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SUMMARY 

A Bayesian network approach is presented for probabilistic safety analysis (PSA) of railway 

lines. The idea consists of identifying and reproducing all the elements that the train 

encounters when circulating along a railway line, such as light and speed limit signals, tunnel 

or viaduct entries or exits, cuttings and embankments, acoustic sounds received in the cabin, 

curves, switches, etc. In addition, since the human error is very relevant for safety evaluation, 

the automatic train protection (ATP) systems and the driver behavior and its time evolution 

are modelled and taken into account to determine the probabilities of human errors. The 

nodes of the Bayesian network, their links and the associated probability tables are 

automatically constructed based on the line data that need to be carefully given. The 

conditional probability tables are reproduced by closed formulas, which facilitate the 

modelling and the sensitivity analysis. A sorted list of the most dangerous elements in the 

line is obtained, which permits making decisions about the line safety and programming 

maintenance operations in order to optimize them and reduce the maintenance costs 

substantially. The proposed methodology is illustrated by its application to several cases that 

include real lines such as the Palencia-Santander and the Dublin-Belfast lines. 

1. INTRODUCTION

Increasing speeds have led high speed trains to successfully compete with air transportation 

(see Peterman et al. (2009), Todorovich and Hagler (2011), Castillo et al. (2015, 2016c), 

Andersson et al. (2015)), but the associated risks and their consequences have motivated the 

appearance of automatic train protection systems (ATP) and the need of probability risk 

assessments (see Lahrech (1999), Miyashita (2010) or Fukuyama et al. (2008)). In this paper 

we deal with the problem of probability risk assessment (PRA) of a given railway line and 

operating company. 

The Safety Risk Model (SRM) used by the RSSB (Railway Safety Standard Board) enables 

global risk to be calculated (see Muttram (2002)) and provides information to be used in risk 

assessments and on the contribution of the different elements to failure. However, line or 

segment risk assessments are not very common (see Lahrech (1999) for some small 
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examples). 

 

Nuclear power plants and other industries have a long tradition in using powerful techniques 

for probability risk assessments (Henley et al. (1992)), such as fault and event tree analysis, 

Petri and Bayesian networks, discrete and continuous Markov models, etc.  However, the 

railway industry runs slowly in this area (see Bearfield and Marsh (2005)). However, some 

countries, such as Japan, the US and the UK, use models where fault and event tree analysis 

are used in the railway problem. However, in many countries PRAs are neither compulsory 

nor regularly used in testing the safety of railway lines. 

 

Once we have a parametric model for PRA its parameters need to be estimated. In this 

context, the works of Kokkings and Snyder (1997), Muttram (2002) and Evans (2011), who 

report important railway data and serious statistical analysis of the railway accidents which 

occurred in Europe during the period 1980-2009 become relevant. 

 

Human error is an important factor that has to be considered in any PRA. Quantification of 

human error probabilities is possible with participation of miscellaneous groups of 

professionals(see Dadashi et al. (2013)) .Among the most important consequences of human 

errors (for example, a train trespassing a sign at red or failing to comply with a speed limit) 

are railway incidents. Thus, a valid model must include human error evaluation. 

 

In the following sections we build a Bayesian model (see Castillo et al. (2016a,b)),which 

permits us to evaluate the probability of derailments, collisions or other types of incidents 

along the line being analyzed. Markovian models have been frequently used in safety 

analysis (see Slovak et al. (2007), Fuqua (2007) or Bjorkman (2011)). A Bayesian network 

has two components: (a) an acyclic graph including the nodes (variables) and the directed 

links, which informs us about the relevant variables in the problem and the direct relations 

(causal or not) among then providing a very valuable qualitative information, and (b) the 

conditional probabilities of each variable given its parents, which complete the quantitative 

information. Contrary to fault trees (see Lahrech (1999)), Bayesian networks (see Castillo et 

al. (1997)) allow any joint probability distribution to be reproduced, including common 

causes. 

 

2. VARIABLES INVOLVED IN THE PROBLEM. 

 
One important step in the building process of a Bayesian network is the identification of 

variables to be modelled. In the proposed model, the following variables are assumed to be 

relevant: driver's tiredness (D), driver's attention (Da), speed (S), incident (A), rolling stock 

(RS), infraestructure (Inf), terrain (T), driver's decision on speed control (DE), driver's 

decision at sign (DA), automatic train protection system (ATP), light sign decision (AS), 

driver's decision made at a speed limit sign (DS), light sign state (SS) and technical failure 

(TF). 
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3. BAYESIAN NETWORKS AND SUB-BAYESIAN COMPONENTS. 

 
The Bayesian network structure depends on the railway line being studied because all the 

elements the driver encounters when travelling along the line are reproduced and different 

lines have different elements. 

 

In our model there are two types of Bayesian subnetworks, as indicated in Figure 1: 

1. The first corresponds to the segments without signs or signals, used to evaluate the 

risk incurred when driving, due to rolling stock failure, infrastructure state (rails, 

sleepers, ballast, plate, maintenance standards (see \cite{PengO:14}), etc.) or 

problems associated with slipping or falling materials in areas of deforestation, 

landslides in areas of landfill, differential settlement between rails, etc. This 

subnetwork type considers a Markovian model in continuous time and is shown in 

Figure 1 to the left of each element, indicated in brown color. 

2. The second subnetwork type corresponds to each of the points or locations in which 

signs are located, decisions subject to errors are to be taken, occasional incidents can 

occur due to different reasons (step turnouts, entrances and exits of tunnels, sediment 

accumulation on the track, etc.), viaducts entries and exits. This type of subnetwork 

is shown in Figure 1 to the right of each element, indicated in blue. 

 

 

Figure 1 Illustration of (a) the Bayesian network model showing the Bayesian 

subnetworks for the segments without signs and signals (left subnetworks) and for the 

segments with signs or discontinuous associated risk (right subnetworks), (b) the 
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Markov model of driver’s attention states, and (c) the V node and its parents. 

 

The complete Bayesian network results after joining all sub-networks (see Figure 1) 

 

3.1 Defining conditional probabilities 

As indicated, a very important step in the process of building the Bayesian network is the 

definition of the conditional probabilities, one per node. To this end, we have made a huge 

effort in obtaining closed formulas in order to facilitate the comprehension and its 

implementation into the computer programs. 

 

As one example, we show the case of the conditional probability P(V|Vp,DE,SS,AS,S). In this 

case (see Figure 1), node V is connected to 5 parent nodes and the conditional probability 

matrix depends on the previous speed Vp the driver's decision on the speed DE and DA at the 

light sign, the signal state and the operating ATP system. Thus, the final conditional 

probability matrix p_{a,b,c,d,e,f}(s)=P(V=a|Vp=b,DE=c,SS=d,AS=e,S=f) is: 

 

𝑝𝑎,𝑏,𝑐,𝑑,𝑒,𝑓(𝑠) =  𝛿𝑒,1[𝛿𝑐,1𝛿𝑎,𝑠 + 𝛿𝑐,2((1 − 𝜌𝑓)𝛿𝑎,𝑠 +  𝜌𝑓𝛿𝑎,𝑏) +   

                            + 𝛿𝑐,3  (𝜅1𝜌𝑓𝛿𝑎,max(1,𝑠−1) + (1 − 𝜌𝑓(𝜅1 + 𝜅2)) 𝛿𝑎,𝑠 +

                                + 𝜅2𝜌𝑓𝛿𝑎,min(𝑛,𝑠+1))] + (𝛿𝑑,2𝛿𝑒,2 + 𝛿𝑑,3𝛿𝑒,3)((1 − 𝜌𝑓)𝛿𝑎,𝑠 +  𝜌𝑓𝛿𝑎,𝑏) ,

(1) 

 

where the vtarget is defined according to the sign state, determined by SS node, a,b are the 

Kronecker's deltas, ρd is the failure probability of the ATP system and 1 and 2 are the 

probabilities of selecting erroneously the speeds vmax(1,s-1) and vmin(n,s+1), respectively. More 

details can be seen in Castillo et al. (2016 a,b) and Grande (2015). 

 

Figure 2 Illustration of different situations in which the train accelerates or decelerates 

according to: (a) light sign, (b) temporary speed limit sign.  

The model needs to take into account the train possibilities in terms of feasible maximum 

accelerations and decelerations. That is, assuming that the train has a known speed at a given 

location, the model must check whether or not another speed at another location is attainable. 

To this end, the whole range of possibilities must be analyzed. As one example, Figures 2 
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and 3 show the final attainable speeds at a location when the train starts with a speed vp. 

 

Figure 3 Illustration of the attainable speed when the initial speed is vp and the target 

speed is vtarget in the cases of light signs at green, at stop announcement (orange) and at 

stop (red). 

 

4. PROBABILISTIC SAFETY ANALYSIS. 

 

In this section we present two real examples. 

 

4.1 Palencia-Santander line 

The Palencia-Santander line is a 217 Km single-track line that belongs to the Spanish 

conventional railway network. After using the proposed methodology, a wrong placement 

of temporary speed limit signs used to protect the train against falling blocks from the 

fractured rock and nested with permanent speed limit signs is detected. The example shows 

how the model identifies the problem and how it can be solved. 

 

In the table at the bottom of Figure 4, where the red and salmon colored narrow rectangles 

refer to curve and viaduct, respectively, the list of most critical items of the line are given 

sorted by probability of failure in decreasing order of magnitude. They correspond to a line 

segment in which two sets of permanent and temporary speed limit signs have been nested 

to protect against falling blocks at a curve. The permanent speed limit includes an 

announcement speed limit sign of 80 km/h at PK 388.500, a speed limit sign of 80 km/h at 

PK 389.800 and an end of speed limit sign at PK 390.680 (not shown), the temporary speed 

limit is double, the first includes an announcement speed limit sign of 30 km/h at PK 388.550 

and an end of speed limit at PK 389.020 and the second contains an announcement speed 

limit sign of 60 km/h at PK 389.400, a speed limit sign of 30 km/h at PK 390.350 and an end 

of speed limit sign at PK 390.700 (not shown). 

 

Apart from the absence of the pre-announcement speed limit signs, the main problem 

consists of the inconsistency of the temporary speed limit signs at PK 389.400 and PK 

390.350, because the first indicated 60 km/h and the second 30 km/h. This makes it 

impossible to satisfy these constraints because there is not a distance long enough to reduce 

speed to 30 km/h. 

 

The problem is identified because of a very large probability 0.0653 of occurrence of a severe 

incident. This gives more information about the risk and possible consequences of this error 
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than a classical analysis will provide. In fact, it indicates not only that the error is present but 

that the error can produce serious consequences with a high frequency. 

 

One way to solve this problem consists of removing the two signs at PK 389.020 and PK 

389.400, as shown in the lower plot in Figure 4. In the table we can see that the probability 

of occurrence of a severe incident diminishes to 1.88*10-7, which is an important reduction. 

We can also see that the probability of a severe incident due to falling blocks diminishes too 

(due to speed reduction) but only by a small amount (see the last column in the table). Thus, 

it would be convenient to reduce this probability even more. 

 

    Probability  

Rank Item name KP Node Current Improved 

1 Temporal Limt 390.350 A111-ST 0.0653 1.88e-7 

2 Blackspot 390.400 A120-Bs 1.05e-6 5.62e-7 

3 Blackspot 390.605 A137-Bs 3.57e-7 3.57e-7 

4 Continuous 388.450 A12-S 1.47e-9 1.47e-9 

5 Permanent Limt 389.800 A50-SP 1.17e-16 6.22e-8 

Figure 4 Palencia-Santander line. Illustration of the most hazardous case, before 

(upper plot) and after (lower plot) the improvement, and their associated 

probabilities. 

 

3.2 Dublin-Cork and Cork-Dublin lines 

A preliminary probabilistic safety analyses of the Dublin-Cork and Cork-Dublin lines have 
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been done to assess the risks associated with travelling these lines. These analyses include 

the most important items that trains encounter when travelling along the line in both 

directions and permit us to identify the most critical items from the safety point of view. 

After the analysis, the following conclusions can be drawn: 

 

1. The line Dublin-Cork presents three critical locations, which correspond to a 

permanent speed limit sign, to a temporary speed limit sign and to a light signal, 

respectively, where the first is especially critical due to its very large expected 

number of severe incidents (ENSI) value. As located, the speed limit signs do not 

permit satisfaction of the safety requirements due to an insufficient length between 

signs, which do not allow reducing the train speed to the required limit. The three 

cases can be easily corrected by replacing signs or signals, 

2. The line Cork-Dublin presents two critical locations, which correspond to a 

permanent speed limit sign and a buffer stop at the end of the line. As indicated, these 

cases can be corrected by installing an ERTMS system to protect against an speed 

excess at the final station, 

3. With the exception of the applied solution for one of the critical points in the Cork-

Dublin direction, the designed improvements are based on simple works, such as sign 

location changes or placements of new signs. Consequently, the costs associated with 

a significant improvement of the safety of the line are very small. The rest of 

problems can be solved by installing an ERTMS system. 

4. The order in which actions should be taken is indicated by the sorted list where items 

implying higher risks are located first. 

 

To illustrate the process we present some details on the PSA of the Cork-Dublin line in the 

Southwest-Northeast direction. This line has 264.323 km and is modeled with 541 items, 

which imply 6045 variables and a cumulated ENSI of 4.48e-06. 

 

Table 1 shows the sorted list of the most critical items with the corresponding locations (PK), 

nodes and local probabilities. 

 

Table 1 Sorted list of critical items for the Dublin-Cork line with the corresponding 

numbers, names, locations (KP), nodes and local probabilities. 

Rank Item Item name KP/mile Node Probability 

1 532 Permanent Limt 262.720/1.001 A5945-DBl 1.45e-06 

2 541 Stop station 264.323/0.000 A6045-Sta 6.92e-07 

3 540 Permanent Limt 263.920/0.252 A6036-DBl 5.19e-07 

4 196 Permanent Limt 91.120/108.251 A2146-DBl 4.97e-07 

5 316 Light sign 157.902/66.513 A3499-E 1.66e-07 

6 538 Permanent Limt 263.520/0.502 A6014-DBl 1.62e-07 

 

The first conclusion that can be extracted after consulting the list of items sorted by their 
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risks is that this line provides a reasonable safety in this direction because the final ENSI is 

4.48*10-6. The critical points in this case are located at the end of the line (see Table 1), i.e. 

at the Heuston Station environment. 

 

Since the most hazardous items are relatively close to one another, this analysis will consider 

the two items together, because the possible improvements will affect both items. These 

hazardous situations are related to the driver's cumulative tiredness at the end of the trip, to 

the different permanent speed limit signs, which can lead to errors, and to the lack of a 

continuous protection system against speed limit violations at the station proximity causing 

failure to stop before the buffer stop. Figure 5 illustrates the main errors and the suggested 

improvements to reduce these risks. 

 

 

    Probability  

Rank Item name KP/mile  Node Current Improved 

1 Permanent Limt 262.720/1.001 A5945-DBl 1.45e-06 2.12e-10 

2 Stop Station  264.323/0.000 A6045-Sta 6.92e-07 6.24e-10 

3 Permanent Limt 263.920/0.252 A6036-DBl 5.19e-07 4.66e-10 

4 Permanent Limt 263.520/0.502 A6014-DBl 1.66e-07 1.41e-10 

Figure 5 Most hazardous point along the Cork-Dublin line before (upper plot) and 

after (lower plot) the improvement, and their associated probabilities. 

 

Due to the fact that four different items (the three speed limit signs and the buffer stop sign) 

are involved in the safety of the current location, a joint action has been proposed, which is 

based on installing the ATP system to protect the last 1.5 miles of the line. This safety 
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improvement would control the train speed along the line in order to guarantee a safety 

improvement against permanent speed limit sign violations. It should be noted that if in a 

short-medium term the ERTMS system implantation were not possible, at least some balises 

protecting the permanent speed limit signs should be arranged. 

 

The principal result of the proposed corrections is the reduction of the overall risk 

probability. Since the initial cumulated probability was 4.48*10-6 and after the correction of 

the three major critical points, at mileposts 1.001 (KP 262.720), 0.252 (KP 263.920) and 

0.000 (KP 264.323), respectively, the final probability becomes 1.29*10-9. 

 

5. CONCLUSIONS. 

 

The most important conclusions derived from this work are: 

 

1. Bayesian networks are a powerful tool to perform a PSA of a railway line in which 

all items encountered by trains are reproduced in a natural way to build the network. 

This tool permits reproducing any probabilistic improved structure and competes 

with advantage with fault trees. 

2. The cases of the Palencia-Santander and Dublin-Cork lines show that they provide a 

relevant information about the critical points in the line and suggest how the 

maintenance program must be organized, starting with the most dangerous items in 

order to save time and money. 

3. Work is needed to provide general rules to estimate the parameters of the model and 

to validate the associated results. 

 

 

REFERENCES 

 

ANDERSSON, A., O’CONNOR, A., AND KAROUMI, R. (2015). Passive and adaptive 

damping systems for vibration mitigation and increased fatigue service life of a tied arch 

railway bridge. Computer Aided Civil And Infrastructure Engineering, DOI: 

10.1111/mice.12116. 

BEARFIELD, G. AND MARSH, W. (2005). Generalising event trees using Bayesian 

networks with a case study of train derailment. Lecture Notes in Computer Sciences, 

3688:52–66. 

BJORKMAN, P. (2011). Probabilistic Safety Assessment using Quantitative Analysis 

Techniques – Application in the Heavy Automotive Industry. PhD thesis, Uppsala 

University, Sweden. 

CASTILLO, E., CALVIÑO, A., GRANDE, Z., SÁNCHEZ-CAMBRONERO, S., 

GALLEGO, I., RIVAS, A., AND MENÉNDEZ, J. M. (2016a). A Markovian-Bayesian 

network for risk analysis of high speed and conventional railway lines integrating human 

errors. Computer Aided Civil and Infrastructure Engineering, 31:193–218. 

CIT2016 – XII Congreso de Ingeniería del Transporte 
València, Universitat Politècnica de València, 2016. 
DOI: http://dx.doi.org/10.4995/CIT2016.2016.3428 

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).



   .  
 

 

CASTILLO, E., GALLEGO, I., SÁNCHEZ-CAMBRONERO, S., MENÉNDEZ, J. M., 

RIVAS, A., NOGAL, M., AND GRANDE, Z. (2015). An alternate double-single track 

proposal for high-speed peripheral railway lines. Computer Aided Civil and Infrastructure 

Engineering, 30:181–201. 

CASTILLO, E., GRANDE, Z., AND CALVIÑO, A. (2016b). Bayesian networks based 

probabilistic safety analysis for railway lines. Computer Aided Civil and Infrastructure 

Engineering, in press. 

CASTILLO, E., GRANDE, Z., MORAGA, P., AND SANCHEZ-VIZCAÍNO, J. (2016c). A 

time partitioning technique for railway line design and timetable optimization. Computer 

Aided Civil and Infrastructure Engineering, DOI: 10.1111/mice.12194. 

CASTILLO, E., GUTIÉRREZ, J., AND HADI, A. (1997). Expert Systems and Probabilistic 

Network Models. Springer Verlag, New York. 

DADASHI, N., SCOTT, A., WILSON, J. R., AND MILLS, A. (2013). Rail Human Factors: 

Supporting reliability, safety and cost reduction. CRC Press, Taylor and Francis, London. 

EVANS, A. W. (2011). Fatal train accidents on Europes railways: 1980-2009. Journal of 

Accident Analysis and Prevention, 43(1):391–401. 

FUKUYAMA, H., INUTSUKA, F., TACHI, M., AND ISHIGE, T. (2008). Application of 

risk assessment method in railway. Sociotechnica, 1(5):163–171. 

FUQUA, N. B. (2007). The applicability of Markov analysis methods to reliability, 

maintainability, and safety, volume 10. START 

GRANDE, Z. (2015). Mathematical Models for Traffic Observation and Prediction and 

Design and Probabilistic Safety Analysis of Railway Lines. PhD thesis, School of Civil 

Engineers. University of Cantabria, Santander, Spain. 

HENLEY, E. J. AND KUMAMOTO, H. (1992). Probabilistic Risk Assessment; Reliability 

Engineering, Design, and Analysis. IEEE Press, New York. 

KOKKINGS, S. J. AND SNYDER, E. A. (1997). Case studies in collision safety. Report 

DOT/FRA/ORD-96/01, Federal railroad administration, Washington, D. C. 

LAHRECH, Y. (1999). Development and application of a probabilistic risk assessment 

model for evaluating advanced train control technologies. Master thesis, Massachussetts 

Institute of Technology, Cambridge, Massachusetts. 

MIYASHITA, N. (2010). 2013 Safety vision. JR EAST Technical Review, 15(1):163–171. 

MUTTRAM, R. I. (2002). Railway safety’s safety risk model. Proceedings of the Institution 

of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 216(2):71–79. 

PEN, F. AND OUYANG, Y. (2014). Optimal clustering of railroad track maintenance jobs. 

Computer Aided Civil and Infrastructure Engineering, 29(4):235–247. 

PETERMAN, D. R., FRITTELLI, J., AND MALLET, W. (2009). High speed rail (hsr) in 

the United States. CSR Report for Congress R40973, Congress of the US. 

SLOVAK, R., KASSEV, K., STOYTCHEVA, N., IVANOV, E., AND SCHNIEDER, E. 

(2007). General stochasti modelling for quantitative safety analysis using markov chains and 

Petri nets. Information Technologies and Control, 2:17–30. 

TODOROVICH, H. P. AND HAGLER, Y. (2011). High speed rail in america. Technical 

report, America 2050. 

CIT2016 – XII Congreso de Ingeniería del Transporte 
València, Universitat Politècnica de València, 2016. 
DOI: http://dx.doi.org/10.4995/CIT2016.2016.3428 

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).




