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Abstract. 
Cycle Spinning (CS) and a’trous algorithms are different implementations of the Undecimated 

Wavelet Transform (UWT). Both algorithms can be used for UWT and even though the resulting wavelet 
coefficients are different they keep a correspondence. This paper describes an analysis of the CS 
algorithm performed in the z-transform domain, showing the similarities and differences with the a’trous 
implementation. CS generates more wavelet coefficients than a'trous but the number of significative and 
different coefficients is the same in both cases because the occurrence of a periodic repetition in CS 
coefficients. Mathematical expressions for the relationship between CS and a’trous coefficients and for 
CS coefficient periodicities are provided in the z-transform domain. 

In some wavelet denoising applications, periodicities (present in the coefficients of the CS 
procedure) can also be found in the performance measure of the processed signals. In particular, in 
ultrasonic CS denoising applications periodicities have been appreciated in the signal-to-noise ratio 
(SNR) of the ultrasonic denoised signals. These periodicities can be used to optimize the number of CS 
coefficients for an efficient implementation. Two examples showing the periodicities in the SNR are 
included. A selection of several reduced sets of CS wavelet coefficients have been utilized in the 
examples and the SNRs resulting after denoising are analysed.  
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1. INTRODUCCTION 
Based on a firm theoretical foundation, wavelets are often used to analyze non-stationary signals. 

Many books and papers have been written on the subject, ranging from theoretical aspects [1-4] to their 
applications to different research fields, such as imaging [5-10] and acoustics [11-14], among others.  

The undecimated wavelet transform (UWT) is designed to overcome the lack of translation-
invariance of the discrete wavelet transform (DWT). The most popular implementation is the a’trous 
algorithm [15] and an alternative is based on cycle spinning (CS) [16].  

The present work studies the well known equivalence between the CS and a’trous algorithms for 
UWT implementation in the z-transform domain. Although both implementation methods are functionally 
equivalent, the coefficients obtained in both cases are not the same. The similarities and differences in the 
UWT coefficients obtained from both methods are also explained in the z-transform domain and 
mathematical expressions for the relationship between CS and a’trous coefficients are provided. The 
implementation schemes based on Mallat´s algorithm [17] of both methods are described and the 
expressions of wavelet coefficients in the z-transform domain are deduced for DWT, UWT with a’trous 
and CS-UWT, expressions that highlight the correspondence between the CS and a’trous coefficients. 

One of the results of the present study is the detection of certain periodicities [18, 19] in CS 
wavelet coefficients. The highest period limits the maximum number of shifts needed to perform the CS 
implementation of UWT [18, 19], but there are some additional periodicities which can also be used to 
reduce the number of shifts required during processing. 

In some signal denoising applications, the periodicities of CS wavelet coefficients are transferred 
to the final signal processing results. Two examples are analyzed here. The first example is a spike in 
additive white Gaussian noise whereas the second example is an ultrasonic trace formed by a broadband 
pulse in ultrasonic grain noise. In these two denoising examples, the intermediate SNRs obtained for each 
particular shift contains shift-dependent periodicities, similar to that shown by CS wavelet coefficients. 
The correct use of periodicity information can result in a reduction of the number of wavelet coefficients 
used in CS processing, with little loss of quality but with a considerable improvement in processing time.  

The paper is organized as follows: in Section 2 some general wavelet principles are set out. In 
Section 3 the z-transform is used to show the equivalence between the CS and a’trous algorithms. In 
Section 4, the similarities and differences observed in CS and a’trous wavelet coefficients are also given 
in the z-domain. The use and implications of CS wavelet coefficient periodicities are dealt with in Section 
5. Two examples of periodicities transferred to results in a signal denoising application are considered in 
Section 6 and the conclusions reached are given in Section 7. 
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2. SOME ASPECTS OF DISCRETE WAVELET TRANSFORMS 
The continuous wavelet transform (CWT) of x(t) using ψ(t) as mother wavelet is [15]: 
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In practical implementations, the values of parameters t (shift) and a (scale) are selected and 
signal x(t) is sampled to obtain the discrete sequence x(k). The most popular values for the shift and scale 
parameters are: a=2j and τ=n2j

, which produce spectrum decomposition in octaves and constant-Q 
bandpass channels. The resulting dyadic DWT (Discrete Wavelet Transform) can be expressed by [15]:  
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 j being the decomposition level. 
The DWT can be easily implemented by means of Mallat’s algorithm [17], which consists of an 

iterated digital filter bank tree combined with decimation blocks. The input signal is passed through two 
linear filters, after which the output of the low-pass filter after decimation is taken as the input for the new 
pair of filters. The output of high pass filter is saved as DWT coefficients.  

A scheme of the Mallat’s analysis DWT algorithm with maximum decomposition level J=3 is 
shown in Figure 1, in which input X(z) is the z-transform of the signal x(k), G(z) and H(z) are the transfer 
functions of the high and low pass filters g(k) and h(k) respectively. Blocks (2↓) represent decimation by 
2. The output or wavelet coefficients are denoted as dj and aj, j being the decomposition level.  

 
 
 
 

Figure 1. Scheme of the Mallat’s analysis algorithm with J=3. 
If K is the number of samples of the initial trace, x(k), the number of values for level j of dj and aj 

is K/2j; then the total number of wavelet coefficients obtained by Mallat’s algorithm is K. The expressions 
of these coefficients can be obtained as the outputs of the Mallat’s filters in the z-transform domain as [3]: 

j
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The reconstructed signal (z)X~  can be obtained using another filter bank. (z)G~  and (z)H~  filters are 
used for recovering the trace. The synthesised signal can be expressed in by: 
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3. UNDECIMATED WAVELET TRANSFORMS: A’TROUS AND CYCLE SPINNING 
The DWT is not a time or shift invariant transform. Expressions (2) and (3) show that it is a 

decimated transform, as the output of level j is only obtained every 2j input samples [15]. A wavelet time 
invariant transform is known in the literature by different names: stationary wavelet, shift-invariant 
wavelet, oversampled wavelet, non-orthogonal wavelet, UWT (used in the present paper) etc. UWT is 
thus a non orthogonal redundant, time-shift invariant (or stationary) type of wavelet transform. It is also a 
discrete approximation to the continuous wavelet transform obtained from the following expression [15]: 
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Time invariance is lost by the DWT decimation process, so that when implementing UWT we 
must either avoid decimation or calculate the output of the eliminated values during downsampling. 

3.1. A’trous Algorithm  
The a’trous is similar to Mallat’s DWT algorithm, but decimations are avoided after the low pass 

filter outputs, maintaining time information and shift invariance. As a consequence of not decimating, the 
filter coefficients must be increased at each level by means of an interpolation with zeros. The resulting 

transfer functions in the z-transform domain are )H(z)z(H
)1(2 −

=
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j , where H(z) 
and G(z) are the same low and high pass filters as those used in DWT. 

Figure 2 shows a scheme for a’trous implementation of UWT with J=3. The input sequence X(z) 
is filtered with a low-pass filter, Hj(z), and a high-pass filter, Gj(z). The output of the low-pass filter is the 
input of the new filters. The main difference between this and the DWT algorithm in Figure 1 is that 
downsampling has been avoided after filtering and the filters vary at each level. With this scheme the 
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number of wavelet coefficients obtained at each branch is K, the length of the input trace. Then the total 
number of wavelet coefficients generated by this analysis is K(J+1), that is (J+1) times greater than in the 
DWT case. The expressions of a’trous wavelet coefficients are:  
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Figure 2. UWT decomposition scheme using a’trous algorithm with J=3. 
3.2. Cycle Spinning Implementation of UWT  
An alternative CS implementation of UWT is based on the application of the DWT Mallat 

algorithm to M circularly-shifted instances of the input signal. The maximum number of circular shifts 
that can be implemented is the number of samples of input signal, K, then M ≤K. We call the time circular 
shifter operator, Sh[.], defined as : 
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with 10 K-k ≤≤  and 10 M-m ≤≤  

In the z-transform domain the previous expression gives: 
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From equations (7) and (8), Xm(z) can be expressed as a function of X(z): 
1divisor using ]z/)z[(X(z)Remainder [X(z)]  where[X(z)]  (z)X =⋅== −Km

mmm SS   (9) 
In equation (9) it is necessary the divisor was equal to 1 to maintain the X(z) coefficients values. 
The CS analysis process can be summarized in pseudocode form as follows: 

J = Maximum decomposition level 
for m=0 to M-1 

   Xm(z)= Sm[X(z)] 
[dm,1(z), dm,2(z), … dm,j(z), … dm,J-1(z), dm,J(z), am,J(z)]=DWTJ[Xm(z)]  

  end 
Figure 3 shows a UWT decomposition scheme using CS. The maximum decomposition level is 

fixed to J=3, as in the case in Figure 1, but the same scheme will be valid for any other J value by 
changing only DWT boxes. The output in this case is composed of the wavelet coefficients of M DWTs 
and the total number of CS wavelet coefficients will be MK. These coefficients can be expressed by:  
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with m varying from 0 to M-1 and j from 1 to J. 
 

 
 
 
 
 
 
 
 

Figure 3. UWT decomposition scheme using CS with J=3. 
The synthesis of Xr(z) from CS wavelet coefficients is based on several DWT synthesis processes (see 
Figure 4), denoted in this case by inverse DWT (iDWT). The synthesis can be expressed as:  

for m=0 to M-1 
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)(X~ zm =iDWTJ[dm,1(z), dm,2(z), … dm,j(z), … dm,J-1(z), dm,J(z), am,J] 

Xr,m(z)= S-m[ )(X~ zm ] 
end 
Xr(z)=mean[Xr,m(z)]  

The recovered signal after each shift, Xr,m(z), is equal to the original X(z) if the wavelet 
coefficients have not been modified. In fact, with the CS method we are recovering M versions (Xr,m(z)) 
of the original X(z), and these M versions are exactly the same if the wavelet coefficients have not been 
changed. If processing is performed on the coefficients, as for instance thresholding in a denoising 
procedure, the M recovery versions Xr,m(z) will be different. From expression (4) can be deduced: 

 












↑↑+↑= ∑

=

−
−

J

j

j
jm

J
Jmmmr daS

1

1
,,, ](z)H~)2[((z)G~)2((z)](z)H~)2[((z)(z)X    (11) 

 

 
 

 
 
 
 
 
 
 
 

Figure 4. UWT synthesis scheme using CS with J=3. 
4. SIMILARITIES AND DIFFERENCES OF A’TROUS AND CS ALGORITHMS  
4.1. Number of coefficients 

UWT can be implemented by a’trous or CS, but the resulting wavelet coefficients will then show 
differences, the most obvious difference being the number of coefficients. For a maximum decomposition 
level J, K(J+1) coefficients are obtained using the a'trous algorithm, while KM coefficients are obtained 
using CS. Nevertheless, as shown below, the number of non-repeated coefficients is the same in both 
methods.  

At the first decomposition level, j=1, with a’trous the total number of dAT,1 coefficients is K, 
whereas the number of dm,1  using CS is MK/2, (due to K/2 coefficients in M shifts). All the values of dAT,1 
are different, but many values of dm,1  are repeated in different shifts. In fact, at the first CS decomposition 
level only two sets of wavelet values appear. The first set is obtained with even shift values while the 
second is obtained with odd shift values, so that only K coefficients are different at the first level: K/2 for 
even shifts and K/2 for odd shifts. The other coefficients are shifted versions of these two basic sets. From 
Expression (10) it can be easily deduced that the two sets of coefficients and their relationships with the 
rest of the coefficients at level j=1 are: 
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where c=1,2,…,M/2-1. 
Therefore, only two possible sets of different coefficients are the inputs to level j=2: 
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As a consequence, when varying the shift value at level j=2, only four (22) sets of different wavelet 
coefficients dm,2  will appear, each with K/4 values, total coefficients being K. The same happens at the 
other decomposition levels, and in general at level j there are only 2j sets of different dm,j coefficients with 
K/2j points each. Thus, the number of different coefficients at each level is K, except for the last level, 
which is 2K (the sum of dm,J coefficients with am,J values). The total number of different wavelet 
coefficients in the CS implementation is K(J+1), which coincides with the number of coefficients in the 
a’trous case. The general relation for the CS coefficients at any level j is: 
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 i  being = 0, 1,2,…, 2j-1 and c=1,2,…, M/2j-1 
The number of different wavelet coefficients is therefore the same for both a’trous and CS 

implementations, but some coefficients in a periodic need to be repeated in CS to perform the correct 
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synthesis of the signal. The period of dm,j and am,j with respect to shift m is Tj=2j, and is associated with 
each decomposition level. An important consequence of equation (14) is that the wavelet coefficients 
obtained from CS present several periodicities with shift, and each periodicity is associated with a 
decomposition level j. 

4.2. Values of coefficients 
It can be shown that the coefficients obtained from the CS and a’trous algorithms have the same 

values by using the Noble Identity decimation [20], in which )( ↓D  represents decimation by D 

))(H(z)H(z)( ↓=↓ DD D     (15) 
we rewrite dm,j(z) from expression (10) as 
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Repeating the previous process in an iterative way, the general result is: 
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Comparing (18) with the coefficient expression obtained for a’trous in (6) gives  
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The following expression can be obtained in the same way:  
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Therefore, the coefficients obtained after each shift in the CS implementation are a subset of the 
UWT coefficients obtained from the a`trous algorithm. The whole coefficient set after complete CS 
processing coincides with the output of the a`trous algorithm.  

5. PERIODICITIES WHEN APPLYING CS  
Equation (14) summarizes the periodicities of the CS wavelet coefficients. At each decomposition 

level, j, the coefficient values are periodic with respect to shift in period 2j, and there are only 2j sets with 
different M/2j coefficients in each one at each level. The first consequence of these periodicities confirms 
[19] that when performing M=2J shifts, all the CS-UWT coefficients can be obtained. If M is increased, 
all the new coefficients will be repeated shifted versions of the first coefficients. The total number of 
different wavelet coefficients to calculate is limited to K2J instead of the maximum possible value KM. 
The number of shifts will then depend on the maximum wavelet decomposition level, J, instead of the 
analyzed signal length, M [18, 19]. 

The recovered signals associated with each shift, Xr,m(z), maintain the periodicities of the wavelet 
coefficients, as can be seen in the general expression of these recovered signals obtained in the following 
equation. Applying the periodicity of wavelet coefficients, (14), to equation (4) and assuming M=2J, the 
recovered signal for each shift m is  
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Developing this expression, taking into account that S[] is a linear operator gives: 
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The recovered signal associated with each shift, Xr,m(z), is obtained by the sum of a set of 
components. Some of these factors are specific to each shift, but many others are common to several 
shifts. The number of times that a factor appears with the form 

[ ]1
,2mod,2mod ](z)H~)2[((z)G~)2((z) −

− ↑↑ j
jmjm jj dS  will be 2J/2j, and the terms corresponding to small values of 

j will be repeated more times. 
The drawback of CS implementation of UWT is its high computational cost, due to complete CS 

using KM wavelet coefficients. The use of the maximum period in wavelet coefficients, 2J, deduced 
above, confirms the reduction of CS processing coefficients to K2J. The others periodicities with smaller 
periods, 2j, could serve as a guide for additional reductions of the number of shifts in some applications.  
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6. PERIODICITIES IN ULTRASONIC CS DENOISING 
Wavelet denoising is a well established technique developed by Donoho and Johnstone [21-23]. 

The denoising procedure can be summarized in three basic steps: the first performs the wavelet transform 
of the noisy register; in the second, a threshold is applied to the wavelet coefficients in order to minimize 
the noise influence; finally the third step completes the synthesis of the denoised signal from the modified 
wavelet coefficients. 

UWT has been used for denoising purposes and the performance using UWT is generally better 
and more robust than DWT [16]. Although the a’trous and CS implementations of UWT are equivalent 
[16], they could produce different denoising results because of the non-linear processing (basically 
thresholding) of the wavelet coefficients. 

When CS is used to denoise ultrasonic traces, it has been observed that the periodicities in CS 
wavelet coefficients are also found in the SNR of time-shifted signals. This effect will probably appear in 
other kinds of signals. In this section we show that the SNR of an ultrasonic denoised register contains the 
same shift-dependent periodicities than CS wavelet coefficients. These periodicities in SNR can be useful 
in reducing the necessary wavelet coefficients in denoising procedures. Two different denoising cases are 
presented to confirm the periodicities of SNR with time shifts and analyse their consequences. 

6.1. Spike with additive white Gaussian noise. 
In the first case, a synthetic signal is obtained by adding several sinusoidal components with 

normalized amplitudes covering the whole frequency range in a regular way. The resulting signal is a 
pulse with a very short time duration, high amplitude and very wide bandwidth, close to a delta function 
This pulse was added to a white Gaussian noise register with K=4096 data points obtained from a noise 
generator. Both the pulse and the noise cover the whole frequency range with an almost flat spectrum. 

The quality parameter, which measures performance, is the SNR defined like in [13, 14, 24, 25]: 

  trace  wholein  thedeviation   standard
 areat  in   targe  epeak  valuSNR =    (23) 

The SNR of the initial signal was in this case 6.86. A wavelet denoising procedure was applied 
using a CS implementation with Daubechies 8 [1] as mother wavelet. The maximum decomposition level 
was 7 (J=7), implying a maximum of 128 (27) shifts. The Universal rule [21] was used for threshold 
selection and soft thresholding was applied to wavelet coefficients.  

 
a) 

 
b) 

Figure 5. a) SNRs of Xr,m(z) after denoising process of the synthetic trace, for different shifts values, m. b) Frequency spectrum of 
SNR in Figure 5.a, with peaks in periodic components. 

Figure 5.a shows the SNRs of the intermediate recovered signals, Xr,m(z), after denoising 
processes, as a function of the time shifts applied to the input signal. Several periodicities of the SNR 
with shift can be easily observed in this figure. The values of different periods can be obtained by means 
of the SNR frequency spectrum. Figure 5.b shows the spectrum with peaks at frequency values 1/2, 1/4, 
1/8, 1/16 and 1/32, corresponding to periods 2, 22, 23, 24, and 25. These periods are 2j, and have the same 
values as in the CS wavelet coefficient case.  

The periodicities shown in Figure 5 can be used to reduce the number of shifts during CS 
implementation. In order to study the effects of reducing the number of wavelet coefficients on the SNR 
of the final recovered signal Xr(z), 8 different experiments were performed using 128K, 64K, 32K, 16K, 
8K, 4K, 2K and K wavelet coefficients, or in other words 128, 64, 32, 16, 8, 4, 2 and 1 shifts. The 128K 
instance corresponds to the complete CS-UWT implementation, whereas K corresponds to the DWT case. 
In each experiment, the shifts needed to reconstruct the signal Xr(z) (obtained as the mean of Xr,m(z)) 
were selected consecutively, and all the possible initial shifts were selected to avoid shift dependence.  

Table 1 shows the SNR results obtained from each experiment. The best SNR value was obtained 
for the maximum number of coefficients. Nevertheless, when the number of coefficients was reduced, the 
mean value of SNR stayed almost constant, while the standard deviation increased slightly. This 
experiment shows that it is possible to reduce the number of shifts in CS while maintaining performance. 

Table 1. SNR statistics of the denoised signal when varying the number of CS shifts 
Number of CS Coefficients 128K 64K 32K 16K 8K 4K 2K K 
SNR mean 8.3100 8.3096 8.3086 8.3067 8.3025 8.2937 8.2698 8.1858 
SNR standard deviation 0.0000 0.0091 0.0132 0.0291 0.0529 0.0692 0.0786 0.1104 

6.2. Ultrasonic pulse with grain noise. 
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In the second case, a synthetic ultrasonic trace is obtained by inserting a simulated pulse-echo 
transducer response in the central position of an ultrasonic grain noise register, obtained from the model 
proposed in [25]. The transducer pulse-echo response has a central frequency of 1 MHz, the sampling 
frequency is 64 MHz, the length of the register is K=4096 and the SNR of the trace is 5.11. Wavelet 
denoising was performed using a CS implementation with Daubechies 6 as mother wavelet; the maximum 
decomposition level was 7 (J=7). A SURE threshold [26] value was estimated independently for each 
decomposition level [27]. This case shows an important difference with the previous one in that the power 
of the ultrasonic pulse is concentrated in a frequency band around 1 MHz.  

Figure 6.a shows the SNR of the recovered ultrasonic traces for each shift m (Xr,m(z) in Figure 4), 
obtained after CS denoising using the SURE threshold selection rule. The periodicities in this case are not 
as clear as in Figure 5.a. The spectrum in Figure 6.b with two high peaks at 1/32 and 1/16, which 
correspond to periods 32 and 16, confirms that the periodicities of the wavelet coefficients have been 
transferred to final denoising results. The third amplitude peak at 1/8 also corresponds to a periodicity of 
wavelet coefficients. The other small peaks that appear in Figure 6.b could be due to harmonics or cross-
terms. The peaks are related to the concentration of ultrasonic signal energy in the frequency spectrum. 

 
a) 

 
b) 

Figure 6. a) SNRs of Xr,m(z) after denoising process of the ultrasonic trace. b) Spectrum of a) with peaks in periodic components. 
 

In this case, to study the effects of reducing the number of coefficients on the resulting SNR of the 
recovered signal Xr(z), the same 8 experiments were performed as in the first case with the ultrasonic 
register using 128K, 64K, 32K, 16K, 8K, 4K, 2K and K wavelet coefficients. Table 2 shows the statistics 
of the SNR obtained in each experiment. It can be seen that the quality of the results is proportional to the 
number of coefficients (shifts) used. However, the most important changes in SNR statistics are obtained 
using 16K, 32K and 8K coefficients, corresponding to the peaks at 1/16, 1/32 and 1/8 in Figure 6.b.  

 
Table 2. SNR statistics of the denoised ultrasonic trace when varying the number of CS shifts 

Number of CS Coefficients 128K 64K 32K 16K 8K 4K 2K K 
SNR mean 6.5482 6.5449 6.5369 6.4320 6.3121 6.2495 6.2180 6.1862 
SNR standard deviation 0.0000 0.0309 0.0617 0.1731 0.3111 0.4005 0.4513 0.4908 

 

Results from tables 1 and 2 show it is possible to control the SNR quality varying the number of 
shifts. In some cases a little loss of quality could imply a great reduction in the processing requirements.  

 

7. CONCLUSIONS 
Three original aspects have been presented in the paper: the comparative analysis of CS and 

a´trous algorithms in z-transform domain, the periodicities of CS coefficients which appears also in the 
SNR of recovered shifted signals and the application of these periodicities to ultrasonic signal denoising. 

The equivalence of CS and a’trous as UWT implementation methods are shown in the z-transform 
domain. Although the methods are equivalent, the similarities and differences observed in the obtained 
wavelet coefficients are pointed out.  

Some periodicities in the wavelet coefficients of the CS procedure are shown which can also be 
found in the recovered time-shifted signals. These periodicities confirm that the complete CS 
implementation of UWT can be performed with only 2J shifts and indicate the possibility of obtaining the 
optimal reduction of the number of wavelet coefficients during CS implementation. 

The SNRs of the intermediate recovered signals associated to each shift (SNR as a function of time 
shift), contains shift-dependent periodicities. Two ultrasonic signal denoising examples are presented: a 
spike in white noise and a broadband ultrasonic pulse immersed in grain or structural noise. In both cases 
the presence of periodicities is shown in SNR after denoising as a function of shift number. These 
periodicities can be used to reduce the number of time shifts during the implementation of CS denoising 
algorithms and the effects of reducing the number of shifts on the resulting SNR are computed.  

This work opens new possibilities in optimizing the selection of a reduced number of shifts in 
wavelet CS implementation with controlled loss of quality in the final results.  
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