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Abstract

We say that a subgroup H of a finite group G is solitary (respect-
ively, normal solitary) when it is a subgroup (respectively, normal sub-
group) of G such that no other subgroup (respectively, normal sub-
group) of G is isomorphic to H. A normal subgroup N of a group G
is said to be quotient solitary when no other normal subgroup K of G
gives a quotient isomorphic to G/N . We show some new results about
lattice properties of these subgroups and their relation with classes
of groups and present examples showing a negative answer to some
questions about these subgroups.
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1 Introduction
All groups in this note will be finite. Let G be a group. Following Kaplan
and Levy [6], we say that a subgroup H of a group G is solitary (respect-
ively, normal solitary) if H is a subgroup (respectively, a normal subgroup)
of G and whenever K is a subgroup (respectively, a normal subgroup) of
G and H is isomorphic to K, then H = K. The notion of solitary sub-
group had previously appeared in a paper of Thévenaz [9] under the name of
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strongly characteristic subgroup. Solitary subgroups have also been studied
by Atanasov and Foguel [1]. All these subgroups are clearly characteristic
subgroups.

It seems natural to consider the dual notion for quotients of solitary
subgroup. According to [8] (see also [7]), a normal subgroup N of G is
said to be quotient solitary if whenever K is a normal subgroup of G and
G/K is isomorphic to G/N , then K = N .

The terminology of classes of groups has proved to be a useful tool to
express propositions about group-theoretical properties. Recall that a class
of groups is a class X whose elements are groups such that if G ∈ X and
H is a group isomorphic to G, then H ∈ X. Among the classes of groups,
formations and Fitting classes are especially relevant. A formation is a class
of groups F such that if N is a normal subgroup of a group G ∈ F, then
G/N ∈ F, and if M and N are normal subgroups of G such that G/M ,
G/N ∈ F, then G/(M ∩ N) ∈ F. Given a non-empty formation F, every
group G possesses a normal subgroup GF, called the F-residual of G, such
that GF is the smallest normal subgroup N of G such that G/N ∈ F. A
Fitting class is a class of groups F such that if N is a normal subgroup of
a group G ∈ F, then N ∈ F, and if M and N are normal subgroups of G
and M , N ∈ F, then MN ∈ F. Given a non-empty Fitting class F, every
group G possesses normal subgroup GF, called the F-radical of G, that is the
largest normal subgroup belonging to F. The basic concepts about classes of
groups can be found in [2, 3].

The aim of this note is to study some natural problems about solitary,
normal solitary, and quotient solitary subgroups. These problems will be
related to lattice properties and the relation with classes of groups. We will
also present some examples which give negative answers to some natural
questions in the scope of these types of subgroups.

2 Lattice properties
Kaplan and Levy [6, Theorem 25] have shown that the set of all solitary
subgroups of a group is a lattice, where the supremum of a set of two solitary
subgroups {A,B} is simply the product AB and the infimum of {A,B} is the
product of all solitary subgroups contained in A ∩ B. Dually, Tărnăuceanu
[8, Proposition 2.1] has shown that quotient solitary subgroups also form a
lattice, where the infimum of {A,B} is A∩B and the supremum of {A,B} is
the intersection of all quotient solitary subgroups of G containing the product
AB. However, these lattices are not, in general, sublattices of the lattice of
normal subgroups:
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Example 2.1. Let G be a direct product of a symmetric group Σ3 = 〈a, b |
a2 = b3 = 1, ba = b−1〉 of degree 3 and a cyclic group C3 = 〈c | c3 = 1〉 of
order 3. This group has two solitary subgroups, Σ3 = 〈a, b〉 and the normal
Sylow 3-subgroup 〈b, c〉 ∼= C3 × C3, whose intersection is 〈b〉, a cyclic group
of order 3, which is clearly not solitary in G. Hence the intersection of two
solitary subgroups is not necessarily a solitary subgroup.

Example 2.2. Let E = 〈a, b〉 be an extraspecial group of order 27 and
exponent 3. Let c = [a, b], then E has an automorphism d of order 2 given
by ad = a and bd = b2, hence cd = c2. Let H = [E]〈d〉 be the corresponding
semidirect product. Let C = 〈e〉 be a cyclic group of order 3. Then we can
check (for instance, with the help of the computer algebra system GAP [5])
that the quotient solitary subgroups of G = H × 〈e〉 are 1, 〈c〉, 〈e〉, 〈a, c, e〉,
〈b, c〉, 〈a, b, e〉, 〈b, c, d〉, and G. However, the product of 〈c〉 and 〈e〉 is not
a quotient solitary subgroup of G. Therefore the product of two quotient
solitary subgroups is not necessarily a quotient solitary subgroup.

The situation is even worse with normal solitary subgroups, since they
do not form a lattice in general.

G

〈b, c〉 〈a, b3, c〉

〈a, c〉

〈c〉 〈b3, c3〉

1

Figure 1: Partially ordered set of the normal solitary subgroups of the group
of Example 2.3

Example 2.3. Let

G = 〈a, b, c | a2 = b9 = c9, ba = b, ca = c8, cb = c7〉.

The normal solitary subgroups of G are 1, 〈b3, c3〉, 〈c〉, 〈a, c〉, 〈a, b3, c〉, 〈b, c〉,
and G (they have been computed with GAP [5]). This partially ordered
set is drawn in Figure 1. We see that the subset {〈b3, c3〉, 〈c〉} has no su-
premum in the partially ordered set of normal solitary subgroups of G, and
{〈a, b3, c〉, 〈b, c〉} has no infimum.
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It seems clear that one of the main objections for the partially ordered
set of normal solitary subgroups to be a lattice is the fact that normality
is not a transitive relation in general. The transitive closure of normality is
subnormality: a subgroup H of a group G is said to be subnormal in G when
there exists a series H = H0 E H1 E H2 E · · · E Hn = G such that Hi−1 is
a normal subgroup of Hi for 1 ≤ i ≤ n.

Definition 2.4. A subgroup H of a group G is said to be a subnormal
solitary subgroup of G when H is a subnormal subgroup of G and if K is
another subnormal subgroup of G isomorphic to H, then K = H.

Obviously, subnormal solitary subgroups are characteristic. The following
result is an immediate consequence of the definition.

Proposition 2.5. Let H be a subgroup of a group G.

1. If H is solitary in G, then H is subnormal solitary in G.

2. If H is subnormal solitary in G, then H is normal solitary in G.

Obviously, in nilpotent groups, the notion of solitary subgroup and sub-
normal solitary subgroup coincide, while in groups in which normality is a
transitive relation, the so called T-groups, subnormal solitary subgroups and
normal solitary subgroups coincide.

The converses of both implications of Proposition 2.5 are false:

Example 2.6. The dihedral group D8 = 〈a, b | a4 = b2 = (ab)2 = 1〉 of order
8 has a normal solitary subgroup 〈a2〉 = Φ(D8) that is not subnormal solitary
in D8, since this group has five subnormal cyclic subgroups of order 2.

Example 2.7. The symmetric group Σ4 of degree 4 has a subnormal solitary
subgroup V4 = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 that is not solitary in Σ4, because V4

is isomorphic to the non-subnormal subgroup 〈(1, 2), (3, 4)〉.

However, the following result holds.

Theorem 2.8. The partially ordered set of all subnormal solitary subgroups
of a group with the inclusion is a lattice.

Proof. Assume that S1 and S2 are subnormal solitary subgroups in G. Then
S1 and S2 are normal subgroups of G. Suppose that T is a subnormal sub-
group of G isomorphic to S = S1S2. Note that S1 and S2 are normal sub-
groups of S. Hence T contains normal subgroups T1 and T2 such that S1

∼= T1

and S2
∼= T2. Since T1 and T2 are normal in G and T is subnormal in G,

we have that T1 and T2 are subnormal subgroups of G. Since S1 and S2
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are subnormal solitary, we obtain that S1 = T1 and S2 = T2. In particular,
S = T . This implies that S is subnormal solitary and, obviously, S is the
supremum of {S1, S2} in the partially ordered set of all subnormal solitary
subgroups of G.

The argument to show that a set of two subnormal solitary subgroups
possesses an infimum is the same as in [6, Theorem 25].

Example 2.9. In the group of Example 2.3, the unique normal solitary
subgroup which is not subnormal solitary is 〈c〉. The intersection 〈b, c〉 ∩
〈a, b3, c〉 = 〈b3, c〉 is not a subnormal solitary subgroup of G. This also
shows that the lattice of all subnormal solitary subgroups is not, in general,
a sublattice of the normal subgroup lattice.

3 Relation with classes of groups
Given a class of groups X, the subgroup generated by all subgroups of G in X
is solitary in G by [6, Lemma 3]. Let SX(G) denote the subgroup generated
by all subnormal subgroups of G in X. If we consider the subnormal solitary
subgroups introduced in the previous section, we obtain:

Theorem 3.1. Let X be a class of groups. The subgroup SX(G) is a subnor-
mal solitary subgroup of G.

Proof. Let S = {S1, . . . , Sk} the set of all subnormal subgroups of G in X.
Let H be a normal subgroup of G isomorphic to SX(G). Since S is invariant
by conjugation, we have that SX(G) is a normal subgroup of G. Let H be a
subnormal subgroup of G isomorphic to SX(G). Then H contains exactly k
subnormal subgroups in X, that is, all subgroups in S are contained in H. It
follows that H = SX(G).

If X is a Fitting class, we obtain that the X-radical of a group G, that is,
the subgroup generated by all subnormal subgroups of G in X, is a subnormal
solitary subgroup of G, in particular, a normal solitary subgroup of G. This
improves the result of [6, Lemma 15].

Theorem 3.2. Let F be a Fitting class and let G be a group. Then the
F-radical GF of G is a subnormal solitary subgroup of G.

Quotient solitary subgroups satisfy a dual property:

Theorem 3.3. Let X be a class of groups. Then the intersection of all
normal subgroups N of G such that G/N ∈ X is a quotient solitary subgroup
of G.
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Proof. Let N = {N1, . . . , Nk} be the set of all normal subgroups of G with
quotient in X. Let H be the intersection of all these subgroups and assume
that G/K is isomorphic to G/H. Then G/K possesses normal subgroups
K1/K, . . . , Kk/K such that K1 ∩ · · · ∩Kk = K and G/Ki ∈ X. But these
subgroups must be exactly the members of N . Hence K = H.

Since, for a formation F, GF is the intersection of all the normal subgroups
of G with quotient in F, we have:

Corollary 3.4. Let F be a formation and let G be a group. Then the F-
residual GF of G is a quotient solitary subgroup of G.

This result can be used to give a description of quotient solitary free
groups, that is, groups G in which the unique quotient solitary subgroups
are G and 1. It improves [8, Theorem 3.7].

Theorem 3.5. The following statements are equivalent for a group G:

1. G is characteristically simple.

2. G is quotient solitary free.

3. G is a direct product of copies of a simple group S.

Proof. The equivalence between the statements 1 and 3 is well known. As-
sume that G is quotient solitary free. Let M be a maximal normal subgroup
of G, then S = G/M is a simple group and we consider the class F = d0(1, S)
of all groups that can be expressed as a direct product of copies of S, to-
gether with the trivial group. If S is a non-abelian simple group, this class
is a formation by [3, II, 2.13], and if S ∼= Cp, p a prime, it is the class of all
elementary abelian p-groups, which is also a formation. Since GF ≤M < G,
we have that GF = 1, in other words, G ∈ F and G is a direct product of
copies of the simple group S.

We will say that a class of groups X is closed under taking extensions
when if G is a group with a normal subgroup such that N and G/N belong
to X, then G ∈ X. We also say that a class of groups X is closed under
taking (normal) subgroups when if G is a group in F and H is a (normal)
subgroup of G, then H belongs to F. A class of groups X is said to be closed
under taking quotients when if G ∈ F and N is a normal subgroup of G, then
G/N ∈ F. Kaplan and Levy proved in [6, Lemma 22] the following result:

Theorem 3.6. Let F be a formation of groups which is closed under tak-
ing extensions and (normal) subgroups. Then the F-residual GF is (normal)
solitary in G.
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We might wonder whether the condition of being closed under taking
extensions and (normal) subgroups can be dispensed of. More precisely, what
can be said about a formation in which, given a group G, the F-residual of G
is always a (normal) solitary subgroup of G. We have obtained the following
result for formations F satisfying that (G × H)F = GF × HF for every two
groups G and H. This condition is satisfied by all formations contained in
the formation of soluble groups, as shown by Doerk and Hawkes [4] (see also
[3, IV, 1.18]).

Theorem 3.7. Assume that F is a formation satisfying that (G × H)F =
GF ×HF for every two groups G and H. Assume, in addition, that, given a
group G, the F-residual GF of G is a (normal) solitary subgroup of G. Then
the formation F is closed under taking extensions and (normal) subgroups.

Proof. We will prove first that F is closed under taking extensions. Let G be
a group with a normal subgroup N such that G/N and N belong to F. Then
(G×N)F = GF × 1 is a solitary subgroup of G × N . But since G/N ∈ F,
GF ≤ N and so 1×GF is a subgroup of G×N isomorphic to GF × 1. Since
this is a solitary subgroup of G, we obtain that GF = 1, that is, G ∈ F.
Hence F is closed under taking (normal) subgroups.

Now we prove that F is closed under taking (normal) subgroups. Let H
be a (normal) subgroup of G ∈ F. Then (G×H)F = 1×HF, but HF × 1 is
a (normal) subgroup of G×H isomorphic to the (normal) solitary subgroup
1×HF. This implies that HF = 1, that is, H ∈ F. Consequently, F is closed
under taking (normal) subgroups.

We can prove the dual result of Theorem 3.6 for quotient solitary sub-
groups.

Theorem 3.8. Let F be a Fitting class which is closed under taking exten-
sions and quotients. Then the F-radical GF is quotient solitary in G.

Proof. Suppose that N is a normal subgroup of G such that G/GF is iso-
morphic to G/N . Since F is closed under taking extensions, we have that
(G/GF)F = 1. On the other hand, GFN/N ∼= GF/(N ∩GF) ∈ F because F is
closed under taking extensions. But since G/N is isomorphic to G/GF, G/N
cannot have non-trivial normal subgroups in F. It follows that GF = GF∩N ,
that is, GF ≤ N and, by order considerations, we conclude that GF = N .

The dual version of Theorem 3.7 for quotient solitary subgroups holds for
Fitting classes F satisfying that (G×H)F = GF×HF for every two groups G
and H. These Fitting classes are known as Lockett classes. A detailed study
of Lockett classes appears in [3, Chapter X, Section 1].
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Theorem 3.9. Suppose that F is a Lockett class such that for every group
G, the F-radical is a quotient solitary subgroup of G. Then F is closed under
taking extensions and quotients.

Proof. We will prove first that F is closed under taking extensions. Let
G be a group with a normal subgroup N such that G/N and N belong
to F. Then

(
G × (G/N)

)
F

= GF × (G/N) is a quotient solitary subgroup
of G and

(
G× (G/N)

)
/
(
GF × (G/N)

)
is isomorphic to G/GF. Since N ∈

F, N ≤ GF. Then the normal subgroup G × (GF/N) satisfies that
(
G ×

(G/N)
)
/
(
G × (GF/N)

)
is isomorphic to GF. Since GF × (G/N) is quotient

solitary, we obtain that G = GF, that is, G ∈ F. We conclude F is closed
under extensions.

We will prove now that F is closed under taking quotients. Let N be
a normal subgroup of G ∈ F. Then

(
G× (G/N)

)
F

= G × (G/N)F. Let
X/N = (G/N)F, we have that

(
G× (G/N)

)
/
(
G× (G/N)F

) ∼= G/X. Then
X × (G/N) is another normal subgroup of G × (G/N) giving a quotient
isomorphic toG/X ∼= (G/N)

/
(G/N)F. SinceG×(G/N)F is quotient solitary,

we obtain that (G/N)F = G/N , that is, G/N ∈ F. Thus F is closed under
quotients.

The fact that radicals for a Fitting class are subnormal solitary subgroups
and the residuals for a formation are quotient solitary subgroups motivates
the question of whether all subnormal solitary subgroups can be regarded as
radicals for suitable Fitting classes or all quotient solitary subgroups can be
regarded as residuals for suitable formations. In the case of abelian p-groups
for a prime p, the quotient solitary subgroups are exactly the residuals for
the formations Fk, where F is the formation of all elementary abelian p-
groups. This has been shown by Tărnăuceanu [8]. However, this is not true
in general. The key to show this is to observe that the smallest formation
(respectively, Fitting class) containing the dihedral group of order 8 contains
the quaternion group of order 8 and the smallest formation (respectively,
Fitting class) containing the dihedral group of order 8 contains the quaternion
group of order 8. For completeness, we give proofs of these facts.

Lemma 3.10. The smallest Fitting class containing the quaternion group
Q8 of order 8 coincides with the smallest Fitting class containing the dihedral
group D8 of order 8.

Proof. This follows from the well-known fact that the extraspecial groups of
order 32 which is a central product of two copies of D8 is isomorphic to a
central product of two copies of Q8 (see [3, A, 20.4]).
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Lemma 3.11. The smallest formation containing the quaternion group Q8

of order 8 coincides with the smallest formation containing the dihedral group
D8 of order 8.

Proof. Let G = 〈a, b, c | a4 = b4 = c2 = 1, ba = bc, ca = c, cb = c〉. Then G
possesses four normal subgroups N1 = 〈a2, b2〉, N2 = 〈ca2, b2〉, N3 = 〈cb2, a2〉,
and N4 = 〈ca2, a2b2〉 such that N1∩N2∩N3 = 1, G/Ni

∼= D8 for i ∈ {1, 2, 3}
and G/N4

∼= Q8. This proves that Q8 belongs to the smallest formation
containing D8.

Now let H = 〈a, b, c | a4 = c4 = 1, a2 = b2, ba = b3, ca = c3, cb = c〉.
Then H has three normal subgroups T1 = 〈c〉, T2 = 〈ca2, c2〉, T3 = 〈b3, a2c2〉
such that G/T1

∼= G/T2
∼= G/T3

∼= Q8 and a normal subgroup T4 = 〈b〉 such
that G/T4

∼= D8. This proves that Q8 belongs to the smallest formation
containing D8.

Example 3.12. The quasidihedral group G = 〈a, b, c | a4 = b2 = 1, c2 =
a2, ba = ba2, ca = ca2, cb = ca2〉 of order 16 has two solitary subgroups
〈a, c〉 ∼= Q8 and 〈b, c〉 ∼= D8. Hence none of them can be the radical for a
Fitting class.

Example 3.13. Let G = 〈a, b | a4 = b4 = 1, ba = b3〉. Then G has two
quotient solitary subgroups A = 〈a2〉 and B = 〈b2a2〉 such that G/A ∼= D8

and G/B ∼= Q8. Hence none of these subgroups can be the residual for a
formation.
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