- -

W-Nb-O oxides with tunable acid properties as efficient catalysts for the transformation of biomass-derived oxygenates in aqueous systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

W-Nb-O oxides with tunable acid properties as efficient catalysts for the transformation of biomass-derived oxygenates in aqueous systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Delgado-Muñoz, Daniel es_ES
dc.contributor.author Fernández-Arroyo, Alberto es_ES
dc.contributor.author Domine, Marcelo Eduardo es_ES
dc.contributor.author García-González, Ester es_ES
dc.contributor.author López Nieto, José Manuel es_ES
dc.date.accessioned 2020-11-11T04:32:21Z
dc.date.available 2020-11-11T04:32:21Z
dc.date.issued 2019-06-21 es_ES
dc.identifier.issn 2044-4753 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154804
dc.description.abstract [EN] W-Nb-O oxide bronzes, prepared hydrothermally, have been characterized and studied as catalysts for both the gas-phase dehydration of glycerol and the liquid-phase selective condensation of light oxygenates derived from primary treatments of biomass (a mixture containing acetic acid, ethanol, propanal, hydroxyacetone and water). By controlling the nominal composition of the catalysts, it is possible to tune their textural and acid properties (concentration and nature of acid sites) to selectively produce acrolein from glycerol or C-5-C-10 hydrocarbons (with low O contents and with high yields) from light oxygenates. Interestingly, these catalysts are stable when working in gas phase reactions and they are re-usable, with high resistance to leaching, when working in aqueous media. es_ES
dc.description.sponsorship Financial support by the Spanish Government (CTQ-2015-68951-C3-1, CTQ-2015-67592, MAT2016-78362-C4-4-R and SEV-2016-0683) and Generalitat Valenciana (GVA, PROMETEO/2018/006) is gratefully acknowledged. A. F.-A. and D. D. thank the "La Caixa-Severo Ochoa" Foundation and Severo Ochoa Excellence Program (SVP-2016-0683), respectively, for their fellowships. The authors thank the ICTS Centro Nacional de Microscopia Electronica (UCM) for instrumental facilities. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Catalysis Science & Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject W-Nb-O oxide catalyst es_ES
dc.subject Acid properties es_ES
dc.subject Transformation of biomass-derived oxygenates es_ES
dc.subject Aqueous phase es_ES
dc.title W-Nb-O oxides with tunable acid properties as efficient catalysts for the transformation of biomass-derived oxygenates in aqueous systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c9cy00367c es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-68951-C3-1-R/ES/TRATAMIENTOS CATALITICOS AVANZADOS PARA LA VALORIZACION DE LA BIOMASA Y LA ELIMINACION DE RESIDUOS ASOCIADOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F006/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-78362-C4-4-R/ES/MATERIALES PARA BATERIAS DE LITIO, POST LITIO Y PILAS DE COMBUSTIBLE: DEL LABORATORIO AL PROTOTIPO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099668-B-C21/ES/VALORIZACION DE CO2: CAPTURA, Y TRANSFORMACION CATALITICA PARA ALMACENAMIENTO DE ENERGIA, COMBUSTIBLES Y PRODUCTOS QUIMICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-67592-P/ES/VALORIZACION DE COMPUESTO OXIGENADOS PRESENTES EN FRACCIONES ACUOSAS DERIVADAS DE BIOMASA EN COMBUSTIBLES Y PRODUCTOS QUIMICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Delgado-Muñoz, D.; Fernández-Arroyo, A.; Domine, ME.; García-González, E.; López Nieto, JM. (2019). W-Nb-O oxides with tunable acid properties as efficient catalysts for the transformation of biomass-derived oxygenates in aqueous systems. Catalysis Science & Technology. 9(12):3126-3136. https://doi.org/10.1039/c9cy00367c es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c9cy00367c es_ES
dc.description.upvformatpinicio 3126 es_ES
dc.description.upvformatpfin 3136 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 12 es_ES
dc.relation.pasarela S\405396 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d es_ES
dc.description.references Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d es_ES
dc.description.references Tuck, C. O., Perez, E., Horvath, I. T., Sheldon, R. A., & Poliakoff, M. (2012). Valorization of Biomass: Deriving More Value from Waste. Science, 337(6095), 695-699. doi:10.1126/science.1218930 es_ES
dc.description.references Alonso, D. M., Bond, J. Q., & Dumesic, J. A. (2010). Catalytic conversion of biomass to biofuels. Green Chemistry, 12(9), 1493. doi:10.1039/c004654j es_ES
dc.description.references Huber, G. W., & Corma, A. (2007). Synergies between Bio- and Oil Refineries for the Production of Fuels from Biomass. Angewandte Chemie International Edition, 46(38), 7184-7201. doi:10.1002/anie.200604504 es_ES
dc.description.references Lari, G. M., Pastore, G., Haus, M., Ding, Y., Papadokonstantakis, S., Mondelli, C., & Pérez-Ramírez, J. (2018). Environmental and economical perspectives of a glycerol biorefinery. Energy & Environmental Science, 11(5), 1012-1029. doi:10.1039/c7ee03116e es_ES
dc.description.references Sun, D., Yamada, Y., Sato, S., & Ueda, W. (2017). Glycerol as a potential renewable raw material for acrylic acid production. Green Chemistry, 19(14), 3186-3213. doi:10.1039/c7gc00358g es_ES
dc.description.references Cespi, D., Passarini, F., Mastragostino, G., Vassura, I., Larocca, S., Iaconi, A., … Cavani, F. (2015). Glycerol as feedstock in the synthesis of chemicals: a life cycle analysis for acrolein production. Green Chemistry, 17(1), 343-355. doi:10.1039/c4gc01497a es_ES
dc.description.references Katryniok, B., Paul, S., Bellière-Baca, V., Rey, P., & Dumeignil, F. (2010). Glycerol dehydration to acrolein in the context of new uses of glycerol. Green Chemistry, 12(12), 2079. doi:10.1039/c0gc00307g es_ES
dc.description.references Venderbosch, R., & Prins, W. (2010). Fast pyrolysis technology development. Biofuels, Bioproducts and Biorefining, 4(2), 178-208. doi:10.1002/bbb.205 es_ES
dc.description.references Graça, I., Lopes, J. M., Cerqueira, H. S., & Ribeiro, M. F. (2013). Bio-oils Upgrading for Second Generation Biofuels. Industrial & Engineering Chemistry Research, 52(1), 275-287. doi:10.1021/ie301714x es_ES
dc.description.references Asadieraghi, M., Wan Daud, W. M. A., & Abbas, H. F. (2014). Model compound approach to design process and select catalysts for in-situ bio-oil upgrading. Renewable and Sustainable Energy Reviews, 36, 286-303. doi:10.1016/j.rser.2014.04.050 es_ES
dc.description.references Pinheiro, A., Hudebine, D., Dupassieux, N., & Geantet, C. (2009). Impact of Oxygenated Compounds from Lignocellulosic Biomass Pyrolysis Oils on Gas Oil Hydrotreatment. Energy & Fuels, 23(2), 1007-1014. doi:10.1021/ef800507z es_ES
dc.description.references Bui, V. N., Toussaint, G., Laurenti, D., Mirodatos, C., & Geantet, C. (2009). Co-processing of pyrolisis bio oils and gas oil for new generation of bio-fuels: Hydrodeoxygenation of guaïacol and SRGO mixed feed. Catalysis Today, 143(1-2), 172-178. doi:10.1016/j.cattod.2008.11.024 es_ES
dc.description.references Wang, F., Dubois, J.-L., & Ueda, W. (2010). Catalytic performance of vanadium pyrophosphate oxides (VPO) in the oxidative dehydration of glycerol. Applied Catalysis A: General, 376(1-2), 25-32. doi:10.1016/j.apcata.2009.11.031 es_ES
dc.description.references Foo, G. S., Wei, D., Sholl, D. S., & Sievers, C. (2014). Role of Lewis and Brønsted Acid Sites in the Dehydration of Glycerol over Niobia. ACS Catalysis, 4(9), 3180-3192. doi:10.1021/cs5006376 es_ES
dc.description.references Nogueira, F. G. E., Asencios, Y. J. O., Rodella, C. B., Porto, A. L. M., & Assaf, E. M. (2016). Alternative route for the synthesis of high surface-area η-Al2O3/Nb2O5 catalyst from aluminum waste. Materials Chemistry and Physics, 184, 23-30. doi:10.1016/j.matchemphys.2016.08.032 es_ES
dc.description.references Massa, M., Andersson, A., Finocchio, E., & Busca, G. (2013). Gas-phase dehydration of glycerol to acrolein over Al2O3-, SiO2-, and TiO2-supported Nb- and W-oxide catalysts. Journal of Catalysis, 307, 170-184. doi:10.1016/j.jcat.2013.07.022 es_ES
dc.description.references Massa, M., Andersson, A., Finocchio, E., Busca, G., Lenrick, F., & Wallenberg, L. R. (2013). Performance of ZrO 2 -supported Nb- and W-oxide in the gas-phase dehydration of glycerol to acrolein. Journal of Catalysis, 297, 93-109. doi:10.1016/j.jcat.2012.09.021 es_ES
dc.description.references Dalil, M., Carnevali, D., Dubois, J.-L., & Patience, G. S. (2015). Transient acrolein selectivity and carbon deposition study of glycerol dehydration over WO3/TiO2 catalyst. Chemical Engineering Journal, 270, 557-563. doi:10.1016/j.cej.2015.02.058 es_ES
dc.description.references Dalil, M., Carnevali, D., Edake, M., Auroux, A., Dubois, J.-L., & Patience, G. S. (2016). Gas phase dehydration of glycerol to acrolein: Coke on WO3/TiO2 reduces by-products. Journal of Molecular Catalysis A: Chemical, 421, 146-155. doi:10.1016/j.molcata.2016.05.022 es_ES
dc.description.references Soriano, M. D., Concepción, P., Nieto, J. M. L., Cavani, F., Guidetti, S., & Trevisanut, C. (2011). Tungsten-Vanadium mixed oxides for the oxidehydration of glycerol into acrylic acid. Green Chemistry, 13(10), 2954. doi:10.1039/c1gc15622e es_ES
dc.description.references Murayama, T., Nakajima, K., Hirata, J., Omata, K., Hensen, E. J. M., & Ueda, W. (2017). Hydrothermal synthesis of a layered-type W–Ti–O mixed metal oxide and its solid acid activity. Catalysis Science & Technology, 7(1), 243-250. doi:10.1039/c6cy02198k es_ES
dc.description.references La Salvia, N., Delgado, D., Ruiz-Rodríguez, L., Nadji, L., Massó, A., & Nieto, J. M. L. (2017). V- and Nb-containing tungsten bronzes catalysts for the aerobic transformation of ethanol and glycerol. Bulk and supported materials. Catalysis Today, 296, 2-9. doi:10.1016/j.cattod.2017.04.009 es_ES
dc.description.references Chieregato, A., Basile, F., Concepción, P., Guidetti, S., Liosi, G., Soriano, M. D., … Nieto, J. M. L. (2012). Glycerol oxidehydration into acrolein and acrylic acid over W–V–Nb–O bronzes with hexagonal structure. Catalysis Today, 197(1), 58-65. doi:10.1016/j.cattod.2012.06.024 es_ES
dc.description.references Chieregato, A., Soriano, M. D., García-González, E., Puglia, G., Basile, F., Concepción, P., … Cavani, F. (2014). Multielement Crystalline and Pseudocrystalline Oxides as Efficient Catalysts for the Direct Transformation of Glycerol into Acrylic Acid. ChemSusChem, 8(2), 398-406. doi:10.1002/cssc.201402721 es_ES
dc.description.references Chieregato, A., Bandinelli, C., Concepción, P., Soriano, M. D., Puzzo, F., Basile, F., … Nieto, J. M. L. (2016). Structure-Reactivity Correlations in Vanadium-Containing Catalysts for One-Pot Glycerol Oxidehydration to Acrylic Acid. ChemSusChem, 10(1), 234-244. doi:10.1002/cssc.201600954 es_ES
dc.description.references Deleplanque, J., Dubois, J.-L., Devaux, J.-F., & Ueda, W. (2010). Production of acrolein and acrylic acid through dehydration and oxydehydration of glycerol with mixed oxide catalysts. Catalysis Today, 157(1-4), 351-358. doi:10.1016/j.cattod.2010.04.012 es_ES
dc.description.references Delgado, D., Chieregato, A., Soriano, M. D., Rodríguez-Aguado, E., Ruiz-Rodríguez, L., Rodríguez-Castellón, E., & López Nieto, J. M. (2018). Influence of Phase Composition of Bulk Tungsten Vanadium Oxides on the Aerobic Transformation of Methanol and Glycerol. European Journal of Inorganic Chemistry, 2018(10), 1204-1211. doi:10.1002/ejic.201800059 es_ES
dc.description.references Pham, T. N., Sooknoi, T., Crossley, S. P., & Resasco, D. E. (2013). Ketonization of Carboxylic Acids: Mechanisms, Catalysts, and Implications for Biomass Conversion. ACS Catalysis, 3(11), 2456-2473. doi:10.1021/cs400501h es_ES
dc.description.references Faba, L., Díaz, E., & Ordóñez, S. (2014). One-pot Aldol Condensation and Hydrodeoxygenation of Biomass-derived Carbonyl Compounds for Biodiesel Synthesis. ChemSusChem, 7(10), 2816-2820. doi:10.1002/cssc.201402236 es_ES
dc.description.references Gaertner, C. A., Serrano-Ruiz, J. C., Braden, D. J., & Dumesic, J. A. (2009). Catalytic coupling of carboxylic acids by ketonization as a processing step in biomass conversion. Journal of Catalysis, 266(1), 71-78. doi:10.1016/j.jcat.2009.05.015 es_ES
dc.description.references Gangadharan, A., Shen, M., Sooknoi, T., Resasco, D. E., & Mallinson, R. G. (2010). Condensation reactions of propanal over CexZr1−xO2 mixed oxide catalysts. Applied Catalysis A: General, 385(1-2), 80-91. doi:10.1016/j.apcata.2010.06.048 es_ES
dc.description.references Wang, S., & Iglesia, E. (2017). Experimental and theoretical assessment of the mechanism and site requirements for ketonization of carboxylic acids on oxides. Journal of Catalysis, 345, 183-206. doi:10.1016/j.jcat.2016.11.006 es_ES
dc.description.references Wang, S., Goulas, K., & Iglesia, E. (2016). Condensation and esterification reactions of alkanals, alkanones, and alkanols on TiO2: Elementary steps, site requirements, and synergistic effects of bifunctional strategies. Journal of Catalysis, 340, 302-320. doi:10.1016/j.jcat.2016.05.026 es_ES
dc.description.references Fernández-Arroyo, A., Delgado, D., Domine, M. E., & López-Nieto, J. M. (2017). Upgrading of oxygenated compounds present in aqueous biomass-derived feedstocks over NbOx-based catalysts. Catalysis Science & Technology, 7(23), 5495-5499. doi:10.1039/c7cy00916j es_ES
dc.description.references Nakajima, K., Hirata, J., Kim, M., Gupta, N. K., Murayama, T., Yoshida, A., … Ueda, W. (2017). Facile Formation of Lactic Acid from a Triose Sugar in Water over Niobium Oxide with a Deformed Orthorhombic Phase. ACS Catalysis, 8(1), 283-290. doi:10.1021/acscatal.7b03003 es_ES
dc.description.references Goto, Y., Shimizu, K., Kon, K., Toyao, T., Murayama, T., & Ueda, W. (2016). NH3-efficient ammoxidation of toluene by hydrothermally synthesized layered tungsten-vanadium complex metal oxides. Journal of Catalysis, 344, 346-353. doi:10.1016/j.jcat.2016.10.013 es_ES
dc.description.references Omata, K., Matsumoto, K., Murayama, T., & Ueda, W. (2016). Direct oxidative transformation of glycerol to acrylic acid over Nb-based complex metal oxide catalysts. Catalysis Today, 259, 205-212. doi:10.1016/j.cattod.2015.07.016 es_ES
dc.description.references Blanch-Raga, N., Soriano, M. D., Palomares, A. E., Concepción, P., Martínez-Triguero, J., & Nieto, J. M. L. (2013). Catalytic abatement of trichloroethylene over Mo and/or W-based bronzes. Applied Catalysis B: Environmental, 130-131, 36-43. doi:10.1016/j.apcatb.2012.10.016 es_ES
dc.description.references BOTELLA, P. (2004). Selective oxidative dehydrogenation of ethane on MoVTeNbO mixed metal oxide catalysts. Journal of Catalysis, 225(2), 428-438. doi:10.1016/j.jcat.2004.04.024 es_ES
dc.description.references Yun, Y., Araujo, J. R., Melaet, G., Baek, J., Archanjo, B. S., Oh, M., … Somorjai, G. A. (2017). Activation of Tungsten Oxide for Propane Dehydrogenation and Its High Catalytic Activity and Selectivity. Catalysis Letters, 147(3), 622-632. doi:10.1007/s10562-016-1915-2 es_ES
dc.description.references Yun, Y. S., Lee, K. R., Park, H., Kim, T. Y., Yun, D., Han, J. W., & Yi, J. (2014). Rational Design of a Bifunctional Catalyst for the Oxydehydration of Glycerol: A Combined Theoretical and Experimental Study. ACS Catalysis, 5(1), 82-94. doi:10.1021/cs501307v es_ES
dc.description.references Soriano, M. D., Chieregato, A., Zamora, S., Basile, F., Cavani, F., & López Nieto, J. M. (2015). Promoted Hexagonal Tungsten Bronzes as Selective Catalysts in the Aerobic Transformation of Alcohols: Glycerol and Methanol. Topics in Catalysis, 59(2-4), 178-185. doi:10.1007/s11244-015-0440-7 es_ES
dc.description.references Nadji, L., Massó, A., Delgado, D., Issaadi, R., Rodriguez-Aguado, E., Rodriguez-Castellón, E., & Nieto, J. M. L. (2018). Gas phase dehydration of glycerol to acrolein over WO3-based catalysts prepared by non-hydrolytic sol–gel synthesis. RSC Advances, 8(24), 13344-13352. doi:10.1039/c8ra01575a es_ES
dc.description.references Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145 es_ES
dc.description.references Murayama, T., Kuramata, N., Takatama, S., Nakatani, K., Izumi, S., Yi, X., & Ueda, W. (2012). Synthesis of porous and acidic complex metal oxide catalyst based on group 5 and 6 elements. Catalysis Today, 185(1), 224-229. doi:10.1016/j.cattod.2011.10.029 es_ES
dc.description.references HIBST, H., ROSOWSKI, F., & COX, G. (2006). New Cs-containing Mo–V4+ based oxides with the structure of the M1 phase—Base for new catalysts for the direct alkane activation. Catalysis Today, 117(1-3), 234-241. doi:10.1016/j.cattod.2006.05.045 es_ES
dc.description.references Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5), 751-767. doi:10.1107/s0567739476001551 es_ES
dc.description.references Szilágyi, I. M., Madarász, J., Pokol, G., Király, P., Tárkányi, G., Saukko, S., … Varga-Josepovits, K. (2008). Stability and Controlled Composition of Hexagonal WO3. Chemistry of Materials, 20(12), 4116-4125. doi:10.1021/cm800668x es_ES
dc.description.references Maczka, M., Hanuza, J., Kojima, S., Majchrowski, A., & van der Maas, J. H. (2001). Vibrational spectra of KNbW2O9 hexagonal tungsten bronze. Journal of Raman Spectroscopy, 32(4), 287-291. doi:10.1002/jrs.697 es_ES
dc.description.references McConnell, A. A., Aderson, J. S., & Rao, C. N. R. (1976). Raman spectra of niobium oxides. Spectrochimica Acta Part A: Molecular Spectroscopy, 32(5), 1067-1076. doi:10.1016/0584-8539(76)80291-7 es_ES
dc.description.references Jehng, J. M., & Wachs, I. E. (1991). Structural chemistry and Raman spectra of niobium oxides. Chemistry of Materials, 3(1), 100-107. doi:10.1021/cm00013a025 es_ES
dc.description.references Jehng, J.-M., & Wachs, I. E. (1990). Niobium Oxalate. ACS Symposium Series, 232-242. doi:10.1021/bk-1990-0437.ch021 es_ES
dc.description.references Soriano, M. D., García-González, E., Concepción, P., Rodella, C. B., & López Nieto, J. M. (2017). Self-Organized Transformation from Hexagonal to Orthorhombic Bronze of Cs–Nb–W–O Mixed Oxides Prepared Hydrothermally. Crystal Growth & Design, 17(12), 6320-6331. doi:10.1021/acs.cgd.7b00999 es_ES
dc.description.references Oshihara, K., Hisano, T., & Ueda, W. (2001). Topics in Catalysis, 15(2/4), 153-160. doi:10.1023/a:1016630307377 es_ES
dc.description.references Suwannakarn, K., Lotero, E., & Goodwin, J. G. (2007). Solid Brønsted Acid Catalysis in the Gas-Phase Esterification of Acetic Acid. Industrial & Engineering Chemistry Research, 46(22), 7050-7056. doi:10.1021/ie070536u es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem