : ∃λ ∈ Q, Ttx = eπλitx, ∀t ≥ 0}

are dense in X, then {Tt}t≥0 is Devaney chaotic.

In the proof of Theorem 1.1, Condition (3) of its statement is used to satisfy
the hypothesis of Theorem 1.2, and hence to prove that the C0-semigroup is De-
vaney chaotic. As a result, we can replace Condition (3) in Theorem 1.1 with the
hypothesis of Theorem 1.2.

In addition, there exist several criteria for distributional chaos [1, 7]. Neverthe-
less, either the Desch-Schappacher-Webb criterion or the Eigenvalue criterion for
chaos imply distributional chaos, [4, Rem. 3.8], see also [5, Cor. 31]. Moreover, in
these cases we can affirm that there is a dense distributionally irregular manifold,
that is a dense manifold of distributionally irregular vectors.

More information on sufficient conditions for hypercyclicity and chaos for C0-
semigroups and operators can be found in [2, 6, 12, 13, 17, 19].

2. Analysis.
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2.1. The Hyperbolic Heat Transfer Equation. The chaotic behaviour of the
solutions of an abstract Cauchy problem (10) that is given by the Hyperbolic Heat
Transfer Equation in the absence of internal heat sources was analyzed on certain
spaces of analytic functions with certain growth control in [9], see also [17]. This can
be done if we express this second-order PDE as a first-order equation by representing
it as a C0-semigroup on the product of a certain function space with itself. To do
this we set u1 = u and u2 = ∂u

∂t . Then the associated first-order equation is
∂

∂t

(
u1

u2

)
=

 0 I
α

τ

∂2

∂x2
−1

τ
I

(u1

u2

)
,

(
u1(0, x)
u2(0, x)

)
=

(
ϕ1(x)
ϕ2(x)

)
, x ∈ R.


(14)

We fix ρ > 0 and consider the space

Xρ =
{
f : R→ C ; f(x) =

∞∑
n=0

anρ
n

n!
xn, (an)n≥0 ∈ c0

}
, (15)

endowed with the norm ||f || = supn≥0 |an|, where c0 is the Banach space of complex
sequences tending to 0. Then Xρ is a Banach space of analytic functions with a
certain growth control. By its definition it is isometrically isomorphic to c0. This
type of spaces were already used in [18]. Xρ is a Banach space of analytic functions
that is densely embedded in C(R) with the topology of uniform convergence on
compact sets of R, since it contains all polynomials. Essentially, Xρ is a space of
analytic functions with certain increasing control at infinity. In fact, (Xρ, || · ||) is
isometrically isomorphic to (c0(N0), || · ||∞).

Since

A :=

 0 I
α

τ

∂2

∂x2
−1

τ
I

 (16)

is a linear and continuous operator on Xρ ⊕Xρ, we have that {etA}t≥0, with

etA =
∑
n≥0

(tA)n

n!
, (17)

is well defined on Xρ⊕Xρ, and we have that (etA)t≥0 is a C0-semigroup on Xρ⊕Xρ

(even uniformly continuous), which is the solution semigroup of (14) on Xρ ⊕Xρ,
see for instance [14, Ch. 1, Prop. 3.5]. As we have already pointed out, the C0-
semigroup {etA}t≥0 is chaotic on Xρ ⊕ Xρ [9, Th. 2.1], cf. [17, Prop. 7.35], and
distributionally chaotic, too, c.f. [4, Rem. 3.8]. For simplicity we will denote by
|| · ||ρ,ρ the norm in Xρ⊕Xρ given by the norm || · ||ρ on each copy of the space Xρ.

Theorem 2.1. [9, Th. 2.1], & [17, Th. 7.35]. Let ρ > 0 be such that ατρ2 > 2.
Then the solution semigroup {etA}t≥0 of (14) is topologically mixing and Devaney
chaotic on Xρ ⊕Xρ.

The proof of Theorem 2.1 is included here because we will use the same notation
in many of the upcoming results. This proof consists on checking the Eigenvalue
criterion for chaos stated in Theorem 1.2. For this purpose, we take the holomorphic
functions of the form
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ϕλ,z0,z1(x) = z0

∞∑
n=0

Rnλx
2n

(2n)!
+ z1

∞∑
n=0

Rnλx
2n+1

(2n+ 1)!
, x ∈ R, (18)

where λ ∈ C, z0, z1 ∈ R, and Rλ = (τλ2 + λ)/α. If we take λ ∈ V ⊂ C, with V the

open disk of radius r =
√
αρ2/2τ > 0 centered at zero, then ϕλ,z0,z1 ∈ Xρ. Then,

the functions φz0,z1 : V → X, z0, z1 ∈ R, given by

φλ,z0,z1 =

(
ϕλ,z0,z1
λϕλ,z0,z1

)
. (19)

satisfy that φλ,z0,z1 ∈ ker(λI−A) for every λ ∈ V, z0, z1 ∈ R. Finally, the Eigenvalue
criterion is applied taking the sets X0, X1, Xp mentioned in Theorem 1.2 as

X0 := span{φλ,z0,z1 : λ ∈ V ∩ R+, z0, z1 ∈ R}, (20)

X1 := span{φλ,z0,z1 : λ ∈ V ∩ R−, z0, z1 ∈ R}, (21)

Xp := span{φλ,z0,z1 : λ ∈ V ∩ πiQ, z0, z1 ∈ R} (22)

With a similar approach, one can obtain the chaotic behaviour for the solutions
of the Wave Equation:

∂

∂t

(
u1

u2

)
=

(
0 I

α ∂2

∂x2 0

)(
u1

u2

)
,

(
u1(0, x)
u2(0, x)

)
=

(
ϕ1(x)
ϕ2(x)

)
, x ∈ R.

 (23)

where α > 0 is the square of the speed of wave propagation. Again, this equation
can be reformulated as a first order equation taking the following operator B instead
of A.

B :=

 0 I

α
∂2

∂x2
0

 (24)

In this case, the solution C0-semigroup to the abstract Cauchy Problem in (23)
presents a Devaney chaotic behaviour on the space Xρ ⊕Xρ for any ρ > 0 [9, Th.
2.3] and [17, Ex. 7.5.3].

2.2. The Hyperbolic Bioheat Equation. Let us consider the HBE given in
(10). As in the previous case, we express this second-order equation as a first-order
equation by setting u1 = u and u2 = ∂u

∂t and taking A as it has been already defined
in (16). In this way, the associated first-order equation is formulated as

∂

∂t

(
u1

u2

)
=

 0 I
α

τ

∂2

∂x2
−1

τ
I

(u1

u2

)
+

(
0

g(t, x)

)
,

(
u1(0, x)
u2(0, x)

)
=

(
ϕ1(x)
ϕ2(x)

)
, x ∈ R.


(25)

where the function g(t, x) represents the internal heat sources. Comparing this
expression with the formulation of the HBE in (3), we see that g(t, x) stands for
τ
k (g + τ gt).

The unique (classical) solution of the HBE in (25) is given by:
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u(t, x) = etAΦ(x) +

∫ t

0

e(t−s)AΨ(s, x)ds (26)

where we have used the following notation

u(t, x) =

(
u1(t, x)
u2(t, x)

)
, Φ(x) =

(
ϕ1(x)
ϕ2(x)

)
, Ψ(t, x) =

(
0

g(t, x)

)
.

2.3. Dynamics of the Hyperbolic Bioheat Equation. Since we know that
the C0-semigroup {etA}t≥0 is chaotic on the Banach space Xρ ⊕ Xρ, in order to
study the asymptotic behaviour of the solutions of the HBE we have to analyze the
asymptotic properties the second term in (26):

h(t, x) :=

∫ t

0

e(t−s)AΨ(s, x)ds (27)

In addition, as the solution u(t, x) is expected to be an element of Xρ ⊕ Xρ,
it is reasonable to consider the source term Ψ(t, x) in this same space. Later, we
will see that in fact we are still considering some type of HBE. Moreover, for many
applications it is possible to consider the source term g(t, x) as time-independent.
So that, we will firstly consider Ψ(t, x) as a time-independent function of the form
φλ,z0,z1(x), for certain values of λ with negative real part.

On the one hand, we will see that in Theorems 2.2 - 2.5 we consider

Ψ(t, x) = φλ,z0,z1(x) =

(
ϕλ,z0,z1(x)
λϕλ,z0,z1(x)

)
(28)

which has introduced a variation in the relationship between u1(t, x) and u2(t, x)
in equation (25): we have (u1)t = u2 + ϕλ,z0,z1 instead of just (u1)t = u2. At first
sight, it may seem that the resulting differential equation is no longer the HBE.
Fortunately, that is not the case: Let us express the heat source term in the form:

Ψ(t, x) =

(
j1(t, x)

g(t, x) + j2(t, x)

)
(29)

where we assume that j1, its time derivative (j1)t, and j2 are small. Then, from
the equation (25), it is just an exercise to check that u1(t, x) = u(t, x) satisfies the
HBE:

τ(u1)tt + (u1)t = α(u1)xx + g(t, x) +
1

τ
j1(t, x) + j2(t, x) + (j1(t, x))t (30)

which corresponds to a small perturbation of the heat source term g(t, x) in equation
(10).

On the other hand, taking a term Ψ(t, x) as in (28) is not a great restriction. This
is due to the fact that we will consider eigenfunctions of A, φλ,z0,z1 , in a set whose
span is dense in Xρ ⊕Xρ. Therefore, given any source function g(t, x), the initial

term

(
0

g(t, x)

)
can be approximated by a linear combination of those eigenfunctions

multiplied by a certain function depending of t. Then, for this new source term, we
will be able to find an initial condition whose orbit was dense under the action of
the operators in the family u(t, x).

Before going further, we point out that the notation of the statement of the
following theorem and in the rest of the results of this section is the same used in
the proof of Theorem 2.1.
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Theorem 2.2. Let ρ > 0 be such that ατρ2 > 2 and let Ψ(t, x) = φλ,z0,z1(x) with
λ ∈ V and <(λ) < 0. The solution family {u(t, ·)}t≥0 of (26) is topologically mixing
on Xρ ⊕Xρ.

Proof. Let us take two non-empty open sets U1, U2 ⊆ Xρ⊕Xρ. Let W ⊂ Xρ⊕Xρ be
an open 0-neighborhood and let U ′2 be an open set inXρ⊕Xρ such thatW+U ′2 ⊂ U2.

Consider an arbitrary λ ∈ V with <(λ) < 0. On the one hand, since the C0-
semigroup {etA}t≥0 is known to be topologically mixing on Xρ ⊕ Xρ, then there
exists some t0 > 0 such that for all t ≥ t0 there is some Φt ∈ U1 verifying etA(Φt) ∈
1
λφλ,z0,z1 + U ′2.

On the other hand, since φλ,z0,z1(x) does not depend on the time, then we can
easily analyze the integral h(t, x):

h(t, x) =

∫ t

0

e(t−s)Aφλ,z0,z1(x)ds

=

∫ t

0

eλ(t−s)φλ,z0,z1(x)ds =
eλt − 1

λ
φλ,z0,z1(x).

Clearly, h(t, x) ∈ Xρ ⊕Xρ for every t ≥ 0 and, since

lim
t→∞

h(t, x) = lim
t→∞

eλt − 1

λ
φλ,z0,z1(x) =

−1

λ
φλ,z0,z1(x),

and <(λ) < 0, we can affirm that there exists t1 > 0 such that h(t, ·)+ 1
λφλ,z0,z1 ∈W

for all t ≥ t1. Therefore, for t ≥ max{t0, t1}, we have that u(t, ·) acting on the initial
condition Φt ∈ U1 yields

u(t, ·) =
(
etA(Φt) + h(t, ·)

)
∈ h(t, ·) +

1

λ
φλ,z0,z1 + U ′2 ⊂W + U ′2 ⊂ U2,

which fulfills the definition of topologically mixing for the solution family {u(t, ·)}t≥0.
on Xρ ⊕Xρ.

Remark 1. The condition that λ belongs to V is necessary to be sure that φλ,z0,z1(x)
belongs to Xρ⊕Xρ. This can be replaced by the more general one |τλ2 +λ| < αρ2.

Remark 2. Under the hypothesis of Theorem 2.2 we can get a little more than topo-
logically mixing: since the asymptotic behaviour of the orbits by the C0-semigroup
{etA}t≥0 coincides with the asymptotic behaviour of the orbits under the family
of operators {etA + h(t, ·)}t≥0 except by a constant, then we can affirm that every
hypercyclic function for the C0-semigroup {etA}t≥0 is universal for the family of
operators {etA + h(t, ·)}t≥0. Furthermore, by [11, Th. 2.3] we have that a hyper-
cyclic/universal behaviour is presented on every nontrivial autonomous discretiza-
tion of {etA + h(t, ·)}t≥0, i.e. for the sequence of operators {ekt0A + h(kt0, ·)}k∈N
for every t0 > 0. Furthermore, the set of hypercyclic/universal functions is shared
by the family of operators itself and by every nontrivial autonomous discretization.
Even more, any nontrivial single operator is also topologically mixing c.f. [6, Th.
3.5].

Remark 3. One can also consider the cases Ψ(t, x) = f(t)φλ,z0,z1(x), with λ ∈ V
and <(λ) < 0, with a similar proof to the one of Theorem 2.2: This can be done by
analyzing the asymptotic behaviour of h(t, x) when t tends to ∞.

i) f(t) ∈ L1(R+
0 ): We will see that limt→∞ h(t, x) = 0 for every x ∈ R. Let us

fix x ∈ R and ε > 0. Since f(t) ∈ L1(R+
0 ), we can find some t′ > 0 such that
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t′
|f(s)|ds < ε

2|φλ,z0,z1 (x)| . Now, as <(λ) < 0, we have that there is some

t0 > t′ such that for all t ≥ t0 we have that e<(λ)(t−t′) < ε
2||f ||1|φλ,z0,z1 (x)| .

Taking this into account we have

|h(t, x)| = |φλ,z0,z1(x)|

(∫ t′

0

|eλ(t−s)f(s)|ds+

∫ t

t′
|eλ(t−s)f(s)|ds

)
≤ |φλ,z0,z1(x)|

(
e<(λ)(t−t′)||f ||1 +

∫ ∞
t′
|f(s)|ds

)
< ε.

for all t ≥ t0.
ii) f(t) ∈ Lp(R+

0 ) for every 1 < p <∞: We will also see that limt→∞ h(t, x) = 0.
Again, let us fix x ∈ R and ε > 0. As before, there is some t′ > 0 such that∫∞
t′
|f(s)|pds < ε

2|φλ,z0,z1 (x)| . Then, there is some t0 > t′ such that we have

e<(λ)t <
ε

2||f ||p|φλ,z0,z1(x)|

∣∣∣∣ λq

1− e−λqt′
∣∣∣∣ 1q

for all t ≥ t0. Applying Hlder inequality we get

|h(t, x)| = |φλ,z0,z1(x)|

(∫ t′

0

|eλ(t−s)f(s)|ds+

∫ t

t′
|eλ(t−s)f(s)|ds

)
≤ |φλ,z0,z1(x)|

(
e<(λ)t

∣∣∣ 1−e−λqt′λq

∣∣∣ 1q ||f ||p +

∫ ∞
t′
|f(s)|pds

)
< ε

for all t ≥ t0.
iii) f(t) a bounded locally integrable function that asymptotically tends to a

constant L0: Fix x ∈ R and ε > 0. We will see that limt→∞ h(t, x) =
−L0

λ φλ,z0,z1 . Since limt→∞ f(t) = L0 there exists some t′ > 0 such that

|f(s) − L0| < ε|λ|
8|φλ,z0,z1 (x)| for all s ≥ t′. Then there exists some t0 > t′ such

that for all t ≥ t0 we have

e<(λ)t < min

{
ε|λ|

2||f ||∞|φλ,z0,z1(x)(1− e−λt′)|
,

ε|λ|
4|L0e−λt

′φλ,z0,z1(x)|

}
.

We have to estimate ∣∣∣∣h(t, x) +
L0

λ
φλ,z0,z1

∣∣∣∣
which is smaller or equal than

|φλ,z0,z1(x)|

(∣∣∣∣∣
∫ t′

0

eλ(t−s)f(s)ds

∣∣∣∣∣+

∣∣∣∣∫ t

t′
eλ(t−s)f(s)ds+

L0

λ

∣∣∣∣
)

The first integral is smaller or equal than

e<(λ)t||f ||∞

∣∣∣∣∣1− e−λt
′

λ

∣∣∣∣∣
The second one can be bounded by∣∣∣∣∫ t

t′
eλ(t−s)(f(s)− L0)ds

∣∣∣∣+

∣∣∣∣∣L0e
λ(t−t′)

λ

∣∣∣∣∣
To sum up we have

∣∣h(t, x) + L0

λ φλ,z0,z1
∣∣ < ε for all t ≥ t0.
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Example 1. Let us consider a time dependent source term Ψ(t, x) = f(t)φλ,z0,z1(x)
such that the time dependent function f(t) is obtained from the laser heating source
term gs(t, x) given in (4) and the corresponding right hand side of (3), τk (g+ τ gt).
Thus,

Ψ(t, x) =
τ

k
(H(t)−H(t−∆t) + τδ(t)− τδ(t−∆t))φλ,z0,z1(x) (31)

for all x ∈ R and t ≥ 0.
In this case, the integral h(t, x) involves the distribution δ, and

h(t, x) =


τ
k e
λt
(

1−eλt
λ + τ

)
φλ,z0,z1(x) if t < ∆t

τ
k e
λt
(

1
λ + τ

) (
1− e−λ∆t

)
φλ,z0,z1(x) if t > ∆t

(32)

If <(λ) < 0, limt→∞ h(t, x) = 0, and the asymptotic behaviour of the solution
family {u(t, ·)}t≥0 of (35) is the same that the solution semigroup {etA}t≥0 of (14).

Example 2. Analogous calculations can be done for the heat source term coming
from radiofrequency given in (7), then

Ψ(t, x) = (H(t) + τδ(t))φλ,z0,z1(x) x ∈ R, t ≥ 0 (33)

and, the h(t, x) integral is given by:

h(t, x) =

(
−1

λ
+

(
1

λ
+ τ

)
eλt
)
φλ,z0,z1(x) (34)

Thus, the dynamical properties of this example are the same that of the time
independent case.

If instead of taking Ψ(t, x) = φλ,z0,z1(x) with λ ∈ V and <(λ) < 0, we take it
with λ ∈ V ∩ iR, then we can get Devaney chaos.

Theorem 2.3. Let ρ > 0 be such that ατρ2 > 2 and let Ψ(t, x) = φλ,z0,z1(x) with
λ ∈ V ∩iR. The solution family {u(t, ·)}t≥0 of (26) is Devaney chaotic on Xρ⊕Xρ.

Proof. Take a function Ψ(t, x) = φλ,z0,z1(x) with λ ∈ V ∩ iR. There exists some
τ ∈ R such that λ = τπi. If we check again the computations for h(t, x) in the
proof of Theorem 2.2, we have that for t = 2k

τ , k ∈ N, h
(

2k
τ , x

)
= 0.

So that,
{
u
(

2k
τ , ·
)}
k

=
{
e2kA/τ

}
k

which are the iterates of the operator e2kA/τ .

This operator is Devaney chaotic on Xρ⊕Xρ by the combination of [9, Th. 2.1] with
[19, Th. 2.1]. Then the solution family {u(t, ·)}t≥0 is Devaney chaotic, too.

If we consider the abstract Cauchy problem given by the Wave Equation where
we have included a source term g(t, x),

∂

∂t

(
u1

u2

)
=

(
0 I

α ∂2

∂x2 0

)(
u1

u2

)
+

(
0

g(t, x)

)
(
u1(0, x)
u2(0, x)

)
=

(
ϕ1(x)
ϕ2(x)

)
, x ∈ R.

 (35)

one can also obtain similar results to Theorems 2.2 and 2.3 using the results about
the chaotic behaviour of the solutions of the wave equation in (23) on the spaces
Xρ⊕Xρ. One just have to take the operator B in (24) instead of A and to consider

its corresponding eigenfunctions, which are of the form φλ,z0,z1 with Rλ = λ2

α .
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Theorem 2.4. Let ρ > 0, W the open disk of radius αρ2 centered at 0, and
Ψ(t, x) = φλ,z0,z1(x) with λ ∈W with <(λ) < 0. The solution family {u(t, ·)}t≥0 of
(35) is topologically mixing on Xρ ⊕Xρ.

Theorem 2.5. Let ρ > 0, W the open disk of radius αρ2 centered at 0, and
Ψ(t, x) = φλ,z0,z1(x) with λ ∈ W ∩ iR. The solution family {u(t, ·)}t≥0 of (35) is
Devaney chaotic on Xρ ⊕Xρ.

Remark 4. As a consequence of [4, Remark 3.8], we can also conclude that under
the hypothesis of Theorem 2.3 and Theorem 2.5 the corresponding solution family
of operators {u(t, ·)}t≥0 also exhibits a distributionally chaotic behaviour.

The results obtained for the HBE can be also applied to the relativistic heat
equation (RHE). The formulation of the RHE only differs from the HBE formulation
in the meaning of the coefficients that accompanied second derivatives in equation
(10) (see [22]). The RHE is a hyperbolic-like equation, whose theoretical model is
based on the theory of relativity and which was designed to overcome the possible
conflict between the HHTE and the second law of thermodynamics.

We conclude this section with a comment regarding the stability of the solutions.
We recall that a C0-semigroup of the form {etA}t≥0 defined on a Banach space X
is (uniformly) exponentially stable, [14, p. 296], if there exists ε > 0 such that

lim
t→∞

eεt||etA|| = 0, (36)

This situation is not fulfilled in our case. Nevertheless, a weaker version of this
condition can also be considered. We say that {etA}t≥0 is exponentially stable on a
subspace Y ⊂ X if there exists ε > 0 such that for any y ∈ Y we have

lim
t→∞

eεt||etAy|| = 0, (37)

Such study is sometimes considered when analyzing the chaotic behaviour of C0-
semigroups, see for instance [8, 3]. The HHTE can be seen to be exponentially
stable on the subspaces

X1,δ := span{φλ,z0,z1 : λ ∈ V with <(λ) < δ, z0, z1 ∈ R}, (38)

for every −
√
αρ2/2τ < δ < 0. For the case of λ ∈ V with <(λ) > 0 we have that

the behaviour of the solutions for an initial condition on X1 escapes to ∞ in norm.

3. An extension: dynamics of solutions of the higher order HBE. An ex-
tension of the problem considered above is the dynamics of the solutions of higher
order linear heat transfer or diffusion equations. Many interesting physical problems
are modeled by a fourth, or even higher, diffusion equation. These equations appear
in a wide range of areas, including fluid dynamics, electromagnetism and semicon-
ductors, optical tomography, image processing, etc (as an example, see [26, 16] and
references therein). In particular, an interesting class of problems described by
nonlinear fourth order diffusion equations are thin fluid film flows where surface
tension, due to gravity or temperature gradient, is a driving mechanism [23].

The simplest example is the one-dimensional linear fourth order diffusion equa-
tion, {

ut = −αuxxxx
u(0, x) = ϕ(x), x ∈ R

}
, (39)

where α is the diffusivity. The linear operator A = −α∂xxxx is the infinitesimal
generator of the solution semigroup {Tt}t≥0 = {etA}t≥0.
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To extend a little more our study, let us consider the family of higher order
diffusion equations:{

ut = (−1)mαmux...2(m+1)...x , m = 0, 1, 2...
u(0, x) = ϕ(x), x ∈ R

}
, (40)

where αm represents the different diffusivities. The factor (−1)m in (40) is neces-
sary to ensure sensible physical behavior of its solutions [26], although this is not
important from a mathematical point of view for describing the dynamics of the so-
lutions. Family of equations (40) includes for m = 0 the second order heat transfer
equation (1) (without source term).

For the Cauchy problems of (40), the infinitesimal generator of each correspond-

ing solution C0-semigroup is a linear and continuous operatorAm := (−1)mαm∂
2(m+1)
x ,

m ∈ N+. In order to study the dynamical behavior of the solution semigroup
{Tt}t≥0 = {etAm}t≥0 for every m ∈ N+, we use again the Banach space Xρ (15)
and the set of holomorphic functions defined as:

ϕλ,Z(x) :=

2m+1∑
k=0

zk

∞∑
n=0

Rnλx
2(m+1)n+k

(2(m+ 1)n+ k)!
, x ∈ R , (41)

where λ ∈ C, Z = (z0, z1, . . . , z2m+1) ∈ R2(m+1) and Rλ = (−1)mλ/αm. Functions
ϕλ,Z(x) are eigenvectors of the infinitesimal operator Am for every m ∈ N+. Fixed

ρ > 0, let U be the open disk of radius αmρ
2(m+1) centered at 0, then, for every

λ ∈ U and Z ∈ R2(m+1) the functions ϕλ,Z(x) belong to the Banach space Xρ.
Using these holomorphic functions it is not difficult to check that the solution C0-
semigroup of (40) satisfies the Eigenvalue criterion for chaos and mixing on the
Banach space Xρ given in Theorem 1.1.

Since this work is devoted to the Hyperbolic Bioheat Equation (10), let us con-
sider the following higher order extension of (10) including an internal source term
gm(t, x): τmutt + ut = (−1)mαmux...2(m+1)...x + gm(t, x) , m = 0, 1, 2...

u(0, x) = ϕ1(x), x ∈ R
ut(0, x) = ϕ2(x), x ∈ R

 , (42)

where τm is the relaxation time constant. For m = 0 equation (42) becomes the
Hyperbolic Bioheat Equation (10).

Rewritting (42) as a first order Cauchy problem as in (25), the linear operators

Am :=

 0 I

(−1)m
αm
τm

∂2(m+1)
x − 1

τm
I

 , m ∈ N+ (43)

are the infinitesimal generators of the solution semigroups {Tt}t≥0 = {etAm}t≥0.
Therefore, the solutions of this family of higher order equations are of the form:

um(t, x) = etAmΦ(x) +

∫ t

0

e(t−s)AmΨm(s, x)ds (44)

where the notation is similar to that used in equation (26).
These solutions have the same dynamical properties on the Banach space Xρ⊕Xρ

that the solution of the second order Hyperbolic Bioheat Equation (Theorem 2.2
and Theorem 2.3). For the homogeneous equation, we check again the Desch-
Schappacher-Webb criterion given in Theorem 1.1 using functions ϕλ,Z(x) of the
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form (41). It is just an exercise to check that for λ ∈ C, Z = (z0, z1, . . . , z2m+1) ∈
R2(m+1) and

Rλ = (−1)m
τmλ

2 + λ

αm
. (45)

the set of functions

φλ,Z :=

(
ϕλ,Z
λϕλ,Z

)
. (46)

are holomorphic and satisfy that φλ,Z ∈ ker(λI −Am) for every m ∈ N+. Further-

more, for a fixed ρ > 0 such that αmτmρ
2(m+1) > 2 and for λ ∈ U , being U the

open disk of radius
√
αmρ2(m+1)/2τm > 0 centered at 0, functions φλ,Z belong to

the Banach space Xρ⊕Xρ. Therefore, using the chaos criterion (Theorem 1.1), the
C0-semigroups {etAm}t≥0 are mixing a chaotic on Xρ ⊕Xρ for all m ∈ N+.

Discussion for the part of the solution due to the source terms, i.e. the integral∫ t
0
e(t−s)AmΨm(s, x)ds, is analogous of the discussion of the HBE equation. As a

result, the solution family {um(t, ·)}t≥0 (44) of the 2(m+1)-order hyperbolic bioheat
equation (42) is topologically mixing for λ values with <(λ) < 0 and Devaney chaotic
with λ ∈ iR on Xρ ⊕ Xρ for each m ∈ N+ (under some additional restrictions
analogous to the hypothesis of Theorem 2.2 and Theorem 2.3).

4. Conclusions. In this paper we have studied the linear dynamics of the solutions
of the HBE in certain spaces of analytic functions that are densely embedded in C(R)
with the topology of uniform convergence on compact subsets of R. Specifically,
we have shown the chaotic behaviour for the solutions of a Cauchy problem in
which the governing equation is given by the HBE with a time-independent heat
source term that is certain eigenfunction for the differential operator A. Since these
eigenfunctions belong to a set whose span is dense in Xρ ⊕ Xρ, see Theorem 1.2,
given any initial source term g(t, x), we can find another source term of the form

Ψ(t, x) =

n∑
i=1

φλi,zi,0,zi,1(x) with λi ∈ V and <(R) ≤ 0 for all 1 ≤ i ≤ n (47)

such that

( ∑n
i=1 ϕλi,zi,0,zi,1(x)∑n
i=1 λiϕλi,zi,0,zi,1(x)

)
can be found as close as we want of

(
0

g(t, x)

)
and for this new source term we can find an initial condition with dense orbit under
the action of the operators in the family u(t, x).

The general treatment of the problem allows us to apply the results to all types
of ablative therapies (laser, radiofrequency, microwave, and ultrasound), and with
different modes of energy delivering without making any additional computation.

An extension of these results for Hyperbolic Bioheat Equations of higher order
is also provided.
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[5] T. Bermúdez, A. Bonilla, F. Mart́ınez-Giménez and A. Peris, Li-Yorke and distributionally

chaotic operators, J. Math. Anal. Appl., 373 (2011), 83–93.
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