- -

Spatial scale effect on the upper soil effective parameters of a distributed hydrological model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Spatial scale effect on the upper soil effective parameters of a distributed hydrological model

Mostrar el registro completo del ítem

Barrios, M.; Francés, F. (2012). Spatial scale effect on the upper soil effective parameters of a distributed hydrological model. Hydrological Processes. 26(7):1022-1033. doi:10.1002/hyp.8193

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/46332

Ficheros en el ítem

Metadatos del ítem

Título: Spatial scale effect on the upper soil effective parameters of a distributed hydrological model
Autor: Barrios, M. Francés, F.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
Nonlinear dynamics and spatial variability in hydrological systems make the formulation of scaling theories difficult. Therefore, the development of knowledge related to scale effects, scaling techniques, parameterization ...[+]
Palabras clave: Spatial variability , Effective parameters , Representative elementary area , Hydrological modelling
Derechos de uso: Cerrado
Fuente:
Hydrological Processes. (issn: 0885-6087 )
DOI: 10.1002/hyp.8193
Editorial:
Wiley
Versión del editor: http://dx.doi.org/10.1002/hyp.8193
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CGL2008-06474-C02-02/ES/SIMULACION Y ANALISIS DE FRECUENCIA DE LAS CRECIDAS CON ESCENARIOS DE CAMBIOS CLIMATICO Y MEDIOAMBIENTALES EN CUENCAS MEDITERRANEAS/
info:eu-repo/grantAgreement/MICINN//CSD2009-00065/ES/Evaluación y predicción de los efectos del cambio global en la cantidad y la calidad del agua en ríos ibéricos/
info:eu-repo/grantAgreement/EU/ALBan/E07D402940DO/
Agradecimientos:
This work was supported by the Programme ALBan, the European Union Programme of High Level Scholarships for Latin America, scholarship E07D402940DO, and by the Spanish research projects FLOOD-MED (CGL2008-06474-C02-02/BTE) ...[+]
Tipo: Artículo

References

Beven, K. (1993). Prophecy, reality and uncertainty in distributed hydrological modelling. Advances in Water Resources, 16(1), 41-51. doi:10.1016/0309-1708(93)90028-e

Shivakoti, B. R., Fujii, S., Boontanon, S. K., Ihara, H., Moriya, M., & Tanaka, S. (2008). Grid size effects on a distributed water quantity-quality model in a hilly watershed. Water Science and Technology, 58(9), 1829-1836. doi:10.2166/wst.2008.566

Blöschl, G., Sivapalan, M., Gupta, V., Beven, K., & Lettenmaier, D. (1997). Preface to the special section on Scale Problems in Hydrology. Water Resources Research, 33(12), 2881-2881. doi:10.1029/97wr02826 [+]
Beven, K. (1993). Prophecy, reality and uncertainty in distributed hydrological modelling. Advances in Water Resources, 16(1), 41-51. doi:10.1016/0309-1708(93)90028-e

Shivakoti, B. R., Fujii, S., Boontanon, S. K., Ihara, H., Moriya, M., & Tanaka, S. (2008). Grid size effects on a distributed water quantity-quality model in a hilly watershed. Water Science and Technology, 58(9), 1829-1836. doi:10.2166/wst.2008.566

Blöschl, G., Sivapalan, M., Gupta, V., Beven, K., & Lettenmaier, D. (1997). Preface to the special section on Scale Problems in Hydrology. Water Resources Research, 33(12), 2881-2881. doi:10.1029/97wr02826

Blöschl, G., & Zehe, E. (2005). On hydrological predictability. Hydrological Processes, 19(19), 3923-3929. doi:10.1002/hyp.6075

Ceddia, M. B., Vieira, S. R., Villela, A. L. O., Mota, L. dos S., Anjos, L. H. C. dos, & Carvalho, D. F. de. (2009). Topography and spatial variability of soil physical properties. Scientia Agricola, 66(3), 338-352. doi:10.1590/s0103-90162009000300009

Dehotin, J., & Braud, I. (2008). Which spatial discretization for distributed hydrological models? Proposition of a methodology and illustration for medium to large-scale catchments. Hydrology and Earth System Sciences, 12(3), 769-796. doi:10.5194/hess-12-769-2008

Didszun, J., & Uhlenbrook, S. (2008). Scaling of dominant runoff generation processes: Nested catchments approach using multiple tracers. Water Resources Research, 44(2). doi:10.1029/2006wr005242

Fan, Y., & Bras, R. L. (1995). On the concept of a representative elementary area in catchment runoff. Hydrological Processes, 9(7), 821-832. doi:10.1002/hyp.3360090708

Francés, F., Vélez, J. I., & Vélez, J. J. (2007). Split-parameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology, 332(1-2), 226-240. doi:10.1016/j.jhydrol.2006.06.032

Francés F Vélez JJ Vélez JI Puricelli M 2002 Distributed modelling of large basins for a real time flood forecasting system in Spain Second Federal Interagency Hydrologic Modeling Conference

Ghan, S. J., Liljegren, J. C., Shaw, W. J., Hubbe, J. H., & Doran, J. C. (1997). Influence of Subgrid Variability on Surface Hydrology. Journal of Climate, 10(12), 3157-3166. doi:10.1175/1520-0442(1997)010<3157:iosvos>2.0.co;2

Hellebrand, H., & van den Bos, R. (2008). Investigating the use of spatial discretization of hydrological processes in conceptual rainfall runoff modelling: a case study for the meso‐scale. Hydrological Processes, 22(16), 2943-2952. doi:10.1002/hyp.6909

Heuvelink, G. B. M., & Pebesma, E. J. (1999). Spatial aggregation and soil process modelling. Geoderma, 89(1-2), 47-65. doi:10.1016/s0016-7061(98)00077-9

Lee, G., Tachikawa, Y., & Takara, K. (2009). Interaction between Topographic and Process Parameters due to the Spatial Resolution of DEMs in Distributed Rainfall-Runoff Modeling. Journal of Hydrologic Engineering, 14(10), 1059-1069. doi:10.1061/(asce)he.1943-5584.0000098

Liang, X., Guo, J., & Leung, L. R. (2004). Assessment of the effects of spatial resolutions on daily water flux simulations. Journal of Hydrology, 298(1-4), 287-310. doi:10.1016/j.jhydrol.2003.07.007

Liang, X., Lettenmaier, D. P., & Wood, E. F. (1996). One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. Journal of Geophysical Research: Atmospheres, 101(D16), 21403-21422. doi:10.1029/96jd01448

Liang, X., & Xie, Z. (2001). A new surface runoff parameterization with subgrid-scale soil heterogeneity for land surface models. Advances in Water Resources, 24(9-10), 1173-1193. doi:10.1016/s0309-1708(01)00032-x

Merz, R., Parajka, J., & Blöschl, G. (2009). Scale effects in conceptual hydrological modeling. Water Resources Research, 45(9). doi:10.1029/2009wr007872

Molnár, D. K., & Julien, P. Y. (2000). Grid-Size Effects on Surface Runoff Modeling. Journal of Hydrologic Engineering, 5(1), 8-16. doi:10.1061/(asce)1084-0699(2000)5:1(8)

Pinder, G. F., & Celia, M. A. (2006). Subsurface Hydrology. doi:10.1002/0470044209

Rodriguez-Iturbe, I., & Mejía, J. M. (1974). On the transformation of point rainfall to areal rainfall. Water Resources Research, 10(4), 729-735. doi:10.1029/wr010i004p00729

Rojas, R., Velleux, M., Julien, P. Y., & Johnson, B. E. (2008). Grid Scale Effects on Watershed Soil Erosion Models. Journal of Hydrologic Engineering, 13(9), 793-802. doi:10.1061/(asce)1084-0699(2008)13:9(793)

Samaniego, L., Kumar, R., & Attinger, S. (2010). Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resources Research, 46(5). doi:10.1029/2008wr007327

Seyfried, M. S., & Wilcox, B. P. (1995). Scale and the Nature of Spatial Variability: Field Examples Having Implications for Hydrologic Modeling. Water Resources Research, 31(1), 173-184. doi:10.1029/94wr02025

Shrestha, R., Tachikawa, Y., & Takara, K. (2006). Input data resolution analysis for distributed hydrological modeling. Journal of Hydrology, 319(1-4), 36-50. doi:10.1016/j.jhydrol.2005.04.025

Sivapalan, M. (2003). Process complexity at hillslope scale, process simplicity at the watershed scale: is there a connection? Hydrological Processes, 17(5), 1037-1041. doi:10.1002/hyp.5109

SIVAPALAN, M., TAKEUCHI, K., FRANKS, S. W., GUPTA, V. K., KARAMBIRI, H., LAKSHMI, V., … ZEHE, E. (2003). IAHS Decade on Predictions in Ungauged Basins (PUB), 2003–2012: Shaping an exciting future for the hydrological sciences. Hydrological Sciences Journal, 48(6), 857-880. doi:10.1623/hysj.48.6.857.51421

Sivapalan, M., & Woods, R. A. (1995). Evaluation of the effects of general circulation models’ subgrid variability and patchiness of rainfall and soil moisture on land surface water balance fluxes. Hydrological Processes, 9(5-6), 697-717. doi:10.1002/hyp.3360090515

Vauclin, M., Elrick, D. E., Thony, J. L., Vachaud, G., Revol, P., & Ruelle, P. (1994). Hydraulic conductivity measurements of the spatial variability of a loamy soil. Soil Technology, 7(3), 181-195. doi:10.1016/0933-3630(94)90020-5

Vázquez, R. F., Feyen, L., Feyen, J., & Refsgaard, J. C. (2002). Effect of grid size on effective parameters and model performance of the MIKE-SHE code. Hydrological Processes, 16(2), 355-372. doi:10.1002/hyp.334

Vélez JJ Francés F López F 2007 Calibration strategy for hydrological distributed conceptual models Earth: Our Changing Planet. Proceedings of IUGG XXIV General Assembly 4675

Vélez, J. J., Puricelli, M., López Unzu, F., & Francés, F. (2009). Parameter extrapolation to ungauged basins with a hydrological distributed model in a regional framework. Hydrology and Earth System Sciences, 13(2), 229-246. doi:10.5194/hess-13-229-2009

Viney N Sivapalan M 2001 Scaling of hydrologic conceptualizations: Approaches to handling subgrid variability Proceedings of MODSIM 2001, International Congress on Modelling and Simulation 383 388

Viney, N. R., & Sivapalan, M. (2004). A framework for scaling of hydrologic conceptualizations based on a disaggregation–aggregation approach. Hydrological Processes, 18(8), 1395-1408. doi:10.1002/hyp.1419

Wood, E. F. (1998). Scale Analyses for Land-Surface Hydrology. Scale Dependence and Scale Invariance in Hydrology, 1-29. doi:10.1017/cbo9780511551864.002

Wood, E. F., Sivapalan, M., Beven, K., & Band, L. (1988). Effects of spatial variability and scale with implications to hydrologic modeling. Journal of Hydrology, 102(1-4), 29-47. doi:10.1016/0022-1694(88)90090-x

Woods, R., Sivapalan, M., & Duncan, M. (1995). Investigating the representative elementary area concept: An approach based on field data. Hydrological Processes, 9(3-4), 291-312. doi:10.1002/hyp.3360090306

Zehe, E., & Blöschl, G. (2004). Predictability of hydrologic response at the plot and catchment scales: Role of initial conditions. Water Resources Research, 40(10). doi:10.1029/2003wr002869

Zeng, X.-M., Zhao, M., Su, B.-K., Tang, J.-P., Zheng, Y.-Q., Zhang, Y.-J., & Chen, J. (2002). Effects of subgrid heterogeneities in soil infiltration capacity and precipitation on regional climate: a sensitivity study. Theoretical and Applied Climatology, 73(3-4), 207-221. doi:10.1007/s00704-002-0673-9

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem