- -

Microhabitat preferences of fish assemblages in the Udzungwa Mountains (Eastern Africa)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Microhabitat preferences of fish assemblages in the Udzungwa Mountains (Eastern Africa)

Mostrar el registro completo del ítem

Muñoz-Mas, R.; Sánchez-Hernández, J.; Martinez-Capel, F.; Tamatamah, R.; Mohamedi, S.; Massinde, R.; Mcclain, ME. (2019). Microhabitat preferences of fish assemblages in the Udzungwa Mountains (Eastern Africa). Ecology Of Freshwater Fish. 28(3):473-484. https://doi.org/10.1111/eff.12469

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/155699

Ficheros en el ítem

Metadatos del ítem

Título: Microhabitat preferences of fish assemblages in the Udzungwa Mountains (Eastern Africa)
Autor: Muñoz-Mas, Rafael Sánchez-Hernández, Javier Martinez-Capel, Francisco Tamatamah, Rashid Mohamedi, Shafi Massinde, Richard McClain, Michael E.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Fecha difusión:
Resumen:
[EN] Environmental flow assessment (EFA) involving microhabitat preference models is a common approach to set ecologically friendly flow regimes in territories with ongoing or planned projects to develop river basins, such ...[+]
Palabras clave: Constrained additive ordination , Environmental drivers , Environmental flow assessment , Fish communities , Fuzzy rule-based system , Stream-dwelling fish
Derechos de uso: Reserva de todos los derechos
Fuente:
Ecology Of Freshwater Fish. (issn: 0906-6691 )
DOI: 10.1111/eff.12469
Editorial:
Blackwell Publishing
Versión del editor: https://doi.org/10.1111/eff.12469
Código del Proyecto:
info:eu-repo/grantAgreement/Generalitat de Catalunya//2017 SGR 548/
...[+]
info:eu-repo/grantAgreement/Generalitat de Catalunya//2017 SGR 548/
info:eu-repo/grantAgreement/USAID//IRRIP2
info:eu-repo/grantAgreement/MINECO//FJCI-2016-30829/
info:eu-repo/grantAgreement/USAID//I2C
info:eu-repo/grantAgreement/MINECO//CGL2016-80820-R/
info:eu-repo/grantAgreement/AEI//PCIN-2016-168/ES/ODYSSEUS/
[-]
Agradecimientos:
We thank C. Alexander and an anonymous referee for constructive comments on the submitted manuscript. This study was financed by the United States Agency for International Development (USAID) as part of the Technical ...[+]
Tipo: Artículo

References

Akbaripasand, A., & Closs, G. P. (2017). Effects of food supply and stream physical characteristics on habitat use of a stream-dwelling fish. Ecology of Freshwater Fish, 27(1), 270-279. doi:10.1111/eff.12345

Alexander, C., Poulsen, F., Robinson, D. C. E., Ma, B. O., … Luster, R. A. (2018). Improving Multi-Objective Ecological Flow Management with Flexible Priorities and Turn-Taking: A Case Study from the Sacramento River and Sacramento–San Joaquin Delta. San Francisco Estuary and Watershed Science, 16(1). doi:10.15447/sfews.2018v16iss1/art2

ALLOUCHE, S. (2002). NATURE AND FUNCTIONS OF COVER FOR RIVERINE FISH. Bulletin Français de la Pêche et de la Pisciculture, (365-366), 297-324. doi:10.1051/kmae:2002037 [+]
Akbaripasand, A., & Closs, G. P. (2017). Effects of food supply and stream physical characteristics on habitat use of a stream-dwelling fish. Ecology of Freshwater Fish, 27(1), 270-279. doi:10.1111/eff.12345

Alexander, C., Poulsen, F., Robinson, D. C. E., Ma, B. O., … Luster, R. A. (2018). Improving Multi-Objective Ecological Flow Management with Flexible Priorities and Turn-Taking: A Case Study from the Sacramento River and Sacramento–San Joaquin Delta. San Francisco Estuary and Watershed Science, 16(1). doi:10.15447/sfews.2018v16iss1/art2

ALLOUCHE, S. (2002). NATURE AND FUNCTIONS OF COVER FOR RIVERINE FISH. Bulletin Français de la Pêche et de la Pisciculture, (365-366), 297-324. doi:10.1051/kmae:2002037

Ardia, D., Boudt, K., Carl, P., Mullen, K., M., & Peterson, B., G. (2011). Differential Evolution with DEoptim. The R Journal, 3(1), 27. doi:10.32614/rj-2011-005

Arthington, A. H., Bunn, S. E., Poff, N. L., & Naiman, R. J. (2006). THE CHALLENGE OF PROVIDING ENVIRONMENTAL FLOW RULES TO SUSTAIN RIVER ECOSYSTEMS. Ecological Applications, 16(4), 1311-1318. doi:10.1890/1051-0761(2006)016[1311:tcopef]2.0.co;2

Austin, M. (2007). Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecological Modelling, 200(1-2), 1-19. doi:10.1016/j.ecolmodel.2006.07.005

Bain, M. B., Finn, J. T., & Booke, H. E. (1985). A Quantitative Method for Sampling Riverine Microhabitats by Electrofishing. North American Journal of Fisheries Management, 5(3B), 489-493. doi:10.1577/1548-8659(1985)5<489:aqmfsr>2.0.co;2

Baselga, A., & Araújo, M. B. (2009). Individualistic vs community modelling of species distributions under climate change. Ecography, 32(1), 55-65. doi:10.1111/j.1600-0587.2009.05856.x

CAMP, E. V., GWINN, D. C., PINE III, W. E., & FRAZER, T. K. (2011). Changes in submersed aquatic vegetation affect predation risk of a common prey fish Lucania parva (Cyprinodontiformes: Fundulidae) in a spring-fed coastal river. Fisheries Management and Ecology, 19(3), 245-251. doi:10.1111/j.1365-2400.2011.00827.x

Cheng, B., & Li, H. (2018). Agricultural economic losses caused by protection of the ecological basic flow of rivers. Journal of Hydrology, 564, 68-75. doi:10.1016/j.jhydrol.2018.06.065

Cotula, L. (2012). The international political economy of the global land rush: A critical appraisal of trends, scale, geography and drivers. The Journal of Peasant Studies, 39(3-4), 649-680. doi:10.1080/03066150.2012.674940

Dudgeon, D. (2000). The Ecology of Tropical Asian Rivers and Streams in Relation to Biodiversity Conservation. Annual Review of Ecology and Systematics, 31(1), 239-263. doi:10.1146/annurev.ecolsys.31.1.239

Eccles D. H.(1992).Field guide to the freshwater fishes of Tanzania. FAO species identification sheets for fishery purposes.Rome Italy:FAO: Food & Agriculture Organization of the United Nations.

Elisa, M., Gara, J. I., & Wolanski, E. (2010). A review of the water crisis in Tanzania’s protected areas, with emphasis on the Katuma River—Lake Rukwa ecosystem. Ecohydrology & Hydrobiology, 10(2-4), 153-165. doi:10.2478/v10104-011-0001-z

Friedman, J. H. (2001). machine. The Annals of Statistics, 29(5), 1189-1232. doi:10.1214/aos/1013203451

Fukuda, S., De Baets, B., Waegeman, W., Verwaeren, J., & Mouton, A. M. (2013). Habitat prediction and knowledge extraction for spawning European grayling (Thymallus thymallus L.) using a broad range of species distribution models. Environmental Modelling & Software, 47, 1-6. doi:10.1016/j.envsoft.2013.04.005

Fukuda, S., Mouton, A. M., & De Baets, B. (2011). Abundance versus presence/absence data for modelling fish habitat preference with a genetic Takagi–Sugeno fuzzy system. Environmental Monitoring and Assessment, 184(10), 6159-6171. doi:10.1007/s10661-011-2410-2

Garbe, J., Beevers, L., & Pender, G. (2016). The interaction of low flow conditions and spawning brown trout ( Salmo trutta ) habitat availability. Ecological Engineering, 88, 53-63. doi:10.1016/j.ecoleng.2015.12.011

Gibson, R. J. (1993). The Atlantic salmon in fresh water: spawning, rearing and production. Reviews in Fish Biology and Fisheries, 3(1), 39-73. doi:10.1007/bf00043297

Ibanez, C., Oberdorff, T., Teugels, G., Mamononekene, V., Lavoué, S., Fermon, Y., … Toham, A. K. (2007). Fish assemblages structure and function along environmental gradients in rivers of Gabon (Africa). Ecology of Freshwater Fish, 16(3), 315-334. doi:10.1111/j.1600-0633.2006.00222.x

JOHNSON, J. H., & DOUGLASS, K. A. (2009). Diurnal stream habitat use of juvenile Atlantic salmon, brown trout and rainbow trout in winter. Fisheries Management and Ecology, 16(5), 352-359. doi:10.1111/j.1365-2400.2009.00680.x

Kadye, W. T., & Chakona, A. (2012). Spatial and temporal variation of fish assemblage in two intermittent streams in north-western Zimbabwe. African Journal of Ecology, 50(4), 428-438. doi:10.1111/j.1365-2028.2012.01338.x

Kadye, W. T., & Moyo, N. A. G. (2008). Stream fish assemblage and habitat structure in a tropical African river basin (Nyagui River, Zimbabwe). African Journal of Ecology, 46(3), 333-340. doi:10.1111/j.1365-2028.2007.00843.x

Kouamé, K. A., Yao, S. S., Gooré Bi, G., Kouamélan, E. P., N’Douba, V., & Kouassi, N. J. (2007). Influential environmental gradients and patterns of fish assemblages in a West African basin. Hydrobiologia, 603(1), 159-169. doi:10.1007/s10750-007-9256-1

Logez, M., Bady, P., & Pont, D. (2011). Modelling the habitat requirement of riverine fish species at the European scale: sensitivity to temperature and precipitation and associated uncertainty. Ecology of Freshwater Fish, 21(2), 266-282. doi:10.1111/j.1600-0633.2011.00545.x

Maguire, K. C., Nieto-Lugilde, D., Blois, J. L., Fitzpatrick, M. C., Williams, J. W., Ferrier, S., & Lorenz, D. J. (2016). Controlled comparison of species- and community-level models across novel climates and communities. Proceedings of the Royal Society B: Biological Sciences, 283(1826), 20152817. doi:10.1098/rspb.2015.2817

McClain, M. E., Kashaigili, J. J., & Ndomba, P. (2013). Environmental flow assessment as a tool for achieving environmental objectives of African water policy, with examples from East Africa. International Journal of Water Resources Development, 29(4), 650-665. doi:10.1080/07900627.2013.781913

McClain, M. E., Subalusky, A. L., Anderson, E. P., Dessu, S. B., Melesse, A. M., Ndomba, P. M., … Mligo, C. (2014). Comparing flow regime, channel hydraulics, and biological communities to infer flow–ecology relationships in the Mara River of Kenya and Tanzania. Hydrological Sciences Journal, 59(3-4), 801-819. doi:10.1080/02626667.2013.853121

Mouton, A. M., Alcaraz-Hernández, J. D., De Baets, B., Goethals, P. L. M., & Martínez-Capel, F. (2011). Data-driven fuzzy habitat suitability models for brown trout in Spanish Mediterranean rivers. Environmental Modelling & Software, 26(5), 615-622. doi:10.1016/j.envsoft.2010.12.001

Mouton, A. M., De Baets, B., & Goethals, P. L. M. (2010). Ecological relevance of performance criteria for species distribution models. Ecological Modelling, 221(16), 1995-2002. doi:10.1016/j.ecolmodel.2010.04.017

Mouton, A. M., Schneider, M., Peter, A., Holzer, G., Müller, R., Goethals, P. L. M., & De Pauw, N. (2008). Optimisation of a fuzzy physical habitat model for spawning European grayling (Thymallus thymallus L.) in the Aare river (Thun, Switzerland). Ecological Modelling, 215(1-3), 122-132. doi:10.1016/j.ecolmodel.2008.02.028

Mullen, K., Ardia, D., Gil, D., Windover, D., & Cline, J. (2011). DEoptim: AnRPackage for Global Optimization by Differential Evolution. Journal of Statistical Software, 40(6). doi:10.18637/jss.v040.i06

Muñoz-Mas, R., Marcos-Garcia, P., Lopez-Nicolas, A., Martínez-García, F. J., Pulido-Velazquez, M., & Martínez-Capel, F. (2018). Combining literature-based and data-driven fuzzy models to predict brown trout (Salmo trutta L.) spawning habitat degradation induced by climate change. Ecological Modelling, 386, 98-114. doi:10.1016/j.ecolmodel.2018.08.012

Muñoz-Mas, R., Martínez-Capel, F., Alcaraz-Hernández, J. D., & Mouton, A. M. (2015). Can multilayer perceptron ensembles model the ecological niche of freshwater fish species? Ecological Modelling, 309-310, 72-81. doi:10.1016/j.ecolmodel.2015.04.025

Muñoz-Mas, R., Martínez-Capel, F., Alcaraz-Hernández, J. D., & Mouton, A. M. (2017). On species distribution modelling, spatial scales and environmental flow assessment with Multi–Layer Perceptron Ensembles: A case study on the redfin barbel (Barbus haasi; Mertens, 1925). Limnologica, 62, 161-172. doi:10.1016/j.limno.2016.09.004

Muñoz-Mas, R., Martínez-Capel, F., Schneider, M., & Mouton, A. M. (2012). Assessment of brown trout habitat suitability in the Jucar River Basin (SPAIN): Comparison of data-driven approaches with fuzzy-logic models and univariate suitability curves. Science of The Total Environment, 440, 123-131. doi:10.1016/j.scitotenv.2012.07.074

Muñoz-Mas, R., Papadaki, C., Martínez-Capel, F., Zogaris, S., Ntoanidis, L., & Dimitriou, E. (2016). Generalized additive and fuzzy models in environmental flow assessment: A comparison employing the West Balkan trout (Salmo farioides; Karaman, 1938). Ecological Engineering, 91, 365-377. doi:10.1016/j.ecoleng.2016.03.009

Ngugi, C. C., Manyala, J. O., Njiru, M., & Mlewa, C. M. (2009). Some aspects of the biology of the stargazer mountain catfish,Amphilius uranoscopus(pfeffer); (Siluriformes: Amphiliidae) indigenous to Kenya streams. African Journal of Ecology, 47(4), 606-613. doi:10.1111/j.1365-2028.2009.01032.x

Novák, V., & Lehmke, S. (2006). Logical structure of fuzzy IF-THEN rules. Fuzzy Sets and Systems, 157(15), 2003-2029. doi:10.1016/j.fss.2006.02.011

Pease, A. A., Taylor, J. M., Winemiller, K. O., & King, R. S. (2015). Ecoregional, catchment, and reach-scale environmental factors shape functional-trait structure of stream fish assemblages. Hydrobiologia, 753(1), 265-283. doi:10.1007/s10750-015-2235-z

Petts, G. E. (2009). Instream Flow Science For Sustainable River Management. JAWRA Journal of the American Water Resources Association, 45(5), 1071-1086. doi:10.1111/j.1752-1688.2009.00360.x

POFF, N. L., & ZIMMERMAN, J. K. H. (2010). Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biology, 55(1), 194-205. doi:10.1111/j.1365-2427.2009.02272.x

Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., … Stromberg, J. C. (1997). The Natural Flow Regime. BioScience, 47(11), 769-784. doi:10.2307/1313099

POFF, N. L., RICHTER, B. D., ARTHINGTON, A. H., BUNN, S. E., NAIMAN, R. J., KENDY, E., … WARNER, A. (2010). The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshwater Biology, 55(1), 147-170. doi:10.1111/j.1365-2427.2009.02204.x

Reiser, D. W., & Hilgert, P. J. (2018). A Practitioner’s Perspective on the Continuing Technical Merits of PHABSIM. Fisheries, 43(6), 278-283. doi:10.1002/fsh.10082

ROBERTS, T. R. (1975). Geographical distribution of African freshwater fishes. Zoological Journal of the Linnean Society, 57(4), 249-319. doi:10.1111/j.1096-3642.1975.tb01893.x

Sánchez-Hernández, J., Gabler, H.-M., & Amundsen, P.-A. (2017). Prey diversity as a driver of resource partitioning between river-dwelling fish species. Ecology and Evolution, 7(7), 2058-2068. doi:10.1002/ece3.2793

Scheidegger, K. J., & Bain, M. B. (1995). Larval Fish Distribution and Microhabitat Use in Free-Flowing and Regulated Rivers. Copeia, 1995(1), 125. doi:10.2307/1446807

SCHMIDT, R. C., BART, H. L. J., & NYINGI, W. D. (2015). <p><strong>Two new species of African suckermouth catfishes, genus <em>Chiloglanis</em> (Siluriformes: Mochokidae), from Kenya with remarks on other taxa </strong><strong>from the area</strong></p>. Zootaxa, 4044(1), 45. doi:10.11646/zootaxa.4044.1.2

Schoelynck, J., Creëlle, S., Buis, K., De Mulder, T., Emsens, W.-J., Hein, T., … Folkard, A. (2018). What is a macrophyte patch? Patch identification in aquatic ecosystems and guidelines for consistent delineation. Ecohydrology & Hydrobiology, 18(1), 1-9. doi:10.1016/j.ecohyd.2017.10.005

Skelton P. H.(2001).A complete guide to the freshwater fishes of southern Africa. Struik.

Somodi, I., Lepesi, N., & Botta-Dukát, Z. (2017). Prevalence dependence in model goodness measures with special emphasis on true skill statistics. Ecology and Evolution, 7(3), 863-872. doi:10.1002/ece3.2654

Storn, R., & Price, K. (1997). Journal of Global Optimization, 11(4), 341-359. doi:10.1023/a:1008202821328

Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15(1), 116-132. doi:10.1109/tsmc.1985.6313399

Tharme, R. E. (2003). A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Research and Applications, 19(5-6), 397-441. doi:10.1002/rra.736

Theodoropoulos, C., Skoulikidis, N., Stamou, A., & Dimitriou, E. (2018). Spatiotemporal Variation in Benthic-Invertebrates-Based Physical Habitat Modelling: Can We Use Generic Instead of Local and Season-Specific Habitat Suitability Criteria? Water, 10(11), 1508. doi:10.3390/w10111508

Vadas, R. L., Vadas, R. L., & Orth, D. J. (2000). Environmental Biology of Fishes, 59(3), 253-269. doi:10.1023/a:1007613701843

Van Oosterhout, M. P., van der Velde, G., & Gaigher, I. G. (2008). High altitude mountain streams as a possible refuge habitat for the catfish Amphilius uranoscopus. Environmental Biology of Fishes, 84(1), 109-120. doi:10.1007/s10641-008-9394-y

Vezza, P., Parasiewicz, P., Rosso, M., & Comoglio, C. (2011). DEFINING MINIMUM ENVIRONMENTAL FLOWS AT REGIONAL SCALE: APPLICATION OF MESOSCALE HABITAT MODELS AND CATCHMENTS CLASSIFICATION. River Research and Applications, 28(6), 717-730. doi:10.1002/rra.1571

Vilizzi, L., Stakenas, S., & Copp, G. H. (2012). Use of constrained additive and quadratic ordination in fish habitat studies: an application to introduced pumpkinseed (Lepomis gibbosus) and native brown trout (Salmo trutta) in an English stream. Fundamental and Applied Limnology, 180(1), 69-75. doi:10.1127/1863-9135/2012/0277

Webb, J. A., de Little, S. C., Miller, K. A., & Stewardson, M. J. (2018). Quantifying and predicting the benefits of environmental flows: Combining large-scale monitoring data and expert knowledge within hierarchical Bayesian models. Freshwater Biology, 63(8), 831-843. doi:10.1111/fwb.13069

Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., & Guisan, A. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14(5), 763-773. doi:10.1111/j.1472-4642.2008.00482.x

Worthington E. B.(1929).A Report on the Fishing Survey of Lakes Albert and Kioga: March to July 1928. Government of Uganda Protectorate by the Crown Agents for the Colonies.

Yee, T. W. (2006). CONSTRAINED ADDITIVE ORDINATION. Ecology, 87(1), 203-213. doi:10.1890/05-0283

Yee, T. W. (2010). TheVGAMPackage for Categorical Data Analysis. Journal of Statistical Software, 32(10). doi:10.18637/jss.v032.i10

Yen, J., & Liang Wang. (1998). Application of statistical information criteria for optimal fuzzy model construction. IEEE Transactions on Fuzzy Systems, 6(3), 362-372. doi:10.1109/91.705503

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-x

Zhou, S.-M., & Gan, J. Q. (2008). Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling. Fuzzy Sets and Systems, 159(23), 3091-3131. doi:10.1016/j.fss.2008.05.016

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem