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Abstract

The study and modelling of two-phase flow remains a challenge that requires ex-
ploring the physical phenomena from different spatial and temporal resolution
levels, even for the simplest regime such as bubbly flow. Computational Fluid
Dynamics (CFD) is a widespread and promising tool for modelling, but nowadays,
there is no single approach or method to predict the dynamics of these systems
providing enough precision of the results. The inherent difficulties of the events
occurring in this flow, mainly those related with the interface between phases,
makes that low or intermediate resolution level approaches as system codes (RE-
LAP, TRACE, etc.) or 3D TFM (Two-Fluid Model) have significant issues to
reproduce acceptable results, unless well-known scenarios and global values are
considered. Instead, methods based on high resolution level such as Interfacial
Tracking Method (ITM) or Volume Of Fluid (VOF) require a high computational
effort that makes unfeasible its use in complex systems.

In this thesis, an open-source simulation framework has been designed and de-
veloped using the OpenFOAM R© library to analyse the cases from microescale to
macroscale levels. The different approaches and the information that is required
in each one of them is studied for bubbly flow. In the first part, the dynamics of
single bubbles at a high resolution level are examined through VOF. This tech-
nique allowed obtaining accurate results related to the bubble formation, terminal
velocity, path, wake and instabilities produced by the wake. However, this ap-
proach has been impractical for real scenarios with more than dozens of bubbles.
Alternatively, this thesis proposes a CFD Discrete Element Method (CFD-DEM)
technique, where each bubble is represented discretely. A novel solver for bubbly
flow has been developed in this thesis. This includes numerous improvements nec-
essary to reproduce the bubble-bubble and bubble-wall interactions, turbulence,
velocity seen by the bubbles, momentum and mass exchange term over the cells or
bubble expansion, among others. But also new implementations as an algorithm
to seed the bubbles in the system have been incorporated. This new solver gives
more accurate results as the provided up to date.

Following the decrease on resolution level, and therefore the required computa-
tional resources, a 3D TFM is developed with a population balance equation solved
with an implementation of the Quadrature Method Of Moments (QMOM). The
solver is implemented with the same closure models as the CFD-DEM to analyse
the effect involved with the lost of information due to the averaging of the instanta-
neous Navier-Stokes equation. The analysis of the results with CFD-DEM reveals
the discrepancies found by considering averaged values and homogeneous flow in
the models of the classical TFM formulation. Finally, for the lowest resolution
level approach, the system code RELAP5/MOD3 is used for modelling bubbly
flow regime. The code is modified to reproduce properly the two-phase flow char-
acteristics in vertical pipes, comparing the performance of the calculation of the
drag term based on drift-velocity and drag coefficient approaches.
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To perform this work it has been necessary not only the development of solvers
and models for the different approaches, but it has also become essential to ac-
quire an in-depth knowledge of the physical phenomena and interpretation of the
real measurements in bubbly flow. Throughout the thesis, much effort has been
put into performing a rigorous analysis. As a result, a virtual system has been
incorporated in the numerical scheme to obtain variables from the signal generated
by the bubbles and processed with the same program as the one used in the ex-
periments. In this way, the results obtained by the measuring equipment and the
simulations are fully equivalent and comparable. Experimental data from different
authors has been taken to validate the solvers for the different approaches and all
the available variables compared, analysing those that are not available or offered
by the authors.
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Resumen

El estudio y modelado de flujos bifásicos, incluso los más simples como bubbly
flow, sigue siendo un reto que conlleva aproximarse a los fenómenos f́ısicos que lo
rigen desde diferentes niveles de resolución espacial y temporal. El uso de códigos
CFD (Computational Fluid Dynamics) como herramienta de modelado está muy
extendida y resulta prometedora, pero hoy por hoy, no existe una única aproxi-
mación o técnica de resolución que permita predecir la dinámica de estos sistemas,
y que ofrezca suficiente precisión en sus resultados. La dificultad intŕınseca de los
fenómenos que alĺı ocurren, sobre todo los ligados a la interfase entre ambas fases,
hace que los códigos de bajo o medio nivel de resolución, como pueden ser los
códigos de sistema (RELAP, TRACE, etc.) o los basados en aproximaciones 3D
TFM (Two-Fluid Model) tengan serios problemas para ofrecer resultados acepta-
bles, a no ser que se trate de escenarios muy conocidos y se busquen resultados
globales. En cambio, códigos basados en alto nivel de resolución, como los que uti-
lizan VOF (Volume Of Fluid), requieren de un esfuerzo computacional tan elevado
que no pueden ser aplicados a sistemas complejos.

En esta tesis, mediante el uso de la libreŕıa OpenFOAM R© se ha creado un marco
de simulación de código abierto para analizar los escenarios desde niveles de res-
olución de microescala a macroescala, analizando las diferentes aproximaciones,
aśı como la información que es necesaria aportar en cada una de ellas, para el
estudio del régimen de bubbly flow. En la primera parte se estudia la dinámica
de burbujas individuales a un alto nivel de resolución mediante el uso del método
VOF. Esta técnica ha permitido obtener resultados precisos como la formación de
la burbuja, velocidad terminal, camino recorrido, estela producida por la burbuja
e inestabilidades que produce en su camino. Pero esta aproximación resulta invi-
able para entornos reales con la participación de más de unas pocas decenas de
burbujas. Como alternativa, se propone el uso de técnicas CFD-DEM (Discrete
Element Methods) en la que se representa a las burbujas como part́ıculas discretas.
En esta tesis se ha desarrollado un nuevo solver para bubbly flow en el que se han
añadido un gran número de nuevos modelos, como los necesarios para contemplar
los choques entre burbujas o con las paredes, la turbulencia, la velocidad vista por
las burbujas, la distribución del intercambio de momento y masas con el fluido en
las diferentes celdas o la expansión de la fase gaseosa entre otros. Pero también se
ha tenido que incluir nuevos algoritmos como el necesario para inyectar de forma
adecuada la fase gaseosa en el sistema. Este nuevo solver ofrece resultados con un
nivel de resolución superior a los desarrollados hasta la fecha.

Siguiendo con la reducción del nivel de resolución, y por tanto los recursos com-
putacionales necesarios, se efectúa el desarrollo de un solver tridimensional de
TFM en el que se ha implementado el método QMOM (Quadrature Method Of
Moments) para resolver la ecuación de balance poblacional. El solver se desarrolla
con los mismos modelos de cierre que el CFD-DEM para analizar los efectos rela-
cionados con la pérdida de información debido al promediado de las ecuaciones
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instantáneas de Navier-Stokes. El análisis de resultados de CFD-DEM permite
determinar las discrepancias encontradas por considerar los valores promediados
y el flujo homogéneo de los modelos clásicos de TFM. Por último, como aproxi-
mación de nivel de resolución más bajo, se investiga el uso de códigos de sistema,
utilizando el código RELAP5/MOD3 para analizar el modelado del flujo en condi-
ciones de bubbly flow. El código se ha modificado para reproducir correctamente
el flujo bifásico en tubeŕıas verticales, comparando el comportamiento de aproxi-
maciones para el cálculo del término de drag basadas en velocidad de drift o del
coeficiente de drag.

En esta tesis, sin embargo, no sólo ha sido necesario desarrollar solvers para las
diferentes aproximaciones. Si no que ha sido imprescindible adquirir un conoci-
miento muy profundo de los fenómenos que ocurren y la comprensión e inter-
pretación de los resultados experimentales que se obtienen desde los experimentos
reales de bubbly flow. En la tesis se ha dedicado mucho esfuerzo a analizar con
detalle los fenómenos f́ısicos, y se ha tenido que desarrollar un sistema virtual de
medida que coincide con el experimental, creando una señal equivalente a la que
ofrece el equipo experimental del laboratorio, y que ha sido procesado con el mismo
software que éste. Aśı, los resultados obtenidos por el equipo y la simulación son
totalmente comparables. Se han tomado resultados experimentales de varios au-
tores para validar de forma muy rigurosa los resultados obtenidos en las diferentes
aproximaciones, comparando todos los parámetros disponibles en el experimento,
y analizando aquellos que no ofrećıan las publicaciones.
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Resum

L’estudi i modelatge de fluxos bifàsics, fins i tot els més simples com bubbly
flow, segueix sent un repte que comporta aproximar-se als fenòmens f́ısics que
ho regeixen des de diferents nivells de resolució espacial i temporal. L’ús de codis
CFD (Computational Fluid Dynamics) com a eina de modelatge està molt es-
tesa i resulta prometedora, però ara per ara, no existeix una única aproximació
o tècnica de resolució que permeta predir la dinàmica de sistemes i que oferisca
suficient precisió en els seus resultats. Les dificultats intŕınseques dels fenòmens
que hi tenen lloc, sobre tots els lligats a la interfase, fa que els codis de baix o
mig nivell de resolució, com poden ser els codis de sistema (RELAP, TRACE,
etc.) o els basats en aproximacions 3D TFM (Two-Fluid Model) tinguen seriosos
problemes per a oferir resultats acceptables, llevat que es tracte d’escenaris molt
coneguts i es persegueixen resultats globals. En canvi, codis basats en alt nivell de
resolució, com els que utilitzen VOF (Volume Of Fluid), requereixen d’un esforç
computacional tan elevat que no poden ser aplicats a sistemes complexos.

En aquesta tesi, mitjançant l’ús de la llibreria OpenFOAM R© s’ha creat un marc
de simulació de codi obert per a analitzar els escenaris des de nivells de resolució
de microescala a macroescala, analitzant les diferents aproximacions, aix́ı com la
informació que és necessària aportar en cadascuna d’elles, per a l’estudi del règim
de bubbly flow. En la primera part s’estudia la dinàmica de bambolles individuals
a un alt nivell de resolució mitjanant l’ús del mètode VOF. Aquesta tècnica ha
permès obtenir resultats precisos com la formació de la bambolla, velocitat termi-
nal, camı́ recorregut, estel·la prodüıt per la bambolla i inestabilitats que produeix
en el seu camı́. Però aquesta aproximació resulta inviable per a entorns reals amb
la participació de més d’unes poques desenes de bambolles. Com a alternativa en
aqueix cas es proposa l’ús de tècniques CFD-DEM (Discrete Element Methods)
en la qual es representa a les bambolles com a part́ıcules discretes. En aquesta
tesi s’ha desenvolupat un nou solver per a bubbly flow per al qual s’han afegit un
gran nombre de nous models, com els necessaris per a contemplar els xocs entre
bambolles o amb les parets, la turbulència, la velocitat vista per les bambolles, la
distribució de l’intercanvi de moment i masses amb el fluid en les diferents celles
per cadascuna de les bambolles o els models dexpansió de la fase gasosa entre uns
altres. Però també s’ha hagut d’incloure nous algoritmes com el necessari per a
injectar de forma adequada la fase gasosa en el sistema. Aquest nou solver ofereix
resultats amb un nivell de resolució superior als desenvolupat fins a la data.

Seguint amb la reducció del nivell de resolució, i per tant els recursos computa-
cionals necessaris, s’efectua el desenvolupament d’un solver tridimensional de TFM
en el qual s’ha implementat el mètode QMOM (Quadrature Method Of Moments)
per a resoldre l’ecuació de balanç poblacional. El solver es desenvolupa amb
els mateixos models de tancament que el CFD-DEM per a analitzar els efectes
relacionats amb la pèrdua d’informació a causa del promitjat de les equacions
instantànies de Navier-Stokes. L’anàlisi de resultats de CFD-DEM permet deter-
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minar les discrepàncies ocasionades per considerar els valors promitjats i el flux
homogeni dels models clàssics de TFM. Finalment, com a aproximació de nivell
de resolució més baix, s’analitza l’ús de codis de sistema, utilitzant el codi RE-
LAP5/MOD3 per a analitzar el modelatge del fluxos en règim de bubbly flow. El
codi és modificat per a reproduir correctament les caracteŕıstiques del flux bifàsic
en canonades verticals, comparant el comportament d’aproximacions per al càlcul
del terme de drag basades en velocitat de drift flux model i de les basades en
coeficient de drag.

Però en aquesta tesi no solament ha sigut necessari desenvolupar solvers per a les
diferents aproximacions. Ha sigut imprescindible adquirir un coneixement molt
profund dels fenòmens que ocorren i la comprensió i la interpretació dels resultats
experimentals que s’obtenen des dels experiments reals de bubbly flow. En la tesi
s’ha dedicat molt esforç a analitzar amb detall els fenòmens f́ısics, i s’ha hagut
de desenvolupar un sistema virtual de mesura que coincideix amb l’experimental,
creant un senyal equivalent a la qual ofereix l’equip experimental del laboratori,
i que ha sigut processat amb el mateix software que aquest. Aix́ı, els resultats
obtinguts per l’equip i la simulació són totalment comparables. S’han considerat
resultats experimentals de diversos autors per a validar de la forma mes rigorosa
possible els resultats obtinguts en les diferents aproximacions, comparant tots els
paràmetres disponibles en l’experiment, i analitzant aquells que no oferien les
publicacions.
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Chapter 1

Introduction

This chapter contains the discussion that has motivated the research
described in this work. It summarises the available methods to compute
two-phase flow with their strength and weaknesses, the state of the art
and the scientific royalty of the presented work.

1.1 Overview

Multiphase flow is present in natural and industrial processes of different nature.
Examples of multiphase flow are groundwater, sand storm, volcanic eruptions or
ocean waves. Focusing the attention to gas-liquid two-phase flow, multiple indus-
trial applications can be described. In nuclear power plants, Boiling Water Re-
actors or Pressurized Water Reactors under accident conditions, contain a steam-
water mixture produced by the heat given by the fuel elements. In the chemical
industry, multiphase reactors as bubble columns are used to perform chemical
reactions as polymerization, chlorination, hydrogenation, polymerization or alky-
lation. In wastewater treatment plants, air-water or oxygen-water are used at
different stages combined with microorganisms to decrease the organic content of
the sewage. The oil or petroleum industry is also an example of two-phase flow
as it is present in transport pipelines, pumps and production wells. Finally, two-
phase flow exists in multiple generic devices as heat exchangers, boilers or phase
separators.

In these activities and processes, it is usually required to know the exact flow
behaviour to improve productivity, efficiency or for ensuring the safety of plant
design and production activity. However, the understanding of two-phase flow is
far from the single-phase flow knowledge.
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Chapter 1. Introduction

The study of this flow can be done experimentally, theoretically or computation-
ally. The experiments in multiphase flow provide insight into the characteristics of
the flow. However, its application is limited to the size of the laboratory model, the
costs or the current limits of the measurement techniques. In contrast, theory and
computational models can contribute to understand the physics of multiphase flow
and to extrapolate the results of these models to larger scale than the experiments
used for validation.

Because of its importance and challenges related to predict the two-phase flow
structure using computational methods, two-phase flow has been investigated over
the years being a research focus with significant strides accomplished to date. Com-
putational simulations employing very different approaches were used to predict
the two-phase flow behaviour at different levels (Ishii et al. 2006a; Prosperetti
et al. 2007). It is worth stressing that with high resolution level, the microscopic
phenomena can be solved. In contrast, the more simple approaches need to model
this effects by means of correlations. However, their validity is in the range of
conditions and configuration for which have been obtained.

The choice of a specific method depends on its suitability for the range of operating
conditions, the scale and the complexity of the domain to investigate. The method
employed, is influenced by the computational limits and resources availability, the
time needed to obtain the computational results and the precision. The literature
includes developments at microscopic, mesoscopic and macroscopic levels as Inter-
facial Models (IM) , Discrete Element Model (DEM) or Two-Fluid Model (TFM)
respectively. In practice, the IM are unfeasible for large or intermediate systems of
bubbly flow, but TFM may not predict different scenarios without tuning model
coefficients. Intermediate approaches as CFD-DEM applied to bubbly flow are
less explored up to date, but promising. Figure 1.1 schematise these approaches
showing how the dispersed phase is represented.

Figure 1.1: Schematic representation of the dispersed phase using different approaches.
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1.1 Overview

In addition, there is added complexity to solve two-phase flow because the rela-
tion between the domain discretization (or mesh) and the bubbles. For a given
mesh, the bubbles can be classified as particles in cell, resolved and under-resolved.
Fig. 1.2 represents this classification for a complex real case and a given discretiza-
tion. The coexistence of different bubble types difficults the use of a single method
to solve a case as the shown in the figure. With IM all the bubbles must be re-
solved, then a sufficiently fine mesh would be needed in order to capture the
interface of the small bubbles. CFD-DEM methods can be used with resolved or
under-resolved formulations. The former implies similar restrictions as IM and the
latter needs volume cells greater than the bubble one.

Figure 1.2: Slug flow with bubbles of different sizes and an example of its classification
for a given domain discretization.

In general, much progress remains to be achieved to ensure the correctness of the
modelling of two-phase flow. In this thesis this is tackled focusing the attention
to the bubbly flow regime through and exhaustive study of the experiments and
numerical methods at different scales.
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1.2 State of the art

In order to better understand two-phase flow physical phenomena, authors from
different research areas have focused their work on this field for decades, producing
an extensive set of studies and models. Nonetheless, the lack of consensus sur-
rounding the physical models used in computational methods to properly predict
both the dispersed and continuous phase behavior can be noticed in the literature.

1.2.1 Experiments and techniques

Experimental work has been done during decades to analyse the two-phase flow
behaviour and to assess the validity of existing and novel computational meth-
ods. The earlier experimental observations of bubbles are, in fact, attributed to
Leonardo Da Vinci (Prosperetti 2004) who already reported in the Codex Leicester
the instability of the path of a bubble rising.

By focusing on the objective of the experiments, the early researches were carried
out to analyse the motion of single bubbles and its effect on the liquid. Allen
(1900) investigated the terminal velocities of small bubbles and solid spheres in
viscous fluids. This work concluded that for slow motion, if no eddies are set up
in the fluid, the velocity of the bubble agrees with that deduced from theoretical
considerations by Stokes. Davies et al. (1950) focused the attention to the terminal
velocity including large bubbles. Different studies of drag and shape of bubbles
rising in different liquids can be found in the literature (Haberman et al. 1953;
Peebles et al. 1953; Aybers et al. 1969; Duineveld 1995). In the subsequent years,
two-phase flow measurements were centred mainly in systems. Experiments where
the air is generally injected in a stagnant liquid as channels (Wambsganss et al.
1991; Richardson et al. 1958; Troniewski et al. 1984; Ali et al. 1993; Zenit et al.
2001) and bubble columns (Kumar 1994; Kumar et al. 1997a; Kumar et al. 1997b;
Degaleesan 1997; Chen et al. 1999a) represented the most popular research topic
during decades. Bubbly flow mainly in pipes has been studied with an increasing
number of investigations (Grossetête 1995; Wang et al. 1987; Prasser et al. 2002;
Lucas et al. 2005). Two-phase pipe flow in horizontal or inclined angle has been
investigated paying special attention to the regime transition (O’brien et al. 1935).
Tee junctions has also been investigated to analyse the separation of the liquid and
the gas as in Margaris (2007).

Isolated effects as bubble formation (Dietrich et al. 2013b; Dietrich et al. 2013b)
collisions (Vries 2001; Zaruba et al. 2007; Zenit et al. 2009) breakup (Mart́ınez-
Bazán et al. 1999; Müller-Fischer et al. 2008; Solsvik et al. 2015) or coalescence
(Marrucci et al. 1967; Prince et al. 1990) have also been investigated experimen-
tally.
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During these years the experimental techniques for measuring local properties of
gas-liquid flows has undergone a great improvement with different methods for
measuring continuous and dispersed phase (Monrós-Andreu et al. 2016). The
most popular techniques to measure velocity and turbulence fields in continuous
phases are based on optical techniques, such as LDA or PIV. Techniques based on
heat transfer phenomenology such as Thermal Anemometry (TA) (Jensen 2004)
are also being used. Optical techniques require seeding the flow with microscale
tracers that reflect the impinging light, so the flow velocity is indirectly measured.
Thermal techniques require positioning a sensor in the flow, thus altering its be-
haviour (sensor intrusiveness).

Laser Doppler Anemometry (LDA) is a local measurement technique that consists
in the projection of a microscopic fringe pattern into the flow path. Whenever a
seeding particle passes through the volume occupied by this pattern, it produces
a characteristic set of gleams that is registered by a photodiode. The frequency of
the gleams set, depends on the particle velocity across the direction of the pattern.
In practice, a pair of mutually coherent laser beams must be used to produce a
fringe pattern providing one velocity component (and 3 Reynolds stresses). The
measurement of the three velocity components (and 6 Reynolds stresses) requires
three pairs of such beams. Since its first proposal (Durst et al. 1976a), several
researchers have used this technique for the measurement of flow velocity either in
single-phase (Durst et al. 1995; Barnhart et al. 1994) and two-phase flows (Lance et
al. 1991; Mudde et al. 1997b; Poorte et al. 2002). Leung et al. (1995), Hibiki et al.
(1998), Hibiki et al. (2001a), and Fu (2001) developed experimental databases for
two-phase pipe flow using LDA. Given its accuracy, this technique is the preferred
amongst researchers for most purposes. But several problems limit its application.
Measurements in high-void fraction conditions (over 20%) is unpractical (Mudde
et al. 1997b). The measurement in non-regular containers can be cumbersome due
to the optical aberrations affecting the fringe pattern (Zhang 2010). Also, as it is a
local measurement technique, it needs for scanning to obtain flow fields. This can
be actually complex in non-regular geometries, especially when three independent
beam pairs are used (Zhang 2010).

Particle image velocimetry is a two-dimensional (2D) measurement technique that
relies on the illumination of a flow section by using a light sheet (Raffel et al. 1998).
Recently, three-dimensional vectors can be also measured by off-axis, double-
pulsed holographic PIV (Barnhart et al. 1994) or tomographic principles (Scarano
2013). In standard 2D PIV, the seeding particles that pass across the illuminating
sheet, reflect the light so that it is registered by a fast camera. The comparison
between two consecutive acquisitions separated by a short delay (typically of the
order of the millisecond) permits to obtain the velocity and Reynolds stresses fields
over the whole image (Adrian et al. 2011). Although its accuracy remains under
the LDA standards, this technique is the preferred to study complex flows where
the flow structure is of primary importance. In addition, eddy structures can be
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noticed and analysed from the images. As a counterpart, this technique is limited
by its low dynamic range in velocity measurement. Also, the optimization of the
seeding concentration to improve the PIV processing is quite complex. Finally, its
accuracy strongly relies on the performance of pairing algorithms (Adrian 2005).

Thermal anemometry techniques are local measurement techniques that rely on
the fact that the heat transfer coefficient of a sensing solid immersed in a fluid
depends on the flow speed (Bauer 1965a; Bruun 1996). In practice, a wire is heated
by an electrical current, and its electrical resistance is measured. As this property
is temperature dependent, the measurement of the wire resistivity allows for the
computation of the flow speed. TA based on hot-wires has been used to measure
flow velocity and turbulence in single-phase flows (Siebert et al. 2007; Jørgensen
2001), and also in two-phase flows (Mendez-Dı́az et al. 2013; Hibiki et al. 1998),
where it also serves as a phase identifier. This technique provides measurements
with high dynamic range at high-acquisition rates. However, the non-linearity
of its signal requires for extensive calibrations that may change over time due to
slight contamination of the working fluid. Also, the sensor is very fragile and
easy to break, which makes them not suitable for industrial environments. With
respect to the measurement of dispersed phase properties, the most widely used
techniques are based in electrical tomographic systems (ETS), wire-mesh sensors
(WMS), and needle-probe systems. Sensors based on nuclear tomographic systems
have been also developed for the study of multiphase flows due to its non-invasive
operation principle providing satisfactory results, but at an elevated cost.

Electrical tomographic systems aim at measuring the phase distribution over a
cross-section. These systems rely on the fact that the electromagnetic properties
of the two phases are different, either electric capacitance (ECT) or resistance
(ERT). In this way, the signal between a pair of excitation-sensing electrodes is
related to the phase distribution in the measurement volume enclosed by them.
To obtain the whole phase distribution, an array of electrodes placed outside the
test section generates excitation-sensing signals across different directions. They
have been used for bubble columns (Schmitz 2000), pipe lines (Prasser et al. 1998),
and three-phase fluidized beds (Maucci et al. 1999). Depending on the number of
electrodes and the tomographic reconstruction algorithm used their characteristic
response dynamics can be actually fast, and they can therefore describe rapid
evolutions of phase distribution. These systems are easy to implement at relatively
low cost and work really good for the detection of slugs in pipe flows and flow
regime identification (Geraets et al. 1988; Ahmed 2006). However, the measured
signals are difficult to handle. To start, they do not depend linearly with the phase
fraction given that the phase distribution affects the electric field distribution.
Thus, the reconstruction of the phase distribution relies on non-steady calibration
(Jaworek et al. 2004). The spatial resolution is low and highly compromised unless
a priori knowledge is included in the reconstruction procedure. Finally, they cannot
measure the velocity of individual particles. Instead, the use of two electrode
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planes axially separated is used to obtain the so-called structure velocity for pipe
flows (Abdulkadir et al. 2014).

Another interesting tomographic system is the wire mesh sensor. By using two
planes of electrodes (excitation plane and sensing electrodes plane) forming a grid
settled within a pipe it is possible to measure the impedance at each crossing point,
in a fast multiplexed way. Firstly, a conductivity based version was introduced
by Johnson for oil-water systems (Johnson 1987). Later on Prasser et al. (1998)
introduced improvements on the sensitivity and presented a WMS for air-water
systems. Recently, Silva et al. (2007) expanded the applicability of WMS to non-
conductive mixtures developing a WMS based on fluid permittivity measurements.
Currently is the most widely used technique to obtain information from the dis-
persed phase including gas-liquid flows (Prasser et al. 1998) and three-phase flows
(Silva 2008) because they provide cross-section phase distributions with high spa-
tial resolution at moderate to high frequencies. Also, the use of two sensing planes
permits the computation of the velocities of individual particles. As a counter-
part, these systems are highly intrusive, especially when high spatial resolution is
required (more wires are needed).

Needle probes detect the local physical properties of the fluid surrounding their
sensing parts. A probe sensor consists of one or more thin electrodes settled to face
the main flow direction. Two main types of needle probes can be distinguished ac-
cording to its measuring principle: optical probes and resistive (or more generally,
impedance) probes. Despite its intrusive principle and the fact that needs extra
scanning systems to perform complete cross-sectional measurements, they allow a
complete description of gas phase hydrodynamic characteristics (particle size and
speed, local interfacial area concentration, etc.). Details about this technique will
be extended throughout this thesis.

1.2.2 Analytical and numerical models

Analytical and numerical models have been used historically to predict the bubbles’
behaviour. An analysis of the literature of the past few decades is performed to
explore the trends followed by the scientific community. The number of relevant
works are shown in Fig. 1.3 making a distinction between analytical models (AM),
IM, EL or CFD-DEM and 3D TFM. The number of investigations related to
AM have remained almost constant over the past years. However, the numerical
methods analysed has gained popularity as the computational resources became
faster and cheaper. This can clearly be seen for TFM, in the past decades it has
been mainly used for general investigations or to focus on specific phenomena as
breakup and coalescence. The IM need the use of massive parallel computing even
for small domains. It has been increasingly selected as a tool to investigate bubble
behaviour. The CFD-DEM methods are located between both techniques. The
computational demanding is higher than for TFM but a modelling effort is still
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needed in contrast to IM, in contrast the current technology makes feasible its use
for industrial applications.

Figure 1.3: Number of relevant investigations over years for different approaches.

Many models and numerical predictions involving single bubbles have been per-
formed trying to reproduce the experimental results. Theremin (1830) performed
a theoretical analysis of the motion of a bubble in a liquid with constant liquid.
Subsequently Hadamard (1911) and Witold (1911) developed an equation giving
the terminal velocity of a spherical bubble moving slowly through an ambient fluid.
Using analytical correlations Rosenberg (1950), Moore (1965), and Moore (1963)
could determine the rise velocity of a bubble from a drag coefficient. Most of these
findings were compiled in Clift et al. (1978). Toward the end of the 20th century,
the basis of the nowadays available methods for two-phase flow were established.
For instance, TFM (Drew et al. 1971a), VOF (Hirt et al. 1981), Level Set (Osher
et al. 1988) or Front Tracking Method (Unverdi et al. 1992). Over the following
decades, the investigations also focused on the use, improvement and development
of hybrid methods.

Simulations involving air-water two-phase flow systems have been performed to
validate different scenarios. However, only rarely, if at all, a single model has
proved its correctness modelling experiments or industrial cases for different sce-
narios including various flow conditions and geometric configurations. Using an-
alytical correlations (Rosenberg 1950; Moore 1965; Clift et al. 1978), the relative
velocity of a single bubble can be predicted. Reproducing the flow in systems is
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possible by means of an Eulerian-Eulerian (EE) approach as the TFM, where the
local instantaneous equations of each phase are averaged to obtain an Euler-Euler
two-phase flow description (Drew et al. (1971a)). Based on this approach sev-
eral contributions showed its applications to bubble columns (Gupta et al. (2013),
Pan et al. (1999), Pfleger et al. (1999), and Zhang et al. (2006)). Vertical pipes
have taken particular attention as they are present in several industries. This
flow involves wall-bounded turbulent flows and requires an exhaustive modelling
of interfacial forces between phases and the turbulence interaction by bubbles and
liquid. Some works were carried out in vertical pipes (Hosokawa et al. 2009; Krep-
per et al. 2005) and horizontal pipes (Ekambara et al. 2008). In addition, many
researches using this approach have been done focusing on specific phenomena
such as interfacial forces, breakup and coalescence or solving the bubble size field
using a population balance equation approach (Cheung et al. (2013), Wang et al.
(2005), and Buffo et al. (2013)).

Another strategy is to consider the dispersed phase discretely as ideal spheres using
an Eulerian-Lagrangian (EL) approach. Using a method relying on a discrete
model has the advantage of considering the following aspects inherently in the
method:

• Inhomogeneity of the dispersed phase flow.

• Non-linearity of the bubble forces correlations.

• Bubble-bubble and bubble-wall interactions mechanistic computation.

• Turbulent dispersion effect for all the bubble forces.

• Interfacial force coefficients that were obtained experimentally for individual
bubbles are applied directly in the simulation.

Note that the mentioned above could be considered, in principle, with TFM but
the modelling becomes more complex or unfeasible as it is not clear nowadays that
the required relationships can be found.

The EL approach started some decades ago for the mathematical simulation of
sprays, O’Rourke (1981) and O’Rourke (1985) developed a new approach coupling
the Lagrangian equation for droplet distribution function of Williams (1958) with
an Eulerian description. In their calculations velocity and pressure were obtained
by means of the Navier-Stokes equations while the motion of each particle was
solved using the Newton’s second law as well as the particle-particle, particle-
wall, coalescence and breakup during the particle path. Lately Dukowicz (1980)
developed a EL two-way coupling including momentum coupling and volume ef-
fects for computational particles, representing group of particles with the same
characteristics.
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Within the EL formulation holds the CFD-DEM method usually characterized to
consider the elastic collisions of the particles based on a soft-sphere model. CFD-
DEM model has been applied traditionally for dense flow systems (Matuttis et al.
2000; Alam et al. 2003) but could result especially useful to wall-bounded systems
where the particle interactions play a crucial role as in the two-phase pipe flow
investigated in this work.

For the most part, CFD-DEM has been applied to sprays or particle-laden flows.
Further and in a lesser extent EL were applied to bubbly flow applications (Delnoij
et al. 1997; E. Shams et al. 2010; Essa 2012). The reader is referred to Subra-
maniam (2013) for details about LE methods. The CFD-DEM approach has been
extensively used to simulate two-phase flow systems as particle-laden flows, but
new improvements to develop a new solver are needed to simulate bubbly flows
accurately. In bubbly flow there are key differences comparing to particle-laden
flows that need to be accounted. Magnaudet et al. (2000) noted three important
differences that are listed below in words of the author:

• “When the liquid is pure enough, it has the possibility to slip along the
surface of the bubbles, in contrast to the flow past rigid bodies where the
non-slip conditions is imposed.”

• “Owing to the very weak relative density of bubbles compared to that of the
liquid, almost all the inertia is contained in the liquid, making inertia-induced
hydrodynamic forces particularly important in the prediction of bubble mo-
tion.”

• “The shape of the bubbles can change with the local hydrodynamics.”

Additionally, we add to the list the following factors with relevance to bubbly flow
systems as for example a pipe:

• The size and number of bubbles can change due to breakup or coalescence
phenomena and can change the bubbles motion dramatically (e.g. negative
lift force coefficient range).

• The bubble size and dispersed phase volume may vary with the pressure
changes.

• The deformation of the bubble in a collision is not easily characterized with
parameters that defines the resistance to being deformed elastically as elastic
or shear modulus as in solid materials.

The mentioned above has several consequences in the requirements of the solver.
First, in the computation of the interfacial forces, the modelling is more compli-
cated in order to represent the real behaviour of the bubbles. Second the coupling
between both phases including turbulence effects of the bubbles into the liquid and
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vice versa will have a relevant influence into the flow characteristics. In addition,
the particle sizes are usually smaller than the bubbles. Finally, the measurements
of the bubble variables are in general more complicated.

As already mentioned in Allen (1900), when a bubble has a small size, the surface
tension is large enough to keep the sphericity of the bubble. Then the EL method
could be useful and more accurate. However, when the bubble has a large size
its shape evolves forming other shapes. In order to consider these phenomena,
interfacial techniques can reliably predict the dynamics of the bubble surface.
These methods include the Volume of Fluid Method (VOF) (Hirt et al. 1981) and
the front-tracking method (Muradoglu et al. 2008).

As regards turbulence modelling, the above strategies capturing two-phase flow can
be applied to Direct Numerical Simulations (DNS), Large Eddy Simulations (LES)
or Reynolds-averaged Navier-Stokes equations (RANS). The mechanism involving
the influence of the dispersed phase on the continuous phase are unknown and
the existing turbulence models contain, in greater or lesser degree, terms verified
only for single-phase flow up to date. LES simulations has been also applied for
bubbly flow simulations (Dhotre et al. 2013). Two-phase flow RANS models as κ-ε
or κ-ω consider a pseudo-turbulence produced by the bubbles, however the set of
constants of this model originally derived by Launder et al. (1974) for single-phase
flow should be evaluated under different two-phase flow conditions.

In summary, up to date bubbly flows have been simulated mainly by the use of
TFM and LE. Simulations at a microscopic level description of the dispersed phase
are very enlightening though limited to small domains and number of bubbles.
Works aiming at a microscopic description have not been included in the table as
they have not been applied to the same kind of geometries and flow conditions.
Particularly interesting are the works of Dijkhuizen et al. (2010b) who studied
the bubble behaviour of isolated bubbles. Roghair et al. (2013) presented results
of simulations for dense bubbly flow up to 31 bubbles. Tryggvason et al. (2009)
simulated a vertical channel in a periodic domain with around 36 bubbles in the
turbulent downflow case.

Table 1.1 and 1.2 summarizes main simulation works in the literature that have
been validated with experimental datasets. The table points out the simulation
method (TFM, EL), the geometry and flow conditions simulated, as well as the
variables validated for each case.

In general, the TFM is the most established technique and has been therefore
extensively validated. Datasets for validation typically comprise a wide number of
variables as dispersed phase void fraction, αd, axial velocity for dispersed phase,
Ud,z, and carrier phase, Uc,z, interfacial area concentration, aI , Sauter mean di-
ameter obtained by probe sensors, dNP, or by image processing, dIP, bubble size
distribution, BSD, carrier phase turbulence kinetic energy, κc or turbulence in-
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á
ın

et
a
l.

(2
0
02)

L
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Chapter 1. Introduction

tensity, TIc. Let us note that these simulations are highly dependent on the set
of correlations used for the interfacial force models and coefficients, break-up and
coalescence and turbulence modelling. These sets vary widely amongs the different
works and have not been included in the table for the sake of clarity. The main
reasons are related to the difficulty of modelling two-phase flow phenomena with
phase average equations as commented before. Indeed, a complex flow behavior
difficult to model, is present even in simple geometries and low void fractions.

The LE works are usually limited to smaller domains and datasets for valida-
tion comprise general behaviour of bubble plumes and velocity fluctuations of the
carrier phase (u′) in addition to those used in TFM.

Finally, several works similar in nature to this thesis, have performed a multiscale
study or multiscale modelling including several of the methods mentioned as in
Gunsing (2004) and Deen et al. (2004).

1.3 Research objectives and thesis outline

The aim of this thesis is to study the modelling of two-phase flow with the use of
experimental methods and through this, deepen on its physical behaviour. Numer-
ical methods at different resolution levels as VOF, CFD-DEM, TFM and system
codes (RELAP5/MOD3) were employed to compare the experimental results. In
this way, more knowledge can be acquired for the modelling of lower resolution
level approaches to apply it for industrial applications. The multiscale modelling
with VOF, CFD-DEM, TFM and system codes involves the key aspects shown in
Fig. 1.4.

VOF

CFD-DEM

3D TFM

1D TFM

C
om

pu
ta

tio
na

lt
im

e

R
es

ol
ut

io
n

le
ve

l

Rising velocity
Acceleration
Bubble path and instabilities

Non-drag forces
Radial distribution

Non-linearity
Ingomohenity
Interfacial forces and swarm
Turbulence influence in forces
Wall interactions
Validation methodology

Figure 1.4: Overview of the approaches and information supplied.
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1.3 Research objectives and thesis outline

To achieve these objectives, developments of models and solvers were performed,
using the OpenFOAM R© libraries to create an open-source multiscale framework
of investigation. The choice of this software or library is justified by the fact
that is free and open source, but also because its modular structure allows future
contributions of different sub-models and methods. In this way, optimized methods
from the wide variety of technical aspects related with CFD can be achieved and
also sustained over time through the scientific community. Focused to two-phase
flow, this encourages future contributions devoted to analyse complex phenomena
as for example the presence of surfactants, chemical reactions, heat transfer or
boiling and condensation. Furthermore, this is intended to serve as a basis for
future hybrid codes or coupling between the solvers for solution of phenomena at
different scales in the same simulations. A scheme of this framework is shown in
Fig. 1.5.

EXPERIMENTAL DATA

Needle probes

MONTE CARLO

CFD-DEM

Virtual needle probe system

TFM (3D)VOF SYSTEM CODES

LDA/TAImage processing

Figure 1.5: Scheme of the framework set for this thesis.

To fairly compare the simulation results with the experimental data, it should
be required an adequate knowledge on how the experiments have been conducted
and the processing procedure followed. For this reason, the study of two-phase
flow phenomena in this thesis was performed jointly with the research of the ex-
perimental techniques. Consequently, this not only concerns the validation, but
obtaining additional required data and integrating the experimental techniques in
the simulations for a rigorous validation. Also, with this methodoogy one can in-
vestigate on the experimental techniques procedure itself. Simulations performed
with approaches where the bubble is represented individually as CFD-DEM led
to obtain the dispersed phase data similarly as in the experiments. This creates a
potentially fruitful condition to compare the results in a rigorous way. The devel-
opment of a Virtual Needle Probe System (VNPS) provides the same assumptions

31



Chapter 1. Introduction

as needle probes and can be used to extract the experimental data. In turn, Monte
Carlo simulation can be used to verify the needle probe performance together with
the VNPS. The experimental techniques and Monte Carlo simulations were inves-
tigated by Monrós-Andreu (2018) in a separate thesis in parallel with this work.

The remainder of this thesis comprises the following chapters. It starts with Chap-
ter 2 dealing with the issues related with experimental data. This subject is dealt
first as it is essential for trying to reproduce the data to know the scenarios and
how the measurements are performed. A description of the datasets and the ex-
perimental facilities is performed. The techniques used to extract the information
of the liquid field and the bubbles are studied together with the measurement
methods. Finally, the validation methodology for the data measured with needle
probes is reviewed making a classification of the variables and its relation with the
information lost by the probes.

Next, Chapter 3 deepens into the choices for modelling the two-phase flow scenar-
ios, focusing the attention in particular to bubbly flow. First, the different ways
to represent the dispersed phase in the different existing approaches are analysed,
defining what can be obtained or considered to each one of them. Through the
chapter, an analysis is performed on the modelling, for the different methods, in-
terfacial forces involved or bubbles collisions. The turbulence modelling plays an
important role in this flow as the bubbles have an influence in the liquid fluctua-
tions due to the wake produced. In the case of bubbly flow it produces an induced
pseudo-turbulence. In addition, the effect of the liquid fluctuations on the inter-
facial forces is described. Most of the mentioned models have the bubble size as
a determining factor. Not only the bubble size, if not the bubble size distribution
must be taken into account to reproduce a polydispersed flow. Then, the methods
for the modelling of the bubble size distribution in space and time, in particular
the population balance equation are discussed. Finally, a brief analysis is focused
on the effect that the existence of different bubble sizes can have on the other
models, highlighting the non-linearity of the expressions used.

Chapter 4 is the first dedicated to numerical simulations. To start from the be-
ginning, isolated bubbles are the focus of the chapter. Volume Of Fluid methods
(interFoam) are employed to obtain detailed simulations of the bubble dynamics
an even more important, its influence on the liquid and its interrelationship. Us-
ing parallel computing, the formation of the bubble from a nozzle is modelled and
validated with experiments. A bubble generated from the detachment and the
resulting equivalent diameter is compared with experimental correlations. This
diameter is used to simulate other scenarios where the bubble is initially spherical
and steady. Both cases, bubble from a nozzle and initially spherical bubble are
used to analyse the bubble dynamics, path, velocities, wake and instabilities.

The simulation of bubbly flow for facilities at industrial scale or even laboratory
scale with VOF is unfeasible nowadays. In bubbly flow, one would need a refine-
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1.3 Research objectives and thesis outline

ment of the mesh sufficiently small to capture the smallest bubble. Then, a lower
resolution level approach as CFD-DEM for unresolved particles is an option to
consider. Chapter 5 proposes a novel CFD-DEM solver to simulate bubbly flow,
developed using the OpenFOAM R© tools and methods. As a starting point the
Lagrangian libraries of OpenFOAM R© (mainly the basic and intermediate) are con-
sidered to create a new bubbly flow library to create the new bubbleCFDEM solver.
It started from the version 2.3.x and incorporates the structure from subsequent
versions. In this chapter, a set of new models are developed and/or implemented:
bubble-bubble and bubble-wall interaction, coupling between bubble and liquid,
equivolumetric sub-element method of bubbles distribution in the grid, injection
algorithm to represent the boundary conditions in a pipe, approximate model for
the decompression of the air in the bubble, Continuous Random Walk stochastic
model to consider the effect of the liquid fluctuations on the bubble and Virtual
Needle Probe System for a critical validation with the experiments. Finally, bub-
ble dynamics of isolated bubbles and three different experiments of bubbly flow in
pipes from different authors are then validated and analysed in depth.

Although CFD-DEM requires less computational effort than VOF, it could result
impractical for large-scale problems. Then, we can use a macroscopic formula-
tion as TFM. Also, note that one goal of the computation is to solve a problem
within the minimum time and computational resources. In Chapter 6, TFM is
investigated using as a basis the twoPhaseEulerFoam of version 2.2.x (incompress-
ible version of TFM) to incorporate the population balance equation solving it
approximately with the quadrature method of moments. In addition, common
interfacial forces and correlations, and induced pseudo-turbulence were added. A
validation with classical models is performed with this solver. Later, with version
4.x (compressible version of TFM) and also implementing the quadrature method
of moments, a modelling similar as for CFD-DEM in Chapter 5 is shown.

In some situations, spatial resolution may be less important and only global values
are needed. In such a case, 1D TFM provides an useful tool. Chapter 7 provides
simulations performed with a system code as RELAP5/MOD3. With this code,
we analyse the drag force approaches that are traditionally applied proposing a
version that takes into account the effects of the bubble size distributions in the
results of 1D TFM simulations.

A preliminary study for bubbly flow in different industrial systems is performed
in Chapter 8. Bubbly flow through a perforated plate is simulated with 3D TFM
and CFD-DEM codes, to analyse the influence and highlight the limitations of
each model on the results.

Chapter 9 presents the conclusions, recommendations and a description of the
future work that is performed according to the investigations and results obtained
along this thesis.
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Chapter 1. Introduction

Finally, we briefly summarise the tasks that were required to achieve the afore-
mentioned and are part of this thesis:

• Analysis of the measurement techniques in particular of the dispersed phase:

– Critical study of the measurements with needle probes.

– Measurement of the bubble size at different heights with image process-
ing.

• In-depth review of numerical methods and models.

• Modelling of a detailed simulation with VOF (interFOAM) of bubbles in-
jected from a nozzle and from an initially sphere at rest.

• Development of a new CFD-DEM solver using OpenFOAM R© libraries for
an accurate simulation of bubbly flow in pipes:

– Implementation of a PISO algorithm to compute the CFD-DEM unre-
solved method.

– New method to inject polydispersed flow in circular section.

– New sub-element method for the assignment of void fraction and mo-
mentum exchange.

– New simplified model for bubble volume and bubble size expansion.

– Study of interfacial forces and appropriateness for this approach.

– Development and implementation of a bubble-wall contact model with
a soft-sphere model for bubbles.

– Implementation of a Continuous Random Walk stochastic model to
model the instantaneous liquid velocity seen by the bubbles.

– Implementation of a two-phase flow RANS turbulence model for bubbly
flow.

• Development and implementation of a novel validation procedure to validate
the results from a critical point of view (VPNS).

• Implementation of particular interfacial force closures and turbulence models
in twoPhaseEulerFoam for a proper comparison.

• Implementation of QMOM approach in the twoPhaseEulerFoam to consider
the bubble size distribution evolution including a bubble growth term.
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1.3 Research objectives and thesis outline

• Development and implementation of a bubble-wall contact force for ellastic
bubbles for TFM.

• Implementation of the drag coefficient approach in RELAP5/MOD3 for bub-
bly flow with consideration of the bubble size distribution.

• Modelling and simulation with TFM and CFD-DEM of a more complex case
as bubbly flow through a perforated plate scenario.
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Chapter 2

Experimental data, measurement
techniques and validation
methodology

This chapter provides the description of the different experiments
employed and the techniques used to obtain the data. These techniques
are studied in depth as they will be later incorporated in the simulations
to provide a new validation procedure. In particular, for needle probes,
the signal processing and the variables obtained are studied compre-
hensively and thoroughly. A critical analysis between the experimental
measures and the expected data is included. In addition, for one of
the experimental facility, bubble size distribution at different heights is
measured by image processing.

2.1 Introduction

The measurements performed in two-phase flow are still a challenge in the field.
In the previous chapter, a state of the art about measurements and techniques
was already provided. This chapter will focus on experimental facilities and mea-
surement techniques related to bubbly flow in pipes as they are the core of the
performed validation. However, other experiments can be found eventually in the
document to support the investigation.

The uncertainties in the measurement from a conceptual point of view are still an
unknown. The major complications are related to the fact that at the same time,
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Chapter 2. Experimental data, measurement techniques and validation methodology

a wide range of bubble sizes and shapes are present in the system, evolving during
the time.

In 2D systems, image processing techniques are able to extract the experimental
data quite accurately. When referring to 3D systems, the occlusion of the different
bubbles makes impossible to reconstruct hidden bubbles far from the wall even at
rather low gas flow rates.

Alternatively, needle probes (NP) techniques can be used to measure the dispersed
phase data. A probe hits the bubbles producing a different signal depending on
the phase that is detecting. From the signal generated, a reconstruction can be
made to obtain a great number of variables giving information about the kine-
matics, size and shape of the bubbles. The reconstruction of the signal to obtain
the variables implies the consideration of several hypothesis as assuming a vertical
rising, a shape or orientation. In addition, the measures with multi-needle probe
depends on the probe design (e.g. tips distance) as demonstrated by Corre et al.
2002 for the measurement of interfacial area concentration. This can influence
other measurements as will be explained later. The uncertainties in the measure-
ments are given from the signal processing, the phase identification (e.g. threshold
criteria) and the suitability of the assumptions adopted.

Multiple experimental datasets can be found in the literature (Grossetête 1995; Liu
et al. 1993a; Liu et al. 1993b; Hibiki et al. 2001b; Mendez Dı́az 2008) contributing
to expand the knowledge of the two-phase flow structure. In fact, many numerical
models and simulations rely on these experiments to calibrate its performance.

Often, the boundary conditions can not be fully defined as some information is
not shown or the attention was not devoted to perform additional measurements
for the simulations. To improve the quality of the validation, some experiments
were performed in parallel with this work using the facility located at Universitat
Jaume I.

2.2 Experimental datasets selected

In this section we introduce the experimental datasets selected from the literature
for validation and discussion. The experiments of Hosokawa et al. 2009, Hibiki
et al. 2001b and our experiments were used to obtain a global understanding of
the validation process. This covers a variety of diameters, ratios of pipe diameters
and bubble size, bubble injection methods and measurement techniques to obtain
the data (see Fig. 2.1).

The pipe used in Hosokawa et al. 2009 is a relatively small diameter pipe and
the wall effect is expected to be more important. The pipe used in Hibiki et al.
2001b has a similar diameter as the one introduced in this work. The latter has a
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D = 25 mm
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(a) Hosokawa et al. 2009
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Figure 2.1: Experimental configurations of the three two-phase flow systems used.

considerable larger length that will serve us to better analyse the axial evolution of
the flow. Also, it results interesting to compare two similar systems with different
air flow injection mechanisms and measurement techniques. Table 2.2 gives an
overview of the flow characteristics that determines the three experimental cases
selected.

Table 2.1: Relationship between experiments and labels.

Experiment Label
Hosokawa et al. (2009) H050018
Hibiki et al. 2001b HK05003
Present work PW05002
Present work PW05003
Present work PW05004

Table 2.2: Flow conditions for each scenario.

Label jl jg µinlet σinlet z/D
(m/s) (m/s) (mm) (mm)

H050018 0.5 0.018 2.91 0.42 68
HK05003 0.491 0.0275 2.40 0.36 6 53.5
PW05002 0.5 0.02 2.777 0.602 22.4 61.0 98.7
PW05003 0.5 0.03 2.776 0.643 22.4 61.0 98.7
PW05004 0.5 0.04 2.976 0.577 22.4 61.0 98.7

Note that additional flow conditions are dealt separately in Section 6.5 as they
were obtained in a first study with TFM.
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Chapter 2. Experimental data, measurement techniques and validation methodology

Hosokawa et al. 2009 provided experiments in a pipe of 25.0 mm of diameter and
1700 mm of length with the air injected through the holes of diameter 1 mm in a
mixing section.

The experiments of Hibiki et al. 2001b with a pipe diameter of 50.8 and length
3061 mm contain a great number of variables of the dispersed phase to analyse
as discussed later. The air was injected by a square 20×20 array of hypodermic
needles of random lengths resulting in a random distribution of bubbles.

In addition to these experiments, we presented in this work experimental results
based on the facility described in Monrós-Andreu et al. (2013) and Monrós-Andreu
et al. (2017) in a pipe of diameter 52 mm and length 5500 mm. A sparger to inject
the air flow is used. The details about the experimental facility and measurements
are detailed below.

Fig. 2.2 shows the corresponding BSD for each case for the top measurement port.

Figure 2.2: Bubble size distribution at the top measurement section (CFD outlet) for
H050015 and PW05003 measured by IP and HK05003 estimated from the Sauter mean
diameter and an aproximated size deviation.

The BSD was fitted in the literature for bubbly flow, to normal (Laakkonen et al.
2007), log-normal (Lage et al. 1999; Parthasarathy et al. 1996; Ribeiro Jr. et al.
2004; Kazakis et al. 2008; Besagni et al. 2016), or gamma (Lim et al. 1990; Uga
1972) distributions. For the experiments dealt in this work, where relatively low
superficial gas velocities are given, the bubble size data fitted well to a normal
distribution. The Kolmogorov-Smirnov test at 5% significance level was applied
for PW05003 (p=0.79) as we have access to the sample data. In the table, the
mean and deviation parameters of a normal distribution fitting the BSD for the
inlet (CFD inlet in Fig.2.1) are shown.
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2.3 Description of the specific experimental facility used for this thesis (PW series)

2.3 Description of the specific experimental facility used
for this thesis (PW series)

To supplement the information present in the existing experimental works and to
extend the possibilities of validation with this new solver, we performed a new set
of experiments (PW) to fulfil the following requirements:

• The pipe has the necessary length to observe the flow characteristics evolu-
tion even under low void fraction conditions.

• The data has enough information to test the solver and the involved models
with high spatial resolution at different axial locations as bubble velocity,
void fraction, interfacial area concentration, chord length, Sauter mean di-
ameter, bubble frequency, liquid velocity and turbulence. In addition, bubble
size distributions were obtained at different port measurements.

• The data contains error bars to quantify the accuracy and precision, which
is valuable to analyse the computational results.

• The probability density function of the variables is available and it will be
used to analyse the results.

The experimental facility is located at the Laboratory of Hydraulics of the Univer-
sitat Jaume I and consists of an upward flow experimental loop (Fig. 2.3) with three
axial locations used for the measurements: z/D=22.4, z/D=61.0 and z/D=98.7.

Osmotized water (200-300 µS m−1) is circulated by a centrifugal pump and stored
in a 500 L reservoir tank that is kept at a constant temperature (20 ◦C) thanks
to a heat exchanger. The water flow rate introduced in the system was measured
by an electromagnetic flow meter (M1000, Badger Meter Inc). An air flow-meter
controller (EL-FLOW 250 lNpm, Bronckhorst Hi-Tech) was used to adjust and
measure the gas flow-rate.

Four-sensor conductivity probes and Laser Doppler Anemometry (LDA) tech-
niques were adopted to extract information from the air-water flow field. The mea-
surement system consisted of three mounted four-sensor conductivity probes, me-
chanical traverses, a measurement circuit, a digital high-speed acquisition board,
and the software used for signal processing. The four-sensor conductivity probe
was attached to the mechanical traverse mounted on a custom designed flange, and
it could be moved along the radial direction of the test section using controlled
step motors. The measurement circuit was used to measure the voltage difference
between the exposed tip and the grounded terminal. A high-speed acquisition
board (National Instrument Crop., SCXI-1325) and a PC were used to acquire
the signals of the four-sensor probe, with the help of a control program developed
under the LabView (National Instrument Crop.) software environment. Probe
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Figure 2.3: Experimental facility.

voltage signals were simultaneously recorded for PW over 30 seconds at 60 kHz
individual probe tip sampling rate (720 kHz total sampling rate considering the
three sensors).

Pressure was measured thanks to pressure transducers with a range 0-1 bar for
the two lower ports, and 0-200 mBar for the mid and top ports (all transducers
with an 0.1% relative error). High-speed cameras were located at low and top
ports and are used to measure the BSD. A frame is shown in Fig. 2.4 for different
conditions.

2.4 Liquid mean velocity and turbulence measurements

The most popular technique for the measurement of velocity and turbulence fields
in continuous phases are based on optical techniques (LDA) and heat transfer
phenomenology such as Thermal Anemometry (TA). Optical techniques require
seeding the flow with microscale tracers that reflect the impinging light, so the
flow velocity is indirectly measured. Since its first proposal (Durst et al. 1976b),
several researchers have used this technique for the measurement of flow velocity
either in single-phase (Durst et al. 1995) and two-phase flows (Lance et al. 1991;
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2.4 Liquid mean velocity and turbulence measurements

Figure 2.4: Images obtained by the high-speed camera.

Mudde et al. 1997a). Given its accuracy, this technique is the preferred among
researchers for most purposes. However, several problems limit its application and
measurements in high-void fraction conditions (over 20%) is unpractical (Mudde
et al. 1997a).

On the other hand, thermal techniques provide local measurements that rely on the
fact that the heat transfer coefficient of a sensing solid immersed in a fluid depends
on the flow speed (Bauer 1965b). TA based on hot-wires has been used to measure
flow velocity and turbulence in single-phase flows (Jørgensen 2001), and also in
two-phase flows (Mendez Dı́az 2008), where it also serves as a phase identifier. In
practice, a wire is heated by an electrical current, and its electrical resistance is
measured. As this property is temperature dependent, the measurement of the wire
resistivity allows for the computation of the flow speed. This technique provides
measurements with high dynamic range at high-acquisition rates. However, the
non-linearity of its signal requires for extensive calibrations that may change over
time due to slight contamination of the working fluid.

The experiments H050018 and PW used two-channel LDA to measure the liquid
velocity and turbulence, whereas TA was used in HK05003. The velocity fluctua-
tions are quantified differently among these contributions. H050018 provided the
turbulence kinetic energy profiles directly without specifically define the method-
ology, while HK05003 showed the turbulence intensity.
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In the experiments performed in this work, the turbulence intensity is provided
using the measurement of the LDA as:

I =
u′

|U|
=

1

|U|

√
1

3
(u′a

2 + u′r
2 + u′θ

2) (2.1)

where U is the mean velocity vector and u′ is the turbulent fluctuations of the
velocity in the axial (a), radial (r) and azimuthal (θ) directions. Let us note that
only axial and azimuthal components of velocity field were actually measured with
the two-channel LDA. In this analysis, the radial velocity fluctuation was assumed
to be equal to the azimuthal velocity fluctuation (u′r = u′θ). This approximation is
based on the fact that both components are of the same order in pipe flows (Trip
et al. 2012).

2.5 Void fraction, bubble frequency, bubble velocity,
interfacial area concentration and bubble size

With respect to the measurement of gas phase properties, there is a huge variety
of measurement systems. In the experiments selected for this work, needle probe
(NP) techniques and image processing (IP) from high-speed cameras (HSC) were
used. NP present a moderate degree of intrusiveness and temporal resolution,
and constitute the most accurate technique to get local information with high
spatial resolution. HSC provides more direct results with fewer assumptions, but
is limited to scenarios with few bubbles in order to avoid bubble occlusion.

In H050018 void fraction and bubble velocity profiles were obtained by means
of stereoscopic images of bubbles from two cameras. HK05003 measured with a
double-tip resistivity probes, the void fraction, bubble velocity, interfacial area
concentration and Sauter mean diameter.

2.5.1 Signal processing in needle probes

Since pioneering work of Neal et al. (1963) and Miller et al. (1970) on conductivity
and optical fiber probes, respectively, the phase discrimination probes have been
widely utilized in two-phase flow studies as local measuring devices. It can be found
in the literature different techniques used in the raw signal processing and square
signal transform from acquired voltage signal process (Cartellier 1998; Barrau et
al. 1999; Kim et al. 2000; Dias et al. 2000; Fu 2001). Signal processing technique
is therefore necessary to extract the required information from the raw signal. It
is essential to select the right interface signal from the outputs of different sensors
of the four-sensor probe in the measurement with the four-sensor probe signal
processing algorithm. The sequential signals detected by different sensors not
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always corresponds to the same interface and the residence time in the same gas
or liquid phase is not exactly the same for different sensors, especially for small
bubbles.

The accurate determination of bubble interface start time and bubble interface
end time during its movement through the four sensor tips will lead to an accurate
velocity vectors determination. So as first step, we need to assign raw signal data
to each tip where it belongs to, signal related to liquid phase or signal related to
gas phase.

For a single tip voltage signal, it can be observed that when the incoming bub-
ble interface is detected (gas phase data start), voltage signal increases so slow
compared to the corresponding leaving bubble interface voltage signal. This be-
haviour is due to the change of capacitance between tips when the medium changes
(mainly due to measurement circuit inherent capacitance) and the tip wetting and
dewetting process.

One way to avoid the problem in bubble start point mentioned above is to consider
a relatively high threshold level and use an exponential/polynomial fit to data
near the rising time determined by the previous threshold. Similar procedure as
suggested by (Dias et al., 2000). Exponential fit shows a quite good agreement for
all tested signals. The ending point of each bubble is considered as the maximum
voltage before signal decay.

In the PW series, four-sensor conductivity probes (Fig. 2.5) were used. Besides the
aforementioned variables we show the chord length, bubble frequency or missing
ratio. The high speed camera is used to obtain the equivalent bubble diameter
with IP.

Front tip

Rear tips P1
P2

P3

1 mm

P0

Figure 2.5: Detailed image of a four-sensor conductivity probe used.

An example of the signals obtained in a four-conductivity probe sensor is shown
in Fig. 2.6. Four voltage signals appear corresponding to every tip. The voltage of
each tip remains at a low value when the tip is immersed in water, and increases
smoothly as it pinches a bubble. Later, it sharply decays when the bubble leaves.
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Figure 2.6: Example signal of a detected bubble.

A description of how the data is obtained is detailed in the next sections for the
sake of clarity as it is used in the rest of the work.

2.5.2 Void fraction

The mean local volume fraction of the bubbles or time-averaged void fraction at
the position of the probe can be well estimated from the signal produced by each
bubble. It can be calculated as the fraction of time that the sensor is exposed to
gas phase (t0) over the total sampling time (Ω). These values were measured in
different radial positions to obtain the void fraction profile.

αd =
1

Ω

Np∑
i=1

t0,i (2.2)

where t0,i stands for the passing time of the i-th bubble by the front tip and Np
the number of bubbles passing by the probe.

When IP is used, as in the H050018 case, the radial profiles of void fraction are ob-
tained averaging the gas-phase density function, obtained from the reconstructed
bubbles, in the specified annular control volumes.
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2.5.3 Bubble frequency

The bubble frequency Nt at each local point is computed as the number of bubbles
detected per unit time by the front sensor (P0) (number of rising edges in the
corresponding binarized signal).

2.5.4 Bubble velocity

The time delay for the paired signals between two needles, say front tip (k=0)
and a rear one (k=1,2 or 3), allows for the estimation of the velocities of indi-
vidual bubbles. The bubble estimated velocity, V0k can be computed from the
corresponding distance between tips, S0k, such as:

V0k =
S0k

Np

Np∑
i=1

1

τ0k,i
, k = 1, 2, 3 (2.3)

where τ0k,i stands for the time delay between the rising time of central tip and
the rising time of rear tip k (Fig. 2.6) for a given interface. For HK05003, where
dual probes were used, the estimated bubble velocity (assumed parallel to the flow
direction) is obtained from the dual conductivity probe with a front tip (k=0) and
a rear one (k=1) as Vz,NP=V01.

Vz,NP = V01 =
S01

Np

Np∑
i=1

1

τ01,i
(2.4)

The bubble velocity parallel to the sensor probe was computed in PW as the
average of individual velocities obtained from Eq. 2.3 with the four probes, one
front tip (k=0) and three rear tips (k = 1,2,3) (Tian et al. 2014):

Vz,NP =
V01 + V02 + V03

3
(2.5)

The bubble velocity obtained by IP in H050018 is directly calculated from the
distance traveled by the center of gravity of the bubbles from frame to frame.
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2.5.5 Interfacial Area Concentration

The interfacial area concentration is defined by the total interfacial area per unit
mixture volume. Up to now, several investigations and experimental measurements
have been carried out using double or four sensor probe methodology, proving the
consistency of this method for aI measurements. From the pioneer work of Kataoka
et al. (1986) on the local interfacial area derivation from velocity measurements,
Kim et al. (2001) proposed a miniaturized probe and made it capable of measuring
both large and small bubbles.

The interfacial area concentration was obtained in HK05003 with dual probes as
Hibiki et al. (1998):

aI = 2Nt
1

Vz
I(ω0), I(ω0) =

ω3
0

3(ω0 − sinω0)
(2.6)

where ω0 is the maximum angle between the velocity vector of the i-th interface
and the z-direction obtained by Eq. 2.7. This assumes that the root mean square
of the fluctuations of the interfacial velocity, σz, is equal in all directions.

3

2ω2
0

(
1− sin 2ωo

2ω0

)
=

1− (σ2
z/V

2
z )

1 + 3(σ2
z/V

2
z )

(2.7)

The four-sensor probes used in PW make possible the calculation of the normal
interfacial velocity Vn,i (Kataoka et al. 1986; Revankar et al. 1993) avoiding the as-
sumptions related to the bubble interface orientation. Shen et al. (2013) proposed
an explicit equation for the instantaneous local interfacial area and local interfacial
velocity vector using four sensor conductivity probes from Kataoka et al. (1986)
methodology for local interfacial area computation, which take into account both
receding and oncoming bubble interfaces. Corre et al. (2002) numerically demon-
strated that is necessary to consider interfacial area from the missing bubbles and
suggested a correlation (Eq. 2.9) based on the bubble missing ratio, (mr), which
is an experimentally measurable parameter. The missing ratio is defined as the
detected bubbles by the front tip, but not detected by the rear tips, and the to-
tal bubbles detected. Individual bubbles detected by all four sensor tips will be
categorized as paired.

Local values of aI for the four-sensor probes used in the experiments performed
for this work, can be calculated as:

aI = aI,cor
1

Ω

2Np∑
i=1

1

|Vn,i|
(2.8)
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where aI,cor is defined as:

aI,cor =
1√

1−
√

2.4mr − 1.5mr
2

(2.9)

2.5.6 Chord length

The chord length, of the bubbles passing through the probe, is defined as the prod-
uct of the bubble velocity and the bubble transit time from the pulse duration of
the front sensor, which provides the less affected signal by bubble probe inter-
action. The calculation of the chord length implies the assumption of a vertical
rising of the bubbles. It can be defined as:

cl = Vzt0 (2.10)

2.5.7 Bubble size distribution and mean diameters

Bubble size distribution of a population is an important factor to determine in
the experiments and is required to characterize the bubbly flow. Depending on
the needs, arithmetic mean diameter, d10, volume mean diameter, d30, or volume-
surface diameter (Sauter mean diameter), d32, are usually employed. It is impor-
tant to note that the mean bubble diameter will follow the pattern d10<d30<d32
for the distributions that are typically employed such as the normal or log-normal
distributions (Ribeiro Jr. et al. 2004; Zaepffel 2011). In addition to the mean
diameter, the variance is needed to define the BSD. This information is crucial to
seed the bubbles in the simulation and to apply properly the hydrodynamic forces,
breakup and coalescence rates, and bubble bounces. It is also needed at several
locations for a complete description of the BSD evolution as the flow advances.

Unfortunately, it is difficult to characterize the sizes of bubbles in an experiment.
The most reliable method to measure the bubble diameter is IP, but this technique
is limited to low void fractions or conditions with absence of clusters, as bubble
occlusions prevent a proper measurement.

When using IP, the sphere-volume equivalent diameter, deq, can be obtained from
the volumes of the reconstructed bubbles (Lage et al. 1999; Ellingsen et al. 2001;
Lau et al. 2013; Besagni et al. 2016). The BSD of equivalent diameters is defined
from the different samples as deq can be obtained from the images assuming oblate
ellipsoids . Lage et al. (1999) stated that the ellipsoidal bubble hypothesis and the
optical error determining the equivalent bubble diameter could be in the range from
10 to 15%. From the distribution of deq we can estimate any mean diameter dpq
using the generalized equation (Mugele et al. 1951) described in Eq. 2.11 in terms
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of equivalent diameter, with values of p and q being tipically positive integers, in
particular we use in this work the mean diameteres d10,IP and d32,IP:

(dpq,IP)p−q =

∫∞
0
dpeqf(deq)ddeq∫∞

0
dqeqf(deq)ddeq

=

∑n
i d

p
eq,ifi∑n

i d
q
eq,ifi

(2.11)

where f(d) is the normalized density function for a bubble population and fi the
relative frequency.

These diameters can be, in addition, estimated with NP (d10,NP and d32,NP) using
measured variables as chord length or void fraction and interfacial area concentra-
tion.

The chord length measured with NP is a direct indicator of the bubble size being a
representative variable to consider. However, is not possible to transform directly
the obtained chord length distribution to the bubble size distribution without
assuming a given shape or using correlations to relate sizes and shapes. Many
works can be found in the literature using different assumptions to obtain the
BSD as a backward transformation process (Besagni et al. 2016; Clark et al. 1988;
Liu et al. 1998) or statistical parameters as the mean bubble diameter (Clark et al.
1988; Liu et al. 1998) from chord length measurements. Statistical calculation gives
a relationship between the measured mean chord length and the mean diameter
seen by the probe, independent of the size distribution (Clark et al. 1988; Liu
et al. 1998). Following the representation of Clark et al. (1988), we consider
the interaction of a bubble of radius R with the probe tip (see 2.7). Focusing
the attention to the ring of wide dr, the bubble centres will pass with increasing
probability proportional to r.

r

Probe

dr

r

Probe

dr
R

R

Figure 2.7: Bubble interaction related with an infinitesimal dr.
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The probability will result:

P (r|R) =

{
2r
R2 if 0 ≤ r ≤ R,
0 otherwise.

(2.12)

If we consider now an ellipsoid with the major semi-axis, b, and the aspect ratio,
E, the other variables will result:

E b

cl,x
rb

Probe

Figure 2.8: Probe and chord lenght relation.

The chord length can be then expressed as:

cl,x = 2E
√
b2 − r2 (2.13)

The probability density function of chord lengths for a given bubble of radius R
is:

P (cl,x|b) = P (r|b)
∣∣∣∣ drdcl,x

∣∣∣∣ =
2r

b2
cl,x

4E2r
=

cl,x
2E2b2

(2.14)

The probability of chord lengths of bubbles hitting the probe with a probability
density function is defined as Pp:

Pc(cl,x) =

∫ ∞
0

Pc(cl,x|b)Pp(b)db =

∫ ∞
cl,x/2E

Pp(b)db (2.15)

A mean diameter, can be obtained by integrating the probability density function
of chord lengths , assuming that the mean of the size distribution of bubbles
touching the probes is:

b10 =

∫ ∞
0

bPp(b)db (2.16)
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Then, we can relate the mean chord length and the mean major semi-axis, b10
related with the aspect ratio:

cl =

∫ ∞
0

cl,xPc(cl,x)dcl,x =
4E

3
b10 (2.17)

Finally we can obtain the relation between the mean equivalent volumetric diam-
eter and the mean semi-axis as:

Vb,ellipsoid = Vb,sphere (2.18)

π

6
23Eb310 =

π

6
d310 (2.19)

b10 =
d10

2E1/3
(2.20)

Manipulating Eq. 2.20 and introducing in Eq. 2.17 we have:

d10,NP = 1.5clE
−2/3 (2.21)

As a result, assuming an ellipsoid with constant E, the semi-axes can be obtained.
The aspect ratio is not known in principle but a global value can be estimated or
measured by IP to use this equation.

The Sauter mean diameter can be obtained indirectly from local measurements of
α and aI using NP.

d32,NP =
6α

aI
(2.22)

The main inconvenient of estimating a bubble size with NP could be that the
assumptions considered estimating the size are not strictly the same as in the
experiments. For instance, in turbulent flows the bubbles are not rising vertically,
or in pipes, the probes located close to the wall hit the bubbles in a pre-determined
location and not randomly. This can produce an important deviation as will
be shown latter in Section 5.9, thanks to the use of the validation methodology
performed in this work.

In practice, the inlet size distribution for the simulations was determined from the
data available in the experiments. The experiments of HK05003 only provided
the Sauter mean diameter. When the Sauter mean diameter is provided experi-
mentally, is not possible to characterise the bubble size distribution without any
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assumption. Therefore, similarly to Buffo et al. (2013) we assumed a standard de-
viation, σ, 15% of the mean value as stated in Laakkonen et al. (2006) and Petitti
et al. (2010). With the Sauter mean diameter known, and the assumed value of
the standard deviation, the mean of the distribution, µ, can be obtained from the
following equation for a normal distribution:

d32,IP =
µ3 + 3µσ2

µ2 + σ2
(2.23)

In H050018, the BSD is only measured at the top section z/D=68.0 and there is no
data related to the bubble size at the inlet. As the injection is performed by using
a mixing chamber, it is not possible to obtain the BSD with no measurements.
Nevertheless, we can estimate the inlet values under the assumption that breakup
and coalescence mechanisms can be neglected and the only change in size is due
to the pressure changes, as we explain in the next subsection.

2.6 Measurements of bubble size distribution at different
heights

A study has been conducted for this work to investigate the sizes at different
heights. From the point of view of the simulation we need to account for the
different sizes of the bubbles and its evolution. It will be determinant for the
modelling of the closures. From the point of view of the measurement in the
experiments it is required to examine in depth the current sizes in the system and
how the size evolves. A bubble increase in size is expected but it is not usually
shown in the literature. Although there are several methods to obtain bubble
size, the measurements of d32 and d10 performed with needle probes can give
considerably errors for pipe flows as demonstrated in this work.

The different sizes in a pipe between two heights excluding the breakup and coa-
lescence mechanisms are due to the pressure changes. This change is given by the
ideal gas law and is expressed as an expansion factor fij :

fij = (Pj/Pi)
1
3 (2.24)

where Pj and Pi are the absolute pressure at, for instance, the outlet port and
inlet port respectively.

If the bubbles change its size by the factor fij , this means a proportional increase
of the bubble size and it is equivalent to multiply a random variable by a constant
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value. Then, the mean or expected value is also multiplied by the constant value,
and the same is applied to the standard deviation:

E[fijdeq] = fijE[deq] (2.25)

Var[fijdeq] = f2ijVar[deq] (2.26)

Then a BSD can be estimated as a scaled distribution of the BSD at a different
height. A normal distribution at a given height would have the following statistical
parameters:

µi = fijµj (2.27)

σi = fijσj (2.28)

The BSD at z/D=22.4 and z/D=98.7 was measured by IP for PW05002, PW05003
and PW05004. Approximately 500 bubbles were manually measured for every port
(Fig. 2.9). For the measurements, several points in the bubble borders are selected
and an ellipse is fitted to the selected points by using a least-squares algorithm
that provides with both axis and orientation angle. The semi-axis are used to
obtain deq for each bubble.

Figure 2.9: Example of some processed bubbles in an arbitrary region for an image
frame in the lower measurement port.

The BSD of the equivalent diameters at z/D=22.4 and z/D=98.7 are shown in
Fig. 2.10. The figure includes a theoretical BSD at z/D=98.7 based on the BSD
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at z/D=22.4, using the parameters defined in Eq. 2.27 and Eq. 2.28, and the
pressures on these heights.

Figure 2.10: Experimental bubble size distributions.

2.7 Variables measured with needle probes and potential
types of theoretical variables

Experimental measurement of dispersed phase characteristics is a complex task
that involves several approximations and data processing. Also, the comparison
of simulation results with experimental data is not as straightforward as one could
expect.

Measuring with needle-probe sensors implies necessarily that not all the bubbles
can be considered, producing a statistical bias in the measurements. Some bubbles
will pass without being intersected by the probe and other bubbles intersected
should be discarded as there is not enough information for the processing. For
example, the bubble does not hit all the tips of the probe. Furthermore, from
the bubbles that are paired, in the experiments we only know the signal, so the
variables should be obtained assuming a set of hypotheses as mentioned above.

55



Chapter 2. Experimental data, measurement techniques and validation methodology

On the one hand, when not all the tips are hit by the bubble, it can be consid-
ered missed. This means, that a bias is produced as these circumstances are not
random. Using the missing ratio it can be in principle corrected. For instance,
the correlation used for the interfacial area concentration proposed by Corre et al.
(2002).

On the other hand, in a non-uniform size flow like the one shown in Fig. 2.11 the
bubbles will hit the probe with different probability depending on its size. This
will result in a bias where the bigger bubbles will be more likely to be hit than
smaller ones. In addition to the size, the variables measured as for example bubble
velocity, will be given from the bigger bubbles.

Probe p

Figure 2.11: Probe surrounded by bubbles of different size.

The probability of a bubble of a given size to pass through a probe point can be
explained following the works of Clark et al. (1988) and Liu et al. (1995):

P (b)

Ps(b)
=

πb2

πb2max
=

b2

b2max
, P (b) =

b2

b2max
Ps(b) (2.29)

The normalized probability density function of sizes of the bubbles touching the
probe is defined as:

Pp(b) =
P (b)∫∞

−∞ P (b)db
(2.30)

56



2.7 Variables measured with needle probes and potential types of theoretical variables

Then, introducing Eq. 2.29 in Eq. 2.30, we obtain the relationship between the
distribution of the bubbles in the system and the bubbles hitting the probe:

Pp(b) =
b2Ps(b)∫∞

−∞ b2Ps(b)db
(2.31)

This allows transforming from chord length distributions to the system distribution
through the knowledge of the distribution seen by the probes. This transformation
is dependent on the distribution. In Liu et al. (1995) the size distribution of bub-
bles in the system is obtained analytically from the chord length distributions for
Gamma and Rayleigh probability functions and related with Monte-Carlo simula-
tions. However, the analytical translation in the normal or log-normal distribution
of the experiments is further complicated.

In summary, for the measures from multi-sensor probes, we know that not all the
bubbles hit the probe with the same probability and that not all the bubbles hit
all the sensor of tips of the probe. From this, the different possibilities of a bubble
with respect to the probe for a given polydispersed flow are explained in Fig. 2.12.
As a result a bubble can be non-intersected or intersected by the probe, and in
turn paired or missed.

b1

b2

b3

b4

b6

bi

Intersects the front tip (intersected)

Do not intersect the front tip (non-intersected)

Intersects all the tips (paired)

Do not intersect one or more of the tips (missed bubble)

b5

b7
b8

b9

b10

b11

b12 front tip

Signal from the probe Paired bubble Missed bubble

Non-intersected bubble

(bigger bubbles are most likely to intersect the tip)

Figure 2.12: Scheme of bubble interaction with the probe.

The data obtained in the experiments comes from the signal generated by the
paired bubbles as the other data is missed. Fig. 2.13 show the potential types of
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variables that could be obtained. For instance system variables, probe variables,
pair variables or reconstructed variables.

System variables (intersected+non-intersected)

Bubbly flow system

Probe variables (paired +missed)

Considering all the bubbles passing
through a point

Paired variables (paired)

Reconstructed variables (signal) †

Considering the bubbles that can be ac-
tually processed by the sensor probe

Variables reconstructed from the signal
generated at the tips when the bubbles
pass through. Hypothesis are required
as some information is lost

†data that can be obtained experimentally by needle-probe sensor

Considering all the bubbles in the sys-
tem

Figure 2.13: Description of the variables as a function of the considered data.

A rigorous validation should consider this effects in order to properly compare
the results with the experiments. This permits to evaluate the possible discrepan-
cies that exists because of the assumptions considered or inherent aspects of this
technique.
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Two-phase flow modelling

A general view of the relevant issues to solve the two-phase flow
problem is shown in this chapter. The theoretical frameworks and nu-
merical methods found in the literature are very diverse and should
be investigated to perform the objectives established for this work. An
exhaustive review about two-phase flow modelling was carried out to
establish the basis of the present study.

3.1 Introduction

In two-phase flow, two fluids or materials are coexisting separated by an interface
evolving in space and time. To compute numerically a scenario like this, different
mathematical formulations can be found involving from jump conditions to aver-
aging procedures. Because these operations, information that is lost to a greater
or lesser degree (e.g. unclosed terms that arise) is compensated by modelling.
The two-phase flow modelling term in this thesis refers mainly to the collection
of models, correlations or coefficients that are used within the different methods,
and the methods themselves.

The methods and formulations for VOF, CFD-DEM and TFM will be described
in the corresponding following chapter. This chapter is focused on describing main
issues when modelling two-phase flow, and in particular bubbly flow. First, basic
concepts related to the phase representation are described. The interfacial forces
as drag, lift, virtual mass or wall lubrication are reviewed and discussed. The same
is done hereafter for contact forces as particle-particle and particle-wall.

In addition, two-phase flow models require special attention to the turbulence
modelling as the effect of the interface and the wake plays an important role in
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Chapter 3. Two-phase flow modelling

both, the carrier phase velocity and the dispersed phase behaviour. For instance,
the fluctuations of the continuous phase in interfacial forces should be considered
for accurate simulations.

Finally, bubbly flows are commonly polydispersed. Then, the description of the
size distribution is required. In TFM, the dispersed phase has a continuum de-
scription. To represent the size distribution it is needed the use of a Population
Balance Equation (PBE) that calculates this distribution in space and time. The
techniques to solve the PBE are analysed in this chapter. Finally, the non-linearity
of the closures in a polydisperse flow is analysed.

3.2 Dispersed phase representation

An indicator function of a given phase ϕ over space and time can be defined as:

Iϕ(x, t) =

{
1 if x ∈ ϕ,
0 if x /∈ ϕ.

(3.1)

The indicator function of Eq. 3.1 will serve us to define the flow equations for
different methods. The numerical methods can be characterised as resolved or un-
resolved methods depending on the detail of resolution of the flow at the interface
as shown in Fig. 3.1.
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Figure 3.1: Bubble representation as a function of the grid.

60



3.3 Interfacial force modelling

Interfacial front tracking, volume of fluid, immersed boundary method or CFD-
DEM (for resolved particles) are an example of solvers that need to refine the grid
at the interface. In contrast, it is not always necessary to solve the flow in detail as
with two-fluid model, Eulerian-Lagrangian or CFD-DEM for unresolved particles.
For instance, with the use of correlations for interfacial forces it is possible to
obtain relevant information for a given flow.

In the VOF method, the equations are volume averaged and the interface is tracked
using Iϕ. A unique set of equations for the whole domain is obtained and the
microscale effects on the border of the two materials can be considered (Hirt et al.
1981).

The representation of a dispersed phase in a Lagrangian framework as in the CFD-
DEM, allows the motion of each bubble in the carrier phase. Iϕ can be obtained by
the knowledge of the position of the bubble in space and time. The carrier phase
motion is solved by the volume averaged Navier-Stokes equations including the
averaged properties of the disperse phase (disperse-continuous phase interaction
and volume fraction) (Norouzi et al. 2016a).

In the TFM approach, the local instantaneous equations of each phase are averaged
to obtain an Euler-Euler two-phase flow description, as stated in Drew et al.
(1971b) and Drew (1982). The equations are multiplied by the indicator function
before applying averaging techniques. The averaging process introduces phase
fraction (αϕ = Iϕ(x, t)) and unclosed terms representing the property transfer
between the phases (Rusche 2002; Weller 2005).

The averaging procedures mentioned result in unclosed terms that necessarily in-
crease when the resolution level is lower. These terms are crucial for the prediction
of two-phase flow simulations and must be modelled.

3.3 Interfacial force modelling

The fluid-particle or fluid-fluid interaction has been extensively studied during
the years. In these studies, separate effects from a microscopic point of view,
are analysed to obtain macroscopic model formulations. The interfacial closures
laws obtained aim to define the fluid-particle interaction as a function of physical
constant or variables. These relations can not be always achieved because of its
complexity or because of the difficulty to isolate the effects. Nevertheless, under
specific scenarios, interfacial closures laws can be defined with an acceptable degree
of confidence. The resolution level of the approach (CFD-DEM, TDM-3D, TFM-
1D) used for the simulation will have an important role in the effectiveness of their
definition.
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Chapter 3. Two-phase flow modelling

The Interfacial Methods (IM) calculate directly the forces between fluid and the
interface, but do not contain the unclosed terms for the forces as for TFM. The
surface tension acting on the bubble surface is directly calculated with this method.
The surface tension forces is exerted by a continuous fluid on a particle and using
the Continuum Surface Force model (CSF) results:

Fs = σκ(x)n (3.2)

When the surface tension force is not computed, the interfacial forces term arises
and constitute the closure equations for the forces acting on a bubble. The motion
of a bubble can be determined from the Newton’s second law considering a total
interfacial force acting on the bubble:

mb
dub

dt
= f . (3.3)

The term f represents the forces acting on the bubble (hydrodynamic forces result-
ing from the liquid-bubble interaction, body force, etc.) and is usually described
by a set of uncoupled terms (Auton 1984; Maxey 1983) mainly drag (fD), lift
(fL), virtual mass (fVM), buoyancy (fB) and pressure gradient (fP). The equation
results (Auton et al. 1983):

f = fD + fL + fV + fB + fP (3.4)

The different contributions are analysed in the subsequent subsections. The reader
is referred to Magnaudet et al. (2000) for a review about the description of the
bubble motion in inhomogeneous flow. Eq. 3.4 can be solved directly for every
particle using a Lagrangian description of the bubbles as in CFD-DEM. The dif-
ferent contributions of Eq. 3.3 are considered in the momentum equation of the
TFM as a result of the averaging procedures of the phase equations and represents
the interfacial closure term (Drew et al. 1971b; Ishii 1975; Drew 1982).

3.3.1 Drag force

The drag force is the hydrodynamic resistance exerted on a body by the surround-
ing fluid when a relative motion is given. It constitutes the most important closure
as determines the terminal velocity of particles. The determination of the drag
force is still an unsolved problem of fluid dynamics that started Newton (1687)
with his theory about air resistance. Stokes (1851) derived the drag force for
a flow past a sphere with validity at very low Reynolds numbers. Under these
conditions, the flow is very slow, so the inertial forces are much smaller than the
viscous forces and an analytical solution is possible. Since the Stokes work, the
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3.3 Interfacial force modelling

experimental determination of drag has been extensively investigated. The first
investigations on this field were devoted to spheres and infinity cylinders in high-
viscosity fluids. The reader is referred to Veysey et al. (2007) for an extensive
review of experimental and theoretical literature on this field.

At high Reynolds numbers, the drag force is defined with Eq. 3.5 attributable to
Lord˜Rayleigh (1876), noting that the drag force is proportional to the square of
the velocity.

fhD =
1

2
CDρcAp(Uc −Ub)|Uc −Ub| (3.5)

In the above equation, Ap is the projected area of the bubble. It is usual to present
the drag force assuming that the bubbles are spherical, then:

Ap = πr2b =
1

4
πd2b (3.6)

Therefore, substituting Eq. 3.6 in Eq. 3.5 for spherical particles or bubbles, it
results:

fhD =
1

8
CDρcπd

2
b(Uc −Ub)|Uc −Ub| (3.7)

Many works rely on this equation over the last and current centuries to obtain ex-
perimentally or numerically the drag coefficient, CD. Initially the drag coefficient
was determined for an isolated body in an infinite medium obtaining analytically
or experimentally a given expression for CD,∞.

The pioneering researches were focused to determine experimentally the drag co-
efficient of single bubbles rising in a quiescent liquid (Hadamard 1911; Grace 1973;
Peebles et al. 1953; Žun et al. 1996; Tomiyama et al. 1998).

For spherical bubbles, different drag coefficients were obtained. Hadamard (1911)
presented a coefficient for a spherical bubble valid for Re≤1:

CD,∞ =
16

Re
, (3.8)

and Levich (1962) for high Reynolds number:

CD,∞ =
48

Re
(3.9)

63



Chapter 3. Two-phase flow modelling

The drag correlation was studied formerly for particles and a standard drag coef-
ficient for a rigid spherical particle was obtained by Schiller et al. (1935):

CD,∞ =
24

Re
(1 + 0.15Re0.687) (3.10)

This correlation gives also reasonable results for spherical bubbles when the in-
terface is contaminated (Tomiyama et al. 1998). The drag coefficients for bubbles
are usually based on Eq. 3.10.

The later researches were focused on study the influence of the bubble shape in
the drag coefficient . Usually, if non-spherical bubbles are considered, the value of
this coefficient is bigger than that of the spherical one. Then, the drag coefficient
is selected according to the maximum value.

Tomiyama et al. (1998) obtained the following correlations for different degrees of
contamination:

• Pure system (water distilled two or more times):

CD,∞ = max
[

min
( 16

Re
(1 + 0.15Re0.687),

48

Re

)
,

8

3

Eo

Eo + 4

]
(3.11)

• Contaminated system (tap water):

CD,∞ = max
( 24

Re
(1 + 0.15Re0.687),

8

3

Eo

Eo + 4

)
(3.12)

• Slightly contaminated (intermediate contamination):

CD,∞ = max
[

min
( 24

Re
(1 + 0.15Re0.687),

72

Re

)
,

8

3

Eo

Eo + 4

]
(3.13)

In a more recent contribution, Dijkhuizen et al. (2010a) proposed an expression
for CD,∞ for pure liquids as a function of the Reynolds and Eötvös numbers:

CD,∞ =
√
CD(Red)2 + CD(Eo)2, (3.14)

CD(Eo) =
4Eo

Eo+ 9.5
, (3.15)
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3.3 Interfacial force modelling

where CD(Red) is described by the correlation of Mei et al. (1994):

CD(Red) =
16

Re

[
1 +

2

1 + 16/Re+ 3.315/
√
Re

]
. (3.16)

In addition to single bubbles rising, several researches have been focused to analyse
the influence on the drag coefficient of bubbles rising in a swarm. The findings of
these works are usually a correction factor, Cf,swarm, applied to the drag coefficient
of a single bubble.

Tomiyama et al. (1995) proposed a modified drag force coefficient trough an em-
pirical correlation for drift velocity of the swarm and the balance of forces. The
expression is given by:

Cf,swarm = α3−2n
c (3.17)

Simonnet et al. (2007) found that, for bubble diameters less than 7 mm, the relative
velocity decreases with αd until a critical value of around 0.15, where the local
void fraction is independent of the bubble diameter. The following expression is
valid for db <7 mm and α <0.15. This correlation was obtained up to a liquid
superficial velocity of 0.1 m/s:

Cf,swarm = α−1c (3.18)

DNS simulations, were also used to obtain this coefficient as in Roghair et al.
(2013), showing a dependency of the swarm correction on the Eötvös number.
Their study led to a correlation valid for high void fractions.

Cf,swarm = 1 +
22

Eo + 0.4
αdαc (3.19)

Tomiyama et al. (2002a) defined the drag coefficient as a function of the aspect
ratio E:

CD,∞ =
8

3

Eo

E2/3(1− E2)−1Eo+ 16E4/3
F−2 (3.20)

where

F =
sin−1

√
1− E2 − E

√
1− E2

1− E2
(3.21)
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The correlation of Vakhrushev et al. (1970) is used to define the aspect ratio
of a bubble in an infinite stagnant liquid E0 as function of the Tadaki number
(Ta = RedMo0.23):

E0 =


1, Ta < 1

[0.81 + 0.206 tanh(2(0.8− log10 Ta))]3, 1 ≤ Ta ≤ 39.8

0.24, Ta ≥ 39.8

whith the Morton Number being Mo = gρ2c∆ρν4c /σ
3 and σ being the interfacial

surface tension.

A correction to this aspect ratio was applied later in Hosokawa et al. (2009), to
consider the wall effect on E as a function of the distance to the wall (y) and the
pipe diameter (D):

E

E0
= max

(
0.65, 1.0− 0.35

y

D

)
(3.22)

The effect of shear rate on the drag coefficient is accounted for by Magnaudet et al.
(1997) with the following correction coefficient:

Cf,shear =
(
1 + 0.55Sr2

)
, Sr =

dbω

|Ur|
. (3.23)

where ω is the magnitude of the gradient of the carrier phase velocity.

3.3.2 Lift force

The fluid moving past the surface of a body, exerts in addition to the drag, the
so-called lift force . While the drag acts opposite to the motion, the lift force acts
perpendicular to the motion. In the case of bubbles, the presence of shear flows is
subjected to a lift force that pushes the bubble in a direction perpendicular to the
streamwise direction. Several researches have developed lift force equations and
correlations based on analytical, numerical or empirical observations. A literature
survey about lift force modelling can be found in Hibiki et al. (2007).

A first approach to develop a lift force on a sphere was made by Saffman (1965). In
this work an analytical expression was obtained for low Reynolds numbers. Some
years later Žun (1980), Drew et al. (1987), and Auton et al. (1988) described
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3.3 Interfacial force modelling

the migration of spherical bubbles towards the wall with the expression for the
shear-induced lift force:

fhL = CLρcVbUr × (∇×Uc) (3.24)

This force has been traditionally used in two-phase flow in pipes and ducts to
explain the lateral migration of bubbles. In the subsequent years the researches
were conducted, specially with experiments and front-tracking DNS simulations.
With the aim to determine a CL that describes the behaviour of bubbles of different
shapes and sizes, with a focus in the change of the sign of CL for bubbles of different
size.

The lift equation (Eq. 3.24) was first obtained with constant coefficients. Auton et
al. (1988) showed a lift coefficient of 0.5 for a spherical bubble or particle. Various
values are recorded in the literature ranging from 0.01 to 0.5 (Hibiki et al. 2007).

Some authors as Tomiyama et al. (2002b) have detected in a single-particle system
a sign change on CD,∞ for big bubbles. The lift coefficient of (Tomiyama et al.
2002b) takes into account the influence of the shear rate for the different bubble
sizes:

CL,∞ =


min

(
0.288 tanh(0.121Re), f

)
Eod < 4

f 4 ≤ Eod ≤ 10

−0.29 Eod > 10

(3.25)

f = 0.00105Eo3d − 0.0159Eo2d − 0.0204Eod + 0.474 (3.26)

where Eod is a modified Eötvös number with characteristic length the maximum
horizontal dimension of the bubble that can be estimated as in the same work as
a function of a spherical bubble diameter.

Finally, system correlations for the lift force is also available. Wang et al. (1987)
obtained from the radial momentum equation as it can be applied to bubble sys-
tems for fully developed axisymmetric pipe flow Hibiki et al. (2007).

CL = 0.01 +
0.49

π
cot−1

(
log ζ + 9.3

0.20

)
' 0.02 + 0.6(log ζ + 10.67)−2.605, (3.27)
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ζ ≡ e−αd
db
Ur

∂Uc

∂r

(
db
D

1

Red

Ud

1.18(σg/ρc)
1
4

)2

. (3.28)

The values are in a range from 0.01 to 0.1 in the experimental conditions considered
by the original authors.

3.3.3 Virtual mass force

The virtual mass force is related to the mass of liquid carried by the bubble. This
force was first quantified by Lord˜Kelvin (1873) who obtained a resultant force in
the direction of the pressure gradient. For an accelerating solid sphere concluded
that the force was proportional to 1.5 the volume of the sphere. In practice,
it represents a force proportional to the bubble acceleration and opposite to its
motion.

The virtual mass force is commonly defined as Drew et al. (1987):

fhV = VbρcCV

(
DUc

Dt
− dUb

dt

)
(3.29)

The application of potential flow theory to flow around a spherical bubble in an
infinite medium gives a value of 0.5 for CV according to Lamb (1895), Auton et al.
(1988), and Drew (1982). Several works related to the virtual mass force coefficient
were focused on the shape, resulting in coefficients dependent on the aspect ratio,
showing an increase of the coefficient with the aspect ratio (Lamb 1895; Clift et al.
1978; Tomiyama et al. 2004). In particular (Clift et al. 1978; Zenit et al. 2009):

CV =
(E2 − 1)1/2 − cos−1E−1

cos−1E−1 − (E2 − 1)1/2E−2
(3.30)

Numerical simulations with IM can be found in the literature1 analysing the virtual
mass coefficient. Dijkhuizen et al. (2005) showed values close to 0.5 for spherical
bubbles.

In a CFD-DEM solver, the main concern is related to its implementation when
integrating the motion. In fact, the virtual mass force is dependent to the bubble
velocity that is being calculated. Implicit and explicit implementations of the force
can be found in the literature.

68



3.3 Interfacial force modelling

3.3.4 Pressure gradient force

In addition to the virtual mass force, a pressure gradient force arises due to the
pressure gradient in the fluid. It can be expressed as:

fhV = Vbρc

(
DUc

Dt

)
(3.31)

This force plays an important role for scenarios where the bubbles pass by con-
siderable carrier phase velocity gradients over time, as for example two-phase flow
through an horizontal T-junction.

3.3.5 Wall lubrication force

The wall lubrication force reflects the drainage of the fluid around the bubble. It
represents the force that the liquid drainage around a bubble moving near a wall
have on the bubble. A two-dimensional solution was derived for flow between a
cylinder and a wall:

fhW = −ρcVbCW

rb
|Ur|2 nw (3.32)

where nw is the unit vector normal to the wall in its direction.

The model of Antal et al. (1991) has been used traditionally for TFM. In Antal
et al. (1991), constants were evaluated by comparison to a three-dimensional DNS
of viscous flow past a single bubble with uniform velocity using PHOENICS code.
The simulations were done for two relative velocities (0.1 and 0.2 m/s) finding a
match to obtain the coefficients in the following equation:

CW = max

[
CW1 + CW2

rb
y

]
(3.33)

where y is the distance to the wall with the following coefficients obtained by Antal
et al. (1991):

CW1 = −0.104− 0.06|Ur| (3.34)

CW2 = 0.147 (3.35)
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During the last decades different values can be found in the literature, as for
example the default values on the commercial code ANSYS CFX or in Krepper
et al. (2005). In practice, this force is used in TFM as a wall-force to adjust the
void fraction radial distribution near the wall with ad-hoc values of the coefficient.
In a wall peak configuration of two-phase flow in pipes, the position of the peak
will be governed by the lift and wall lubrication force. Note, that the turbulent
dispersion force will play a role in the profile shape but not mainly defining the
peak position. Without considering any additional force, one can compensate the
lift force through these coefficients to adjust the values to the experiments. Among
others, the absence of forces as bubble-wall collision model, an overestimation of
the lift force, misleading boundary condition could affect the results, and tuning
the wall lubrication force could be required.

3.4 Particle collision

In addition, to interfacial forces, there are in two-phase flow other forces produced
in the bubbles as the contact forces. These are produced by the contact of the
particles with other particles or with other bodies in the system as solid walls. The
particle-wall or bubble-wall interaction is of great importance for wall-bounded
systems based on experimental observations or analytical considerations. The
particle-wall collision is responsible of two-effects (Alajbegovic et al. 1999): a wall
force that moves the particles to the flow stream and a dissipation of the kinetic
energy due to inelastic collisions. This is appreciated for bubbles by Vries (2001),
depending on the bubble size and the distance to the wall where the bubble was
injected, the bubble bounces repeatedly or departs away from the wall after the
collision.

In DEM approaches, hard-sphere and soft-sphere models are the most common ap-
proaches, originally applied to molecular dynamics. The soft-sphere model (Cun-
dall et al. 1979) consists of a spring, a dash-pot and a slider. These elements
generally need the definition of stiffness k, as well as damping coefficient η and
friction coefficient µf . The force according to a linear contact-stiffness model is
given by normal and tangential components:

f cn = −kδn − ηun (3.36)

f ct = −kδt − ηut (3.37)

where δn and δt are the normal and tangential overlapping or displacement.
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If the particle is sliding, for instance, the following is true:

|f ct | > µf |f cn|, (3.38)

the tangential force becomes:

f ct = −µf |f cn|, (3.39)

Regarding the consideration of this force in TFM, it is usually neglected in almost
every simulation found in the literature. However, this effect is in some way
introduced through the wall lubrication and dispersion forces. An averaged wall
force due to particle-wall was described by Alajbegović et al. (1994), Alajbegovic
et al. (1999), and Lahey Jr et al. (2000), assuming rigid particles and negligible
rotational effects. The probability of the collision events is also modelled with this
approach. The momentum transfer for the wall collision term is:

Mc
wc = −6ρd

(1 + ew)r2m
d3b(1 + ew)

nw

(
αdu

′
d,w

2
+ (y − rb)u′d,w

2 δαd

δw
+

+ yαd

δu′d,w
2

δw
+

2
√

1 + e2w√
π

yαd

√
u′d,w

2 δu
′
d,w

δw

)
(3.40)

where w refers to the wall direction, u′d,w is the velocity fluctuation of the disperse
phase in the wall direction and nw is the unit vector towards the wall, y the
distance to the wall of the cell center, rb is the radius of the bubble and ew the
wall restitution coefficient.

3.5 Turbulence modelling

Turbulence is a characteristic of almost all the fluids. In turbulent flow, the in-
stantaneous velocities (and pressure) can be derived in a time-averaged term and
a fluctuating one:

uc = Uc + u′c (3.41)

Fig. 3.2 show graphically the different parts for a unsteady motion in a turbulent
flow.

The prediction or modelling of turbulence is always a major challenge. In single-
phase flow one may require an accurate description of the turbulence as it will
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u = U + u′

U

Time
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o
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Figure 3.2: Decomposition of velocity into mean and fluctuating parts.

determine an accurate description of the field. The difficulties when modelling
turbulence arises from its characteristics features (Tennekes et al. 1972; Davidson
2001): irregularity, diffusivity, large Reynolds Numbers, three- dimensional flow,
dissipation and continuum. The idea of dividing the velocity in a time-averaged
and a fluctuating part is useful to obtain the corresponding models. If we want to
solve the Navier-Stokes equation directly, a Direct Numerical Simulation (DNS)
is required. These simulations would require a fine mesh and small time-steps in
order to resolve all the turbulent scales. Hence, its use is in practice very limited
due to the computational costs. A Large Eddy Simulation (LES) can be used to
reduce the computational time. A spatial filtering is applied and then the eddies
under the filter size are modelled and the others are directly solved.

A cheap approach is to use the Reynolds-Averaged Navier Stokes (RANS) method
that considers the turbulent scales influence on the mean flow. The averaging
of the Navier-Stokes equation results in the closure problem, as the Reynolds
stress tensor related with the fluctuations appears. To close this system, different
approaches can be taken as: algebraic eddy viscosity, one-equation, two-equation
and Reynolds stress models.

Focusing the attention into the two-equation model, two quantities are considered,
the turbulent kinetic energy and the dissipation rate. These quantities are related
to obtain the Reynolds stress tensor. The κ-ε two-equation model for single-phase
flow reads (Launder et al. 1974):

∂

∂t
(κc) +∇ · (Ucκc) = ∇ ·

[(
νc +

νt,c
σκ

)
∇κc

]
+ Rc : (∇Uc)− εc (3.42)
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∂

∂t
(εc) +∇ · (αcUcεc) = ∇ ·

[
αc

(
νc +

νt,c
σε

)
∇εc

]
+
εc
κc

(
C1εRc : (∇Uc)− C2εεc

)
(3.43)

where turbulent Reynolds stress can read as:

Rc = νt,c

(
∇Uc + (∇Uc)

T − 2

3
I(∇ ·Uc)

)
− 2

3
Iκc (3.44)

In the equations below, νt,c, is the eddy viscosity:

νt,c = Cµ
κ2c
εc

(3.45)

The values of the constants in the κ-ε equations are the default values found in
Launder et al. (1974):

Table 3.1: Constant values of the κ-ε model

Cµ C1ε C2ε σκ σε
0.09 1.44 1.92 1.0 1.3

In two-phase flow, the presence of the interface, influences the flow structure and
consequently the turbulence determines the interfacial forces and for instance the
dynamics of the bubbles. To the difficulties for turbulence modelling, the effect of
the interface is added. The bubbles produce an impulse in the fluid producing a
perturbation on the fluid and a wake with a complex turbulence structure. Most
of these mechanisms are still unknown even at a microscopic level and is obviously
a difficult task for modelling.

In the literature one can find studies related with the modelling of the wake itself
(Vries 2001) or models for the modelling of the bubble induced turbulence (BIT).
It will be also mentioned in this thesis: bubble pseudo-turbulence (BPT). Note
that from a macroscopic point of view, the bubbles could in average act as a sink
from some void fractions. But, every bubble generates local fluctuation because
of its motion, then the terms induced turbulence or turbulence produced will be
referred in this work to this effect. The term pseudo-turbulence is used as its
nature is similar to the turbulence.

Two different approaches are commonly used to model the bubble turbulence (see
Rzehak et al. (2013)): bubble-induced contribution to the effective viscosity as in
Sato et al. (1975) and the addition of a bubble-induced source term arising from
the averaging, to the transport equations of the turbulence model.
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The model of Sato et al. (1975) considers in addition to the shear turbulence an
additional bubble induced eddy viscosity defined as:

νind,c = Cindαddb|Ud −Uc|, (3.46)

with a value of Cind of 0.6.

Two-phase flow turbulence model are described in Kataoka et al. (1989), Morel
(2016), and Troshko et al. (2001a). According to these models the interfacial effects
are considered explicitly in the transport equations for these turbulent variables.

The total mixture turbulent kinetic energy is obtained by the summation of the
κk-equation and considering the gas-phase turbulence negligible in comparison
with the liquid-phase turbulence (Kataoka et al. 1989)). The following equation
is obtained for κc:

∂

∂t
(αcκc) +∇ · (αcUcκc) = ∇ ·

[
αc

(
νc +

νt,c
σκ

)
∇κc

]
+ αcRc : (∇Uc)− αcεc

−Mh(Ud −Uc)− (pd − pc)
δαd
δt
− γΓaI (3.47)

The three last terms in the RHS of Eq. 3.47 are related to the interfacial effects
on the turbulence kinetic energy. The last two terms are related to the change of
interfacial area or growth.

The turbulent dissipation rate equation used is based on the Kolmogorov’s hy-
pothesis (Pope 2000). Hence, the production and dissipation rates of εc are con-
sidered proportional to the production and dissipation rates of κc with a factor
of ωc=εc/κc according to Launder et al. (1974). Conversely, the destruction of
the turbulence produced by the interfacial effects must be related to the charac-
teristic time scale of the pseudoturbulence produced by the bubbles (López de
Bertodano 1998; Troshko et al. 2001a) with a dissipation frequency ωb that needs
to be modelled. The turbulence dissipation rate equation results:

∂

∂t
(αcεc) +∇ · (αcUcεc) = ∇ ·

[
αc

(
νc +

νt,c
σε

)
∇εc

]
+ ωc

(
C1εαcRc : (∇Uc)− C2εαcεc

)
− ωb

(
Mh(Ud −Uc) + (pd − pc)

δαd
δt

+ γΓaI

)
(3.48)
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where C1ε, C2ε and σε are defined as in Launder et al. (1974) and Troshko et al.
(2001a). In the literature, one can be found different dissipation frequencies of
the production terms produced by the bubbles, ωb. Morel et al. (1997) suggested
Eq. 3.49. This is based on the relation of proportionality between interfacial
turbulence production and dissipation of Elghobashi et al. (1983) and defining the
characteristic time τ with the diameter of the bubble as the length scale (Morel
et al. 1997; Yao et al. 2004b).

ωb =
C3ε

τ
=

C3ε

(d232/εc)
1
3

(3.49)

The constant C3ε was set to 1.0 in Yao et al. (2004b) for adiabatic scenarios similar
to the ones studied in this work. However, it varies depending on the scenario.
Values of 1 and 0.6 were used for DEDALE (Grossetête 1995) and DEBORA
(Manon et al. 2000) experiments respectively.

Troshko et al. (2001a) used the following equation to compute ωb:

ωb =

(
2Cvmdb

3Cd|Ud −Uc|

)−1
(3.50)

In Eq. 3.47 and Eq. 3.48 note that the Mh term includes the contribution of all the
interfacial forces. In practice, for TFM it is usually established the contribution
of the drag force (Troshko et al. 2001a):

Mh(Ud −Uc) =
3

4

Cd

db
αdρc|Ud −Uc|3 > 0 (3.51)

Morel et al. (1997) proposed a similar contribution for the term of production of
turbulence, including the virtual mass force:

Sκ = (Md,D −Md,VM) ·Ur, (3.52)

Lee et al. (1989) used in their predictions the source terms:

Sκ = αdC1κ
∂p

∂z
|Ur| , (3.53)

Sε = C3εSκ
εc
κc
, (3.54)
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where

C1κ = 0.03− 0.344× 10−5Rec + 0.243/(1 + e(Rec−60,000)/2,000). (3.55)

The constant value for C3ε is assumed to be equal to C2ε as discussed in Lee et al.
(1989) for bubbles rising freely with gradients of Uc, κc and εc considered to be
zero.

3.6 Turbulence on interfacial forces

In a turbulent flow, the fluctuating component of the carrier phase velocity has
an influence in the force acting on a bubble. Essentially they are captured in
turbulent eddies and moved with it. Simulations like CFD-DEM can consider the
turbulent effects in the interfacial forces while the fluctuations are computed. In
TFM, the turbulence effect on the interfacial forces are usually neglected or are
considered only in the drag through the turbulent dispersion force. The influence
of the turbulence on the interfacial forces was evaluated by Behzadi et al. (2001) for
mixing layer and sudden expansion scenarios concluding that the turbulent effects
on lift and virtual mass forces are negligible for these cases. However, in the
literature, there is no many investigations showing its influence in other systems.
Indeed, when the lateral forces are predominant as in the case of wall-bounded
systems we may expect an important influence on the lift and wall interaction
effects.

Burns et al. (2004) presented the Favre Averaged Drag (FAD) model for turbulent
dispersion force. This was derived by performing a time averaging to the phase
averaged equations obtained from ensembled averaging. With this model, phase-
weighted variables are used. The Favre averaging results in the following time-
velocities:

Ũϕ = Uϕ + u′′ϕ (3.56)

u′′ϕ =
u′ϕα

′
ϕ

αϕ
(3.57)

The last term, describes the relation between the void fraction fluctuations due to
the velocity fluctuations.
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3.6 Turbulence on interfacial forces

The averaging of the instantaneous drag force is performed and the time averaged
drag expressed in terms of Eq. 3.56, after linearisation and including the velocity
fluctuations and area density fluctuations (Burns et al. 2004), results:

Md,t = Ci(Ũd − Ũc) + MTD (3.58)

where Ci is defined as:

Ci =
1

8
CdaIρc|Ud −Uc|, (3.59)

where aI is the interfacial area concentration. Note that this results in a volumetric
force.

After simplifications derived from the consideration of general dispersed multi-
phase flow, the turbulent dispersion term can be expressed in a general form as:

MTD = Ci

(α′du′d
αd
−
α′cu

′
d

αc

)
(3.60)

Although this expression should be manipulated to be applied to TFM, could
be specially useful for CFD-DEM simulations (or other method relying on in a
representation of the bubble) as we can transform the turbulent effects consid-
ered inherently in the method to a turbulent force for a comparison between the
approaches.

If the eddy diffusivity hypothesis is applied to Eq. 3.60, the following equation is
obtained:

MTD = Ci
µt
σα

(∇αc

αd
− ∇αd

αc

)
, (3.61)

where σα is the turbulent Prandtl number for volume fraction dispersion. Usually
assumed equal to unity.

Finally, for the specific case of dispersed two-phase flow, the FAD model for tur-
bulent dispersion force is:

MTD = −Ci
µt
σα

( 1

αd
− 1

αc

)
∇αd (3.62)

Reeks (1991) and Reeks (1992) derived a turbulent diffusion force for TFM and
López de Bertodano (1992) and López de Bertodano (1998) derived the equation
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in terms of a two-phase turbulence model κ-ε. This force is called from now on, the
turbulent dispersion force and considers the effect of the turbulent fluctuations in
the carrier phase on the dispersed phase. The formulation of López de Bertodano
(1992):

MTD = −ρcCTDκc∇αd (3.63)

Originally a value of 0.1 for CTD was chosen by López de Bertodano (1992).
However, and in a later contribution, López de Bertodano (1998) proposed the
following correlation:

CTD = C1/4
µ

1

St(1 + St)
, St =

τd
τe

(3.64)

The turbulent Stokes number, St, is defined as the ratio of the time constant of
the bubbles (τd = 4db/(3CD |Ur|)) and the effective time constant of the turbulent
eddies obtained from:

1

τe
=

√
1

τ2t
+

1

τ2R
(3.65)

This force is in fact similar to the one of Burns et al. (2004) in Eq. 3.62. This
can be expressed as Eq. 3.65 and the only difference is in the turbulent dispersion
coefficient.

The turbulent dispersion model using Favre averaging is performed in Burns et al.
(2004) only for the drag force. Previously, Behzadi et al. (2001) used a turbulent
description of interfacial forces as lift, virtual mass in addition to the drag.

The average turbulent lift force can be obtained applying the same averaging and
assumptions as with the drag force to the lift force (Behzadi et al. 2001). The first
term represents the mean part and the others the turbulent in the same way as
applied before for drag force:
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Ml,t = Clρc

(
αdŨr × (∇× Ũc)− u′′c × (∇× Ũc) + αdŨr × (∇× u′′c )+

+ αd(Ct − 1)
(
∇k − (u′c · ∇)u′c

)
+ αd(u′′d − u′′c )× (∇× u′′c )+

+ Ũr × (∇× (αcu′′c ))− Ũr ×∇α′d × u′c − (αdu′′d + αcu′′c )× (∇× u′′c )+

+ u′′c × (∇× (αcu′′c ))−U′′r ×∇α′d × u′c

)
(3.66)

In this equation, in addition, are usually neglected the double correlation terms
(u′c · ∇)u′c and ∇α′d × u′c as in Behzadi et al. (2001), Chahed et al. (1998), and
Oliveira (1992).

The average turbulent virtual mass force will result:

Mvm,t = Cvmρc

(
αd

(DdŨc

Dt
− DcŨc

Dt

)
− Dcu′′c

Dt
− (u′′c · ∇)Ũc+

+ u′′c∇ · u′′c −∇ · αdu′′cu′′c +∇ · αdu′′du′′d

)
(3.67)

3.7 Size distribution modelling

According to the particle size, a dispersed multiphase flow can be classified as
monodisperse (uniform size) or polydispese (non-uniform size) flow. In many sim-
ulations we can assume the bubble size is uniform either because the population
dispersion of the size is small enough to consider an unique size, or because consid-
ering an average size of the population does not compromise on the quality of the
results. However, in some simulations we need to consider the flow as polydisperse
to account for the effect of the different sizes in the modelling.

In bubbly flows, the bubble size is an important parameter to numerically predict
the flow characteristics and it is needed to adequately describe the size distribution
in space and time, which implies a greater complexity of the models, specially in
lower resolution level methods as Two-Fluid Model.

In case of TFM, the evolution of the bubble size distribution in space and time is
described by means of a PBE (Ramkrishna 2000) derived through the consideration
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of averaging the statistical Boltzmann equation. This equation based on a length-
based number density function (NDF) of the dispersed phase n(L; x, t) reads:

∂n(L)

∂t
+∇ · (n(L)Ud) = − ∂

∂L
(G(L)n(L)) +B(L)−D(L) (3.68)

where G(L) is the growth rate, B(L) and D(L) are, respectively, the birth and
the death rates of bubbles of size L due to coalescence and breakage. It is worth
noticing that these terms depend also on the position and on time, even if this de-
pendency was not explicitly indicated in the equation to keep the notation simpler.
A simplification of the PBE implies that the velocity Ud is the average velocity of
the dispersed phase, obtained from the momentum equation of the TFM. Using
this velocity represents an approximation, as assume that all the bubbles in a given
computational cell move at the same velocity. This is reasonable only for bubbles
that only slightly deviate from the average size on that cell.

Nevertheless, analytical methods to solve the PBE require and extensive computa-
tional effort and for this reason numerical methods are usually applied resolving the
PBEs. The pioneering technique consisted on solving this numerically, discretising
the population balance equation (DPB) or the class method (CM) (Kumar et al.
1996a; Kumar et al. 1996b) with the potential disadvantage of requiring a high
number of equations.

An approximation to solve this with a reduced number of equations is to trans-
port equations related to some statistical moments or Method Of Moments (MOM)
that describe the two-phase flow characteristics. These are the statistical moments.
Particle number density, average particle volume, interfacial area concentration,
and local volume fraction correspond to zero-order moments through third-order
moments. The particles are considered as nodes that compose a discretized proba-
bility density function. Each node consists of an abscissa and weight. The weight
defines the probability of finding a particle that has the value of its abscissa. The
quadrature approximation can be dynamic and the number of nodes may decrease
or increase to fit complex probability density functions. This method is usually
used to reduce the computational requirements without compromising accuracy
(McGraw 1997; Marchisio et al. 2003a; Marchisio et al. 2003b; Sanyal et al. 2005).
Compared with discrete methods to solve the PBE as classes method (CM) or
Multiple Size Group (MUSIG) (Lo 1996), MOM can consider a wide range of bub-
ble sizes with a reduced number of equations. Different methods of MoM exists
as Quadrature Method Of Moments (QMOM) and its direct (DQMOM) or condi-
tional (CQMOM) versions. QMOM was the pioneering, with this approach a set
moments are transported and the weights and abscissas reconstructed through an
eigenvalue solution. DQMOM is a simplification of QMOM, with this approach
instead of transporting the moments, the weights and abscissas are directly con-
sidered in the equations, avoiding the moment reconstruction and inversion of
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3.8 Non-linearity effects on interfacial forces

QMOM. As a result of the process, robustness can be lost. Lastly, CQMOM pro-
vides a general approach as can be considered as the multivariate extension of
QMOM.

In the literature we can found simulations of bubbly flows with a two-fluid model
using DQMOM (Cheung et al. 2013; Silva et al. 2011) and CQMOM tested by
Buffo et al. (2013) for a rectangular bubble column.

A cheapest approximation of the PBE in terms of computational time can be
obtained solving a one-group Interfacial Area Transport Equation (IATE) (Koca-
mustafaogullari et al. 1983). With IATE, the PBE is integrated analytically. The
IATE is a very interesting model and may be considered as a simplified version of
a PBM in which only one additional transport equation, an IAC transport equa-
tion, is usually used. Events such as coalescence, breakage and nucleation can be
modelled with the IAC and PBM models. The PBM ideally captures all these
phenomenons, but is computationally expensive since several transport equations
need to be solved.

On the other hand, in CFD-DEM, the bubbles can be represented individually or
by parcels. If each bubble is represented as an individual entity any additional
method is needed to represent the size of the bubbles. If parcels are considered,
particles with common properties are defined as a group. Note that, the break up
and coalescence processes can be modeled in a deterministic way to compute the
drainage time.

3.8 Non-linearity effects on interfacial forces

The simulation of a two-phase flow system, requires a consistent choice of the
formulation of the approach, the modelling of the interfacial forces and the ap-
proximation used for the bubble size distribution. A classical formulation of TFM
usually involves the consideration of a homogeneous flow, turbulent effects not
considered in all the interfacial forces and an ad-hoc wall force to compensate the
lift force.

When homogeneous flow is considered and the PBE is solved approximately with
IATE, MOM or CM, a unique velocity field for the dispersed phase is assumed. The
PBE provides the bubble size distribution field but a mean bubble size (usually the
Sauter mean diameter) is used to compute the interfacial forces. This is accurate
when the forces can be approximated as a linear function of the diameter. The
correlations to model the interfacial forces described are usually far from the linear
description that is needed with these assumptions. This is schematized in Fig. 3.3,
for several scenarios and using the drag coefficient of Eq. 3.13 and lift coefficient of
Eq. 3.25. The mean size of the BSD at the inlet is shown for each experiment. An
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approximate range of bubble sizes that concerns the sizes found in the experiments
is marked.

Figure 3.3: Drag and lift coefficients with arrows showing the mean size for different
conditions.

In the figure, we can appreciate that mean sizes of the experiments are close to
the minimum, in the limit between the drag force dominated by the Reynolds
and Eötvös numbers. This means that considering a mean size will result in an
underestimated drag coefficient, in contrast to consider the whole BSD. For the
lift force coefficient, the transition to negative values starts around 4.3 mm under
these conditions. Then, an overestimated lift force will be obtained by considering
a mean size as the Eötvös dominated regime will not be taken into account.

The terminal velocity of the bubbles can be obtained analytically from the balance
of drag and buoyancy:

Vt =

√
4(ρc − ρd)gdb

3Cdρc
(3.69)

Then we represent for the experiments PW05003 and PW05004 the terminal veloc-
ity as a result of apply the drag coefficient of Tomiyama for contaminated systems
(Eq. 3.12):

In the same figure we show the BSD at the low and top ports from the measurement
described in Section 2.6. At first glance the effects of the non-linearity of the drag
coefficients are appreciated. In addition, as a result of the expansion of the bubbles
a different BSD is given at the top. This means that the proportion of bubbles
that are dominated by the Reynolds term of the drag coefficient, will decrease
as the bubbles grow. It results in an axial void fraction dependent on the BSD,
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Figure 3.4: Terminal velocity from the Tomiyama drag (Eq. 3.13) correlation for con-
taminated systems and experimental bubble size distribution at low and top heights.

consequently the axial cross-section average void fraction will evolve axially in a
non-linear manner.

In addition, the non-linearity is also present in the bubble-wall contact forces, as
revealed by experimental observations and methods.
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Chapter 4

Volume Of Fluid method (VOF)

The simulation of bubbles using an interfacial method as VOF are
used in the present work to obtain high resolution results of single bub-
bles. This data is of interest to perform a later validation with other
methods at lower resolution level as CFD-DEM. Two scenarios are in-
vestigated in this chapter: initially spherical bubbles at rest, and bubbles
generated due to growth and detachment from an orifice. The contin-
uous phase velocity fields, terminal velocity of the bubble, bubble shape
and size are obtained and compared with experiments. Finally, the path
and wake of the bubbles is analysed.

4.1 Introduction

The interface interaction between two different fluid phases is a complex process
with many challenges involved as breakup, coalescence or the influence of contam-
inants. The numerical methods for interface tracking have provided historically a
high level of detail for simulating two-fluid interfacial flows. These permit to re-
solve the interface obtaining a detailed description of the flow around the bubble
at the expense of computational resources.

The simulations with IM are useful to understand the behaviour of bubbles with
size in the order of those present in bubbly flow, providing important feedback to
lower resolution level simulations. Simulations at a microscopic level description
of the dispersed phase are very enlightening though limited to small domains
and number of bubbles. Particularly interesting are the works of Dijkhuizen et
al. (2010b) who studied the bubble behaviour of isolated bubbles, Roghair et al.
(2013) who presented results of simulations for dense bubbly flow up to 31 bubbles
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or Tryggvason et al. (2009) who simulated a vertical channel in a periodic domain
with around 36 bubbles in the turbulent downflow case.

The rising of individual bubbles has been extensively investigated in the past.
Several researches performed simulations with VOF about bubbles rising. These
simulations consisted on a bubble initially spherical in a domain. Chen et al.
(1999b) studied in its work using VOF, an isolated initially spherical bubbles
rising in a liquid with Re = 100 and Bo = 50, later Hua et al. (2007) expanded
the study in viscous liquid to a wide range of bubbles with Re up to 150 and
Bo up to 200. Similar simulations are performed in Dijkhuizen et al. (2005).
Other researches were focused to model the formation and growth of a bubble
(Kumar et al. 1970; Jamialahmadi et al. 2001; Cano-Lozano et al. 2017). In the
literature several analytical and numerical models (Oguz et al. 1993) can be found.
Simulations with 2D-VOF with air injection from an orifice (Islam et al. 2015) were
also performed.

The results obtained with these simulations were generally accurate, and therefore
this technique was used in this work to obtain results that will be used later to
compare the performance of the CFD-DEM. To understand better the bubble dy-
namics, in this chapter we study the rising of the bubble from the injection. Then,
through this scenario one can compare the formation process and the perturbation
of the fluid field in order to validate the model. In addition, after the detachment
of the bubble, the path of the bubbles is investigated in order to study the path
instabilities and the interactions with the wake produced. The path of the bub-
bles has been classified by the different authors as rectilinear, helical (spiraling)
or zigzaging. The rectilinear path is followed by small bubbles that remain al-
most spherical. The reasoning behind what makes the bubble to separate from an
ideal path has been unknown for years. This phenomena is referred as Leonardo’s
paradox by Prosperetti (2004) because of the observation recorded by Leonardo
da Vinci. Different authors noted a spiralling motion of the bubbles and deter-
mining critical criteria for the onset of the instability. It is explained nowadays
due to a two-threaded wake (Mougin et al. 2001; Vries 2001; Prosperetti 2004;
Shew et al. 2005) of opposite direction produced by the bubbles and resulting in
a wake-induced lift. Mougin et al. (2001) investigated numerically the path insta-
bility considering the bubble as a spheroidal body of fixed shape showing a double
threaded wake for rectilinear, zigzag and spiral path. Observations shown by Vries
(2001) provide an interesting experimental investigation of the path and wake of
bubbles. The same reference provides an interesting review and findings about
path instabilities. Shew et al. (2005) presented the possible mechanism for the
onset of zigzag and helical instability. Tripathi et al. (2015), studied the rise of an
initially static and spherical bubble with numerical results using Gerris (Popinet
et al. 2003) showing path instabilities, the terminal velocity and the path trajec-
tory of bubbles in the range of Ga from 70 to 100 and Eo from 0.5 to 10. Recently,
Cano-Lozano et al. (2015) and Cano-Lozano et al. (2016) performed 26 DNS of
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deforming bubbles in the regime close to the transition to path instability, rising
in still liquid, with Ga from 60 to 350 and Eo from 0.1 to 10.

In summary, this chapter contains the description of the mathematical formulation,
the modelling and setup of the case, a study of the bubble growth, formation
and detachment and bubble size after detachment for different gas flow rates,
perturbation flow field after detachment and study of the bubble wake path and
instability.

4.2 Mathematical formulation

The VOF technique is based on a whole-domain formulation of the Navier-Stokes.
Thus, the differential equations apply to the whole domain occupied using the
transport of the volume fraction field and the material properties. In general, it
relies on the capability of the advection method of the volume fraction.

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1

1 1 1 0.85 0.5 0.1 0 0 0 0
1 1 1 1 1 0
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1 1 1 1 1 0
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1 1 1 0 0 0
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Figure 4.1: Schematic representation of the VOF and the interface capturing.

The VOF method solves the momentum (4.2) and continuity (4.1) equations for
one field, being these equations the same for both phases. The volume fraction
of the two fluids are used to calculate the weighted physical properties. The
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mass conservation equation for both phases and the interface can be expressed as
Prosperetti et al. (2007):

∇ ·U = 0, (4.1)

and the Navier-Stokes momentum equation:

∂ρU

∂t
+∇ · (ρUU) = −∇p+∇ · µ(∇U +∇UT ) + ρg + Fs, (4.2)

where Fs is the surface tension force. The surface tension force is accounted by the
Continuum Surface Force model (CSF) solved using the properties at the interface.
In the code, this is calculated at reconstructed surfaces from the transport of the
volume fraction, knowing the surface tension between phases and the geometry
data of the interface. This force reads:

Fs = σκ(x)n, (4.3)

being n the unit vector normal to the interface obtained by:

n =
∇α
|∇α|

, (4.4)

and κ the curvature of the interface:

κ(x) = ∇ · n. (4.5)

The fluid fraction, α, of each cell is computed from the following transport equa-
tion:

∂α

∂t
+∇ · (αU) = 0 (4.6)

Details about the numerical solution of this method can be found in Hirt et al.
(1981) and Prosperetti et al. (2007).
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4.3 Modelling and setup

The domain for the simulation is a square channel with dimensions 21×21×100 mm.
At the bottom of the domain the air is injected from a nozzle of different diameters.
A nozzle edge of 2 mm is defined to maintain the same conditions of wettability as
in the experiments. A bubble is produced from the detachment with a given radius
and detachment position. This is used to define a hypothetical scenario where the
bubble is initially spherical and at rest, at the beginning of the simulation. Both
scenarios are schematised in Fig. 4.2a and Fig. 4.2b. For the nozzle case the air
is injected with a uniform velocity at the bottom of the nozzle. The bubbles are
generated through the different stages of the injection: expansion, elongation and
detachment. In addition, from a given case we analyse the results of a simulation
with an initial spherical bubble. The simulation consisted of the same rectangu-
lar domain with a bubble defined at the same position with the given equivalent
diameter and position of the bubble detached.

In Table 4.1 we summarise the simulations that were defined for this work. The
type of the simulation is labelled as ”Nozzle” or ”Sphere” depending on the way to
introduce the air in the system. Different turbulence models are tested and labelled
as Large Eddy Simulation (LES) or Reynolds Averaged Simulations (RAS) .

Table 4.1: Conditions used for the simulation.

Label Type Turb. model Qg d0 deq Bo
(cm3 s−1) mm mm

N1 Nozzle LES 0.1875 2 4.10 2.29
S1 Sphere LES - - 4.10 2.29
N2 Nozzle LES 0.75 2 4.48 2.7
N3 Nozzle LES 0.375 4 5.08 3.5
N4 Nozzle LES 0.75 4 5.37 3.9
N5 Nozzle LES 1.5 4 5.89 4.7
S5a Sphere LES - - 5.89 4.7
S5b Sphere RAS - - 5.89 4.7
N6 Nozzle LES 3 4 6.63 5.9

The phyisical properites of air and water are selected according to the experiments
of Dietrich et al. (2013b) and Dietrich et al. (2013a) as shown in Table 4.2.

Table 4.2: constant properties at temperature of 293 K

ρc ρd γ
(kg m−3) (kg m−3) (N m−1)
998 1.205 0.073
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Figure 4.2: Configuration for the VOF simulations depending on the way to introduce
the air.

The solver interFoam of the OpenFOAM R© version 4.x is used for these simulations.
A fixed regular mesh was created using the blockMesh tool. The mesh was treated
with the OpenFOAM R© utilities for mesh manipulation to create the nozzle. As a
result, a mesh of around 39 million of cells was created. Fig. 4.3 shows an image
of the mesh of the domain and the mesh representing the bubble for a given time
step.

The time step is dynamic and based on a Courant number restriction with a
maximum value of 1. In this work the use of a fixed mesh was preferred instead of
a dynamic or adaptive mesh. Although dynamic mesh based methods can usually
provide a reduction in computational time, the computation of adaptive mesh can
produce very small cells leading to really small time steps if the simulation is
dependent on the Courant number. In addition, the mesh defined each time step
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Figure 4.3: Mesh representation.

can solve the interface refining the region near the interface. It is difficult to define
each time step a proper mesh to capture the turbulence structure that take place
by the bubble path. For instance, the production and decay of the turbulence on
the back of the bubble.

Different turbulence models are used to investigate the influence of the turbulence
in the bubble velocity and path. In particular the Smagorinsky subgrid model is
used for LES and a κ-ε turbulence model is employed for RAS.

The simulations were run in a Intel(R) Xeon(R) CPU E5-2450 @2.10GHz using
16 processors in a decomposed domain with the Scotch algorithm (Pellegrini et al.
1996). The case was run until the bubble reached the top of the domain for the
sphere tests, except for N5 that was run longer as the first two bubbles coalesced.
The data is stored each 0.0025 seconds generating a total data of around 500
GB for each case. The simulations required a wall-clock time of around 10 days
excluding the time for reconstructing the case and the post-processing.

4.4 Bubble formation an detachment

The growth and detachment of a bubble is analysed by studying the bubble for-
mation, including the dynamics of the formation and the bubble size after the
detachment. An accurate representation of this process is a main indicator that
the calculated surface tension force was calculated with accuracy.

The resulting bubble equivalent diameter was obtained from the volume of the
bubble after the detachment. Jamialahmadi et al. (2001) developed a correlation
to predict the bubble size that results from the air injection in a submerged nozzle
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in different solutions. The correlations were obtained using The Radial Basis
Function (RBF) neural network architecture for predicting the bubble diameter:

db
d0

=
[ 5.0

Eo1.080

+
9.261Fr0.36

Ga0.39
+ 2.147Fr0.51

] 1
3

(4.7)

The correlation depends on the following dimensionless numbers in terms of the
injection orifice:

Eo0 =
ρcgd

2
0

γ
(4.8)

Fr =
U2
o

d0g
(4.9)

Ga =
ρ2cd

3
0g

µ2
c

(4.10)

In the simulations, the bubble volume is computed from the data of volume fraction
and the volume of each cell. The bubble can be represented using an iso-surface
which gives the information only of the bubble surface. In addition, a threshold
filter can be applied to select specific cells with presence of the air phase. Fig. 4.4
shows an example of the volumes that represents a bubble having values of volume
fraction greater than 0 and a iso-surface plotted by a value of volume fraction of
0.5.

Figure 4.4: Bubble representation with iso-surface and threshold filters of ParaView.

For the selected cells with the threshold filter, the following expression is used to
obtain the equivalent diameter over the cells forming the bubble.

deq =
( 6

π

∑
(αVcell)

) 1
3

(4.11)
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The results for the different air flow rates specified in Table 4.1 are shown in
Fig. 4.5. An error band is shown, together with the correlation as an absolute mean
average error of 3.12% between predicted and experimental data was reported in
the correlation of Jamialahmadi et al. (2001). Experimental data from Dietrich
et al. (2013a) is also included in the figure. The work performed by Dietrich et al.
(2013a) noted an average error of 8.13% from 94 experimental data. In this figure
a good trend of the simulated values is appreciated. The mean absolute error for
the diameters obtained in the simulation is of 1.94%. The error band represents
the deviation of the correlation with the experimental measures.

Figure 4.5: Equivalent bubble diameter and correlations for nozzle diameters of 2 and
4 mm.

The bubble shape and size of the simulations shown above are represented in
Fig. 4.6 for images of bubbles when first bubbles reaches an equivalent position
for the different flow rates.

(a) N3 deq=5.08
mm

(b) N4 deq=5.37 mm(c) N5 deq=5.89 mm(d) N6 deq=6.63 mm

Figure 4.6: Bubble iso-surfaces for different gas flow rates for a nozzle of 4 mm.
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Finally, for N5 we compare in Fig. 4.7 the evolution during the bubble formation,
comparing the results obtained with high-speed camera in Dietrich et al. (2013a)
for the same air flow rate. The three stages commented in the literature are
appreciated in the experiments and numerical results.

Figure 4.7: Experimental and numerical comparison of different stages of bubble growth
and detachment. Experiments reproduced from Dietrich et al. (2013b) with permission
of Springer.
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4.5 Flow field perturbation after detachment

The influence of the bubble on the liquid is studied first as it is a key factor that
defines the bubble dynamics, in terms of bubble path and velocity. The flow field
around the bubble is shown representing the velocity vectors in a middle plane
and comparing with the experiments measured with PIV in Fig. 4.8.

Figure 4.8: Comparison of fluid velocity vectors for experiments and simulation of a
bubble detached from a nozzle. Experiment reproduced from Dietrich et al. (2013b) with
permission of Springer.

As shown in the figure, the simulation captures a similar trend of the flow around
the bubble and the wake. In addition, a couple of small vortexes of opposite
direction are noted at each end of the bubble.

4.6 Bubble path and wake

The path followed by the bubbles and the wake produced is studied for the bubble
detached from the nozzle and the initially spherical bubble. The opposite vortexes
are observed appearing periodically and producing a change on the orientation
of the bubble and a non-rectilinear path as the reported experimentally in the
literature.

Fig. 4.9 shows for the scenario S5a the iso-surface of the bubbles and the ve-
locity vectors representing the wake produced. Shape oscillations are noted in
combination with the generation of clockwise and counterclockwise vortexes. The
occurrence of the new vortexes takes place between the shape oscillation cycles.
At 0.2450 seconds, the onset of the instability of the path is detected.
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Figure 4.9: Bubble iso-surface and velocity vectors at the middle plane for S5a.

As a curious fact, it is interesting to note the behaviour of the same simulation
using a RAS turbulence model as κ-ε (case S5b). With this simulation, the vortexes
can not be properly predicted (see Fig. 4.10) and the bubbles follow a rectilinear
path for the bubble sizes tested. This confirms the hypothesis of the wake effect
on the path instability.

Figure 4.10: Bubble iso-surface and velocity vectors at the middle plane for S5b.
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4.6 Bubble path and wake

The horizontal projection of the path followed by the bubbles in these simulations
is shown in Fig. 4.11. For the case of a bubble from the nozzle is appreciated
that the acceleration of the bubble at the detachment of the nozzle anticipates the
conditions for the change of trajectory in comparison with the initially spherical
bubble.

Figure 4.11: Horizontal projection of bubbles with diameter 4.10 mm for the sphere
and nozzle cases.

Figure 4.12: Horizontal projection of bubbles with diameter 5.89 mm for the sphere
and nozzle cases.

The path and wake of bubbles were investigated in Vries (2001) as commented
before. In this work zigzagging and helical paths were detected. In Fig. 4.13 the
path the horizontal projection of a bubble of diameter 2 mm is shown.
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Figure 4.13: Horizontal projection of an experimental bubble path.

It is proposed in this work the comparison of the distance of the bubble centroid
to the centreline:

dc =
√
C2
i,x + C2

i,x (4.12)

This distance is plotted as function of height in Fig. 4.14 for N1, S1, N5 and S5a.
In addition, dc is obtained for the experiments of Vries (2001) with data obtained
in equidistant steps along the 40 cm recorded.

Figure 4.14: Distance of the bubble to the centreline as a function of height.
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4.7 Velocity of a bubble rising

The velocity of the bubbles is analysed in this section. The scenarios N1 and N5
are used for the study. The former has a low gas flow rate that results in bubbles
separated sufficiently to not influence the bubble coming behind. This is shown in
Fig. 4.15, where the velocity vectors in the middle plane are shown.

The geometric centroid, Cb, is calculated at different times to determine the path
of the bubbles. The iso-surface of the bubbles consists of a set of elements with
vector position, vi, by each element. The centroid is obtained as:

Cb =
1

n

n∑
i=1

vi (4.13)

The velocity vector of the time step is computed as:

Vb =
∆Cb

∆t
(4.14)

In Fig. 4.16 we represent an analysis of the bubble velocity for the scenarios N1
and N5. The terminal velocity (Vb,z) and the magnitude of the velocity vector
are represented (|Vb|) in addition to the integrated value of the surface velocity
at the iso-surface of the bubble. For N1 the bubble starts a shape oscillation
after the detachment that can be appreciated in the bubble velocities. After some
oscillations the bubble change its orientation and the terminal velocity starts a
velocity cycle due to the zigzagging movement but the magnitude of the velocity
vector remains almost constant. The bubble velocity of a bubble with the same
size using the correlation of Tomiyama et al. (1998) for pure systems (Eq. 3.11)
will give a terminal velocity of 0.235 m/s. In the simulation, the mean value of
one entire cycle after the onset of the instability path results in 0.225 m/s. In
the case of N5, a bubble shape oscillation is responsible of the velocity oscillations
and discrepancies are only noted at the end of the simulations. The velocity with
Eq. 3.11 gives a value of 0.232 m/s but the mean value of the last cycle gives a
value of 0.334 m/s. This could be explained as the bubble has not yet started the
instability motion.

The same comparison is shown for S1 and S5a in Fig. 4.17. For these simulations,
the bubble is introduced in the system as a sphere, so the effects of the nozzle, as
for example the acceleration increase in the detachment, are not considered.
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Figure 4.15: Velocity vectors for N1 and N5.
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Figure 4.16: Velocities for a bubble of 4.10 mm for the sphere and nozzle cases.

Figure 4.17: Velocities for a bubble of 5.89 mm for the sphere and nozzle cases.

4.8 Conclusions

The study performed in this chapter demonstrates the performance of the VOF
technique for bubbles with relatively small size. Through this technique, the
growth and bubble detachment from an air injection from an orifice was prop-
erly captured. The comparison with experiments showed that the bubble size and
shape were obtained accurately in the simulation. In addition, the instantaneous
velocity field was displayed matching the experiments.

Later, the acceleration of a bubble after the detachment and the acceleration from
a sphere initially at rest were compared. The bubbles reached a terminal velocity
that was, in turn, used to compare with the terminal velocity described by a
drag correlation. For the bubbles analyzed we also noted a spiraling rising path,
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the comparison with experimental data revealed a very similar evolution of the
distance to a given centreline.

This chapter demonstrates the influence of the effects at the interface and how the
wake affects the bubble. The results shown in this section are useful to verify the
performance of CFD-DEM simulations when applied to single bubbles.
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Chapter 5

Computational Fluid Dynamics -
Discrete Element Method
(CFD-DEM)

In this chapter the development of a new solver based on the CFD-
DEM formulation is performed in combination with an exhaustive study
of the experimental techniques and validation. The development of the
solver implied the investigation of several aspects that are particularly
relevant for bubbly flow in pipes but were not usually required for tradi-
tional CFD-DEM simulations. In contrast, a rigorous validation was
made possible by means of a new methodology to obtain the computa-
tional results with conditions similar to reality, extracting the relevant
information of simulations with virtual sensor probes. This made it
possible to use the solver not only as a method to reproduce the exper-
iments, but as a tool to understand and investigate the experimental
data and measurements. The solver was capable to predict several up-
ward bubbly flow scenarios without the need of tuning coefficients in-
cluding the axial evolution of the flow characteristics from a given inlet
condition.
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5.1 Introduction

The first main objective of this chapter is the development of a confident solver
to predict vertical bubbly flow for pipes under different diameters and conditions
with accurate results without the need of tuning coefficients. The solver relies on
the CFD-DEM approach for unresolved particles. A spherical shape is assumed
for this simulation but the effects of the bubble shape is introduced through the
force correlations. Fig. 5.1 shows an image of the experiment and the simulation
at the bottom measurement port for PW05003.

Figure 5.1: Experimental image from high speed camera and simulation screenshot.

The solver includes developments as the coupling between phases, the required
interfacial forces, a two-equation turbulence model for two-phase flow and the
consideration of the bubble-bubble and bubble-wall interaction with a soft-sphere
model. Also, developments related to particular issues to perform a proper simu-
lation of the bubbly flow as an equivolumetric sub-element method to distribute
the bubble on the grid, injection algorithm, bubble expansion and turbulence ef-
fects on both liquid and bubbles. Due to the high importance and complexity
of modelling accurately the two-phase flow, we intentionally limited this work
to low void fraction scenarios where the break-up and coalescence effects can be
neglected. For instance, from the data analysed by the camera, no evidence of
coalescence or breakup was found for this condition. This allowed investigating in
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depth the bubble dynamics resulting suitable to interpret accurately the results
and validations.

The second main objective aims at providing a critical overview of the datasets
and the employed methodologies, specially regarding the data corresponding to the
dispersed phase properties. This requires to have an adequate knowledge on how
the experiments have been conducted, the signal processing procedure followed to
obtain the data, and how to fairly compare these results with the simulations.

Given most of the experimental data found in the literature has been obtained us-
ing needle probes, we developed a novel methodology to obtain computational re-
sults within a similar way. This methodology, called Virtual Needle Probe System
(VNPS), consists on placing probes in the simulations acting as phase identifiers
to later process the signal generated with the same program as the one used to
process the experimental signal. This implies that the same assumptions and pro-
cessing schemes as in the experiments are adopted and that a more comprehensive
comparison can be performed. Hence, this research shows an extensive validation
of the variables that define the two-phase flow characteristics.

The experimental facilities and measurement techniques were described previously
in Chapter 2. In the corresponding sections, the experimental techniques utilized
were described, in order to emphasize the difficulties of the measurements, the
particularities of the data from different experiments and a classification of the
variables depending on the information lost in the measurement. On that basis,
we developed a system to obtain the dispersed phase variables by means of the
probe sensor concept implemented in the simulations for a fair comparison with
the experiments.

Different experiments of bubbly flow in adiabatic vertical pipes were used in this
study as the experiments of Hibiki et al. (2001b) and Hosokawa et al. (2009) in
pipes with diameters of 50.8 and 25.0 mm respectively. In addition, new experi-
ments were performed to obtain complementary data, necessary for an extensive
validation, using a larger pipe of 52 mm of the experimental facility described
in Monrós-Andreu et al. (2013) and Monrós-Andreu et al. (2017) (see Fig. 2.1).
Details about the conditions used (PW05003, HK05003 and H050018) were shown
in Table. 2.2.

The main mathematical formulation and methods are described in Section 5.2.
The development of the solver has been performed in the context of the CFD-
DEM approach for unresolved particles extending its use to bubbly flows. This
solver has been developed and implemented in the framework of the open-source
package OpenFOAM R©, so its libraries and methods served as a basis to develop
this new solver.
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Section 5.4 is focused on the methods to assign the volume fraction and momentum
in the mesh used to solve the liquid phase. In fact, this is an important step as
determines the coupling between the phases. This has been done in the past in
different ways by different authors. While analytic methods are accurate, they
are not suitable when arbitrary unstructured grids are used. A classical method
consists on assigning the bubble volume and momentum to the cell where the
particle centre is located. This method can lead to considerable local errors and
inaccuracies that were crucial for our simulations as shown in this work. Instead,
a new sub-element method was introduced, based on dividing the sphere into
equivolumetric volumes to improve the stability and accuracy of the solver.

In Section 5.5, the terminal velocity and dynamics of a single bubble rising was
analyzed including its behaviour for a turbulent scenario. The scenarios simulated
with VOF in the previous chapter are also used.

Section 5.6 dealt with the method to seed the bubbles in a circular pipe for a given
polydisperse flow. The injection of bubbles in the simulation should reproduce the
experimental conditions adequately in terms of flow rate, BSD, bubble velocity
and injection position. In this way, one can obtain the same void fraction and
bubble frequency profiles as in the experiments. This can be performed easily for
time-averaged variables, but is not trivial when using a DEM and is required to
seed the bubbles as a function of time. For this reason, we developed a generic
injection algorithm for polydispersed flow to deal with the injection adequately.
Three different inlet patterns were compared to analyse the influence of the bubbles
on the liquid along the axial distance.

In Section 5.7, the effects of the bubble size distributions on the flow behaviour are
analysed. First, the assumption of monodispersity and polydispersity is analysed
to study its influence on the computational results. Also, the bubble expansion due
to the pressure change as a function of the pipe height was investigated measuring
experimentally the bubble size at different measurement ports. The increase on
size and volume through the pipe can determine the flow structure, therefore
a simplified model for the bubble expansion has been integrated in the bubble
tracking of the CFD-DEM solver.

The bubbles generate random velocity fluctuations in the flow that were modelled
in this work using a two-phase flow κ-ε turbulence model. At the same time,
the turbulence has an effect on the bubbles motion that was described with a
Continuous Random Walk (CRW) model. This was studied in conjunction in
Section 5.8. The effect of the pseudoturbulence and bubble dispersion can be
noted on the resulting void fraction profile and probability density function of
dispersed phase velocity. The liquid velocity seen by the bubble along its path
was also compared with the experimental instantaneous velocity.
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Finally, in Section 5.9, a complete validation is presented for the three different
experiments mentioned, which involved the tracking of around 30000 bubbles each
time step for the most restrictive case. The validation was performed with all the
available variables for radial profiles at different heights, and for the axial evolution
of the cross-section average values. The section ends with a critical assessment on
validation procedures against needle probes experimental data.

5.2 Mathematical formulation and methods

In this section we show the main formulation of the solver. It starts by introducing
the DEM formulation for the dispersed phase. Then, the Eulerian formulation for
the continuous phase is summarised. Finally, the numerical methods employed
and simulation setup are presented.

5.2.1 DEM formulation

The motion of the i-th bubble is computed by integrating the Newton’s second
law of motion:

mi
dubi

dt
= fbi + fhi +

ILi∑
j=1

f cij . (5.1)

In the left-hand size of this equation m stands for the bubble mass and ub for
its instantaneous velocity. The first term on the right-hand side stands for the
body force or buoyancy force due to the influence of the gravitational field on the
bubbles:

fbi = Vb,ig(ρb − ρc), (5.2)

being Vb the bubble volume, g the gravity vector, and ρc and ρb are the carrier
phase and bubble density. The bubble volume, is computed from the bubble
diameter db:

Vb =
πd3b

6
(5.3)

The second term in Eq. 5.1 represents the hydrodynamic forces resulting from the
liquid-bubble interaction. The last term considers the collisional forces between
pairs of bubbles or between bubbles and the walls. This is performed along the
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range of influence on each bubble with the data of bubbles or wall, stored in an
interaction list (IL).

The hydrodynamic forces considered are the drag, lift, virtual mass and wall lubri-
cation force. The pressure gradient force has not been considered as its influence
is considered negligible for this scenario.

fhi =
3

4db,i
Vb,iρcCd,i(uc − ub,i)|uc − ub,i|

+ Vb,iρcCl,i(uc − ub,i)× (∇× uc) + Vb,iρcCv,i

(
Duc

Dt
− dub,i

dt

)
−Vb,iρcCw,i |uc − ub,i|2 nw. (5.4)

In this equation, Cd, Cl, Cv and Cw stand for the drag, lift, virtual mass and
wall lubrication force coefficients. The instantaneous liquid velocity, uc, used to
compute the forces was calculated as the sum of the mean liquid velocity, Uc, and
the fluctuating velocity component, u′c. On the other hand u′c was computed with
a Continuous Random Walk (CRW) stochastic model described later in Section 5.8
together with the turbulence modeling.

The contact forces are usually modelled with a soft-sphere model (Cundall et al.
1979) consisting of a spring, a dash-pot and a slider. These elements generally need
the definition of stiffness, as well as damping coefficient and friction coefficient. In
this first approximation viscous damping and tangential forces were not included
in the analysis, so the force is restricted to normal collisions of a spring system.
The force according to a linear contact-stiffness model is given by:

f cij = −kijδijnij, (5.5)

where δij and kij are the overlapping and stiffness respectively between two par-
ticles or between a particle and the wall, and nij the unit vector.

Finally, after expanding and manipulating the Eq. 5.1 results:

(mb,i + Vb,iρcCv,i)
dub,ii

dt
= Vb,ig(ρb − ρc)

+
3

4db,i
Vb,iρcCd,i(uc − ub,i)|uc − ub,i|+ Vb,iρcCl,i(uc − ub,i)× (∇× uc)

+ Vb,iρcCv,i
Duc

Dt
−Vb,iρcCw,i |uc − ub,i|2 nw −

ILi∑
j=1

kijδijnij. (5.6)
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5.2.2 Eulerian formulation (CFD)

The carrier phase motion is solved by the volume averaged Navier-Stokes equations
for incompressible flow. The local averaged continuity and momentum equations
are:

∂

∂t
αc +∇ · (αcUc) = 0, (5.7)

∂

∂t
αcUc +∇ · (αcUcUc) = −αc∇p+∇ ·Rc −Mh, (5.8)

where p is the density-normalized pressure, Mh is the volumetric average of the
interfacial forces and αc is the carrier phase volume fraction, generated by each
bubble along its path on the cell. The method to compute these coupling terms is
described in Section 5.4. The Reynolds stress, Rc, is defined in Section 5.8.

5.2.3 Particle force coefficients

Eq. 5.6 establishes the full force balance onto the i-th bubble. This equation de-
pends upon four coefficients that need to be specified in order to solve it. Next, the
different correlations selected to model the interfacial coefficients and the definition
of the stiffness coefficients are presented.

Interfacial forces coefficients

The drag coefficient of Tomiyama et al. (1998) for an air-water contaminated
system reads:

Cd,∞ = max
( 24

Re
(1 + 0.15Re0.687),

8

3

Eo

Eo + 4

)
(5.9)

The dimensionless numbers for each bubble in the equation above are given by:

Re =
|ub − uc|db

νc
(5.10)

Eo =
g(ρc − ρd)d2b

γ
(5.11)

where νc is the molecular viscosity, and γ the surface tension.
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This results in the terminal velocity curve of Fig. 5.2. In this figure, an approximate
range of the diameters present in the experiments is marked. In the simulation,
the drag coefficient will influence the individual velocity of each bubble. Hence,
according to the non-linearity of the drag force, small changes in size from the
inlet to the top of a pipe, can influence variables related with the bubble velocity
as the volume fraction.

Figure 5.2: Terminal velocity for an air-water system for a fully contaminated system
using the drag coefficient of Tomiyama et al. (1998).

The previous drag coefficient was obtained for experiments performed in a stagnant
liquid. In the literature an increase on the drag coefficient as a function of the
strain rate, Sr, was reported (Legendre et al. 1998; Magnaudet et al. 2000; Sugioka
et al. 2009). The relation found by Legendre et al. (1998) is used to describe the
drag force:

Cd = Cd,∞(1 + 0.55Sr2), Sr =
dbω

|ub − uc|
, (5.12)

where ω is the magnitude of the carrier phase velocity gradient.

The lift coefficient of Tomiyama et al. (2002b) was used to take into account the
influence of the shear rate for the different bubble sizes present in the simulations:

Cl =


min

(
0.288 tanh(0.121Re), f

)
Eod < 4

f 4 ≤ Eod ≤ 10

−0.29 Eod > 10

, (5.13)
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f = 0.00105Eo3d − 0.0159Eo2d − 0.0204Eod + 0.474, (5.14)

where Eod is a modified Eötvös number with characteristic length the maximum
horizontal dimension of the bubble that can be estimated as in the same work as
a function of a spherical bubble diameter.

The wall lubrication force (Antal et al. 1991) is a hydrodynamic force usually taken
into account to simulate two-phase flow in pipes. This force reflects the drainage
of the fluid around the bubble and represents the force that the liquid drainage
around a bubble moving near a wall has on the bubble. A two-dimensional solution
was derived for flow between a cylinder and a wall by Antal et al. (1991). The
constants obtained in this work were evaluated by a 3D DNS of viscous flow past a
single bubble with uniform velocity using PHOENICS code. The simulations were
done for two relative velocities (0.1 and 0.2 m s−1) finding the following equation:

Cw = max

[
0,Cw1 + Cw2

rb
y

]
, (5.15)

where y is the distance of the bubble center to the wall. The fitting coefficients
can be expressed as:

Cw1 = −0.06 |uc − ub,i| − 0.014, (5.16)

and

Cw2 = 0.147. (5.17)

Finally, the application of potential flow theory to flow around a spherical bubble
in an infinite medium gives a value of 0.5 for CV according to Lamb (1895), Auton
et al. (1988), and Drew et al. (1987).

Stiffness coefficient

In order to calculate the stiffness of the spring system (Eq. 5.5), we assume ai and
bi the semi-minor axis and semi-major axis of the i-th bubble, respectively.

The stiffness of the bubbles was determined as a function of the increase of the
surface area due to the bubble deformation. Assuming that in the deformation
the bubble conserves the volume, the surface energy changes due to surface defor-
mation, ∆A, for a given surface tension, γ. For the computation of the stiffness, is
assumed that the bubbles have a spherical shape unless they are colliding. Once
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Figure 5.3: Ellastic collision scheme for the soft-sphere model.

they collide, their shape deforms to an oblate spheroid with its minor-axis along
the collision direction (see Fig. 5.3). The bubble deformation is accounted for by
the normal overlapping defined as:

δij = 0.5(db,i + db,j)− lij , (5.18)

where lij is the distance between the bubble centers. The semi-axis ai is defined

as ai=rb,i-0.5δij . The semi-axis b results in bi=
√
r3b,i/ai .

Combining the works done by the bubble deformation and the spring system
(Eq. 5.5) it results:

∫ δij

0

kijδijdδij = γ(∆Ai + ∆Aj) (5.19)

Consequently, the stiffness between the two bubbles can be calculated as:

kij =
2γ(∆Ai + ∆Aj)

δ2ij
(5.20)

The value of kij is calculated dynamically for each bubble movement if the bubble
is interacting with other bubbles or walls. The wall is considered as a rigid body,
j index is replaced by w in the above equations for solving the overlapping of the
bubbles with the wall.
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5.2.4 Numerical methods and simulation set up

The solution procedure consists on solving the CFD and DEM parts explicitly.
Thus, the pressure-velocity calculation procedure for the Navier-Stokes equations
is solved first and then the bubbles are tracked during a given number of sub-cycles
until the Eulerian time step, ∆t, is reached. During the tracking, in each sub-step,
u′c is computed from the CRW stochastic model, and Uc is updated according to
the interpolated values at the current position of the bubble to obtain uc= Uc+ u′c
needed to compute the hydrodynamic forces and calculate the new bubble velocity.
The coupling terms are calculated averaged on time during the path to provide
the required Mh and αc to solve pressure and velocity in the next steps. In each
sub-step the bubble radius rb is updated to consider the bubble size changes due
to the pressure according to Eq. 5.34 from the simplified model described later.

Eq. 5.8 and Eq. 5.7 were solved with the Pressure-Implicit with Splitting of Op-
erators (PISO) algorithm (Issa 1986) including the modifications to consider the
volume fraction and momentum exchange. Eq. 5.35 and Eq. 5.37 defining the
turbulence model are incorporated in the algorithm and will be discussed later.

A modified version of the tracking algorithm of Macpherson et al. (2009) was de-
veloped and implemented in the solver to incorporate the modifications described
in this work. A second-order leapfrog integrator was used to numerically solve
Eq. 5.6, alternating a linear move and collision in time. This integrator is sym-
plectic and the energy error remains bounded for sufficiently small time steps. The
collisions are performed using the Arbitrary Interaction Cells Algorithm (AICA)
already implemented in OpenFOAM R© (Macpherson et al. 2008). With this algo-
rithm the bubble-bubble and bubble-wall interactions are evaluated for the bubbles
in the given referred cells. The referred cells are defined at the beginning of the
simulation according to a specified rcut value larger than the maximum bubble
radius expected. The soft-sphere model is then applied for the bubbles that are
overlapping.

The meshes were created by means of the blockMesh tool of OpenFOAM R©, re-
sulting in an unstructured hexahedral mesh with an O-grid structure. The meshes
were created with an axial mesh size of 1.5 times the maximum bubble diameter
considered. The number of elements of the mesh results in 209280, 171200 and
57600 hexahedrals for PW05003, HK05003 and H050018 respectively.

The value of ∆t selected for the simulation was kept fixed to a value of 7.5× 10−4 s
and a number of 10 sub-cycles was considered. This time step matches the stability
criteria for both phases in terms of Courant number, phyisical contraints for the
collisions and response time. In addition it is sufficiently small to apply the VNPS
as the signal from the virtual probes is produced each sub-step. The simulations
for the three scenarios were run until a total time of 35 seconds was reached as in
the real experiments, to obtain statistically converged results.
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5.3 Dispersed phase variables calculation

Experimental measurement of dispersed phase characteristics is a complex task
that involves several approximations and data processing. Also, the comparison of
simulation results with experimental data is not as straightforward as one could ex-
pect. Here we perform a critical analysis of the so-called validation procedure and
propose an adequate methodology for a rigorous comparison between simulation
results and experimental data. This new methodology is briefly summarised in the
scheme of Fig. 5.4, and takes profit of the full potential of CFD-DEM simulations.

Conductivity probes

Virtual Needle Probe
System (VNPS)

Experiments

High Speed Camera

Simulation

Study and validation

Post-processing
bubble data

System
variables

Signal
variables

Probe
variables

Figure 5.4: Validation setup for simulation.

First, a Virtual Needle Probe System (VNPS) was implemented into the CFD-
DEM code. These virtual probes mimic the actual NP used in the experimental
facilities. They will be placed in the same measurement locations as the NP,
providing signals similar to those obtained by the NP, so they can be processed by
doing the same approximations and assumptions as in the experimental processing
of NP signals. The data generated by the processing of VNPS signals will be
referred to as the signal variables. Second, in the context of the VNPS, the bubble
data can be obtained at a sampling location coincident with a probe by capturing
the properties of the bubbles that pass through the sampling point, leading to
the so-called probe variables. Finally, the code allows for the knowledge of the
location, diameter and velocity of every bubble. Then, the characteristics of the
dispersed phase in the simulation are known. The averaged data obtained from this
knowledge will be referred to as system variables. These variables are summarized
in Fig. 5.5.

The VNPS consists in a set of probe-points placed in space so that their relative
locations coincide with those of the tips of a real needle probe. Their role is to serve
as phase indicators to generate a synthetic signal. During the simulation, and for
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• αd (Eq. 2)

• Vz,NP (Eq. 4,5)

• aI (Eq. 6,8)

• cl (Eq. 10)

• d10,NP (Eq. 12)

• d32,NP (Eq. 13)
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• Vz,system

• d10,system
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• d10,probe

• d32,probe

Figure 5.5: Scheme of the different type of variables obtained for validation.

the tracking process of every bubble, a value of 1 or 0 is assigned to a probe point
depending on if its location is inside or outside a bubble, respectively (see Fig. 5.6).
Afterwards, the data can be post-processed with the same program as the one used
to process experimental output signal, once the regenerated square-wave signals is
obtained. With this methodology time-averaged values of void fraction, velocity,
interfacial area concentration, Sauter mean diameter, chord length or number of
bubbles detected can be directly obtained from the simulation. The radial and
axial distances between tips are shown in Fig. 5.6. The distances are measured in
the real probes obtaining values of 1.77 mm for δz and 0.26 mm for δx and δy.

In addition to the signal variables, the actual values of the variables owned by each
bubble are obtained when they are crossing the probes. These variables can be
computed averaged in time for the Np bubbles crossing the probe. The definition
of the variables used in this work are the following:

Vz,probe =
1

Np

Np∑
i=1

Ub,z (5.21)

d10,probe =
1

Np

Np∑
i=1

db (5.22)
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Figure 5.6: Virtual Needle Probe System (VNPS). Example of a four-probe sensor with
a square configuration.

d32,probe =

Np∑
i=1

d3b

Np∑
i=1

d2b

(5.23)

Along with this, one can compare the discrepancies between signal and probe vari-
ables for a more complete understanding of the validation with the experiments.
In fact, if the digital processing scheme and assumptions are accurate, then signal
and probe variable should be equal.

The system variables give different values as the probe variables because bigger
bubbles are more likely to be hit by the probes (Clark et al. 1988; Liu et al. 1998).
Then, a different post-processing to VNPS was applied to process the data owned
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by each computational bubble during the time-steps of the calculation independent
to the probes. This data can be represented directly with scatter plots or as an
average in a volume over the time. For the latter, the region where this variable
is calculated can vary and can include from a given arbitrary volume to a ring or
disk as an example. The average is performed for the number of bubbles in the
region, Ns, during the time as follows:

Vz,system =
1

Ns

Ns∑
i=1

Ub,z (5.24)

d10,system =
1

Ns

Ns∑
i=1

db (5.25)

d32,system =

Ns∑
i=1

d3b

Ns∑
i=1

d2b

(5.26)

When different sizes of bubbles are present in the system as for polydispersed
flow, there is a discrepancy between the bubbles actually seen by the probe and
the bubbles existing in the system.

5.4 Void fraction and momentum exchange assignment

The bubble volume and momentum exchange assignment is important for the
coupling between the phases as determines the velocity-pressure results and the
solver stability. Furthermore, it determines the local values of the bubble forces.
Therefore, an efficient consideration of the local void fraction and momentum
exchange becomes mandatory.

From the pioneering work of Crowe et al. (1977) who accounted for the mass,
momentum, and energy coupling between phases, through the Particle-Source-In
Cell (PSI) model, several methods have been proposed. According to Norouzi
et al. (2016b) the void fraction, and therefore the momentum term, in a cell can
be calculated by exact analytical (Wu et al. 2009a; Peng et al. 2014; Wu et al.
2009b) or approximate non-analytical methods. Among the second type, they can
be classified as Particle Center Method (PCM) (Xu et al. 1997), porous cubes
(Deen et al. 2004; Link et al. 2005), statistical approaches (Xiao et al. 2011), sub-
element (Gui et al. 2008; Hilton et al. 2010; Norouzi et al. 2016c) and spherical
control volume (Kuang et al. 2008). The first type of methods has the advantage of
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being accurate but hardly suitable for non-regular meshes as the used for the pipes
under investigation. Hence, the non-analytical approach would be most effective
for this case. These techniques usually obtain satisfactory results at the expense
of computational time.

The algorithm shown in Vaidya et al. (2006) and Macpherson et al. (2009) is
implemented in OpenFOAM R© to track particles along the cells. The motion was
done for unstructured, arbitrary polyhedral meshes leading with 3D meshes of
complex geometries. The assignment of void fraction and momentum exchange
during the tracking is based on the PCM, giving satisfactory results for scenarios
where the cell volumes are regular and much larger than the volume occupied by
the particles. In the PCM method all the bubble volume is assigned to the cell
where the particle centre is located. As reported by Peng et al. (2014) it may
lead to an error up to 50% where the particle centre is near the cell boundaries
or to numerical instabilities due to dramatic changes in void fraction. The sub-
element method is used to improve precision and accuracy, dividing the particle in
a number of elements in such a way that each sub-element contributes its volume
to the cell where the sub-element centre is located during its path.

5.4.1 Description of the new equivolumetric sub-element
method

Similarly to the sub-element method, we have developed an equivolumetric sub-
element method to track a fixed number of representative volumes or sub-elements
of each bubble. To generate an optimal distribution we divide strategically the
sphere with the equivolumetric partitioning algorithm defined in Yang et al. (2006).
The method is performed in three main steps. First, an initial division of the sphere
into two solid hemispheres is accomplished. Later each semi-sphere is divided into
n hemispheric shells of equal thickness δr=rb/n (note that the first shell results
in a small hemisphere). Finally, in the last step, the basic elements are generated
from the hemispheric shells. An example of the partition of the i-th shell is shown
for a sphere of radius π in Fig. 5.7.

The i-th shell is sliced into i polar divisions, and labelled by index j=1,2,...,i.
Then every polar slice is cut into pieces given by k=1,2,...,6(j-1). According to
this method, a sphere is partitioned exactly into a 2n3 cuts of equivalent volume
depending on the number of n shells specified for each sphere.

The angles βij and αijk described in Fig. 5.7 determine the polar and azimuthal
coordinates of the resulting cuts:

αijk =
2kπ

6(j − 1)
(5.27)
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Figure 5.7: c©2006 IEEE. Equivolumetric and uniform convergent partition of hemi-
spherical shell (Yang et al. 2006).

βij = cos−1

(
3(i− j)(i+ j − 1)

1 + 3i(i− 1)

)
(5.28)

apply this equivolumetric partition of the bubble to the simulation, the bubbles
are divided dynamically when they are seeded. A common δr is fixed for all the
bubbles and the bubbles are partitioned according to the number of shells obtained
(n=rb/δr) and applying a ceiling function (next largest integer). Figure 5.8 shows
an example for a bubble of 2.5 mm radius divided by 3 shells. The residence time of
each element in the cells is computed to determine the contribution of momentum
and volume fraction into the grid.

Considering that many bubbles may be present in a cell, the exchange momentum
in a cell for a given sub-cycle can be calculated as:

Mh =
1

ρcVcell

Nb∑
i=1

Ncs,i∑
j=1

fhi
Ns,i

, (5.29)

where Vcell is the cell volume, Nb the number of bubbles entirely or partialy in the
cell, Ncs,i the number of sub-elements belonging to the i-th bubble inside the cell,
and Ns,i the number of sub-elements that compose the i-th bubble.
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δr

δr

δr

Figure 5.8: Views of the equivolumetric partition for a bubble of diameter 2.5 mm.

The carrier phase volume fraction is calculated in the same way as:

αc = 1− 1

Vcell

Nb∑
i=1

Ncs,i∑
j=1

Vb,i

Ncs,i
(5.30)

5.4.2 Validation and convergence study

In order for the unresolved CFD-DEM method to be valid, the volume cell must be
larger than that of the particles. The cases under investigation in the present work
are highly restrictive according to the diameter pipe and bubble size. This means
that the mesh size should be sufficiently small to capture the hydrodynamics on the
pipe and sufficiently large to satisfy the requirements of the method. Employing
the δr parameter defined before, we studied the maximum ratio of total volume
occupied by the bubbles and volume cell (or void fraction) obtained at each time
step, which suggest the worst-case scenario where, for instance, the smallest cell
volume concurs with the biggest bubble. This has been checked for the three
conditions shown in this work. Figure 5.9 shows the probability density function
of the maximum local void fraction for different values of δr for the mesh used in
PW05003.

The results suggest that the maximum local void fraction decrease as the value of
δr is decreased, until reaching minimum values. For δr=1.8 mm, maximum void
fraction values above were obtained in the domain, in fact, this caused convergence
problems stopping the simulation. This situation was observed for other tests of
δr from this value. o analyzed We alsthe special situation where δr is sufficiently
large to result in only a sub-element per bubble, which would be equivalent to a
PCM method. These simulations stopped earlier and stability problems related to
the unrealistic changes in time of local void fractions were detected. In contrast,
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Figure 5.9: Maximum local void fraction among the time steps for different δr values
for PW05003.

small values of δr results in greater number of sub-elements that allows a more
accurate assignment of bubble volume into the cells, improving the convergence
and the accuracy of the calculation of pressure and velocity fields.

Finally, a value of δr of 0.6 was used for convenience for this simulation, as it gives
a good balance between computational time and performance. Furthermore, to
validate the calculation of void fraction of this method we made use of the local
definition of void fraction (Eq. 2.2) with the VNPS to compute averaged void
fraction in the probes locations and compared with the time-averaged values of
the interpolated values in the cells (Fig. 5.10).

Figure 5.10: Cell interpolated values of void fraction for values compared with the void
fraction obtained with the Virtual Needle Probe System (VNPS).
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5.5 Single bubble rising in a quiescent liquid

The dynamics of a single bubbles is analyzed in this section. The same domain
as the one used for the simulations with VOF is considered. The N1 and N5 case
described in that section (Section 4.7) is used for the simulations with CFD-DEM.

5.5.1 Mesh sensitivity

First, mesh tests similar to the previous one is performed but fixing the δr for
different mesh sizes. The mesh configurations are shown in Table 5.1:

Table 5.1: Mesh configuration for single bubble simulations with CFD-DEM

Label ∆x Vb/Vcell (db=4.10) Vb/Vcell (db=5.89)
mm

M1 7.05 0.10 0.30
M2 5.25 0.25 0.74
M3 4.20 0.49 1.44
M4 3.50 0.84 2.49
M5 2.80 1.64 4.87

The different bubbles and the volume fraction contribution in the cells for a given
time step are analysed. For M4, the volume of the cell is lower than the bubble
volume, then the sub-elements of the bubble can fill the computational cell giving
situations with void fraction greater than 1. Note that for M3 the size is smaller
than the bubble diameter but not the volume. For this case a sufficiently small
size of δr will satisfy the requirements of the solver.

Figure 5.11: Terminal velocity for db=4.10 and db=5.89 for different meshes.

To verify the mentioned before, the terminal velocity is compared for the different
meshes in Fig. 5.11. For M1, M2 and M3 we obtain the same results while for M4
there is initially instabilities and latter a steady state point overestimated. The
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formulation of CFD-DEM for unresolved particles is used for the solver and then
for M4 high velocity gradients begin to appear and as it relies on force correlations,
the interfacial forces are not properly applied, in particular the virtual mass force
makes the simulation to be unstable.

5.5.2 Bubble velocity and acceleration

The bubble velocity as function of time is now compared with the results with VOF
in 5.12. The terminal velocity reached by both solvers are in a good agreement and
the acceleration produced from the sphere initially at rest. Note that shape effects
as path instabilities are not considered with this solver, and then discrepancies in
time exists between both.

Figure 5.12: Terminal velocity comparison of a single bubble with CFD-DEM and
VOF.

5.5.3 Test case with initially agitated liquid

In this section, the rising velocity and path for turbulent scenarios is investigated.
We suppose that the liquid is initially agitated with corresponding initial values
of κ and ε that are decaying as the bubbles rise. With this test we can study
the influence of the turbulence in the bubble’s motion produced because of the
consideration of the CRW (details given later).

In Fig. 5.13 the terminal velocity is shown for a bubble of size 4.10 mm for two
different cases of initial turbulence.

The path that the bubble follows for both turbulence quantities is shown in Fig.5.14
for a bubble of size 4.10 mm for the two different cases of initial turbulence. The
results show how the bubbles are moved by the eddies, with a more pronounced
path for the case with higher values of turbulence kinetic energy.
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Figure 5.13: Terminal velocity comparison of a single bubble for different values of κ
and ε.

Figure 5.14: Horizontal projection of the path of isolated bubbles under different tur-
bulence conditions.

5.6 Injection model and fluid flow influence

Next, for PW05003 we study how to introduce the bubbles at the inlet. The po-
sition in which the bubbles are injected in the domain determines the dispersed
phase evolution due to the local momentum exchange from the bubbles to the fluid.
In fact, the void fraction and bubble density radial profiles should be in accordance
to the experiments at the inlet. Hence, in the present simulations the seeding of
bubbles over time must be done under these constraints on their time-averaged
values. In this section we propose an algorithm for the random-polydisperse seed-
ing of bubbles in circular pipes that accomplishes with the statistical properties
of given BSD, void fraction and bubble frequency profiles. This algorithm can be
easily extended for include more constraints if needed.
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5.6 Injection model and fluid flow influence

To demonstrate the strength of the proposed algorithm, we make use of it to
study the effects of bubble injection distribution on flow evolution. Thus, the flow
characteristics and evolution of the case PW05003 have been examined when using
three different injection patterns. In addition to the pattern with a profile from the
bubble frequency of the experiments, a uniform distribution, and random radius
and polar angle will be studied as illustrated in Fig. 5.15.
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Figure 5.15: Injection patterns tested for PW05003. Bubbles at injection during 1 s
with a sampling period of 0.075 s.

5.6.1 Injection algorithm to seed the bubbles

Considering a circular section of radius R in polar coordinates with r (radial
coordinate) and θ (angular coordinate), a uniform distribution of injection points
over [0,R] and [0,2π] respectively, gives an accumulation of bubbles near the centre
as the area is proportional to the squared distance of r to the centre. To obtain an
area-uniform random distribution, the probability density function of the random
variable should be f(r) = 2r/R2. Instead of a uniform distribution, is more
convenient to seed the bubbles according to a given radial condition. For a given
experimental sample of bubbles, if we know the radial distribution of bubbles
detected per unit time the probability density function can be expressed as:

f(r) = Nt(r)
2r

R2
(5.31)

Based on f(r) we developed the algorithm shown in Fig. 5.16 to seed the bubbles
in the system following a BSD in a corresponding polar position vector r with
random radial, ξr, and angular, ξθ, positions.

This algorithm provides the seeding of bubbles during a given injection time ti. An
average time step volume, Vi, is defined at the beginning of the simulation from
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Figure 5.16: Injection algorithm diagram.

the air volumetric flow rate, Qg, and ∆t. Each Eulerian time step, a volume Vt is
calculated, and bubbles with a size from a given BSD are consecutively generated
until the total volume of these bubbles reach Vt. A deviation between Vi and
Vt is expected as each bubble size is obtained randomly from the BSD, and the
resulting volume Vt does not match Vi with accuracy, specially for low time steps.
A correction variable, dV, is introduced in the algorithm to store the exceeding or
missing volume for a given time step, to correct Vt in the next time step.

The radial coordinate is randomly obtained from the defined f(r), while the an-
gular one is randomly uniformly distributed. The geometrical constraints of the
bubble sizes and the pipe wall are considered in order to avoid unrealistic over-
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lapping between two bubbles or with the wall. Each time-step a bubble can be
discarded if overlaps another bubble previously seeded close to it. In order to speed
up the algorithm, an iterative process to try the seed at different random azimuthal
positions for a given radial position is performed until a maximum number of tries,
iMax, predefined by the user.

The discarded bubbles are stored in a list to try their injection in the next time
step. This step is necessary to keep the statistic consistent over time. Position
and diameters are stored in a data list where the First-In, First-Out (FIFO) rule
is applied to try first the seed of the oldest bubbles in the list. In Fig. 5.16, the
index n refers to the tail or the list and the index 0 to the head.

5.6.2 Boundary conditions and flow influence of the injection
patterns

In this subsection we analyze the performance of the injection algorithm for PW05003.
The bubbles were introduced in the system according to the data specified in the
experiments related to the air flow rate.

In order to check the volume actually injected, we show in Fig. 5.17 the superficial
gas velocity over time. The superficial gas velocity in the simulation at the inlet
was calculated from the volume injected at each Eulerian time step during the
simulation and compared with the target value specified from the air flow-meter
of an experiment. The average of the time step values can be compared with
the target value of the experiments, verifying that the injection process in the
simulation was performed properly.

Figure 5.17: Superficial gas velocity at inlet in the simulation compared with the target
value jl=0.03 m s−1.
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It is necessary to remark that a deviation is expected in the experiments between
the air flow rate given by the flowmeter and the actual value measured by the
probes (typically provided by the authors in the experiments), that should be
taken into account when analysing the computational results. The air flow rate
measured at the probes, Qg,probes, is compared with Qg. The former is obtained
from the cross-sectional averaged αd and Vz. The resulting value of Qg,probes is
around 7% lower than Qg for PW05003.

The data measured at z/D=22.4 is considered for the inlet of our simulation, so
the experimental measures of Nt were used to estimate f(r) for the injection in
the simulation. In Fig. 5.18 we compare with experimental data and the results
of the simulation immediately after the injection. The comparison for Nt and
αd profiles shown that the injection was performed representing the experimental
data provided.

Figure 5.18: Radial profiles at the simulation inlet to test the injection algorithm.

The three injection patterns shown in Fig. 5.15 were used to analyse the axial
evolution of the carrier phase velocity and void fraction at the centre of the pipe
(r/R=0) and near the wall (r/R=0.94). In Fig. 5.19 we can appreciate how the
velocity is affected by the bubbles, especially for the random r and θ position
pattern.

The simulations predict, that even for the more restrictive pattern injection checked,
the influence of the injection is smoothed as the flow advances and eventually lost
after a certain evolution distance. For this particular experimental facility, the
mid-port location is set at z/D=61.0, so one can expect that the experimental
results for this flow configuration do not depend upon the injection. But other
flow configuration, or even different port locations in case for other experimental
facilities, may lead to results that depend on the injection so, in general, a proper
radial injection seeding is mandatory for accurate validation.
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Figure 5.19: Axial evolution of void fraction and carrier phase velocity at several radial
locations according to the different injection analysed.

Also, note that for some flow configurations, coalescence and breakup become
an important phenomenon. For these cases, the accumulation of bubbles due to a
non-accurate injection algorithm would lead to unrealistic coalescence and breakup
rates. In summary, a proper seeding of the bubbles at the inlet is of great interest
for an adequate validation of the code. Consequently, this injection model was
applied in our simulations and can be used in the simulations in pipes or circular
sections from a given point where enough information is known or estimated.

5.7 Bubble size distribution and axial evolution

According to the particle size, a disperse multiphase flow can be classified as
monodisperse (uniform size) or polydispese (non-uniform size) flow. In many sim-
ulations we can assume the bubble size is uniform either because the dispersion of
the BSD is small enough, or because the assumption of monodispersity does not
actually compromise the quality of the results. But in general, flow characteris-
tics depend on BSD polydisperse nature so it must be included for detailed and
accurate simulations.

In bubbly flows the bubble size is an important parameter to numerically predict
the flow characteristics and it is needed to adequately describe the size distribution
in space and time. If we want to predict the axial evolution of bubbly flow, in the
air-water systems dealt here, we must take into account the pressure changes along
the pipe that have a significant influence on bubble size and bubble volume. The
axial evolution of the pressure for the PW05003 scenario is illustrated in Fig. 5.20
to show this change. The simulation was compared with the experiments to ensure
that the pressure values are accurate to apply an expansion model.
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Figure 5.20: Axial evolution of cross-section average pressure.

5.7.1 Simplified model for bubble expansion

The modelling of the gas decompression was performed updating the radius of the
bubble each time step during the tracking. The volume increase and the radius,
can be estimated based on the Young-Laplace equation and the ideal gas law. The
Young-Laplace equation defines the pressure inside a gas bubble, pb, assuming it
remains mechanically stable as:

pb = pH +
2γ

rb
, (5.32)

being pH the hydrostatic absolute pressure computed from the pressure field p:

pH = patm + ρcp+ αcρcgh, (5.33)

where h is the height of fluid column. Assuming an isothermal expansion and
introducing the ideal gas law, one can obtain the following relationship, between
the bubble radius at current time step, rb,t, and the bubble radius at previous
time step, rb,t-1:

r3b,tpH,t + 2γr2b,t − r3b,t-1

(
pH,t-1 +

2γ

rb,t-1

)
= 0. (5.34)
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5.7.2 Axial evolution study and validation

In order to assess and validate the model, we show first in Fig. 5.21 the axial evolu-
tion of the BSD for PW05003, comparing the equivalent diameter and chord length
distributions at z/D=22.4 and z/D=98.7. The BSD was measured experimentally
by image processing at different heights appreciating the expected bubble size ex-
pansion, and in the same way it is noted by the chord length distribution measured
by the probes. Based on the BSD at z/D=22.4 we included a theoretical distri-
bution at z/D=98.7 assuming the pressure change on bubble size and using the
pressure measured at these ports. The estimated distribution is, in fact, a scaled
distribution by the factor fij (Eq. 2.24) that matches the experimental data at
z/D=98.7 with good agreement. In the simulation the BSD were extracted from
the total bubbles in the system at a given height and the chord length distribution
with the signal variable of the VNPS. Chord length and bubble size distribution
at the given heights are similar as the measured.

Figure 5.21: Bubble size and chord length distributions for experiments and simula-
tions.

The significant changes in terms of volume and bubble size may influence on the
bubble evolution along the pipe. For the sake of argument, we examined in de-
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tail the PW05003 case (Fig. 5.22), comparing at the top measurement port, void
fraction radial profiles for three scenarios: a monodisperse case with size the mean
of the distribution, a uniform size at inlet that includes the bubble expansion
and a polydispersed flow with the 95% of the bubble sizes considered from the
experimental size distribution at z/D=22.4 including, in like manner, the bubble
expansion.

Figure 5.22: Dispersed phase void fraction at z/D=98.7 for PW05003 comparing three
cases: polydisperse with expansion (95% of the bubble sizes of the BSD), inlet uniform
size with expansion (mean size of the BSD) and monodisperse (mean size of the BSD).

Note that the monodisperse case underpredicts the void fraction as shown in the
figure as the bubble expansion can not be considered to maintain the monodisperse
constraint. The difference between the polydisperse and the inlet uniform size
reveal significant discrepancies on the void fraction close to the wall, because of
differences in force balances, interactions with the wall and contributions of volume
in space from different bubble sizes. In addition to the void fraction, the effect
of the polydispersity on other variables (i.e. bubble frequency, interfacial area
concentration, chord lengths or Sauter mean diameter) result more significant
and may lead to an erroneous interpretation of the results when comparing with
the experiments. Therefore, the flow must be considered as polydisperse for an
accurate comparison, even if coalescence or breakup is negligible.

5.8 Bubble dispersion and pseudoturbulence

5.8.1 Carrier phase turbulence model

The bubbles motion produces random velocity fluctuations along their trajectories
in the carrier phase. This can be considered as a pseudoturbulence according
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to Wijngaarden (1998) and means an increase of turbulent velocity fluctuations
due to the pass of bubbles. This produces an excess energy that needs to be
considered in the turbulence models. A κ-ε turbulence model for gas-liquid two-
phase flow similar to Kataoka et al. (1989), Morel (2016), and Troshko et al.
(2001a) is used in this work. According to these models the interfacial effects
are considered explicitly in the transport equations for these turbulent variables.
The total mixture turbulent kinetic energy is obtained by the summation of the
κk-equation and considering the gas-phase turbulence negligible in comparison
with the liquid-phase turbulence (Kataoka et al. 1989). The following equation is
obtained for κ:

∂

∂t
(αcκc) +∇ · (αcUcκc) = ∇ ·

[
αc

(
νc +

νt,c
σκ

)
∇κc

]
+ αcRc : (∇Uc)− αcεc

−Mh(Ud −Uc)− (pd − pc)
δαd
δt
− γΓaI , (5.35)

where νt,c is the eddy viscosity, εc is the turbulent dissipation rate, and Γ is the
rate of change of interfacial area. The turbulent Reynolds stress is defined as
Serizawa et al. (1975) and Troshko et al. (2001a)

Rc = νt,c

(
∇Uc + (∇Uc)

T − 2

3
I(∇ ·Uc)

)
− 2

3
Iκc (5.36)

The three last terms in the RHS of Eq. 5.35 are related to the interfacial effects
on the turbulence kinetic energy. In particular the last two terms are included to
be consistent with the expansion of the bubble described previously.

The turbulent dissipation rate equation used is based on the Kolmogorov’s hy-
pothesis (Pope 2000). Hence, the production and dissipation rates of εc are con-
sidered proportional to the production and dissipation rates of κc with a factor
of ωc=εc/κc according to Launder et al. (1974). Conversely, the destruction of
the turbulence produced by the interfacial effects must be related to the charac-
teristic time scale of the pseudoturbulence produced by the bubbles (López de
Bertodano 1998; Troshko et al. 2001a) with a dissipation frequency ωb that needs
to be modelled. The turbulence dissipation rate equation results:
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∂

∂t
(αcεc) +∇ · (αcUcεc) = ∇ ·

[
αc

(
νc +

νt,c
σε

)
∇εc

]
+ ωc

(
C1εαcRc : (∇Uc)− C2εαcεc

)
− ωb

(
Mh(Ud −Uc) + (pd − pc)

δαd
δt

+ γΓai

)
, (5.37)

where C1ε, C2ε and σε are defined as in Launder et al. (1974) and Troshko et
al. (2001a). The dissipation frequency of the production terms produced by the
bubbles (ωb) was modelled in this work as suggested by Morel et al. (1997) (see
Eq. 5.38). This is based on the relation of proportionality between interfacial
turbulence production and dissipation of Elghobashi et al. (1983) and defining the
characteristic time τ with the diameter of the bubble as the length scale (Morel
et al. 1997; Yao et al. 2004b). Note that in our simulations the characteristic
time can be defined, for accuracy, with the actual bubble diameter db and not the
Sauter mean diameter as in the mentioned works.

ωb =
C3ε

τ
=

C3ε

(d2b/εc)
1
3

(5.38)

The constant C3ε was set to 1.0 in Yao et al. (2004b) for adiabatic scenarios similar
to the ones studied in this work.

Finally, the law of the wall of Troshko et al. (2001a) and Troshko et al. (2001b)
for two-phase turbulent boundary layers was implemented in the solver to obtain
a more accurate description of the turbulence near the wall.

5.8.2 Bubble dispersion model

On the other hand, when using a RANS turbulence model, the average velocity Uc

is solved. To compute adequately the forces including the liquid-phase turbulence
effect, the instantaneous carrier phase velocity seen by the bubbles is modelled.
The fluctuating velocity component u′c has been modelled in the past using discrete
random walk (DRW) (Buwa et al. (2006) and Gosman et al. (1983)) and continuous
random walk (CRW) (Thomson (1987)) stochastic models. The latter solves the
Langevin equation and provides a more realistic solution of the particle path than
DRW. It should be noted that Large Eddy Simulation (LES) simulations could be
used, in principle, to model the turbulence and compute the velocity fluctuations.
However, the application of those models implies considerable grid restrictions
that are inconsistent with the application of the unresolved CFD-DEM approach
for the conditions of this work. Then, we use the two-equation turbulence for
simplicity and to reduce the computational costs.
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The velocity fluctuations can be obtained directly for homogeneous turbulence
through a Markov chain based on the Langevin equation. In wall-bounded flows,
the turbulence is expected to be inhomogeneous. Wilson et al. (1981) and Il-
iopoulos et al. (1999) proposed a normalized Langevin equation to consider the
inhomogeneous turbulence. In addition, a drift correction was included to con-
sider in the Markov chain the inhomogeneity and to avoid non-physical diffusion
(MacInnes et al. 1992; Bocksell et al. 2006). For instance, it provides that tracer
particles will follow streamlines on average (Dehbi 2008) but particles with a large
Stokes number will have little influence from the fluid motion.

The normalized Langevin equation for isotropic inhomogeneous turbulence can be
expressed as Dehbi (2008) to obtain the u′c for each bubble during the time. In
this work the drift correction term is considered non-inertial for bubbles, and the
equation results:

d

(
u′c
urms

)
= −

(
u′c
urms

)
dt

τ
+

√
2

τ
dξ +

1

3urms
∇κcdt, (5.39)

where dξ is a succession of uncorrelated Gaussian random numbers with zero mean
and variance dt for each direction.

From the definition of mean kinetic energy of the turbulence and for isotropic
turbulence (Pope 2000):

urms = ux,rms = uy,rms = uz,rms =

√
2

3
κc (5.40)

In the boundary layer, Dehbi (2008) used a different Langevin equation to account
for the anisotropy turbulence. The root-mean-square values in the boundary layer
were obtained from DNS data in the channel flow simulation performed for par-
ticles. In turbulent bubbly flow in vertical pipes as the investigated in this work,
DNS data set of two-phase flow pipe flow (in order to include the turbulence gen-
erated by the bubbles) for different Reynolds number would be needed but are not
available in the literature. In addition, considering the bubble size distribution
of this scenarios, the bubbles should not be affected strongly by the anisotropy
turbulence. Therefore, Eq. 5.39 is applied in the whole domain.
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5.8.3 Validation of the turbulence and dispersion models and
influence on the results

Finally, we analyse the effects of both, CRW and two-phase flow turbulence model
on the liquid instantaneous velocity and on the dispersed phase characteristics.
Figure 5.23 shows the instantaneous liquid velocity uc obtained with the LDA
at z/D=98.7 and r/R=0 and the computational results. In the simulation, the
bubbles passing by a location coincident with the LDA measurement over time,
are selected as they store the actual value of uc. Higher peaks are appreciated
above average in the experiments because of the velocity bias McLaughlin et al.
(1973) and Zhang (2010) and is attributed to the LDA measurement technique.

Figure 5.23: Experimental and computed axial instantaneous carrier phase velocity.

The bubble velocity distribution was analysed at the same position (z/D=98.7 and
r/R=0) in Fig. 5.24. When no CRW is included (left figure), the bubble velocity
distribution is dominated by the drag correlation. Then, the different velocities
are explained mainly by the different bubble sizes. This results in an apparent
underprediction on the bubble velocity fluctuations. When the CRW is included
(central figure), the bubble velocity distribution is clearly wider and looks similar
to the experimental one (right figure).

Figure 5.24: Comparison between experiments and simulations of the probability den-
sity function of the dispersed phase velocity obtained by VNPS at z/D=98.7 and r/R=0
for PW05003. Simulations performed with and without CRW.
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The influence of the instantaneous liquid velocity through the CRW model has a
major impact for the time-averaged void fraction profiles as illustrated in Fig. 5.25.
The CRW was not considered for some tests (uc=Uc) and the turbulence produced
by the bubbles (BPT in the figure) was neglected (canceling the last three terms in
Eq. 5.35 and Eq. 5.37) for different combinations as shown in the figure. It is well
noticed the effect near the wall. When the liquid velocity fluctuations were not
considered the void fraction peak is further accentuated and minimum values are
found close to this area. In contrast, using the dispersion model and a turbulence
model considering the bubbles effects, a more accurate profile is obtained.

Figure 5.25: Dispersed phase void fraction at z/D=98.7 for PW05003 comparing the
influence of the turbulence effects with CRW and BPT.

In order to gain a deeper insight into the effects of the CRW into the void fraction
profile, we analyse the path followed by bubbles of similar diameter (2.7-2.8 mm)
seeded at the inlet in the vicinity of the wall (r/R>0.9) for the PW05003 case.
These paths are shown in Fig. 5.26.

The figure represents the normalized axial distance against the normalized distance
to wall of the bubble centre. The figure on the left side shows the paths followed
when CRW is not included. In this case, the bubbles studied tend to an equilibrium
position that results mainly from a force balance between lift and elastic collisions
against the wall. In contrast, when the CRW is used (right figure), the fluctuation
effects are clear. Some bubbles leave the equilibrium state presumably because
of the dispersion effects and, furthermore, because an increase in the number of
collisions with the wall and in the collision energy, leaving the bubble beyond
the range of influence of the lift force. This produced a temporal migration of
some bubbles close to the centre and is more significant as the bubble increase
its size with the height. Furthermore, we can compare the presence of bubbles in
the range of r/R between 0.75 to 0.9 for both cases and the corresponding void
fraction shown before in Fig. 5.25.
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Figure 5.26: Distance to wall along the axial distance of 5 randomly selected bubbles
of size 2.7 to 2.8 mm and seeded at r/R>0.9 for simulations with and without the CRW
stochastic model. Each symbol represents the distance to wall of each bubble.

In addition, we select bubbles from small to large diameters present in the simu-
lation. The normalized distance is plotted against the distance to wall for bubbles
of different size (Fig. 5.27 and Fig. 5.28). In the figure, one can appreciate how
smaller bubbles tend to rise close to the wall. In contrast, bigger bubbles travel
throughout the pipe. As a consequence, they contribute on the void fraction more
further from the wall without this meaning a lateral migration deriving from a
negative lift force coefficient. Furthermore, the axial bubble size increase makes
some bubbles more favorable to bounce during their rising.

Figure 5.27: Distance to wall along the axial distance for bigger bubbles.
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Figure 5.28: Distance to wall along the axial distance for smaller bubbles.

Close to the wall, bubble bounces are also appreciated in the experiments. As an
example, Fig. 5.29 shows the rise of a bubble interacting with the wall.

Figure 5.29: Image sequence of a boubble interacting with the wall.

In the images is appreciated how the bubble pointed out with an arrow collides
with the wall. In fact, it is shown how the bubble’s side in contact with the
wall is detached. After that, the bubble moves far from the wall. This effect is
mentioned by Alajbegovic et al. (1999), noting that the bubble-wall force would be
responsible of moving the bubbles to the flow stream. This behavior is also noted
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by Vries (2001). The latter studied the bubble-wall interactions demonstrating
how a bubble can bounce repeatedly against the wall, or depart away from the
wall, depending on the bubble size.

The lateral forces are responsible for the void fraction radial profile and the path
of the bubbles. We analyze in Fig. 5.30 the radial component of lift and wall
lubrication force at the bubble centroid. These results show that the wall lubrica-
tion force is negligible, for this case, in comparison to the lift force. Close to the
wall positive values of lift force are found as expected, with different contributions
depending on the bubble size.

Figure 5.30: Computational results of radial component of lift and wall lubrication
forces at the bubble centroid position.

Negative values of the lift forces are also appreciated although only positive values
of the lift coefficients are given. This is produced by the existence of local velocity
gradients in the opposite direction to the average gradient.

In Fig. 5.31 we evaluate the influence that the wall lubrication force of Antal
has in the system when its applied directly in a CFD-DEM solver. As a result
of comparing one simulation including the wall lubrication force and the other
neglecting this. Neglecting the wall lubrication force does not compromise the
results as it usually happens in TFM. For instance, for this case, it shows that a
rigorous implementation of this wall lubrication force results in similar results.
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Figure 5.31: Influence of the wall lubrication force on the void fraction.

5.9 Results and discussion

The solver was finally used to predict and analyse the two-phase flow charac-
teristics for the experiments and conditions displayed in Table 2.2. Variables as
dispersed phase void fraction, dispersed and continuous velocity, interfacial area
concentration, chord length, Sauter mean diameter or number of bubbles detected
were compared. The dispersed phase data obtained with the VNPS is located at
the same place as the experiments allowing a direct comparison. The continuous
phase variables are located in the cell centre of the mesh and a linear interpolation
was applied to obtain an estimated value at the same location of the experimental
data.

The next sections show the comparison of radial profiles and cross-section aver-
age values. In the experiments, error bars were included when available. For
PW05003 the error bars correspond to a 95% confidence interval obtained in the
measurements through repeated observations.

5.9.1 Continuous phase radial profiles

The hydrodynamics of the liquid phase were evaluated with velocity and turbulent
intensity profiles (Fig. 5.32). In addition, the velocity profile without gas (SP refers
to the corresponding single-phase case in the figure) is shown, when provided by the
authors, to highlight the influence of the bubbles on the carrier phase velocity. The
computational results of velocity are in good agreement with the experiments in all
the scenarios tested. The results for the turbulence intensity show a similar trend
and are reasonably well predicted. The effect of the turbulence produced by the
bubbles was compared with the single-phase case and fits the different experiments
without the need of changing any coefficient in the two-phase turbulence model.
In addition, the profiles maintain the same tendency between the different ports or
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Figure 5.32: Carrier phase velocity and turbulence intensity comparison between ex-
perimental data and computational results.
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heights as appreciated for HK05003 and PW05003. Close to the wall, for the results
measured with LDA (H050018 and PW05003), the turbulence is underestimated.

In H050018 this occurs especially in a region with low void fraction, indicating
that the discrepancies are due to the generation of turbulence in the vicinity of
the wall. Nevertheless, this is a common problem with the single-phase κ-ε turbu-
lence model. More complicated RANS or LES models can be used in simulations
to improve the prediction of near-wall phenomena. This generally involves a suf-
ficiently fine grid near the wall to resolve the wall-boundary layer. For two-phase
flow, is not always possible to apply a near-wall refinement if we use in this sce-
narios the CFD-DEM approach for unresolved particles as we need to preserve the
restrictions between the ratio of bubble and grid cell volumes.

5.9.2 Dispersed phase radial profiles

The dispersed phase variables that can be obtained experimentally are compared
numerically following the techniques defined in Section 5.3. Variables as void
fraction, bubble frequency, velocity, chord length and interfacial area concentration
are shown in this section. In those cases in which the profiles are not provided by
the authors, only the computational results are shown.

The time evolution of the cross-section average void fraction of the cell values
of the simulations is shown in Fig. 5.33 (left). The void fraction between the
three scenarios at different measurement ports provides useful information about
the behaviour of the bubbly flow. The figures show where the bubbles arrive to
a certain height, the pass frequency and the bubble expansion effect. The void
fraction cross-section average values vary with time as the bubbles are passing
through, contributing with a certain volume fraction depending on its size. In
H050018 the number of bubbles in the system is low enough to leave the cells
almost empty between time steps and the cross-section average vary considerably.

The void fraction profiles in Fig. 5.33 (right row) indicate, on the one hand that
the different scenarios result in, for instance, a different significant void fraction
profile between them. On the other hand, the void fraction profile evolves similarly
as the experiment. For HK05003 the void fraction close to the inlet differs from the
experiments mainly because the discrepancies between the experimental air flow
rate and the measurement of the probes. Nevertheless, the profile at the outlet
is predicted in good agreement with the experiments. For PW05003 the peak is
more pronounced because of Qg is around 7% higher than Qg,probes as mentioned
before. Furthermore, a discrepancy near the wall in the void fraction is expected
as we assumed spherical bubbles in contrast with the ellipsoidally shaped bubbles
present in the experiments.

143



Chapter 5. Computational Fluid Dynamics - Discrete Element Method (CFD-DEM)

Figure 5.33: Evolution of the cross-section average void fraction at different heights
and void fraction comparison between experimental data and computational results.
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Figure 5.34: Dispersed phase velocity and bubble frequency comparison between ex-
perimental data and computational results.
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Although the effect of the shape is included in the interfacial forces, the contribu-
tion of volume in space and time of an ellipsoid near the wall produces a smoother
profile of void fraction. This is shown in Fig. 5.35 for bubbles close to the wall
with different aspect ratios.

Figure 5.35: Illustration of a train of bubbles rising vertically sliding on the wall for
different aspect ratio values.

The void fraction radial distribution assuming a train of bubbles is shown Fig. 5.36,
verifying the effect mentioned.

The bubble velocity is compared in Fig. 5.34 (left). HK05003 and PW05003, used
probes to measure this variables, so Vz,NP is used in the simulation to compare
the results. In contrast, in H050018 the velocity was measured by IP and then
the comparison is performed with Vz,system. In general the three cases shows an
overall good agreement in terms of trend and accuracy. The case HK05003 gives
higher values of velocity near the wall for both carrier phase and dispersed phase
velocities, but the predicted profiles in general agree quite well with the measured
data.

146



5.9 Results and discussion

Figure 5.36: Void fraction profile that would result from a train of bubbles with deq
3.01 (left) and 4.2 (right) with aspect ratio from 0.4 to 1.0, rising parallel to the wall of
a pipe with diameter 52 mm.

In addition to void fraction and bubble velocity, we are interested on the num-
ber of bubbles intersecting the probes that depends on the bubble size. We use
the VNPS to compare the results with the experiments which implies the same
probability of bubbles intersected by the probe. Moreover, a good agreement be-
tween experiments and simulations for bubble frequency and void fraction, is a
good indicator of a suitable BSD passing through the probes. Figure 5.34 (right)
shows the bubble frequency validation for PW05003 with satisfactory match. This
indicates an increase of the number of bubbles detected between the low and top
ports.

The interfacial area concentration was compared in Fig. 5.37 (left). The results
are consistent and the trend agree well with experiments. Slightly differences in
the values are presumably expected because of ellipsoids have in average a greater
surface area compared with spherical bubbles seeded in the simulation.

The chord length profiles are shown in Fig. 5.37 (right). The comparison with
the experimental data was performed for PW05003 but is shown for H050018 and
HK05003 for convenience. As noted by Liu et al. (1998), among others, the bubble
shape has a direct influence on the chord length, then the values can differ from
experiments and simulations. In the figure, the effect of the bubble expansion, is
also evident in the measurements of chord lengths. The radial profiles may suggest,
at first glance, a rapid change on bubble size according to the chord lengths for
the two cases with more deviation in the BSD (H050018 and PW05003).

Finally, Fig. 5.38 shows the comparison for the missing ratio for an individual
case of PW05003 and not the mean, to emphasize into the local effects. As might
be expected, the missing ratio values are larger in the experiments than in the
simulations where the bubbles cross the probes ideally. However, similar tendencies
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Figure 5.37: Interfacial area concentration and chord length comparison between ex-
perimental data and computational results.
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were appreciated. Close to the wall, relative maximum values were obtained in
radial positions where the bubble edge location is more probable to be hit (in this
case 0.87 and approximately 1 r/R). Between this range lower values were obtained
as the probability to hit a bubble center increase and, thus, the probability that
the four probes detect the bubbles. This indicates that the bubble size is similar
in both, experiments and simulations.

Figure 5.38: Missing ratio comparison between experimental data and computational
results from Virtual Needle Probe System (VNPS) for PW05003.

5.9.3 Cross-section average evolution

The axial evolution for cross-section average variables was evaluated for PW05003
in this section. The axial evolution of the cross-section averaged void fraction is
compared with the experimental data in Fig. 5.39.

Figure 5.39: Axial evolution of area averaged void fraction for experiment and simula-
tion using needle probes.
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The void fraction value at the inlet in the simulation is slightly above the ex-
perimental one because of the differences between Qg and Qg,probes mentioned
before. The axial evolution was predicted in good agreement compared with the
experiments as shown in the figure.

The evolution of bubble frequency is also of great interest. Note that is not
straightforward to anticipate if the total number of bubbles at different heights
remains constant or by contrast any coalescence and breakup occurred. This
is related with the probability to intersect a bubble in a probe. For instance,
assuming only a change in size due to bubble expansion, the probability for the
bubble to be intersected by the probe would increase necessarily with the increment
in bubble size. Fig. 5.40 illustrates the case of a bubble with a radius increasing
with height. In this case, the probability of a bubble to intersect the probe would
also increase. Therefore, more bubbles would be detected at the top measurement
port even if the total number of bubbles remains constant.
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Figure 5.40: Schematic representation of the probability of detecting a given bubble
by a probe as the bubble increase its size as a function of height.

The probability of detecting a bubble distribution with a probe with negligible
area is:

Pp =
π(µ2 + σ2)

πR2
(5.41)

If we assume a normal size distribution affected by the expansion, the sizes along
the pipe would have a distribution with mean µi=fijµj and variance σi=fijσj
that can be defined with the corresponding expansion factor (Eq. 2.24). The
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ratio of probabilities between two heights where pressure is known, would give the
following relation for the number of bubbles detected:

nf,i = f2e,ijnf,j (5.42)

In Fig. 5.41 the bubble frequency for the experiment and simulation is detailed.
The theoretical prediction using Eq. 5.42 is included in the figure. An increase
is shown between low (inlet) and top (outlet) ports of around 20% that could
be attributable only to the bubble expansion and not to changes on size due
to breakup and coalescence. The experiments are in good agreement with this
prediction and the simulations are in overall good agreement.

Figure 5.41: Axial evolution of area averaged bubble frequency for experiment and
simulation using needle probes.

5.9.4 A critical assessment on validation procedures against
needle probes experimental data

The previous section described the comparison of experimental and computational
results with analogous assumptions. These assumptions produced a deviation
of the obtained values with respect to the values of the variables currently on
the system. Then, using the validation methodology described in this work we
performed a comparison with the system, probe and signal variables described in
Section 2.7 to analyse the case PW05003. The following study is focused for this
experiment using four-sensor probes, but it can be applied to dual probes.

The deviations on the measured diameter are due to different causes. On the
one hand, the missing bubbles tend to be those with smaller chord lengths, then
the resulting chord length distribution does not match the expected one and the
mean diameter calculated is overestimated. Figure 5.42 illustrates this for a four-
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conductivity probe. In this figure one can appreciate two scenarios: a paired
bubble where all the tips hit it, and a missed bubble where one tip is on the limit
beyond which the bubble is considered missed. For instance, the missed bubbles
will always tend to hit with a chord length from the outermost of the bubbles that
will depend on the distance of the tips. As a result, the mean of the chord length
distribution obtained will be considerably higher. For the Sauter mean diameter,
the interfacial are concentration is also affected. This is indeed taken into account
in the definition of aI for the four-conductivity probes by the correction aI,cor of
Corre et al. (2002).

Region of the
bubble missed

Paired bubble Missed bubble

Figure 5.42: Illustration of a paired bubble and a bubble in the limit to be missed.

On the other hand, the measure of mean diameters from the chord length implies
several assumptions as that the bubbles are rising vertically that is far from reality
in turbulent bubbly flows, and may lead to an overestimation. In Fig. 5.43 (left)
we show the actual chord length of a given bubble rising with a lateral component
of velocity. Furthermore, the values are largely conditioned near the wall and
classical statistical assumptions to obtain mean diameters (d10,NP and d32,NP)
could result in biased and misleading results. As shown in Fig. 5.43 (right) the
probes hitting a bubble with a distance dw smaller than 2rb will have a biased
statistics of the measure. For example, the chord lengths seen by the probe will
not be randomly distributed in the range between 0 and cl,max. Then, Eq. 2.21
will give unrealistic values for this range. Depending on if the probe position is
placed at dw, below or above, expected, underestimated or overestimated values
will be given respectively (Kalkach-Navarro et al. 1993). In addition if a bubble is
sliding along the wall, the measures will be conditioned to obtain repeatedly the
values at a given dw. This effect will be similar when computing the aI as the
measured normal velocity is also conditioned by the position. If aI is measured
by four-conductivity probes, aI,cor give non-accurate results as it was defined for
scenarios with a random distribution in the probe. Then, in the region near the
wall the missing ratio is dominated by the bubble position as shown in the missing
ratio profiles in Fig. 5.38.
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Figure 5.43: Schemes of potential source of error when measuring chord length .

Besides the above, the diameter of the bubbles seen in the probes are statistically
from bigger bubbles than the existing in the domain. This will have an effect on
the measured variables as chord length or velocity. In fact, we can find the relation
between d10,system and d10,probe using the findings of Clark et al. (1988) and Liu
et al. (1998). If we assume the BSD in the system follows a normal distribution
described by Eq. 5.43, the BSD of bubbles touching a probe with negligible size
can be estimated as Eq. 5.44.

fsystem(deq | µ, σ2) =
1√

2σ2π
e−

(deq−µ)2

2σ2 (5.43)

fprobe(deq | µ, σ2) =
d2eq

µ2 + σ2

1√
2σ2π

e−
(deq−µ)2

2σ2 (5.44)

The ratio between the mean diameters from the system and the detected by the
probes integrating both probability density functions, results:

d10,probe
d10,system

= 3− 2µ2

µ2 + σ2
(5.45)

In the simulations, the actual diameter passing through the probes, d10,probe is
known and is compared with the obtained from the signal d10,NP. Hence, this is
particularly useful to evaluate the measurement methodology in a scenario similar
as the given in the experiments. In Fig. 5.44 both variables are compared show-
ing important discrepancies existing even in an ideal case as the presented in a
simulation.
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Figure 5.44: Computational results of mean diameters from probe and signal variables
for PW05003 at z/D=99.8.

The profiles of d10,probe at the different measurement ports of the PW05003 sim-
ulation are shown in Fig. 5.45, to appreciate the evolution of the diameters with
the height. As could be expected, smaller bubbles were found near the wall as a
result of the bubble dynamics and force balances, for a case where only positive
lift force coefficients are given (see Eq. 6.14). In particular the lift coefficient was
mainly controlled by the Reynolds number in the whole system (deq<4.4 mm).
However, this tendency was not fully detected for d10,NP in Fig. 5.44.

Figure 5.45: Computational results of mean diameters for different port measurement
heights. Average performed directly with the diameters of all the bubbles passing by the
probe.

The axial development of the mean diameters is shown in Fig. 5.47 for simulations
and experiments. The computational results of the test case with inlet uniform size
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shown in Section 5.7, was included to state the influence that the polydispersity
could have on the computational results when using sensor-probes.

Cross-section average of the arithmetic mean diameter was obtained from different
ways. The system variable d10,system represents the mean diameter actually in the
system at different heights. It was obtained over all the bubbles passing at the
given height. Different values are given by d10,probe, that was obtained through the
diameters seen by the probes, distinguishing in turn, the diameters from all the
bubbles detected by the probe and the diameters from bubbles that were actually
paired. The variable d10,NP was obtained for experiments and simulations with
the chord length from the signal generated as in Eq. 2.21. The figure also includes
the experimental variable d10,IP.

The comparison revealed, first of all, for the inlet uniform size case that any
discrepancies are appreciated between d10,system and d10,probe as the bias because
of the size is not given when the size is uniform. The difference between these values
and d10,NP is given even for this case. In the polydisperse case the discrepancies
between d10,system and d10,probe is noted as the bigger bubbles are more likely to
be hit by the probes. The ratio between both variables is studied for the top
measurement port of PW05003. The curve of Eq. 5.45 for a fixed µ of 3.01 is
plotted against σ. The same ratio is obtained for the simulation with the data of
the bubbles at the height of the top port, and the experiment with the parameters
of the BSD measured with IP. Fig. 5.46 show how this ratio increase with the
standard deviation of the distribution, indicating that the more polydisperse is
the flow, higher values of mean diameters seen by the probes will be measured.
This ratio increase quadratically and can produce important discrepancies in the
diameters measured with the probes with small changes on the standard deviation
of the BSD.

Figure 5.46: Ratio between the diameters seen by the probes and the diameters in the
system as a function of the standard deviation of a normal distribution.
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In Fig. 5.47 (left row), the values of d10,NP should be coincident with d10,probe
but are overestimated with regard to d10,probe for the above mentioned reasons.
If we compare this values with d10,system larger discrepancies are found. In the
experiments, this effects were more pronounced as the polydispersity is expected
to be higher but the trend is similar as in the simulations.

Figure 5.47: Axial evolution of area averaged mean diameters d10 and d32 for experi-
ment and simulation.
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The same study was performed with the Sauter mean diameters d32,system, d32,probe
and d32,NP in Fig. 5.47 (right row). The simulation with an inlet uniform size,
give equivalent values of the three variables, and the values were similar to the
arithmetic mean diameter of Fig. 5.47 as the bubble size deviation is almost zero
at the different measurement heights. For the simulation with inlet polydisperse
flow, the values of d32,system were similar to the experimental variable d32,IP.

The Sauter mean diameter seen by the probes, d32,probe, is higher than d32,system
in the polydisperse case for the same reasons as shown for the arithmetic mean
diameter. The values of d32,NP should be equal to d32,probe but in contrast are in
good agreement with d32,system. In this case, the bias near the wall is produced
and the interfacial area of the bigger bubbles near the wall is not measured with
uniform probability. Therefore, aI,corr produce, in average, overestimated values
of aI and then underestimated Sauter mean diameters. However, in this case both
effects compensate and d32,NP and d32,system are in a good agreement.

As regards the bubble velocity, we compare Vz,system, Vz,probe and Vz,NP . The
results are shown in Fig. 5.48. In this case, Vz,probe gives slightly lower values
compared with Vz,NP. The trend of the bubble velocity near the wall is well
predicted with the computed values of VNPS compared with Vz,system.

Figure 5.48: Computational results of bubble velocity for system, probe and signal
variables for PW05003 at z/D=98.7.

Figure 5.49 show the cross-section average of the velocity and the comparison with
the experiments. The values of Vz,system are lower as the probe sees bigger bubbles
and for this specific BSD it results in an underestimation of the velocity according
to the drag correlation used. In contrast, Vz,NP is in good agreement with the
experiments as they were obtained with the same assumptions.

Finally, it should be emphasised that this study did not aim to propose new
measurement techniques but emphasise on the existing methods to perform the
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Figure 5.49: Axial evolution of bubble velocity for experiment and simulation.

validation of the solver and to study jointly results and experimental measurements
itself from a critical point of view to reach unambiguous conclusions.

5.10 Conclusions

A new CFD-DEM solver has been developed using the OpenFOAM R© library and
proposed a novel validation scheme for a rigorous comparison between simulation
results and experimental data. In order to exclude complex phenomena such as
bubble breakup and coalescence, the present study was limited to specific bub-
bly flow conditions in vertical pipes. Then, the flow dynamics is expected to be
governed by the bubble forces and the coupling between phases. Thus, the solver
was configured to include these phenomena. The results of radial profiles and
axial evolution have been validated against experiments from different authors,
employing different pipe diameters and measurement techniques. With the solver
setup proposed, it was noted a strong agreement between simulation results and
experimental data for all conditions without the use of any tuning parameter.

The solver includes the coupling between phases, the required interfacial forces,
a two-equation turbulence model for two-phase flow and the consideration of the
bubble-bubble and bubble-wall interaction with a soft-sphere model. Several con-
tributions were required, in addition, to develop the presented CFD-DEM solver.
The first consisted of a new sub-element method to provide stability and preci-
sion on the exchange of momentum and volume fraction, basing on equivolumetric
divisions of the spheres.

Once the coupling between the phases was performed accurately, we focused on the
development of an algorithm to seed the bubbles as close as in the experiments
as possible to provide a correct inlet condition. The new proposed algorithm
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permits to adjust the locations, velocities and sizes of the bubbles to match any
required inhomogeneous bubble size distribution. To illustrate the potential of this
algorithm, it was shown that, under scenarios without breakup and coalescence,
the flow characteristics are not dependent on the injection pattern above a certain
height.

Furthermore, the changes in size and volume of the bubbles produced by the
pressure variations were investigated experimentally, and were taken into account
by means of a simplified model integrated in the bubble tracking through the
Young-Laplace equation and the ideal gas law. The results indicated that this
model was required to obtain accurate result. In addition, a polydisperse and a
uniform inlet case were compared to demonstrate that considering the dynamics
of the different sizes, and bubble expansion of the population led to better results.

With respect to the turbulence modelling, a two-phase flow κ-ε model was used
as the CFD-DEM formulation limits the grid refinement in the near-wall region.
In order to include the turbulent dispersion, a Continuous Random Walk stochas-
tic model was used to compute the instantaneous liquid velocity seen by every
bubble. Bubble pseudoturbulence was considered in the κ-ε including the effects
of the bubble expansion. The instantaneous liquid velocity and the probability
density function of the bubble velocity were properly captured using these models
comparing with the experiments. The relevance of the turbulent effects was clearly
shown in the void fraction profile and bubble paths. Noting that the dispersion
was accounted in this work without the need of a turbulent dispersion force and
any tuning coefficient.

An exhaustive validation has been made possible through a new method, Virtual
Needle Probe System (VNPS), consisting of emulating the sensor probe experi-
mental technique. This method provided a set of square signal for each probe
location that was processed with the same program used to obtain the variables
in the experiments. This allowed to extract dispersed phase variables from the
simulation by matching the same approximations as in the analysis of the exper-
imental data. In this way, dispersed phase variables from the simulation as void
fraction, bubble velocity, bubble frequency, interfacial area concentration, mean
chord length and distribution, arithmetic mean diameter, Sauter mean diameter
and missing ratio can be directly compared to the experimental ones. The bubble
size distribution was also compared with experimental data obtained from image
processing. To complete the validation, the continuous phase velocity and turbu-
lence intensity were compared as well. Experimental measurements and numerical
results were obtained with satisfactory agreement for the radial profiles of the var-
ious experiments at different heights. In addition, cross-section average evolution
were compared for the new experiments performed.

A rigorous analysis on validation methodology was provided, showing that impor-
tant deviations between simulation and experiment can arise due to an inadequate
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extraction of the variables from the simulation. To this end, we made the distinc-
tion of system, probe and signal variables as real dispersed phase data should be
distinguished from the data that is actually detected, as the resulting measurement
can be biased. Moreover, the assumptions made in experimental measurements
using needle probes can lead to important discrepancies, and this solver was used
to verify the experimental results obtained. For example, the estimated diameter
from the chord length it was rather different that the diameter measured by image
processing, and the same difference was given by the simulation.

In summary, this work allowed the simulation of bubbly flow systems with the
representation of bubbles as discrete elements to analyse the two-phase flow char-
acteristics in different pipes. Let us note that the proposed solver and validation
methodology can be further extended to other flow regimes and include more com-
plex phenomenology as non-sphericity of bubbles, near-wall modelling, and bubble
breakup or coalescence. This study can be used for a direct comparison of sim-
ulations in pipes with the Two-Fluid Model using the same models as with the
CFD-DEM approach that could be useful to interpret the effects of the assump-
tions made in the two-fluid model. In addition, the research shown in this work,
can be extended in the future to simulations with approaches as front tracking or
volume of fluid methods, using the same validation methodology and the injection
algorithm for the seeding of bubbles according to a desired inhomogeneous bubble
size distribution field.
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Chapter 6

Two-Fluid Method (TFM)

This chapter presents simulations with TFM of vertical upward bub-
bly flow in pipes to study the modelling with this lower resolution level
approach. To take into account the bubble size distribution a popula-
tion balance equation is implemented through the quadrature method
moments. Interfacial closures and pseudo-turbulence induced models
are investigated and implemented. The results are first analysed with
an incompressible model and using common models and later the re-
sults are investigated with a compressible model and the same models
as for the previous CFD-DEM approach.

6.1 Introduction

The Eulerian-Eulerian framework is usually chosen for practical purposes of sim-
ulations and investigations in view of its relatively low computational cost. With
this approach, the local instantaneous equations of each phase are averaged to
obtain an Euler-Euler two-phase flow description (Drew et al. 1971a). Based on
this approach, several contributions showed its applications to bubble columns (
Gupta et al. 2013; Pan et al. 1999; Pfleger et al. 1999; Zhang et al. 2006). Vertical
pipes have taken particular attention as they are present in several industries. This
flow involves wall-bounded turbulent flows and requires an exhaustive modelling
of interfacial forces between phases and the turbulence interaction by bubbles and
liquid. Some of the works were carried out in vertical pipes (Hosokawa et al. 2009;
Krepper et al. 2005) and horizontal pipes (Ekambara et al. 2008). In addition,
many researches relating this approach have been done focusing on specific phe-
nomena such as interfacial forces, breakup and coalescence or solving the bubble
size using a PBE approach (Cheung et al. 2013; Wang et al. 2005; Buffo et al.
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2013). Despite its general use, the coefficients of the correlations vary greatly
from one investigation to other even for similar configurations.

Chronologically, the study with TFM was the very first method investigated in
this thesis, previous to VOF, CFD-DEM or system codes. Then, the lack of
universality of the model motivated the investigation of higher resolution level
approaches. This is not to say that TFM fails to predict the results, as indeed
it is used in this work to properly predict the results with an appropriate set of
coefficients. However, we emphasise that the basic principles of the models are
mainly applied with CFD-DEM but not always with TFM.

In this study we analyse this models from two points of view. The so-called “tuning
approach”, and the critical approach. The former is a study based on common
modelling found in the literature and investigating the sensitivity of the interfacial
forces, correlations and pseudoturbulence produced by the bubbles. The latter is
based on the same modeling as with CFD-DEM applied to TFM.

To perform this study we needed to implement a PBE in the code. This was
solved using the Quadrature Method Of Moments (QMOM) approximation, in-
cluding a growth rate term for the expansion. In addition, interfacial closures were
investigated and implemented.

Solving the PBE requires high computational effort and therefore QMOM (Mc-
Graw 1997; Marchisio et al. 2003a; Marchisio et al. 2003b; Sanyal et al. 2005) was
implemented to reduce the computational requirements without compromising ac-
curacy. Comparing with discrete methods to solve the PBE as classes method
(CM) Kumar et al. 1996a; Kumar et al. 1996b or Multiple Size Group (MUSIG)
Lo 1996, QMOM can consider a wide range of bubble sizes with a reduced number
of equations. A cheapest approximation of the PBE in terms of computational
time can be done solving a one-group interfacial area transport equation (IATE)
Kocamustafaogullari et al. 1983 where the PBE is integrated analytically, however
with this approach the local probability distribution of the bubble size is not fully
accounted.

Previous work related to simulations of bubbly flows with a two-fluid model using
QMOM, which solves the equations for the weights and abscissae directly can
be found in the literature for ANSYS in Cheung et al. 2013 or OpenFOAM R© in
Silva et al. 2011. For the implementation of the conditional quadrature method
of moments (CQMOM) in OpenFOAM R© Buffo et al. 2013 tested in a rectangular
bubble column shown overall good results.

For this investigation the QMOM approach is implemented to solve a univari-
ate PBE, relying on a robust moment inversion algorithm following Gordon 1968;
Wheeler 1974; Marchisio et al. 2013. We focus the attention on polydispersed bub-
bly flow applications in vertical pipes. Cases with such characteristics and QMOM
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are rarely presented in the literature. Simulations with this simple geometry let
us to test the models under well-known boundary conditions and its validity is
extensible to a large number of industrial applications.

The development described in this work is based on the existing twoPhaseEuler-
Foam with incompressible and compressible versions, 2.2.x and 4.x respectively.
Interfacial force models, bubble induced turbulence and QMOM have been imple-
mented.

6.2 Mathematical formulation and methods

This summarizes the model equations used in this work, which rely on the two-fluid
methodology. In this approach, the local instantaneous equations of each phase are
ensemble averaged to obtain an Euler-Euler two-phase flow description, as stated
in Drew et al. 1971b and Drew 1982. The averaging process introduces the phase
fraction α and unclosed terms M representing the property transfer between the
phases. These unclosed terms are crucial to the prediction of the two-phase flow
and must be modelled. Models for the closure terms are discussed in the following
sections.

A continuous phase and a dispersed phase are computed. The mean momentum
(Eq. 6.1) expressed in an incompressible “phase-intensive” form Oliveira et al.
2003; Weller 2005; Rusche 2002, and continuity (Eq. 6.2) equations for each phase
ϕ can be written as

∂Uϕ

∂t
+ Uϕ · ∇Uϕ +∇ ·

(
τϕ
ρϕ

+ Rϕ

)
+
∇αϕ
αϕ
·
(
τϕ
ρϕ

+ Rϕ

)
=

− ∇p
ρϕ

+ g +
Mϕ

αϕρϕ
, (6.1)

and

∂αϕ
∂t

+∇ · (αϕUϕ) = 0, (6.2)

where U, τ , R, p, g and ρ are the velocity, laminar stress tensor, Reynolds stress
tensor, pressure, gravity and density, respectively with the conventional forms of τ
and R as found in the previous references (also details can be found in Passalacqua
(2013)). The subscript ϕ=c stands for the carrier phase (liquid), and ϕ=d for the
dispersed phase (gas). The numerical method to overcome the instability when
the phase volume fraction tends to zero is implemented as proposed by Oliveira
et al. 2003.
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6.2.1 Interfacial models

The interfacial momentum transfer term is given by the sum of various forces
(Eq. 6.3) modelled as a function of flow parameters. These forces are convention-
ally divided into drag and non-drag forces:

Md = −Mc = Md,D + Md,VM + Md,L + Md,WL + Md,TD, (6.3)

where Md,D, Md,VM, Md,L, Md,WL, Md,TD are the momentum exchange terms
due to, respectively, the drag force, the virtual mass force, the lift force, the wall
lubrication force and the turbulence dispersion force.

In the following subsections we give a description of each terms contained in the
above equation.

Drag force

The drag force exerted by the fluid on a bubble determines the rise velocity. It is
related to the slip velocity (Ur = Ud −Uc), and, for spherical bubbles of uniform
size it can be calculated as Ishii et al. 1984

Md,D = −3

4
αd
CDρc
db
|Ur|Ur. (6.4)

Following the work of Hosokawa et al. 2009 the drag coefficient CD (Eq. 6.5) is
corrected with respect to the single bubble drag coefficient CD,∞ multiplying by a
factor considering the effect of bubble swarms. In addition, Magnaudet et al. 1997
revealed a strong change in the drag force for shear rates near or larger than one,
and accounted for this effect by means of a correction term Cf,shear. The resulting
coefficient is then

CD = CD,∞Cf,swarmCf,shear. (6.5)

Three models for CD,∞ are tested. A drag correlation was derived by Schiller
et al. 1935 for a sphere as a function of the dispersed phase Reynolds number
Red = |Ur| db/νc being νc the molecular viscosity,

CD,∞ =
24

Red
(1 + 0.15Re0.687d ), (6.6)

and was used because of its simplicity to compute bubbly flows in different research
works as Chen et al. 2004; Končar et al. 2008; Kumar et al. 2012. During the last
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decades, several drag correlations have been proposed to model the drag coefficient
in bubbly flows, mostly considering the influence of the shape of the bubble on the
rising velocity. Tomiyama et al. 1998 defined the drag coefficient as a function of
the aspect ratio E:

CD,∞ =
8

3

Eo

E2/3(1− E2)−1Eo+ 16E4/3
F−2 (6.7)

where

F =
sin−1

√
1− E2 − E

√
1− E2

1− E2
(6.8)

The correlation of Vakhrushev et al. 1970 is used to define the aspect ratio of a
bubble in an infinite stagnant liquid E0 as function of the Tadaki number (Ta =
RedMo0.23):

E0 =


1, Ta < 1

[0.81 + 0.206 tanh(2(0.8− log10 Ta))]3, 1 ≤ Ta ≤ 39.8

0.24, Ta ≥ 39.8

(6.9)

with the Morton Number being Mo = gρ2c∆ρν4c /σ
3 and σ being the interfacial

surface tension.

Virtual mass force

The virtual mass force is related to the mass of liquid carried by the bubble. This
term is calculated following Drew et al. 1987:

Md,VM = αdρcCVM

(
DUc

Dt
− DUd

Dt

)
(6.10)

The application of potential flow theory to flow around a spherical bubble in an
infinite medium gives a value of 0.5 for CVM according to Lamb 1895; Auton et al.
1988; Drew et al. 1987.

Lift force

The effect of the lateral force due to the lift was first modelled by Auton et al.
1988:

Md,L = −αdρcCLUr ×∇×Uc. (6.11)
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We use the lift correlation of Wang et al. 1987 for the ”tuning approach” obtained
from the radial momentum equation as it can be applied to bubble systems for
fully developed axisymmetric pipe flow (Hibiki et al. 2007).

CL = 0.01 +
0.49

π
cot−1

(
log ζ + 9.3

0.20

)
' 0.02 + 0.6(log ζ + 10.67)−2.605, (6.12)

ζ ≡ e−αd
db
Ur

∂Uc

∂r

(
db
D

1

Red

Ud

1.18(σg/ρc)
1
4

)2

. (6.13)

The values are in a range from 0.01 to 0.1 in the experimental conditions considered
by the original authors.

The lift coefficient of Tomiyama et al. (2002b) is used in the critical approach as
for the CFD-DEM, the correlation is shown below for convenience:

CL =


min

(
0.288 tanh(0.121Re), f

)
Eod < 4

f 4 ≤ Eod ≤ 10

−0.29 Eod > 10

, (6.14)

f = 0.00105Eo3d − 0.0159Eo2d − 0.0204Eod + 0.474, (6.15)

Wall lubrication force

The effect of walls on the dispersed phase is modelled as in Antal et al. 1991,
considering that the liquid drainage around a bubble moving near a wall carries
the bubbles away from the wall. The force can be expressed as:

Md,WL = −αdρcCW |Ur − (Ur · nw)|2 nw, (6.16)

where

CW = max

[
Cw1

db
+
Cw2

y

]
(6.17)

The values of Cw1 and Cw2 are discussed in Section 6.5.

166



6.2 Mathematical formulation and methods

Turbulent dispersion force

This force considers the effect of the turbulent fluctuations in the carrier phase on
the dispersed phase. We adopt the formulation of López de Bertodano 1992:

Md,TD = −ρcCTDκc∇αd (6.18)

Originally a value of 0.1 for CTD was chosen by López de Bertodano 1992. How-
ever and in a later contribution López de Bertodano 1998, a new correlation was
proposed:

CTD = C1/4
µ

1

St(1 + St)
,St =

τd
τe

(6.19)

The turbulent Stokes number, St , is defined as the ratio of the time constant of
the bubbles (τd = 4db/(3CD |Ur|)) and the effective time constant of the turbulent
eddies obtained from:

1

τe
=

√
1

τ2t
+

1

τ2R
(6.20)

The turbulence coefficient obtained by Burns et al. 2004 will be also used in this
chapter.

6.2.2 Turbulence models

A standard κ-ε turbulence model in combination with the ”phase-intensiver form”
momentum equations, is used to model the effect of turbulent fluctuations in the
carrier phase. An equation for the turbulent kinetic energy

∂κc
∂t

+∇ · (Ucκc) = ∇ ·
[(
νc +

νt,c
σκ

)
∇κc

]
+ Pκ − εc + Sκ, (6.21)

and one for the turbulent dissipation rate:

∂εc
∂t

+∇ · (Ucεc) = ∇ ·
[(
νc +

νt,c
σε

)
∇εc

]
+
εc
κc

(C1εPκ − C2εεc) + Sε, (6.22)

in its incompressible form are solved.

167



Chapter 6. Two-Fluid Method (TFM)

Two different approaches are commonly used to model the bubble turbulence (see
Rzehak et al. 2013): bubble-induced contribution to the effective viscosity as in
Sato et al. 1975 and the addition of a bubble-induced source term to the transport
equations of the turbulence model. We analyse the last approach with two different
models. Lee et al. 1989 used in their predictions the source terms:

Sκ = αdC1κ
∂p

∂z
|Ur| , (6.23)

Sε = C3εSκ
εc
κc
, (6.24)

where

C1κ = 0.03− 0.344× 10−5Rec + 0.243/(1 + e(Rec−60,000)/2,000), (6.25)

and the carrier Reynolds number Rec = |Uc|D/νc.

The constant value for C3ε is assumed to be equal to C2ε as discussed in Lee et al.
1989 for bubbles rising freely with gradients of Uc, κc and εc considered to be
zero. Morel et al. 1997 proposed the following correlations:

Sκ = (Md,D −Md,VM) ·Ur, (6.26)

Sε = C4ε
Sκ
τ
, τ =

(
d232
εc

)1/3

, (6.27)

where τ is the characteristic time for the bubble-induced source term. The ad-hoc
constant value of C4ε vary depending on the scenario. In Yao et al. 2004a values of
1 and 0.6 were used for DEDALE (Grossetête 1995) and DEBORA (Manon et al.
2000) experiments respectively. A value of 1.92 is used in this work.

The numerical values of the constants in the κ-ε equations are the default values
found in Launder et al. 1974 (Tab. 6.1).

Table 6.1: Constant values of the κ-ε model

Cµ C1ε C2ε σκ σε
0.09 1.44 1.92 1.0 1.3
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6.3 Population balance model (QMOM)

The evolution of the bubble size distribution in space and time is described by
means of a PBE (Ramkrishna 2000). This equation is written in this work con-
sidering a length-based number density function (NDF) of the dispersed phase
n(L; x, t), and reads

∂n(L)

∂t
+∇ · (n(L)Ud) = B(L)−D(L), (6.28)

where B(L) and D(L) are, respectively, the birth and the death rates of bubbles
of size L due to coalescence and breakage. It is worth noticing that these two
terms depend also on the position and on time, even if this dependency was not
explicitly indicated in the equation to keep the notation simpler. The velocity
Ud is the average velocity of the dispersed phase, obtained from the momentum
equation of the two-fluid model. Using this velocity represents an approximation,
because it relies on the assumption that all the bubbles in a given computational
cell move at the same velocity, which is reasonable only for bubbles that only
slightly deviate from the average size on that cell.

We model the coalescence and breakage following the work of Sanyal et al. 1999
and Petitti et al. 2010. In particular, the birth term due to coalescence is

Bc(L) =
1

2

∫ ∞
0

h
(

(L3 − λ3)1/3, λ
)
n
(

(L3 − λ3)1/3
)
n(λ)dλ, (6.29)

while the term describing bubble death due to coalescence reads

Dc(L) =

∫ ∞
0

= h(L, λ)n(L)n(λ)dλ. (6.30)

The birth term due to breakage is

Bb(L) =

∫ ∞
L

β(L, λ)g(λ)n(λ)dλ, (6.31)

and the death term due to breakage reads

Db(L) = g(L)n(L). (6.32)

The function h(L, λ) represents the coalescence frequency, which depends on the
collision frequency between two bubbles, while β(L, λ) is the daughter distribution
function, and g(L) is the breakup kernel function. Expressions for these functions
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depend on the flow conditions, and will be discussed only for the case under ex-
amination in this work.

6.3.1 Coalescence and breakup kernels

We briefly summarize here the expressions for the coalescence and breakage kernel
functions, inviting the reader to refer to the corresponding literature for the details.

The expression for the coalescence kernel was developed by Coulaloglou et al. 1977
and corrected by Petitti et al. 2010, leading to

h(L, λ) = Chε
1/3(L+ λ)2

√
λ2/3 + L2/3η(L, λ), (6.33)

where the coalescence efficiency η(L, λ) is

η(L, λ) = e−Cη
ρ2cνcε

σ2
( Lλ
L+λ )

4

. (6.34)

The expression for the breakup kernel (Narsimhan et al. 1979 Alopaeus et al. 2002
and Laakkonen et al. 2006) is:

g(L) = C1gε
1/3 erf

√
C2gσ

ρcε2/3L5/3
+

C3gρcνc√
ρcρdε1/3L4/3

. (6.35)

Finally, the daughter distribution is described by the expression proposed by An-
dersson et al. 2006:

β(L, λ) = 180
L8

λ9

(
1− L3

λ3

)2

. (6.36)

The values of the parameters used for the coalescence and breakup kernels are
summarized in Tab. 6.2 (Laakkonen et al. 2006).

Table 6.2: Constant values for breakup and coalescence kernels

Ch Cη C1g C2g C3g

4.6 6.0 ×109 6.0 0.04 0.01
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6.3.2 Quadrature-based moment method

The direct solution of Eq. 6.28 would require the discretization of a four-dimensional
space (4 independent scalar variables), in addition to time integration. This would
represent a significant computational cost, in addition to the solution of the under-
lying multiphase model. A more convenient approach is to consider the moments of
the NDF McGraw 1997; Marchisio et al. 2003a; Marchisio et al. 2003b; Marchisio
et al. 2013, defined as

mk =

∫ ∞
0

Lkn(L)dL, (6.37)

being k the order of the moment. Moments are averaged quantities obtained from
the NDF. An infinite set of moments is theoretically required to exactly represent
the NDF, however a truncated set is often sufficient to capture the peculiar features
of the distribution which are of interest to engineers. For this reason, a moment
method is used to find an approximate solution of the PBE in this work, paying
particular attention in preserving the correct value of the the low-order moments
of the NDF, which represent physical quantities of interest. In particular, m0 is
the total number of bubbles per unit volume, m1 is their length, m2 is related to
the bubble surface area, and m3 to their volume.

The application of Eq. 6.37 to the PBE in Eq. 6.28 leads to transport equations
for the moments of the NDF, whose form is:

∂mk

∂t
+∇ · (mkUd) = Bk −Dk, (6.38)

where the Bk and Dk represent, respectively, the moment of order k of B(L) and
D(L). Note that the same velocity is used for all the moments in Eq. 6.38. This
is a consequence of the assumption made when we decided to use the average
velocity for each bubble size, however this is not strictly true, since, theoretically,
each moment is advected with its own flux (Marchisio et al. 2013). Alternative
methods, which rely on conditional moments were proposed to the address this
problem Yuan et al. 2014 in the framework of quadrature-based moment methods.

The solution of Eq. 6.38 requires the two terms Bk and Dk to be calculated, which
is not trivial in the general case, and represents the so-called moment closure
problem. A widely adopted strategy to provide closures for the source terms of
moment transport equations is the quadrature method of moments (McGraw 1997,
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Marchisio et al. 2003a, Marchisio et al. 2003b and Marchisio et al. 2013). In this
approach, the NDF is approximated as a summation of Dirac delta functions

n(L) ≈
N∑
i=0

wiδ(L− Li), (6.39)

where wi are the weights and Li the abscissae of an appropriate Gaussian quadra-
ture formula. A unique correlation is established between a set of 2N moments
and a set of N weights and abscissae through an inversion algorithm, which allows
weights and abscissae to be found from the set of transported moments by solving
an eigenvalue problem as described by Gordon 1968 and Wheeler 1974. In this
research, N has a value of 3 to have a satisfactory approximation of the number
density function solving the minimum number of moment equations, in this case
6, as suggested by Marchisio et al. 2003a.

The substitution of Eq. 6.39 in the moment definition of Eq. 6.37 leads to the
following expression for the approximated moments

mk ≈
N∑
i=0

wiL
k
i , (6.40)

which can be used to re-calculate the moments from the quadrature data. Sim-
ilarly, considering the definition given for B(L) and D(L), Petitti et al. 2010
obtained

Bk −Dk =
1

2

N∑
i=0

wi

N∑
j=0

wjh(Li, Lj)
(
L3
i + L3

j

)k/3
N∑
i=0

wig(Li)β
k

i −
N∑
i=0

wig(Li)L
k
i

−
N∑
i=0

wiL
k
i

N∑
j=0

wjh(Li, Lj), (6.41)

being

β
k

i =

∫ L

0

Lkβ(Li, Lj)dLj . (6.42)
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6.3.3 Numerical procedure

The solution procedure used in the code is summarized in Fig. 6.1. The numeri-
cal solution of the two-phase equations relies on a segregated algorithm extended
to two-phase flows Oliveira et al. 2003. The coupled pressure-velocity problem
is solved using the PIMPLE algorithm, which is a combination of the Pressure-
Implicit with Splitting of Operators (PISO) (Issa 1986) and the Semi-Implicit
Method for Pressure-Linked Equations (SIMPLE) (Patankar 1980) algorithms.
The momentum equations are manipulated to stabilize the system of equation at
the limits of the range of volume fractions, to avoid singularities Weller 2005 and
both phases continuity equations are solved separately for the two phase fractions
as evaluated for a flow around obstruction in Oliveira et al. 2003. The volume frac-
tion equation is solved with the Multidimensional Universal Limiter with Explicit
Solution (MULES) OpenCFD 2013 implemented in OpenFOAM R©, an iterative
implementation of the Flux Corrected Transport technique (FCT) to guarantee
boundedness in the solution of hyperbolic problems (see Damián et al. 2014).

Solve the ϕ momentum equation

Solve the pressure equation

Compute the interfacial forces

Solve κ -ε equations

Compute d32 (m3/m2)

Obtain weights and abcissas

Compute breakage and coalescence terms

Solve the mk equation

Solve the αd equation

t
PIMPLE LOOP

t+∆t

START

END

Figure 6.1: Solution procedure scheme.

The equations are solved sequentially and the set of moment equations solved in
the last step of the loop to update the Sauter mean diameter field given by the
relation of third and second low-order moments, d32 = m3/m2. The value of this
quantity in each cell is used as the bubble diameter, db, to evaluate the sub-models.
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Both phases are assumed to be incompressible and isothermal, with constant den-
sity and viscosity.

6.4 CFD setup

In order to validate the solver, three domains are modelled and simulated. The
experiments of Monrós-Andreu et al. 2013. The experiments of Hibiki et al. 2001a
provide data at z/D=6.0 and z/D=53.5 and therefore a pipe of 2.413 m was used.
Measurements shown in Hosokawa et al. 2009 were carried out at 1.7 m (z/D=68.0)
above the mixing section and this lenght is used to model the pipe.

The experimental data at the bottom measurement section are employed to set up
the inlet boundary conditions for void fraction, Sauter mean diameter, turbulent
kinetic energy, dispersed phase velocity, carrier phase velocity and the required
moments. The computational results are shown in Section 5 together with the
inlet values. The inlet boundary condition of the 6 moments are calculated with
the non-central moments from the mean (µ) and standard deviation (σ) of the
bubble size population of the experiments. The simulations are done considering
a normalized distribution (m0 = 1).

The mesh was created with the native OpenFOAM R© mesh generation tool blockMesh
fulfilling the requirements according to the NEA Best Practice Guidelines (BPG).
After the mesh sensitivity analysis was carried out, a mesh of 938,400 elements
with 5 mm of axial distance between nodes and 35 radial nodes as illustrated in
Fig. 6.2. The maximum aspect ratio and skewness are 13.75 and 0.50 respectively.

The boundary conditions used in the simulations are listed in Tab. 6.3.

Table 6.3: Boundary conditions for inlet, outlet and wall patches.

Variable Inlet Outlet Wall
Ud Dirichlet Neumanna Slip
Uc Dirichlet Neumann No-slip
p Neumann Dirichlet Neumann
αd Dirichlet Neumann Neumann
κc Dirichlet Neumann wall function
εc Dirichlet Neumann wall function
νt,c - - wall function
mk Dirichlet Neumann Dirichlet
azero gradient

The equations were integrated with the finite-volume approach. The convective
terms of the momentum and turbulent quantities equations were discretized with
the second-order upwind scheme (linearUpwindV and linearUpwind schemes in
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Figure 6.2: Cross-section mesh used for the experiments of Monrós-Andreu et al. (2013)

OpenFOAM, respectively). The convective terms of the moment transport equa-
tions were discretized using the first-order upwind scheme to avoid difficulties with
moment realizability. The convective term of the equation for the phase fraction
were discretized with a second-order total variation diminishing (TVD) scheme,
a bounded central scheme stabilized with a limiter Sweby 1984 (limitedLinear01
scheme in OpenFOAM). Time integration was performed with the first-order Euler
scheme. All the other terms were discretized with a second-order central scheme,
since they do not present boundness problems.

In the next two sections we analyse this models from two points of view. The so-
called “tuning approach”, and the critical approach. The former is a study based
on typical modelling found in the literature and investigating the sensitivity of the
interfacial forces, correlations and pseudoturbulence produced by the bubbles. The
incompressible version of TFM is used. The latter is based on the same modeling
as with CFD-DEM applied to a compressible version of TFM.
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6.5 “Tuning approach”

This section discusses the performance of the models for the interfacial forces
and bubble induced turbulence under different scenarios. For this approach, the
bottom ports of the HK- and H- conditions are used and for G- the mid port. For
this specific section we used different conditions with higher superficial velocities
as the one used for the other scenarios (Table 2.2). This conditions are shown in
Table 6.4.

Table 6.4: Flow conditions

Name (jc)z=0 (jd)z=0 〈αd〉z/D,inlet 〈µ〉z/D,inlet 〈σ〉z/D,inlet
(m/s) (m/s) (-) (mm) (mm)

G-JL05JG005 0.5 0.05 6.62×10−2 3.47 0.66
G-JL10JG005 1.0 0.05 4.34×10−2 3.74 0.87
G-JL10JG010 1.0 0.10 9.01×10−2 3.59 0.90
G-JL10JG020 1.0 0.20 1.64×10−1 3.81 1.09
G-JL20JG010 2.0 0.10 3.869×10−2 3.58 0.23
HK-JL05JG005 0.491 0.0556 9.20×10−2 2.34* 0.50*
HK-JL10JG005 0.986 0.0473 5.12×10−2 2.26* 0.50*
H-JL10JG002 1.0 0.02 1.46×10−2 3.52 0.44
H-JL10JG0036 1.0 0.036 3.30×10−2 3.66 0.40

*estimated based on the experimental data

The strong dependency between models makes it difficult to consider each closure
separately. The approach adopted is to first neglect any non-drag force and bubble-
induced turbulence to predict a realistic slip velocity. Hence, the performance of
the bubble-induced source terms models was studied for different voidage values
and finally the non-drag forces will then be considered. The root-mean-square
(RMS) deviation is shown in parentheses in each figure.

6.5.1 Drag force

A proper drag coefficient determines the slip velocity of the system being the key
to model relevant phenomena. The relative velocity profiles for Schiller-Naumann,
Tomiyama and Dikjhiuzen drag correlations are shown for the JL10JG005 condi-
tions in Fig. 6.3 (left).

The slip velocity using different drag correlations have been shown to vary widely.
Experimental results analysing the rising velocity of bubbles depends on purity of
the phases, shape of the bubble, wall effects and turbulence among others.
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Figure 6.3: Slip velocity comparison with different drag correlations (left), different
swarm and shear corrections (right) for G-JL10JG005 flow condition.

The corrections considering swarm and shear rate effects are included in the analy-
sis for the drag correlation of Schiller-Naumann which is close to the experimental
data as shown in Fig. 6.3 (right).

It is worth noticing that the relative velocity was chosen as the parameter to
analyse the direct effect of the drag force rather than the void fraction for which
only an indirect effect can be noticed.

6.5.2 Bubble induced turbulence

Turbulence is of high importance in fluid dynamics to predict the shape of velocity
profiles. In two-phase flow defining proper values of κ and ε is crucial for models
such as turbulent dispersion force and breakage and coalescence which depends
on these turbulence quantities. Using the drag correlations obtained below, the
bubble-induced source terms for κ and ε are tested under different scenarios with
jc=1.0 and jd in the range of 0.05 – 0.20 m/s.

Fig. 6.4 shows the turbulent kinetic energy of the carrier phase, κc. These figures
clearly show the difference between the simulations neglecting the influence of the
bubbles on the turbulence and the evaluated models. The model proposed by
Lee et al. (1989) underpredicts the turbulence kinetic values for all the scenarios
tested. The one proposed by Morel et al. (1997) can reproduce the effect of the
turbulence produced up to 0.8 normalized distance from the center of the pipe.
Simulations for case G-JL10JG020 show that both models underpredict the values
of turbulent kinetic energy. This last case is more critical since involves important
changes on the size of the bubble from the bottom of the pipe to the top that
influences the prediction of the bubble induced turbulence if they are not properly
captured.
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Figure 6.4: Turbulence kinetic energy profiles with different bubble-induced source
terms for G-JL10JG005 (top), JL10JG010 (middle), JL10JG020 (bottom) flow condi-
tions.

6.5.3 Non-drag forces

The effects of non-drag forces as lift, wall lubrication and turbulent dispersion
are discussed in this section. For the wall lubrication force we use the coefficients
used on the original paper of Antal et al. (1991), the default values on ANSYS
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Table 6.5: Wall lubrication force coefficients.

Name Cw1 Cw2

Antal -0.104 - 0.06|Ur| 0.147
ANSYS R© CFX R© -0.01 0.05
Krepper -0.0064 0.016
Proposed -0.104 - 0.06|Ur| 0.10

CFX (2014), Krepper et al. (2005) and a proposed set of coefficients fitting our
experimental results as summarized in Tab. 6.5.

Fig. 6.5 shows the influence on the void fraction profile for each set of coefficients.
It can be highlighted that no damping function is applied to the curl to compute
the lift force in the near wall cell in these results.
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Figure 6.5: Void fraction profile comparison with different wall lubrication force coef-
ficients for G-JL10JG005 flow condition.

The effect of the dispersion force for a given lift and wall lubrication force model
is examined in Fig. 6.6 (left). These results show that the original value of 0.1 for
the CTD fits the experimental results used in the present work.

Finally, we show the results comparing the virtual mass force for values CVM=0
and CVM=0.5 in Fig. 6.6 (right). As expected, the influence of this force in steady
state simulations can be neglected. However, we show this force does not cause
any instability in the numerical procedure followed.
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Figure 6.6: Void fraction profile comparison with different turbulent dispersion force
coefficients for G-JL10JG005 flow condition

6.5.4 Results

Once the sensitivity analysis of the interfacial forces and bubble induced tur-
bulence has been performed in the previous section, we analyse the results of
the simulations with the conditions reported in Tab. 6.4, named G-JL05JG005,
G-JL10JG005, HK-JL05JG005, HK-JL10JG005, H-JL10JG002 and H-JL10JG0036.

In the case of modelling the scenarios of Hosokawa et al. (2009), experimental
profiles at a lower section is not provided and therefore, in our simulations, con-
stant values were applied to the inlet boundary conditions. The solver is assessed
by comparing dispersed and carrier phase characteristics of the flow with radial
profiles at z/D=98.7, z/D=53.5 and z/D=68.0 respectively. The models and coef-
ficients that best fit the experimental data according to the sensitivity analysis are
used in these simulations for the interfacial forces and the bubble-induced source
terms for the κc-εc turbulence equations and summarized in Tab. 6.6. The virtual
mass force is neglected as the effects of the acceleration are not important in this
type of bubbly flow problem and with this method.

Table 6.6: Overview of the interfacial force coefficient and bubble induced turbulence
model.

CVM 0
CD Schiller-Neumman + Roghair + Magnaudet-Legendre
CL Wang
CW Antal
CTD 0.1
BIT Morel
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The radial profiles of the dispersed void fraction are reported in Fig. 6.7 (left).
Bubbles migrate to the wall, leading to the formation of a peak in the gas concen-
tration near the wall. The profiles obtained from the simulations have a similar
trend, height and location of the peak to those obtained from the experiments.

α
d
 -
 D

is
p
er

se
d
 p

h
as

e 
vo

id
 f
ra

ct
io

n
 (

-)

r/R [-]

G-JL05JG005 CFD z/D=98.7
G-JL05JG005 EXP. z/D=98.7
G-JL05JG005 INLET z/D=61.0
G-JL10JG005 CFD z/D=98.7
G-JL10JG005 EXP. z/D=98.7
G-JL05JG005 INLET z/D=61.0

0.00

0.05

0.10

0.15

0.20

0.25

 0  0.2  0.4  0.6  0.8  1

Monros et al.  D=52.0 mm

U
c 

- 
C
ar

ri
er

 p
h
as

e 
ve

lo
ci

ty
 (

m
/s

)

r/R [-]

G-JL05JG005 CFD z/D=98.7
G-JL05JG005 EXP. z/D=98.7
G-JL05JG005 INLET z/D=61.0
G-JL10JG005 CFD z/D=98.7
G-JL10JG005 EXP. z/D=98.7
G-JL10JG005 INLET z/D=61.0

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

 0  0.2  0.4  0.6  0.8  1

Monros et al.  D=52.0 mm

α
d
 -

 D
is
p
er

se
d
 p

h
as

e 
vo

id
 f
ra

ct
io

n
 (

-)

r/R [-]

HK-JL05JG005 CFD z/D=53.5
HK-JL05JG005 EXP. z/D=53.5
HK-JL05JG005 INLET z/D=6.0
HK-JL10JG005 CFD z/D=53.5
HK-JL10JG005 EXP. z/D=53.5
HK-JL05JG005 INLET z/D=6.0

0.00

0.05

0.10

0.15

0.20

0.25

 0  0.2  0.4  0.6  0.8  1

Hibiki et al.  D=50.8 mm

U
c 

- 
C
ar

ri
er

 p
h
as

e 
ve

lo
ci

ty
 (

m
/s

)

r/R [-]

HK-JL05JG005 CFD z/D=53.5
HK-JL05JG005 EXP. z/D=53.5
HK-JL05JG005 INLET z/D=6.0
HK-JL10JG005 CFD z/D=53.5
HK-JL10JG005 EXP. z/D=53.5
HK-JL10JG005 INLET z/D=6.0

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

 0  0.2  0.4  0.6  0.8  1

Hibiki et al.  D=50.8 mm

α
d
 -

 D
is
p
er

se
d
 p

h
as

e 
vo

id
 f
ra

ct
io

n
 (

-)

r/R [-]

H-JL05JG005 CFD z/D=68.0
H-JL05JG005 EXP. z/D=68.0
H-JL10JG005 CFD z/D=68.0
H-JL10JG005 EXP. z/D=68.0

0.00

0.05

0.10

0.15

0.20

0.25

 0  0.2  0.4  0.6  0.8  1

Hosokawa et al.  D=25.0 mm

U
c 

- 
C
ar

ri
er

 p
h
as

e 
ve

lo
ci

ty
 (

m
/s

)

r/R [-]

H-JL05JG005 CFD z/D=68.0
H-JL05JG005 EXP. z/D=68.0
H-JL10JG005 CFD z/D=68.0
H-JL10JG005 EXP. z/D=68.0

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

 0  0.2  0.4  0.6  0.8  1

Hosokawa et al.  D=25.0 mm

Figure 6.7: Void fraction and carrier phase velocity comparison between CFD results
and experimental data.

Although the coefficients of the interfacial forces could be tuned to obtain a better
fit for each scenario, we preferred to keep the model as general as possible to
perform the validation with experiments from different authors. The results, and
in particular the capability of the model for properly predicting the peak in the
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gas concentration near the wall, have proven to be very sensitive to the models of
the forces acting near the wall. The slight differences between the experimental
and the numerical profiles in the region near the wall might be related to the
imperfect values of the turbulence quantities predicted by the simple two-equation
turbulence model supplemented with wall-functions used in this work. Another
factor that might affect the results in this region of the pipe are the model for
the wall lubrication and for the lift force. It is worth noting the difficulties in
account for the effect of bubble assemblies in the interfacial forces. In pipe flows
is expected that these forces will be affected by the presence of multiple bubbles.
Further investigation of these phenomena at a fundamental level is required in
order to develop averaged models capable of accounting for these effects. Fig. 6.7
(right) shows the radial velocity distribution of the carrier phase. The effect of the
dispersed phase on the velocity profile of the continuum phase can be appreciated
observing the flattened velocity profile. Velocities for all the cases are in overall
good agreement with the experimental data.

The profile of the mean kinetic energy of the turbulence was quantified experimen-
tally by mean of the velocity fluctuations as κc=1/2(〈u′2x 〉 + 〈u′2y 〉 + 〈u′2z 〉) (Pope
2000). The computational results compared with this value in Fig. 6.8 (left) are
reasonably well predicted for Monrós-Andreu et al. (2013) and Hosokawa et al.
(2009), both used LDA to obtain the turbulence kinetic energy measure.

In addition, extensive work with experimental techniques and CFD modelling
is needed in the region near the wall (r/R > 0.8) to improve the turbulence
modelling. It is worth noticing that within this narrow distance from the wall of
around 5 mm, the LDA techniques can capture hardly these quantities for two-
phase flow. In the other hand the κ-ε turbulence model relies in the wall functions
to solve the turbulence and therefore the results are less accurate than with other
turbulence models.

Fig. 6.8 (right), for the dispersed phase velocity profile, shows that the drag force
predicts the rise velocity of the bubbles properly, it plays an important role as
some sub-models depends on the slip velocity.

The Sauter mean diameter obtained experimentally as in Simonnet et al. (2007) is
compared in Fig. 6.9. The experimental Sauter mean diameter profile in Hosokawa
et al. is not provided and this validation is not shown. The trend of the profiles
and the rapid change near the wall are properly captured for these conditions and
guarantee the calculation of the interfacial forces as a function of the diameter.

The bubble size is studied in-depth for one condition with the information used to
solve the PBE with QMOM. The evolution of the bubble size distribution from the
axial location z/D=61.0 (inlet) to z/D=98.7 (outlet) for G-JL10JG005 is shown in
Fig. 6.10. The set of weights and abscissae obtained from the moments solving the
eigenvalue problem Wheeler (1974) are represented at radial positions r/R=0.0,
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Figure 6.8: Turbulence kinetic energy and dispersed phase velocity comparison between
CFD results and experimental data.

r/R=0.50 and r/R=0.96. An increase of bubble size from the inlet to the outlet
is noted at these positions in agreement with the Sauter mean diameter.
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Figure 6.9: Sauter mean diameter comparison between CFD results and experimental
data.
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6.6 Critical approach

This section shows an attempt to obtain the results of CFD-DEM with similar
modelling. Similar modelling implies the same forces, turbulence modelling and
correlations, and the compressibility of the dispersed phase. However, important
discrepancies can be found because of the simplifications that are made to obtain
the ensemble averaged equations. For this reason we focus in the bubble dynamics
neglecting breakup and coalescence.

The models for the interfacial forces used in the CFD-DEM are summarised again
in Table 6.7.

Table 6.7: Coefficients for interfacial force closures used in this work for CFD-DEM.

Drag force Tomiyama et al. (1998)
Lift force Tomiyama et al. (2002b)
Virtual mass force Drew et al. (1987)
Wall lubrication force Antal et al. (1991)

The wall lubrication force is not considered for this work for two main reasons: a)
the CFD-DEM results shown that this force was negligible for these cases compared
with the lift force and b) the use of this formulation in TFM could overestimate
the force at nodes close to the wall.

Figure 6.11: Wall lubrication force coefficient for three different bubble diameters
assuming a relative velocity of 0.2 m s−1.
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In Fig. 6.11 we show the coefficient of the wall lubrication force for three different
bubble diameters. In the figure, the points show where the distance to the wall is
equivalent to the bubble radius. This point represents the limit where the bubble
is in contact with the wall. Dashed lines are plotted for distances to the wall to
the left of this point. When the CFD-DEM method was used, the bubble centre
was determined mainly by the bubble-wall contact force, then the coefficient falls
around the range represented by the solid lines. Note, that the same model applied
for TFM may result in an overestimated force.

Next, we have to consider the turbulent dispersion force. Note that in CFD-DEM
it was not required as the turbulent effects was calculated directly in the forces.
Then, in this section, the turbulence in the drag is considered with the turbulent
dispersion force of Burns et al. (2004). In summary the interfacial force coeffficients
used for this simulation with TFM are listed below:

Table 6.8: Coefficients for interfacial force closures used for TFM.

Drag force Tomiyama et al. (1998)
Lift force Tomiyama et al. (2002b)
Virtual mass force Drew et al. (1987)
Turbulent dispersion force Burns et al. (2004)

To perform this work it is also needed to account for the bubble-wall contact force.
The next section deals with the development of a new wall force considering elastic
deformation similar to the soft-sphere model of the CFD-DEM.

6.6.1 Bubble-wall interaction

As studied in the previous chapter with the CFD-DEM solver, the contact of the
bubbles with the wall plays an important role to determine the lateral migration
of the bubbles. When the bubbles impact against a wall they do deform and a
deformation force must be considered also in TFM to explain the bubble dynamics.
In this section we show the development of a TFM equivalent version of the soft-
sphere model shown before for CFD-DEM, and taking into account the elastic
deformation of the bubbles.

Deformation force onto bubbles in contact with the wall

Let us consider a spherical bubble of radius Rb rising near a plane wall (see Fig.
6.12). The z axis is chosen to be coincident with the main flow direction.

The coordinate y stands for the distance to the wall, whereas the coordinate x is
orthogonal to the other two.
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Figure 6.12: Coordinate system used for the calculations.

Consequently, the bubbles that are in touch with the wall are pressed against it
and its shape is deformed. The deformation force or bubble-wall contact force,
fcf , can be obtained (Zaruba et al. 2007) from the energy, δW , that is needed to
make a differential change of its surface, Sb,

δW = σδSb. (6.43)

As the bubble is deforming along the y-axis, the force can be obtained directly as

fcf = −σ∂Sb
∂yb

nw, (6.44)

being nw the unit vector in the y direction.

Assuming the shape of the deformed bubble as an spheroid so that the surface
equation reads as

x2

a2
+
y2

y2b
+
z2

a2
= 1, (6.45)

where a and yb stand for the major and minor axes of the spheroid respectively.
The volume of the spheroid is given by

Vb =
4

3
πyba

2, (6.46)
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where as its surface can be calculated as:

Sb = 2πa2

1 +
y2b

a2
√

1− y2b
a2

arctanh

√
1−

y2b
a2

 , (6.47)

If the gas phase is treated as incompressible, the volume of the deformed bubble
does not change with the deformation, so:

a =
R

3/2
b√
yb
, (6.48)

and the bubble surface is given simply by:

Sb =
2πR3

b

yb

1 +
y3b
R3
b

arctanh

√
1− y3b

R3
b√

1− y3b
R3
b

 (6.49)

Introducing the radius normalized coordinates,

β ≡ y

Rb
, (6.50)

and

βb ≡
yb
Rb
, (6.51)

then the bubble surface can be computed as:

Sb =
2πR2

b

βb

(
1 + β3

b

arctanh
√

1− β3
b√

1− β3
b

)
. (6.52)

Finally, the net deformation force can be written as:

fcf = σπRbfdnw, (6.53)
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Figure 6.13: Plot of the normalized force function.

being fd the normalized force function,

fd ≡
1

1− β3
b

(
2

β2
b

+ βb +
β4
b − 4βb√
1− β3

b

arctanh
√

1− β3
b

)
. (6.54)

As it can be seen in Fig. 6.13, the normalized force is zero for no deformation
(βb = 1) and increases fast with the bubble deformation.

Volumetric force

In order to obtain the Reynolds-averaged volumetric deformation force, Md,cf, the
following integral must be solved

Md,cf =
1

Vb

∫ xmax

xmin

∫ Rb

ymin

Λ (xb, yb;x, y)N (xb, yb) fcfdybdxb. (6.55)

In this equation, Λ (xb, yb, x, y) stands for the chord-length of a bubble that is
travelling vertically with its center being located at the coordinates (xb, yb). For
spheroidal bubbles, this is given by

Λ (xb, yb;x, y) =
2a
√

1− (x−xb)2
a2 − (y−yb)2

y2b

Lb
, (6.56)

being Lb the mean axial distance between bubbles. The term N (xb, yb) in Eq. 6.55
stands for the Bubble Number Density Probability Function (BNPDF), and de-
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scribes the probability of finding a bubble in a given location. As the deformation
force does not depend on the coordinate xb, and assuming a uniform distribution
of bubbles, the integral above can be simplified to:

Md,cf (β) =
σπ2R2

b

VbLb

∫ 1

1−εmax
λfddβbnw, (6.57)

with

λ ≡ π

2

β (2βb − β)

β
5/2
b

, (6.58)

as long as β ∈ [0, βb].

As any interfacial force, the wall deformation force is expected to be dependant
on the local void fraction. In order to introduce it in the formulation, let us recall
that the void fraction profile for a uniform distribution of bubbles is given by:

αd =
Rb
Lb

[
(β − 1)

√
β (2− β) + arccos (1− β)

]
. (6.59)

Consequently, substituting Lb into Eq.6.57 the volumetric force can be expressed
in terms of the local void fraction as:

Md,cf =
σπ2Rb
Vb

αdM̃dnw, (6.60)

Then, with the bubble volume expressed as a function of the bubble radius:

Md,cf =
3σπ

4R2
b

αdM̃dnw, (6.61)

being M̃d (β) the dimensionless volumetric force, given by

M̃d ≡
∫ 1

1−εmax λfddβb

(β − 1)
√
β (2− β) + arccos (1− β)

(6.62)

Now we proceed to obtain a closed expression for the dimensionless volumetric
force. A correlation function is proposed as an approximation to the exact numer-
ical solution. The approximation is based on a balance between deformation and
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buoyancy force. Note that the resulting formula is of general validity, for these
assumptions, as it is applied to a dimensionless expression that does not depend
on any empirical magnitude. This can be approximated by a function of the form:

M̃d ' A sin

(
π
√
β√
2

)
exp

(
−β

4

χ4

)
. (6.63)

In this equation, an amplitude function, A (εmax), aims at describing the increase
of the force intensity with the maximum deformation of the bubbles. The sinoidal
function provides the main structure of the volumetric force with β, ensuring
that it vanishes at both ends, β = 0 and β = 2. Finally, the decay function,
χ (εmax), is inserted to account for the increasing asymmetry of the exact solution
as the maximum bubble deformation increases and the smooth decay for β → 2.
Although the amplitude and decay functions were conceived as Taylor power series,
a reduced number of terms showed to be important for the fitting so that:

A ≡ p4ε2max + p5ε
4
max, (6.64)

and

χ4 ≡ p6 + p7(εmax,−0.5)2 + p8(εmax − 0.5)8, (6.65)

with the following values for the fit parameters,

p4 = 1.63,

p5 = 16.5,

p6 = 1.91,

p7 = 167, and

p8 = 146000.

(6.66)

6.6.2 Results

The simulations are performed in TFM with this first approach of the bubble-wall
contact force to obtain the same modelling as in CFD-DEM. Fig. 6.14 shows the
comparison between approaches of the void fraction radial profile. The figure
includes different hypothesis studied with CFD-DEM in the previous chapter,
related with turbulence and size effects. This is included to highlight assumptions
not considered with this TFM as inhomogeneity or turbulent effects in the lateral
forces.
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Figure 6.14: Comparison between the TFM and different hypothesis for CFD-DEM.

The results revealed that the TFM failed to predict the void fraction profile with
this attempt. Future contributions will be focus to improve the bubble-wall contact
force shown before, considering the turbulence effects on the collisions and improv-
ing the consideration of the bubble-wall interaction dynamics through the lateral
forces. Note that these results also motivated the investigation of the CFD-DEM
presented model obtaining satisfactory results with these models. In a turbulent
flow, the fluctuating component of the carrier phase velocity has an influence in
the force acting on a bubble. Essentially, they are captured in turbulent eddies and
moved with it. Usually, the turbulence effect on the interfacial forces are neglected
in TFM or are only considered in the drag through the turbulent dispersion force
(López de Bertodano 1992; Burns et al. 2004). The influence of the turbulence
on the interfacial forces was evaluated by Behzadi et al. (2001) for mixing layer
and sudden expansion scenarios concluding that the turbulent effects on lift and
virtual mass forces are negligible for these cases. However, in the literature, there
are no many investigations showing its influence in other systems. Indeed, when
the lateral forces are predominant as in the case of wall-bounded systems we may
expect an important influence on the lift and wall interaction turbulent effects.
These turbulence effects were considered directly in the CFD-DEM through the
instantaneous velocities used to calculate the forces. Also, some bubbles leave
the equilibrium state presumably because of the dispersion effects. Furthermore,
because of an increase in the number and kinetic energy of the collisions with the
wall, it leaves the bubble beyond the range of influence of the lift force. This
produces a temporal migration of some bubbles close to the center. Then, future
contributions should be focused on modelling this effects with TFM.

192



Chapter 7

System codes

System codes relying on one-dimensional TFM are widely used in
industrial applications due to their simplicity, speed and historical back-
ground. We conclude with this approach, the validation scheme used in
this thesis, feeding the analysis of its performance with the information
acquired from the study of the experimental data and numerical methods
with higher level of accuracy. A correlation for one-dimensional bubble
size expansion is included. Finally a comparison of drift-velocity and
drag coefficient approaches is performed and a new version proposed.

7.1 Introduction

Two-phase flow phenomena has been an object of study during several decades
with a great impact in nuclear field. From the reactor to the turbines, one can
find a wide variety of systems where two-phase flow plays a main role: BWR
core, secondary loop or reactor heat removal system are examples of two-phase
flow components. It is found not only in normal operating conditions, but also in
eventual situations, like instabilities events, loss-of-coolant accidents or refueling.
All the previous cases imply different conditions of pressure, temperature or mass
flow.

This broad range of situations is considered in one dimensional thermal-hydraulic
codes to set the appropriate flow regime in each situation. They include the two-
fluid model (Ishii 1975), where averaged Navier-Stokes equations are solved for
each phase including momentum, energy and continuity equations. Then, one can
account for the interaction terms to consider the transfer of mass, momentum
and energy at the interphase. This interfacial momentum term differs depending
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on which flow regime is working. The proper regime is selected according to a
flow regime map and the velocities of each phase. Different flow regime maps
have been proposed by diverse authors (M.A. Vince 1982; M. Ishii 1982). This
work investigates the performance of RELAP5/MOD3 predicting the results of
experiments in an upward vertical bubbly flow for low velocity conditions. Bubbly
flow at this conditions can be found in pressurizers, reactor pools or refuelling
operations.

The one-dimensional Two-Fluid Model (1D TFM) has different approaches in
system codes for the interfacial momentum transfer depending on the flow regime.
In particular, for bubbly flows, the interfacial momentum transfer has the main
responsibility (Brooks et al. 2012). Two approaches are usually used to define the
interfacial drag force: the drift-velocity approach (DVA) and the drag coefficient
approach (DCA). RELAP5/MOD3 uses DVA for bubbly flow in vertical pipes
and DCA was used in the previous RELAP5/MOD2 version. The drift models,
although more simple and effective than the drag coefficient approach, usually
are only valid in the range of applicability for which they were obtained as they
depend on flow and geometry.

The drag force calculated with DCA relies on correlations that are defined tradi-
tionally as a function of Reynolds and/or Eötvös numbers. In this work we make
use of this approach in RELAP5/MOD3, by modifying the code, to verify the
performance of both models and the comparison with the experiments.

The use of DCA incorporates a set of assumptions to calculate the drag term.
The influence of these assumptions is also validated through the development of a
modified version of the drag coefficient approach (DCA*) that consists of:

• A drag coefficient correlation that takes into account the effect of the bubble
shape through the Eötvös number and the effect of the contaminants present
in the system used.

• Bubble size distribution consideration by means of their statistical parame-
ters including the axial evolution due to the gas expansion.

• Interfacial area calculated directly from the definition of the Sauter mean
diameter.

In summary, three drag coefficient approaches are used. A drift-velocity approach
named DVA, an existing drag coefficient approach DCA, and the proposed drag
coefficient approach DCA*. These approaches are studied to compare the influence
of the simplifications and assumptions on the results. This process is schematized
in Fig.7.1.
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Drift-velocity approach (DVA)

Drag coefficient approach

Critical Weber criteria (DCA)

Mean bubble size (DCA*)RELAP5/MOD3

(Original model)

(Proposed model)

(Size effect)

(Default model for conditions in Table 1)

Figure 7.1: General overview of the drag force term approaches in this work.

This chapter aims on the one hand to investigate the performance of the code and
the loss of information as a result of the information, and on the other hand to
validate the axial evolution of the system code.

7.2 Mathematical formulation and setup

7.2.1 Drift-velocity approach (DVA)

The relative motion between the phases can be considered through a drift flux
model (Zuber et al. 1965; Ishii et al. 2006b). In a drift flux model the mixture of
the phases is solved as a whole. In RELAP5/MOD3, a drift-velocity approach is
incorporated into the TFM to describe the interfacial drag force term. The area
averaged interphase drag term is given as:

Md = Ci|Vr|Vr, (7.1)

where Ci is the drag coefficient and Vr the relative velocity between both phases.
The drag coefficient is obtained from a balance of the forces in the direction of the
flow. It considers the interfacial drag, buoyancy and pressure drop, applies the
assumptions that both phases have equivalent pressure and the action-reaction
principle for the interfacial momentum terms (Brooks et al. 2012). The drag
coefficient results:

Ci =
α(1− α)g(ρc − ρd)

V 2
r

(7.2)
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where α, g and ρ, are the void fraction, gravitational constant and density. In this
equation, the relative velocity is replaced with the relation between local relative
velocity and void weighted phase velocities assuming uniform relative velocity:

Vr =
vgj

1− α
(7.3)

From the definitions of Eq. 7.2 and Eq. 7.3, the drag coefficient in terms of drift
flux is finally given as:

Ci =
α(1− α)3g∆ρ

v2gj
(7.4)

The term vgj refers to the drift velocity that depends on the flow geometry. For
vertical pipe flows and conditions studied in this work, RELAP5/MOD3 uses the
Chexal-Lellouche correlation (Chexal et al. 1985; Chexal et al. 1992):

vgj =
√

2
( (ρc − ρd)σg

ρ2c

) 1
4

C2C3C4C9, (7.5)

where σ is the surface tension. The equation depends on many constants as C2,
C3, C4 and C9 among others. This is a generalized correlation that was compared
using steam-water, air-water, and refrigerant data on multiple flow configurations
ranging from different orientations as vertical, horizontal or inclined, different
geometries as pipes, channels, rod bundle and flow configurations as cocurrent or
countercurrent flow. This correlation, although general, lacks the model specificity
that is required for an accurate prediction (Griffiths et al. 2014). Moreover, this
approach is not consistent with the TFM and its application is contrary to the
field equations solved as noted by Brooks et al. (2012).
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7.2.2 Drag coefficient approach (DCA)

The drag coefficient approach is based on the general drag interfacial term. This
is defined as:

Md =
1

8
Cdρcai|vd − vc|(vd − vc) (7.6)

In RELAP5/MOD3 for bubbly flow the drag coefficient was based on Ishii et al.
(1979):

Cd =
24

Re
(1.0 + 0.1Re0.75) (7.7)

The drag coefficient depends on the flow parameters, and the bubble size should
be considered. The maximum bubble diameter, dmax, is calculated from a critical
Weber number:

Wecrit =
v2rdb,maxρc

σ
(7.8)

RELAP5/MOD3 specifies a value of 10 for bubbles for the Wecrit (Nuclear Reg-
ulatory Commission 1995; Wallis 1969). In this equation, v2r is not calculated
as the difference between the phase velocities but refers to the velocity difference
that gives the maximum bubble size (Nuclear Regulatory Commission 1995). The
following equation is applied:

v2r = max
[
(vd − vl),

Wecriσ

ρl min(D′α
(1/3)
d , Dh)

]
, (7.9)

where D′ is set to 0.005 m for bubbly flow and Dh is the hydraulic diameter.

The bubble diameter is calculated from the maximum bubble diameter with the
following assumption:

db = 0.5db,max (7.10)

The interfacial area concentration is then given in terms of the mean bubble di-
ameter (Nuclear Regulatory Commission 1995; Brooks et al. 2012):

a =
6α

d32
=

3.6α

db
, (7.11)
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where d32 is the Sauter mean diameter of the distribution related to the bub-
ble diameter db assuming a Nukiyama-Tanasawa distribution (Nuclear Regulatory
Commission 1995), a distribution for droplet diameter for a spray.

7.2.3 Drag coefficient approach with specific drag closure and
mean bubble size distribution (DCA*)

The previous drag coefficient approach contains a set of assumptions that may
affect the prediction of the two-phase flow characteristics. In this work we propose
a new approach to validate bubbly flow scenarios. The model consists on a drag
coefficient correlation specific for the scenario, the consideration of the BSD and
its axial evolution. Considering the BSD at each node implies that, on the one
hand the influence of the bubble size in the terminal velocity can be incorporated
through the drag force, on the other hand the interfacial area can be computed
directly from the definition of the Suater mean diameter without any assumption.

For instance, the drag correlation of Tomiyama et al. (1998) for contaminated
systems is used and implemented:

CD = max
[ 24

Re
(1 + 0.15Re0.687),

8

3

Eo

Eo + 4

]
(7.12)

This expression includes a region dominated by the Eötvös number. Then, is
required the definition of the bubble size given in the experiments. The terminal
velocity of the bubbles as function of the diameter using the drag force coefficients
of Eq. 7.7 and Eq. 7.12 are compared in Fig. 7.2.

Figure 7.2: Terminal velocity for Tomiyama et al. (1998) and Ishii et al. (1979) drag
correlations.

From the measurements of the BSD in the experiments we can define the size at
the inlet boundary conditions. As the experiments are performed at atmospheric
pressure, an increase of around 30% can be noted from the inlet to the outlet in

198



7.2 Mathematical formulation and setup

the experiments (z/D=22.4 to z/D=98.7). Given the change of the pressure field
in the axial direction, the code will consider this axial evolution in terms of void
fraction. For a rigorous implementation, the axial change on the bubble size must
be considered.

The different of sizes in a pipe between two different heights, excluding the breakup
and coalescence mechanisms, are due to the pressure changes. This change is given
by the ideal gas law and can be expressed as an expansion factor, fi, that is related
in this work for convenience to the inlet values. At each node i we can calculate:

fi =
( αi
αinlet

) 1
3

(7.13)

where αi and αinlet are the void fraction at the given node and the void fraction
at the inlet respectively.

If the bubbles change its size by the factor fi, this means a proportional increase
of the bubble size and it is equivalent to multiply a random variable by a constant
value. Then, the mean or expected value is also multiplied by the constant value
(the same is applied to the standard deviation):

E[fid] = fiE[d] (7.14)

Var[fid] = f2i Var[d] (7.15)

Then the BSD can be estimated as a scaled distribution of the BSD at the different
heights or nodes. A normal distribution at a given height would have the following
statistical parameters:

µi = fiµi (7.16)

σi = fiσi (7.17)

Note, that breakup and coalescence has been neglected as any event was recorded
for this cases from the observations with the high-speed camera. For other scenar-
ios a one-dimensional approximation of a population balance equation would be
required, but for this work this approximation has been preferred for convenience
as a first approach.
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A mean bubble diameter of the distribution can be defined from the numeric mean
diameter definition:

db = d10 =

∫∞
0
d1f(d)dd∫∞

0
d0f(d)dd

= µ (7.18)

The Sauter mean diameter of the distribution can be calculated knowing that the
bubble size follows a normal distribution:

d32 =

∫∞
0
d3f(d)dd∫∞

0
d2f(d)dd

=
µ3 + 3µσ2

µ2 + σ2
(7.19)

The interfacial area concentration from the definition of Sauter gives the following:

a =
6α

d32
(7.20)

7.2.4 Modelling and setup

The simulations are undertaken by modelling a pipe, whose length is equal to the
experimental section from z/D=22.4 to z/D=98.7, with 99 uniform axial nodes.
Boundary conditions are defined by time-dependent volumes at both inlet and
outlet, followed by a time-dependent junction at the inlet and a branch at the
outlet. In order to simulate non-condensable gases, one has to activate card 110
in the input. This card allows to define one or more (until eight) gases. In this
work, only air has been defined.

1

2

3

n

n-1

PIPE

TMDPVOL
BRANCH

TMDPVOL
TMDPJUN

Figure 7.3: Model and nodalization of the pipe for RELAP5/MOD3.
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RELAP5/MOD3.3 changes from single-phase to two-phase critical flow model
when the non-condensable quality is greater than 1× 10−6. From this moment,
the gas phase is treated as a mixture of vapour and non-condensable gas [RELAP
Manual]. The simulations performed consist of a null transient of 100 seconds, so
that the convergence, set at 1× 10−3, is completely achieved.

7.3 Results

The simulations are performed with DVA, DCA and the modified version DCA*.
In this section we show first a comparison of the models and later a validation with
experiments using the proposed model. Cross-section averaged experimental val-
ues are obtained from the radial profiles to compare the results of the simulations
with the experiments.

7.3.1 Model comparison

The case PW05003 is used first to compare the different approaches. Fig. 7.4
shows the axial evolution of void fraction. The effect of the gas decompression
is noted in the void fraction as a function of the height. DCA and DCA* gives
similar results while DVA shows a lower void fraction values with a smoother axial
evolution than the drag coefficient approaches. The discrepancies increase with
the height, mainly because DCA* takes into account the bubble expansion of the
distribution, and in consequence it has an impact in the drag coefficient and the
interfacial area.

Figure 7.4: Comparison of void fraction axial evolution for the different drag ap-
proaches.
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Fig. 7.5 shows the comparison of the disperse phase velocity. DVA with the Chexal-
Lellouche gives a higher disperse phase velocity and consequently the void fraction
values shown before are significantly lower. Slightly different trends are noted with
DCA and DCA* with decreasing values of the velocity along the pipe.

Figure 7.5: Comparison of disperse phase velocity axial evolution for the different drag
approaches.

The bubble diameter is calculated for DCA and DCA* (see Fig. 7.6). Note that a
proper calculation of the bubble diameter could be required to take into account
breakup or coalescence phenomena.

Figure 7.6: Comparison of mean bubble size axial evolution for the different drag
approaches.
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The interfacial area concentration is compared, in turn for DCA and DCA* as
they are based on the drag coefficient approach. For instance, when heat transfer
plays an important role as the simulations in nuclear installations, an accurate
prediction of the interfacial area concentration is required. Fig.7.11 shows the
comparison of these cases.

Figure 7.7: Comparison of interfacial area axial evolution for the different drag ap-
proaches.

Note that the values of the interfacial area are relatively close for both approaches.
Significant discrepancies are appreciated between both approaches. The interfacial
area equation for DCA is based on several assumptions but for DCA* is calculated
directly from the Sauter mean diameter of the size distribution that is actually
known. For DCA the bubble diameter is underestimated and the resulting in-
terfacial area model compensates the values. In fact, a realistic calculation of db
together with the area interfacial with DCA would give results of around the 50%
of the values calculated with DCA*. These results and differences between bubble
size and interfacial area can be explained by four main factors related with DCA:

• The use of the Nukiyama-Tanasawa size distribution.

• The criteria to determine the maximum bubble size from a critical Weber
number.

• The assumption of obtaining the bubble diameter as a half o the maximum
diameter.

• The calculation of v2r with Eq. 7.9.
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7.3.2 Validation with experiments

The previous section showed the differences existing when using the different ap-
proaches. It demonstrated for a given scenario that void fraction, dispersed phase
velocity and interfacial area concentration can vary widely if a proper represen-
tation of the drag force and bubble size is not considered in the simulation. For
instance, common models as DVA or DCA are not able to predict altogether the
variables checked for this scenario due to the assumptions introduced.

In summary, the proposed drag coefficient approach (DCA*) considers the Tomiyama
drag correlation for contaminated systems, the measured BSD with its axial evo-
lution, and a direct calculation of the interfacial area concentration. All these
effects represents more accurately the scenarios to simulate and the rest of the
simulations are performed with this model. The cases PW05002, PW05003 and
PW05004 described in Table. 2.2 are consequently analysed.

The mean bubble size and its axial evolution is shown in Fig. 7.8. Bigger bubble
sizes are noted for PW05004 as higher gas flow rates through the sparger could
result in an increasing diameter. However, is not observed a linear relation with
PW05002 and PW05003. It could be explained due to the mechanism described by
Kazakis et al. (2008) where, as the gas flow rate increase more pores are activated
and hence more bubbles are formed. For higher values, larger bubbles can be
produced from the activated pores or eventually if smaller pore sizes exists new
smaller bubbles will appear.

Figure 7.8: Comparison between computational results and experiments of the bubble
mean size axial evolution.

The void fraction profiles are compared in Fig. 7.9. The computational results
match the experiments accurately along the pipe. The results at the top measure-
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ment port are well predicted for the three cases despite its non-linear evolution.
This effect is more pronounced as the gas flow rate increase.

Figure 7.9: Comparison between computational results and experiments of the void
fraction axial evolution.

In Fig. 7.10 the validation is done for the disperse phase velocity. The results are
similar to the experiments both in magnitude and trend. The drag coefficients are
obtained from experiments for single bubbles and therefore the influence that the
bubbles have with each other is not taken into account. Therefore, the disperse
phase velocity of the system could be different with these considerations.

Figure 7.10: Comparison between computational results and experiments of the dis-
perse phase velocity axial evolution.
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Finally, the interfacial area concentration is analyzed in Fig. 7.11 noting how the
interfacial are increase with the gas flow rate and the pipe height.

Figure 7.11: Comparison between computational results and experiments of the inter-
facial area concentration axial evolution.

7.4 Conclusions

A 1D TFM was used to simulate bubbly flow in adiabatic air-water upward bubbly
flow to compare the results with experimental data at low velocity conditions.
RELAP5/MOD3 was used to simulate these scenarios. This system code uses the
drift-velocity approach (DVA) by default for the conditions tested. The differences
with the experiments were considerable. Then the drag coefficient approach (DCA)
used in previous versions for bubbly flow and vertical pipes was incorporated giving
more reasonable results. However, the simulations with DCA were not able to
predict all the variables compared.

A modified version of the drag coefficient approach implemented was proposed
(DCA*). This included: a proper drag force for this scenario, the size effects in
the drag force, bubble size distribution with axial evolution and direct calculation
of the interfacial area. As a result of this implementations more accurate results
in terms of magnitude and trend are obtained in overall, compared with regard
to DCA. In addition, the validation performed with this model shown a good
agreement with the experiment for several variables as: axial evolution of void
fraction, disperse phase velocity, mean bubble size and interfacial area.

From this study the following conclusions are drawn:
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• The Chexal-Lellouche drift correlation fails predicting bubbly flow in vertical
pipes at low liquid velocities.

• The drag coefficient approach predicts relatively well the interfacial area at
expenses of underestimating the mean bubble size around a 50%.

• The proposed drag coefficient approach is able to reproduce all the variables
as the size distribution is considered and interfacial area is calculated directly
from the size distribution.

While the present study was focused on investigate the different drag approaches
using a system code, future investigations will incorporate the study of high ve-
locity conditions similar to the present in nuclear reactors where break-up and
coalescence takes place to investigate the modelling using 1D TFM and popula-
tion balance equations.
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Chapter 8

Preliminary studies on other
bubbly flow system

Many industrial applications involving two-phase flow systems re-
quire the use of filters or grids to manage their processes. Despite
the existence of numerous numerical studies related to two-phase flow,
bubbly flow through obstacles with holes or narrow gaps have not been
carefully studied and analysed. In this study two approaches at differ-
ent resolution level as TFM or CFD-DEM are evaluated to analyse the
appropriateness of these methods for this complex scenario.

8.1 Overview

This work studies the physics surrounding two-phase flow with two different ap-
proaches for predicting its dynamics at different resolution levels in a system with
a perforated plate.

Although TFM has been used traditionally for engineering applications to predict
two-phase flow and validated against experimental data in scenarios such as bubble
columns or pipes, some industrial applications as two-phase flow systems with
presence of filters or grids to manage its processes has not been widely studied. In
this scenario, numerical methods could be useful to study interesting phenomena
related with the bubble residence time as oxygen transfer rate or two-phase flow
heat transfer, present for instance, in chemical or nuclear applications. However,
the TFM approach could fail when the holes presented in the geometry are smaller
than certain diameters of the bubble population size. The dispersed phase, passes
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through them unrealistically as they are treated as a continuum media and the
force balance is crucial.

The same scenario is computed with CFD-DEM, which calculates the motion of
each bubble and takes into account the dispersed phase blockage of the perforated
plate. Average void fraction and velocity distributions across and downstream of
the obstacle are discussed.

8.2 Description of the simulation

Bubbly flow with bubbles passing trough a perforated plate is simulated with the
classical TFM approach shown before and the novel CFD-DEM solver presented
in this thesis and implemented in OpenFOAM R©. Computational results from
both approaches as void fraction distributions, averaged cross-section of the void
fraction at different axial levels and velocities are shown in this work.
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Figure 8.1: Description of the simulation domain (dimensions in mm).

In order to test the two solvers, a vertical square channel is simulated. A square
hole perforated plate is located at 17 times the bubble size (db) from the inlet.
The holes, of size 2db, are distributed in the plate as shown in Fig. 8.1. The gas
flow is introduced uniformly at the bottom of the channel in an initially quiescent
medium. As a first approximation, we consider a monodispersed case with a bubble
size of 1.5 mm which allows the bubbles to pass through the plate.
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8.3 CFD-DEM results

Cross-section planes at different positions along the domain are analyzed showing
the void fraction, continuous and disperse phase velocities. In particular, the time
evolution of the averaged cross section of the void fraction is studied with DEM at
the five different axial distances shown in Fig. 8.1. S1 located close to the bottom
of the channel, S2 before the plate, S3 after the plate, S4 and S5 significantly
far from the plate. As a result, we can analyse the effect of the plate and the
influence on the dispersed phase. Finally, TFM is also used to compare with the
time-averaged results of the DEM simulation.

8.3 CFD-DEM results

The CFD-DEM simulation was run until a physical time of 10 seconds. The evo-
lution of the bubbles at different times is shown in Fig. 8.2. The bubble residence
time illustrates the influence of the plate on the system and it can be appreciated
how the bubbles remain trapped temporally in the region just downstream from
the plate.

Figure 8.2: Time evolution of the bubbles position and residence time for the monodis-
perse scenario.

The influence of the bubbles on the liquid velocity is shown in Fig. 8.3 for different
time snapshots. A decrease on the bubble velocity once it hits the plate is observed
on the bubble, and it recovers its rising velocity once it passes the plate.

In Fig. 8.4 we show the dynamics at sections (see Fig. 8.1) close to the injection
(S1) and far from the plate (S4 and S5). The system begins to become steady at
around 1.5 seconds where the air flow through the holes is constant.

The accumulation of bubbles at a close distance downstream and upstream from
the plate is quantified by means of the averaged cross section of the void fraction at
the planes S2 and S3 in Fig. 8.5. Before the plate (S2), the void fraction increases
as the bubbles arrives to the obstacle with the blockage limiting the air flow and
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Figure 8.3: Time evolution of the bubbles clipped at center with the z-direction bubble
velocity plotted and a cross-section passing through the center in the axial direction
showing the liquid velocity and streamlines.

decreasing its rising velocity. After the plate (S3), the void fraction follows a
similar pattern with values close to the inlet conditions.
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Figure 8.4: Time evolution of the bubbles position and residence time for the polydis-
perse scenario.
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Figure 8.5: Time evolution of the bubbles position and residence time.

8.4 TFM results

The following provides the results obtained with the TFM approach. In Fig. 8.6 we
show the liquid velocity (left) and the void fraction (right). We can note that the
liquid velocity distributions downstream from the plate are significantly different
compared with the obtained with CFD-DEM (Fig. 8.3). A similar vortex is noted
after the plate and near the wall but the velocity in the core of the channel is
predicted with discrepancies between both methods. The void fraction predicted
with TFM show a local concentration of void fraction just before the plate in the
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areas blocking the flow but not just at the holes where the dispersed phase flows
without bubble size restrictions.

Figure 8.6: Cross-section plane and axial direction showing the liquid velocity and
streamlines.

To analyse this, an axial cross-section plane at z=25.5 mm is illustrated at Fig. 8.7.
In this figure we can clearly observe how the void fraction is higher close to the
walls and almost zero at the hole center as the dispersed phase flows directly as a
fluid from the areas with high void fraction downstream from the plate.

Finally, we compare the performance of the two solvers predicting the void fraction
with the cross-section average void fraction along the channel in Fig. 8.8.

In the figure below, is highlighted the difference between the approaches which
demonstrates that the classical formulation of the TFM underpredicts the accu-
mulation of bubbles before the plate as a consequence of the blockage, compared
with a more advanced technique.
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8.5 Experimental facility proposed and preliminary data

Figure 8.7: Time evolution of the bubbles position and residence time for the polydis-
perse scenario.

plate

Figure 8.8: Cross-section average void fraction as a function of the height for TFM
(red line) and CFD-DEM (blue line).

8.5 Experimental facility proposed and preliminary data

After verifying this scenario through both approaches, the experimental facility
described in Fig. 8.9 is proposed.
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Figure 8.9: Experimental facility proposed.

The test rig counts of a 2D channel. A perforated plate or grid is located in
the middle of the channel. Different grids of different hole size are designed and
produced with a 3D printer (see Fig. 8.10). The facility is equipped with a needle
probe system to measure the void fraction and velocity after and before the plate,
a LDA to measure the velocity and turbulence and a high-speed camera located at
different places to analyse the bubble size distribution after and before the plate.
In this way we can detect the blockage of the bubbles depending on the size or
break-up as a consequence of big bubbles passing through the grid.

Figure 8.10: CAD models of two grids.

An example of the data obtained by the high-speed cameras is shown in Fig. 8.11.
The first observations show a similar behavior as detected by the CFD-DEM. The
bubbles are accumulated just before the grid. Periodically a group o bubbles passes
trough the holes in pulse events.
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Figure 8.11: Images obtained by the high-speed camera at different time-steps.

In addition, bubble break up occurs for bigger bubbles flattened against the wall as
shown in Fig. 8.12. In order to predict this phenomena with a CFD-DEM further
modelling should be included.

Figure 8.12: Bubble cut sequence.
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8.6 Conclusions

A simulation of a vertical square channel with a square hole perforated plate
has been simulated with two approaches as TFM and CFD-DEM. For the latter,
the simulation shows an accumulation of bubbles just downstream of the plate
produced by the collision of the bubbles with an obstacle as the perforated plate.
After an initial transient period, the dispersed phase flow through the holes reaches
a stationary condition and far enough downstream of the plate the cross-section
average void fraction matches the values at the inlet. The performance of each
solver has been analysed.

We can conclude that further investigation is needed into the TFM to be able to
capture the effects of a blockage as a perforated plate. In addition, polydispersed
bubbly flow will be computed with population balance approaches as Multiple
Size Group (MUSIG) or Quadrature Method of Moments (QMOM) in order to
study the effect of the plate in the bubble distribution. Experiments related with
this kind of simulations and the use of advanced techniques as VOF will help to
understand the physics of the bubbly flow under this situations to implement new
models in TFM and eventually in CFD-DEM.
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Chapter 9

Conclusions and future work

This work finishes with the conclusions that emerged from the in-
vestigations shown in previous chapters. Some recommendations are
made to improve this study or to continue with it. In addition, future
research is summarised.

9.1 Conclusions

Two-phase flow is a fascinating topic with many uncertainties and questions. De-
spite many efforts during recent decades, its modelling with computational tech-
niques present nowadays many shortcomings to overcome. Whether by computa-
tional limitations or lack of knowledge most of the simulations can not be used as
a predictive tool.

This work focused in the bubbly flow regime as it is the most simple of the ex-
isting regimes. It allows isolating effects and draw conclusions. The thesis aimed
to investigate the numerical modelling of bubbly flow through a multiscale nu-
merical study and experimental validations. With this methodology the extent of
applicability of each technique has been evaluated. In order to achieve this objec-
tive, development of new models and implementations mainly in OpenFOAM R©

were required. As a result, an open-source multiscale framework was developed to
create a solid basis of two-phase flow modelling in the bubbly flow regime.

In general, this research has strengthened the understanding of the bubbly flow
by means of simulations at different resolution level. The combination of this
numerical investigation at the same time that the experiments were performed,
helped to address key aspects of the modelling of bubbly flow.
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A Volume Of Fluid (VOF) method was used to investigate in detail the behaviour
of single bubbles. A model for air injected from a nozzle, and a spherical bubble
in a quiescent fluid was created. A fixed regular mesh was used to capture the
turbulence produced by the wake. From this study we can conclude that:

• This technique can reproduce the formation stages of the bubbles, including
the surrounding fluid flow produced and the rising pattern of the bubbles.

• The results shown an excellent agreement between the computed bubble size
generated in the nozzle and an empirical correlation giving accurate results.

• The motion of single bubbles as terminal velocity, acceleration and shape
oscillation is properly captured.

• Path instabilities patterns observed experimentally as zigzagging or spiralling
are also detected in the simulations, but rarely found in the literature.

• The results can be used to better understand the wake structure and its
influence on the path of the bubbles. These results, together with a CFD-
DEM could reveal useful insights in the implementation of interface effects.

• These simulations could be extended to bigger scale to perform a multiscale
comparison of the same scenarios with CFD-DEM and TFM.

A novel CFD-DEM for unresolved particles suitable for bubbly flow in pipes is
presented in the thesis. Bubbles are represented as discrete elements and are
tracked trough the carrier phase. Although this relies on correlations and the
fluid flow is not resolved, it permitted to compute a hundred of bubbles using
interfacial forces and pseudo-turbulence produced by the bubbles without many
of the assumptions applied to TFM. The following conclusions arise from this
investigation:

• Simulations of single bubbles with CFD-DEM can reproduce the bubble
dynamics as terminal velocity and acceleration but excluding effects at the
interface or instabilities.

• The proposed CFD-DEM solver for bubbly flow can provide reasonable re-
sults to simulate bubbly flow systems without tuning any parameter as val-
idated for vertical pipes of different sizes. The formulation is based in basic
principles allowing a better representation of the closures.

• All the variables that can be obtained from experiments were properly pre-
dicted. These variables were consistent between them.

• Bubble interactions with the wall produced a source of bubbles that migrates
far from the wall because of the collisions. The radial fluctuations increased
this phenomena.
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• Wall lubrication force did not play a key role in the simulation. In addition,
it is possible that this force could reduce the bubble approaching velocity to
the wall and then the energy of the impact. It would result in an increment
of bubbles close to the wall.

• To fairly compare the simulation results with the experimental data, it should
be required an adequate knowledge on how the experiments have been con-
ducted and the processing procedure followed. Although it seems clear, for
two-phase flow the sensitivity on the boundary conditions or validation is
much higher than for single-phase flow.

• The simulation results when compared to experimental data with needle
probes must be obtained in the same way as the experiments to represent
similar values, as demonstrated by means of virtual measurements (VNPS).

• Using VNPS it is possible to use the solver not only as a method to reproduce
the experiments, but as a tool to understand and investigate the experimental
data and measurements.

• Given the sensitivity of the models for interfacial closures it is recommended
to compare all the variables that will define the two-phase flow characteristics
at different locations:

– Pressure

– Void fraction.

– Bubble and liquid velocities.

– Turbulence quantities of both phases.

– Bubble frequency.

– Interfacial area concentration.

– Bubble size distribution.

– Chord lengths (mean and distribution).

– Missing ratio.

• Axial evolution of vertical bubbly flow in pipes was validated with an ex-
cellent agreement. VNPS was used to explain some of the aspects in the
validation.

• Preliminary results of bubbly flow through a perforated plate shown reason-
able results.
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A 3D TFM coupled with the QMOM to solve the population balance equation was
implemented in OpenFOAM R©. It was used to investigate its performance and the
several assumptions applied in classical formulations:

• A two-fluid model with QMOM was developed with interfacial forces for
bubbly flow. The simulations reproduced reasonably well experimental data
for different pipes.

• Tuning coefficients were required to obtain optimal results when common
interfacial closures used for TFM were applied.

• Wall lubrication force played a key role in the simulation, acting as the main
force opposite to the lift.

• A critical approach was performed, comparing the performance of CFD-DEM
and TFM with equivalent modelling.

• The attempt shown in this thesis failed to reproduce properly good results
as for CFD-DEM.

• Preliminary results of bubbly flow through a perforated plate failed to predict
the blockage of bubbles.

The 1D TFM is an effective tool when spatial resolution is not important or
required. The system code RELAP5/MOD3 is commonly used in the nuclear
industry. It is used in this work to analyse and improve the modelling of the
interfacial drag term:

• The Chexal-Lellouche drift correlation fails predicting bubbly flow in vertical
pipes at low liquid velocities.

• The drag coefficient approach predicts relatively well the interfacial area at
expenses of underestimating the mean bubble size around a 50%.

• The proposed drag coefficient approach is able to reproduce all the variables
as the size distribution is considered and interfacial area is calculated directly
from the size distribution.

• PBE applied to 1D TFM should be investigated to predict complex scenarios
and its evolution.
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9.2 Future work

The open-source multiscale framework presented is useful for future contributions
aimed to investigate the modelling for presence of surfactants, chemical reactions,
heat transfer or boiling and condensation. Furthermore, this is intended to serve
as a basis for future hybrid codes or coupling between the solvers for solutions at
different scales in the same simulations. The following tasks would continue this
work in the short-term and long-term:

• Investigating with VOF the capability of a dynamic mesh solver to capture
the wake and the effect that it has in the bubble.

• Extending the investigation of VOF to multiple bubbles or swarms applied
to a multiscale investigation.

• Implementing the effect of surfactants in the VOF simulations to analyse the
wake structure.

• Developing an hybrid approach to simulate scenarios where resolved and
unresolved particles take place as slug flow with the consideration of small
and “big bubbles” using approaches as VOF, CFD-DEM or IBM.

• Investigating the use of a VOF-Level Set approach to simulate phase change
or chemical reactions.

• Applying the virtual needle probe concept to simulations with microscale
approaches needing massive parallel computing to obtain results without
needing to save data at different time steps (reducing data writing, time and
storage).

• Investigating the effect of path instabilities and pseudo-turbulence induced,
and the possibilities to model this interfacial effects and interactions with
the wake in CFD-DEM or TFM.

• Investigating in TFM the effect that velocity fluctuations have in non-drag
forces in pipes.

• Investigating the modelling of bubble collision with CFD-DEM and TFM
compared with new separate experiments.

• Extending the study performed in this work with CFD-DEM and TFM to
other flow regimes including more complex phenomenology as non-sphericity
of bubbles, near-wall modelling, and bubble breakup or coalescence.

• Extending the virtual measurements (VNPS) to front tracking or volume of
fluid methods to investigate the validation methodology and experimental
measurements with needle probes.
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• Investigating the CFD-DEM and TFM models in a perforated plate case,
comparing the results with detailed experiments.

• Implementing a 1D TFM in OpenFOAM R©.

• Implementing a PBE in a 1D TFM to investigate flow regime transitions.
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Chahed, J., Masbernat, L., and Véronique, R. (1998). “Turbulence and void frac-
tion prediction in a turbulent bubbly wake”. In: 3rd International Conference
on Multiphase Flow (ICMF1998). Lyon, France (cit. on p. 79).

Chen, J., Li, F., Degaleesan, S., Gupta, P., Al-Dahhan, M. H., Dudukovic, M. P.,
and Toseland, B. A. (1999a). “Fluid dynamic parameters in bubble columns
with internals”. In: Chemical Engineering Science 54.1314, pp. 2187–2197.
issn: 0009-2509 (cit. on p. 20).

Chen, L., Garimella, S. V., Reizes, J. A., and Leonardi, E. (1999b). “The develop-
ment of a bubble rising in a viscous liquid”. In: Journal of Fluid Mechanics
387, pp. 61–96 (cit. on p. 86).

Chen, P, Sanyal, J, and Dudukovic, M. P. (2004). “CFD modeling of bubble
columns flows: implementation of population balance”. In: Chem. Eng. Sci.
59.22-23, pp. 5201–5207. issn: 0009-2509 (cit. on p. 164).

228



Bibliography

Cheung, S. C. P., Deju, L, Yeoh, G. H., and Tu, J. Y. (2013). “Modeling of bub-
ble size distribution in isothermal gas-liquid flows: Numerical assessment of
population balance approaches”. In: Nucl. Eng. Des. 265.0, pp. 120–136. issn:
0029-5493 (cit. on pp. 25, 81, 161, 162).

Cheung, S. C. P., Yeoh, G. H., and Tu, J. Y. (2007). “On the numerical study of
isothermal vertical bubbly flow using two population balance approaches”. In:
Chemical Engineering Science 62.17, pp. 4659–4674. issn: 0009-2509 (cit. on
pp. 28, 29).

Chexal, B and Lellouche, G (1985). Full-range drift-flux correlation for vertical
flows. Tech. rep. (cit. on p. 196).

Chexal, B., Lellouche, G., Horowitz, J., and Healzer, J. (1992). “A void fraction
correlation for generalized applications”. In: Progress in Nuclear Energy 27.4,
pp. 255–295. issn: 01491970 (cit. on p. 196).

Clark, N. N. and Turton, R (1988). “Chord length distributions related to bubble
size distributions in multiphase flows”. In: International Journal of Multiphase
Flow 14.4, pp. 413–424. issn: 0301-9322 (cit. on pp. 50, 56, 116, 153).

Clift, R. R., Grace, J. R., and Weber, M. E. (1978). Bubbles, drops, and particles.
Academic Press, p. 380. isbn: 012176950X (cit. on pp. 24, 68).

Corre, J.-M. L. and Ishii, M. (2002). “Numerical evaluation and correction method
for multi-sensor probe measurement techniques in two-phase bubbly flow”. In:
Nuclear Engineering and Design 216.13, pp. 221–238. issn: 0029-5493 (cit. on
pp. 38, 48, 56, 152).

Coulaloglou, C. A. and Tavlarides, L. L. (1977). “Description of interaction pro-
cesses in agitated liquid-liquid dispersions”. In: Chem. Eng. Sci. 32, pp. 1289–
1297 (cit. on p. 170).

Crowe, C. T., Sharma, M. P., and Stock, D. E. (1977). “The Particle-Source-In Cell
(PSI-CELL) Model for Gas-Droplet Flows”. In: Journal of Fluids Engineering
99.2, pp. 325–332. issn: 0098-2202 (cit. on p. 117).

Cundall, P. A. and Strack, O. D. L. (1979). “A discrete numerical model for gran-
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locale des écoulements bouillants sous-saturés dans les conditions des Réacteurs
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tions in a vertical gas–liquid flow: Bouncing, sliding and bubble deformations”.
In: Chemical Engineering Science 62.6, pp. 1591–1605. issn: 0009-2509 (cit.
on pp. 20, 187).

Zenit, R., Koch, D. L., and Sangani, A. S. (2001). “Measurements of the average
properties of a suspension of bubbles rising in a vertical channel”. In: Journal
of Fluid Mechanics 429, pp. 307–342. issn: 1469-7645 (cit. on p. 20).

Zenit, R. and Legendre, D. (2009). “The coefficient of restitution for air bubbles
colliding against solid walls in viscous liquids”. In: Physics of Fluids 21.8,
p. 83306 (cit. on pp. 20, 68).

Zhang, D, Deen, N. G., and Kuipers, J. A. M. (2006). “Numerical simulation of the
dynamic flow behavior in a bubble column: A study of closures for turbulence
and interface forces”. In: Chemical Engineering Science 61.23, pp. 7593–7608
(cit. on pp. 25, 161).

253



Bibliography

Zhang, Z. (2010). LDA Application Methods. Berlin, Heidelberg: Springer Berlin
Heidelberg. isbn: 978-3-642-13513-2 (cit. on pp. 21, 136).

Zuber, N. and Findlay, J. A. (1965). “Average Volumetric Concentration in Two-
Phase Flow Systems”. In: Journal of Heat Transfer 87.4, p. 453. issn: 00221481
(cit. on p. 195).
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