- -

Cyanido-Bridged FeII-MI Dimetallic Hofmann-Like Spin-Crossover Coordination Polymers Based on 2,6-Naphthyridine

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Cyanido-Bridged FeII-MI Dimetallic Hofmann-Like Spin-Crossover Coordination Polymers Based on 2,6-Naphthyridine

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Piñeiro-López, L. es_ES
dc.contributor.author Valverde-Muñoz, F. J. es_ES
dc.contributor.author Seredyuk, M. es_ES
dc.contributor.author Bartual-Murgui, C. es_ES
dc.contributor.author Muñoz Roca, María Del Carmen es_ES
dc.contributor.author Real, J. A. es_ES
dc.date.accessioned 2020-03-16T14:46:46Z
dc.date.available 2020-03-16T14:46:46Z
dc.date.issued 2018-01-31 es_ES
dc.identifier.issn 1434-1948 es_ES
dc.identifier.uri http://hdl.handle.net/10251/138958
dc.description.abstract [EN] Two new 3D spin-crossover (SCO) Hofmann-type coordination polymers {Fe(2,6-naphthy)[Ag(CN)2][Ag2(CN)3]} (1; 2,6-naphthy = 2,6-naphthyridine) and {Fe(2,6-naphthy)- [Au(CN)2]2}·0.5PhNO2 (2) were synthesized and characterized. Both derivatives are made up of infinite stacks of {Fe[Ag(CN)2]2- [Ag2(CN)3]}n and {Fe[Au(CN)2]2}n layered grids connected by pillars of 2,6-naphthy ligands coordinated to the axial positions of the FeII centers of alternate layers. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministerio de Economia y Competitividad (MINECO), Fondos Europeos para el Desarrollo Regional (FEDER) (CTQ2013-46275-P and CTQ2016-78341-P), Unidad de Excelencia Maria de Maeztu (MDM-2015-0538), and the Generalitat Valenciana through PROMETEO/2016/147. L. P. L. and F. J. V. M. thank the Universidad de Valencia and MINECO, respectively for predoctoral (FPI) grants. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof European Journal of Inorganic Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject N ligands es_ES
dc.subject Metal-organic frameworks es_ES
dc.subject Silver es_ES
dc.subject Gold es_ES
dc.subject Iron es_ES
dc.subject Spin crossover es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Cyanido-Bridged FeII-MI Dimetallic Hofmann-Like Spin-Crossover Coordination Polymers Based on 2,6-Naphthyridine es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/ejic.201700920 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2013-46275-P/ES/SENSORES Y MEMORIAS BASADOS EN MATERIALES BIESTABLES CON TRANSICION DE ESPIN/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO2016%2F147/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2016-78341-P/ES/MATERIALES SPIN CROSSOVER BIESTABLES: DE LAS PROPIEDADES MACROSCOPICAS A LA ESPINTRONICA MOLECULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MDM-2015-0538/ES/INSTITUTO DE CIENCIA MOLECULAR/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Piñeiro-López, L.; Valverde-Muñoz, FJ.; Seredyuk, M.; Bartual-Murgui, C.; Muñoz Roca, MDC.; Real, JA. (2018). Cyanido-Bridged FeII-MI Dimetallic Hofmann-Like Spin-Crossover Coordination Polymers Based on 2,6-Naphthyridine. European Journal of Inorganic Chemistry. (3-4):289-296. https://doi.org/10.1002/ejic.201700920 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/ejic.201700920 es_ES
dc.description.upvformatpinicio 289 es_ES
dc.description.upvformatpfin 296 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 3-4 es_ES
dc.relation.pasarela S\367513 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Gütlich, P., Hauser, A., & Spiering, H. (1994). Thermal and Optical Switching of Iron(II) Complexes. Angewandte Chemie International Edition in English, 33(20), 2024-2054. doi:10.1002/anie.199420241 es_ES
dc.description.references Gütlich, P., Hauser, A., & Spiering, H. (1994). Thermisch und optisch schaltbare Eisen(II)-Komplexe. Angewandte Chemie, 106(20), 2109-2141. doi:10.1002/ange.19941062006 es_ES
dc.description.references P. Gütlich H. A. Goodwin Top. Curr. Chem 2004 233-235 es_ES
dc.description.references Bousseksou, A., Molnár, G., Salmon, L., & Nicolazzi, W. (2011). Molecular spin crossover phenomenon: recent achievements and prospects. Chemical Society Reviews, 40(6), 3313. doi:10.1039/c1cs15042a es_ES
dc.description.references M. A. Halcrow Spin-crossover materials: properties and applications es_ES
dc.description.references C. Enachescu M. Nishino S. Miyashita Spin-crossover materials: properties and applications M. A. Halcrow es_ES
dc.description.references Kahn, O., Kröber, J., & Jay, C. (1992). Spin Transition Molecular Materials for displays and data recording. Advanced Materials, 4(11), 718-728. doi:10.1002/adma.19920041103 es_ES
dc.description.references Prins, F., Monrabal-Capilla, M., Osorio, E. A., Coronado, E., & van der Zant, H. S. J. (2011). Room-Temperature Electrical Addressing of a Bistable Spin-Crossover Molecular System. Advanced Materials, 23(13), 1545-1549. doi:10.1002/adma.201003821 es_ES
dc.description.references Cavallini, M., Bergenti, I., Milita, S., Kengne, J. C., Gentili, D., Ruani, G., … Ruben, M. (2011). Thin Deposits and Patterning of Room-Temperature-Switchable One-Dimensional Spin-Crossover Compounds. Langmuir, 27(7), 4076-4081. doi:10.1021/la104901m es_ES
dc.description.references Miyamachi, T., Gruber, M., Davesne, V., Bowen, M., Boukari, S., Joly, L., … Wulfhekel, W. (2012). Robust spin crossover and memristance across a single molecule. Nature Communications, 3(1). doi:10.1038/ncomms1940 es_ES
dc.description.references Shepherd, H. J., Molnár, G., Nicolazzi, W., Salmon, L., & Bousseksou, A. (2012). Spin Crossover at the Nanometre Scale. European Journal of Inorganic Chemistry, 2013(5-6), 653-661. doi:10.1002/ejic.201201205 es_ES
dc.description.references Rotaru, A., Dugay, J., Tan, R. P., Guralskiy, I. A., Salmon, L., Demont, P., … Bousseksou, A. (2013). Nano-electromanipulation of Spin Crossover Nanorods: Towards Switchable Nanoelectronic Devices. Advanced Materials, 25(12), 1745-1749. doi:10.1002/adma.201203020 es_ES
dc.description.references Aragonès, A. C., Aravena, D., Cerdá, J. I., Acís-Castillo, Z., Li, H., Real, J. A., … Díez-Pérez, I. (2015). Large Conductance Switching in a Single-Molecule Device through Room Temperature Spin-Dependent Transport. Nano Letters, 16(1), 218-226. doi:10.1021/acs.nanolett.5b03571 es_ES
dc.description.references Muñoz, M. C., & Real, J. A. (2011). Thermo-, piezo-, photo- and chemo-switchable spin crossover iron(II)-metallocyanate based coordination polymers. Coordination Chemistry Reviews, 255(17-18), 2068-2093. doi:10.1016/j.ccr.2011.02.004 es_ES
dc.description.references Ni, Z.-P., Liu, J.-L., Hoque, M. N., Liu, W., Li, J.-Y., Chen, Y.-C., & Tong, M.-L. (2017). Recent advances in guest effects on spin-crossover behavior in Hofmann-type metal-organic frameworks. Coordination Chemistry Reviews, 335, 28-43. doi:10.1016/j.ccr.2016.12.002 es_ES
dc.description.references Niel, V., Muñoz, M. C., Gaspar, A. B., Galet, A., Levchenko, G., & Real, J. A. (2002). Thermal-, Pressure-, and Light-Induced Spin Transition in Novel Cyanide-Bridged FeIIbAgI Bimetallic Compounds with Three-Dimensional Interpenetrating Double Structures {FeIILx[Ag(CN)2]2}⋅G. Chemistry - A European Journal, 8(11), 2446. doi:10.1002/1521-3765(20020603)8:11<2446::aid-chem2446>3.0.co;2-k es_ES
dc.description.references Gural’skiy, I. A., Shylin, S. I., Golub, B. O., Ksenofontov, V., Fritsky, I. O., & Tremel, W. (2016). High temperature spin crossover in [Fe(pyrazine){Ag(CN)2}2] and its solvate. New Journal of Chemistry, 40(11), 9012-9016. doi:10.1039/c6nj01472k es_ES
dc.description.references Valverde-Muñoz, F. J., Seredyuk, M., Muñoz, M. C., Znovjyak, K., Fritsky, I. O., & Real, J. A. (2016). Strong Cooperative Spin Crossover in 2D and 3D FeII–MI,II Hofmann-Like Coordination Polymers Based on 2-Fluoropyrazine. Inorganic Chemistry, 55(20), 10654-10665. doi:10.1021/acs.inorgchem.6b01901 es_ES
dc.description.references Clements, J. E., Price, J. R., Neville, S. M., & Kepert, C. J. (2014). Perturbation of Spin Crossover Behavior by Covalent Post-Synthetic Modification of a Porous Metal-Organic Framework. Angewandte Chemie International Edition, 53(38), 10164-10168. doi:10.1002/anie.201402951 es_ES
dc.description.references Li, J.-Y., Ni, Z.-P., Yan, Z., Zhang, Z.-M., Chen, Y.-C., Liu, W., & Tong, M.-L. (2014). Cyanide-bridged bimetallic 3D Hoffman-like coordination polymers with tunable magnetic behaviour. CrystEngComm, 16(28), 6444-6449. doi:10.1039/c4ce00342j es_ES
dc.description.references Li, J.-Y., He, C.-T., Chen, Y.-C., Zhang, Z.-M., Liu, W., Ni, Z.-P., & Tong, M.-L. (2015). Tunable cooperativity in a spin-crossover Hoffman-like metal–organic framework material by aromatic guests. Journal of Materials Chemistry C, 3(30), 7830-7835. doi:10.1039/c5tc00432b es_ES
dc.description.references Niel, V., Thompson, A. L., Goeta, A. E., Enachescu, C., Hauser, A., Galet, A., … Real, J. A. (2005). Thermal- and Photoinduced Spin-State Switching in an Unprecedented Three-Dimensional Bimetallic Coordination Polymer. Chemistry - A European Journal, 11(7), 2047-2060. doi:10.1002/chem.200400930 es_ES
dc.description.references Kosone, T., Suzuki, Y., Ono, S., Kanadani, C., Saito, T., & Kitazawa, T. (2010). A new spin crossover heterometallic FeIIAgI coordination polymer with the [Ag2(CN)3]− unit: crystallographic and magnetic study. Dalton Transactions, 39(7), 1786. doi:10.1039/b910354f es_ES
dc.description.references Li, J.-Y., Yan, Z., Ni, Z.-P., Zhang, Z.-M., Chen, Y.-C., Liu, W., & Tong, M.-L. (2014). Guest-Effected Spin-Crossover in a Novel Three-Dimensional Self-Penetrating Coordination Polymer with Permanent Porosity. Inorganic Chemistry, 53(8), 4039-4046. doi:10.1021/ic403069d es_ES
dc.description.references Muñoz, M. C., Gaspar, A. B., Galet, A., & Real, J. A. (2007). Spin-Crossover Behavior in Cyanide-Bridged Iron(II)−Silver(I) Bimetallic 2D Hofmann-like Metal−Organic Frameworks. Inorganic Chemistry, 46(20), 8182-8192. doi:10.1021/ic700607x es_ES
dc.description.references Galet, A., Muñoz, M. C., Gaspar, A. B., & Real, J. A. (2005). Architectural Isomerism in the Three-Dimensional Polymeric Spin Crossover System {Fe(pmd)2[Ag(CN)2]2}:  Synthesis, Structure, Magnetic Properties, and Calorimetric Studies. Inorganic Chemistry, 44(24), 8749-8755. doi:10.1021/ic0509074 es_ES
dc.description.references Soma, T., Yuge, H., & Iwamoto, T. (1994). Three-Dimensional Interpenetrating Double and Triple Framework Structures in[Cd(bpy)2{Ag(CN)2}2] and[Cd(pyrz){Ag2(CN)3}{Ag(CN)2}]. Angewandte Chemie International Edition in English, 33(1516), 1665-1666. doi:10.1002/anie.199416651 es_ES
dc.description.references Soma, T., Yuge, H., & Iwamoto, T. (1994). Strukturen mit zwei und drei sich durchdringenden dreidimensionalen Untergittern in [Cd(bpy)2{Ag(CN)2}2] bzw. [Cd(pyrz){Ag2(CN)3}{Ag(CN)2}]. Angewandte Chemie, 106(15-16), 1746-1748. doi:10.1002/ange.19941061547 es_ES
dc.description.references Sheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930 es_ES
dc.description.references G. M. Sheldrick SHELXL- 2014 2014 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem