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Abstract 

It is impossible to take accurate measurements in photogrammetry without first removing the distortion in images. This 

paper presents a methodology for correcting radial and tangential distortion and for determining the PBS (Point of Best 

Symmetry) without knowledge of the interior orientation parameters (IOPs). An analytical plumb-line calibration 

method is used, measuring only the coordinates of points on straight lines, regardless of the position and direction of 

these lines within the image. Points belonging to multiple lines can also be used since the effects on their X and Y 

coordinates are calculated independently. The results obtained on an image of a common scene, taken with a handheld 

non-metric camera, show a high degree of accuracy even with a minimum number of observables. And its application 

on a calibrated grid for engineering purposes with a semi-metric camera, results optimal even using a single image.  
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1. Introduction 

Camera calibration is a basic operation in many photogrammetric processes, since without knowledge of the 
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calibration parameters it is impossible to take accurate measurements. Because of the importance of this issue, many 

textbooks on photogrammetry and computer vision have dealt with it extensively [1-5] as well as numerous 

publications in international journals [6-7]. 

The two basic models of camera calibration work include, firstly, those based on perspective projection by 

collinearity, where the IOPs are assumed to be stable and collinearity can be applied by using collections of images. 

These non-linear techniques provide highly accurate results using least-squares processes and allow the IOPs to be 

obtained [8], while linear techniques are very fast but can offer only imprecise radial distortion calculations [9]. 

Secondly, there are models based on the fundamental matrix, which allow changes in the IOPs but which also give 

unstable results. It is common for 3D objects to be used for these models because planar point arrays cannot be 

accommodated [10]. Although a third working model based on a combination of the previous two also exists [11-12], 

it is not commonly used and has been absorbed by other models based on iterative calculation [7]. 

Undoubtedly the most widely used mathematical model is collinearity [13-14], where the minimum quadratic fit can 

provide very accurate results in a single process while also providing the IOPs. However, certain conditions must 

exist in order to achieve such results: multiple converging photos of a 3D object with either a good geometrical point 

distribution or a calibration pattern with known coordinate points (in which case the photos must be orthogonal, very 

convergent, and taken from different distances). This method actually works well but has the disadvantage of 

requiring multiple images and initial values in order to solve the iterative process. The same issues occur with DLT-

based work [9]. This means that the use of point-based models is much more widespread in photogrammetry while 

line-based models, referred to as plumb-line calibration, have not been applied as frequently or as recently [8,15-18]. 

However, several studies have now shown that not all of the IOPs are required in the relative orientation process for 

generating models, in which case it is only necessary to correct for image distortion in order for the approach to work 

[19]. The fact that it is possible to create 3D using algorithms independent of the IOPs means that calibration work 

can be reduced to the mere determination of distortion parameters. From this point of view, the use of the plumb-line 

method becomes optimal, since it is based on geometrical constraints on the image. A clear example of this 

methodology is seen in [16], where an algorithm based on the equation of a line of the type ·cos ·sinx y     is 

proposed. This approach calls for application of prior knowledge of the θ direction of the line after the coordinates 

have been corrected for distortion. This entails making a rough initial calculation with a first initial value for the 

direction of the line, then initiating an iterative calculation process by changing the θ value in the equation in 
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accordance with the results obtained in the previous iteration. Thus each point in the image presents an equation. It 

therefore follows that this method cannot be used for points belonging to two or more lines, since the same point 

would have different residuals depending upon the line considered. This approach is also used by [18], who use the 

Hough transform and calculate the points found along a straight line through θ and ρ, to later make the correction. 

The present paper presents an algorithm based on the plumb-line method but developed from the equation of a 

straight line passing through three points. This approach involves substantial differences compared to previous ones 

and can treat each point independently for each coordinate (x and y), which allows a reliability test to be performed 

as well as independent weighting within the system. For every three points an equation is generated, which 

represents a reduction of two equations and two unknowns for each line (it is not necessary to know the direction of 

the line or its position within the image). Additionally, use of a point of intersection of two lines (a circumstance that 

will occur when using a calibration grid) is optimal under our methodology, although such points have been unusable 

in previous approaches. Furthermore, the algorithm developed allows distortion and PBS decentering to be 

determined even when using a single image, and it also allows different solutions to be established depending upon 

the accuracy to be achieved. 

2. Development of the image distortion correction algorithm 

The distortion algorithm will be the one that manages to rectify the curves, transforming them into straight lines. To 

that end, we define each line in the image by measuring at least 3 points along its route, (2 points always determine a 

line but they cannot determine its curvature), with these points being as far apart as possible to ensure that they are 

not in a straight line. Any chosen point in the image  ,i ix y   has measured coordinates ( , )im imx y . The difference 

between the coordinates of the selected points and the measurement result (which will have to be corrected of radial 

and tangential distortion) will be given by (1): 

       , , ,i i im im i i PBS PBSx y x y dx dy dx dy          (1) 

where 

( , )i idx dy : measurement error vector (or residual) 

 )dy,dx( PBSPBS : coordinates of the PBS (point of best symmetry). 

2.1. Obtaining the distortion equation 

Definition of the radial distortion at any point i of an image using odd degree polynomials ( r ir ) is commonly given 
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by (2): 

3 5· · · ...r i i i ir a r b r c r          (2) 

where 

2 2
i i ir x y   : radius vector of any point ),( ii yx 

 with distortion with respect to the PBS 

,...,, cba : radial distortion polynomial coefficients  

Breaking down the value of (2) based upon the components of the radius vector, a polynomial radial distortion is 

obtained for each coordinate using (3): 

2 4

2 4

·( · · ...)

·( · · ...)

r i i i i

r i i i i

x x a b r c r

y y a b r c r

    

    
     (3) 

Tangential distortion would be given by (4): 

2 2
1 2

2 2
1 2

·( 2· ) 2· · ·

·( 2· ) 2· · ·

t i i i i i

t i i i i i

x P r x P x y

y P r y P x y

     

     
 

    (4) 

where 

:P,P 21  tangential distortion polynomial coefficients  

Whereby, the calculation of the distortion-corrected coordinates ),( ii yx  for any point of the image i results from (5): 

2 4 2 2
1 2

2 4 2 2
2 2

·(1 · · ...) ·( 2· ) 2· · ·

·(1 · · ...) ·( 2· ) 2· · ·

i i r i t i i i i i i i i

i i r i t i i i i i i i i

x x x x x a b r c r P r x P x y

y y y y y a b r c r P r y P x y

                

                
   (5) 

According to (5), the higher the value of r, the higher the value of the additional term will be according to the degree 

of the polynomial. Consequently, the number of terms used will be significant, while for smaller r values only the 

first terms will be of interest. The first term in the expression describes the start of the distortion function and the 

successive terms describe its variation trend.  

In order to determine the distortion coefficients we will measure points on straight lines that appear in the image as 

curved lines. By measuring three points on a straight line  111 , yxP ,  222 , yxP , and  333 , yxP , the image 

coordinates must satisfy (6): 

 
 

 
 

2 1 3 1

2 1 3 1

0
x x x x

k
y y y y

 
  

 
     (6) 

Equation 6 is linearized by Taylor polynomials (only first order) obtaining (7): 
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0 0
dk dk dk dk

k d d d d
d d d d

   
   

          (7) 

where 

 : decentering coordinates )dy,dx( PBSPBS  

: radial distortion coefficients (a,b,c…) 

: tangential distortion coefficients (P1 and P2) 

: resiaduals for each point (dxi , dyi) 

being k0 the equation value using image coordinates and initial values for ,, and . 

Substituting (5) into the linearized (7) we obtain (8):  

     
 

0 0 1 1 1 2 2
0 1 2 1 2 3 1 1 2 2

1 0 2 0 3 1 4 1 5 2 6 2

· · · · · ... · ·

· · · · · · 0

PBS PBSk k dx k dy k a k b k c k P k P

k dx k dy k dx k dy k dx k dy

        

      
    (8) 

where 

       0 2 1 3 1 3 1 2 1· ·m m m m m m m mk x x y y x x y y         

PBS decentering coefficients: 

       0 2 4 2 4 2 4 2 4
1 2 2 1 1 3 1 3 3 1 1 3 1· · .... · · ... · · · .... · · ... ·m m m mk b r c r b r c r y y b r c r b r c r y y               

       0 2 4 2 4 2 4 2 4
2 2 1 3 3 1 1 3 1 2 2 1 1· · · .... · · ... · · · .... · · ...m m m mk x x b r c r b r c r x x b r c r b r c r               

Radial distortion coefficients: 

       1
1 2 1 3 1 3 1 2 1· ·m m m m m m m mk x x y y x x y y         

       
       

1 2 2 2 2
2 2 2 1 1 3 1 2 1 3 3 1 1

2 2 2 2
3 3 1 1 2 1 3 1 2 2 1 1

[ · · · · · ·

· · · · · · ]

m m m m m m m m

m m m m m m m m

k x r x r y y x x y r y r

x r x r y y x x y r y r

      

     
 

       
       

1 4 4 4 4
3 2 2 1 1 3 1 2 1 3 3 1 1

4 4 4 4
3 3 1 1 2 1 3 1 2 2 1 1

[ · · · · · ·

· · · · · · ]

m m m m m m m m

m m m m m m m m

k x r x r y y x x y r y r

x r x r y y x x y r y r

      

     
 

Tangential distortion coefficients: 

       
       

2 2 2 2 2
1 2 2 1 1 3 1 2 1 3 3 1 1

2 2 2 2
3 3 1 1 2 1 3 1 2 2 1 1

2· 2· · · 2· · 2· ·

2· 2· · · 2· · 2· ·

m m m m

m m m m

k r x r x y y x x x y x y

r x r x y y x x x y x y

        

       
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       
       

2 2 2 2 2
2 3 3 1 1 2 1 3 1 2 2 1 1

2 2 2 2
2 2 1 1 3 1 2 1 3 3 1 1

2· 2· · · 2· · 2· ·

2· 2· · · 2· · 2· ·

m m m m

m m m m

k r y r y x x y y x y x y

r y r y x x y y x y x y

        

       
 

Coefficients of measurement error (residuals): 

 1 2 1 3 1( ) ( )m m m mk y y y y           

 2 2 1 3 1( ) ( )m m m mk x x x x           

3 3 1( )m mk y y          

4 3 1( )m mk x x          

5 2 1( )m mk y y          

6 2 1( )m mk x x       

2.2. Analysis of the coefficients and particularization of the equation 

The independent term k0 shows the numerical misalignment of the three points studied. Since the distortion causes 

small displacements in the image, the coefficient 1
1k  will yield a value that is practically zero, which means that it 

cannot provide a reliable value according to our equation. This result is logical since the coefficient multiplies the 

coordinates in a linear manner ( , )im imx y , so that just by taking its value into account, a valuable scale factor is 

obtained for the image (1 )a . In order for the 3 points studied to be in a straight line, the only possible scale factor 

corresponds to a value 1a   , an absurdly trivial solution. Accordingly, we dispense with the value a, assigning it a 

null value because it does not affect the calculation. The application of the formulation developed for determining 

the distortion can be split into four specific cases as presented below. 

2.2.1. Definition of a straight line with 3 points 

With three points, only a single equation with a single coefficient is possible (a determinate system with a single 

solution). The particularized (8) results as 1 1 1
0 1 2 3· · · 0k k a k b k c     where 1

1 0k   according to the established 

hypothesis. The distortion equation is reduced according to (9): 

1
0 2· 0k k b        (9) 

where 1
2 0b k k   since the expression allows the calculation of a single coefficient and requires c, as well as the 

differential coefficients, to take on a null value because the system becomes determinate. 
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2.2.2. Definition of a straight line with 4 points. 

With four points we can propose two equations with two coefficients, b and c (a determinate system with a single 

solution). The calculation consists of generating a simple system of two equations with two unknowns, which results 

from applying (8) to the first 3 and last 3 points. The resulting values would be derived according to (10): 

   1 1
0 3 0 2

1 1
2 3

· ·k k c k k b
b c

k k

   
        (10) 

2.2.3. Definition of a straight line with more than 4 points. 

Calculating more than two coefficients is not reliable in the case of digital images, since the value of all coefficients 

after the third (d and subsequent) influence the distortion correction only within a pixel (geometric information 

obtained with the accuracy of a single pixel cannot have a determining effect). However, an approach where more 

than two coefficients are obtained allows us to determine the consistency of the values obtained using reliability 

tests, while study of the covariance matrix enables us to determine the accuracy and consistency obtained for the 

coefficients. 

The number proposed for (8) for the distortion calculation will be n-2, with n being the number of measured points. 

This produces a redundant iterative system of n-2 equations and as many unknowns as the number of coefficients we 

wish to determine. The system of equations obtained is the one shown below as (11). Its resolution by least squares 

will obtain the coefficients as well as the residuals for each of the measured coordinates. Finally, covariance and 

cofactor matrices will be obtained and internal and external reliability tests can then be applied to the resulting 

solution: 

         · ·A X B R L        (11) 

where 

 
1,1 ,1

1, 2 , 2

...

... ... ...

...

n

n n n

A A

A

A A 

 
   
  

: matrix of coefficients of the unknowns 

  b
X

c

 
  
 

: vector of unknowns 

[B]: matrix of coefficients of the residuals, a dispersed matrix that only has 6 non-zero coefficients per row 

(corresponding to the columns belonging to the three points used in the equation that builds the row). 
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 
1

...

n

dx

R

dy

 
   
  

: residual vector with 2n rows. 

0,1

0, 2

[ ] ...

n

L

L

L 

 
   
  

: vector of independent terms with n-2 rows. 

To solve the system we need to establish the weight matrix of the residuals [P]. If all points have been measured with 

the same accuracy, [P] results a square matrix with the dimensions (2∙n,2∙n). This matrix is arranged so that each 

coordinate has an integer weight, being P(i,i)=1 if each coordinate has the same weight and P(i,j)=0 for the rest 

(being i and j the files and columns of the matrix respectively). However, it is possible to reduce the accuracy of any 

point by lowering the unit value corresponding to its row. Although the resolution of the system is independent of the 

order in which the points are raised and ordered, the two most extreme points on the straight line should be used in 

all equations, taking one of the others as the third point. 

The solution for [X] will be given by minimizing [R] in equation (11) through Lagrange coefficients [] (12): 

         
       

1 1

1

· · ·

· ·

t

t

X S A M L

R P B 

 






     (12) 

where 

 

       
       
          

1

1

· ·

· ·

· ·

t

t

S A M A

M B P B

M A X L









  

 

The cofactor matrices ][],[ rrxx QQ  and covariance matrices ][],[ rrxx   of [X] and [R] that allow us to analyze the 

solution are given by (13): 

   
               
   
   

1

1 1 1

2
0

2
0

· · · · · ·

·

·

xx

t

rr

xx xx

rr rr

Q S

Q P B M H M B P

Q

Q

 

 



  









    (13) 

where, 
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            
     

1 1

2
0

· · ·

· ·

t

t

E C

H I A S A M

R P R

N N


  




 

and where NE is the number of equations and NC is the number of coefficients to be determined (usually two: b and 

c). 

2.2.4. Definition of multiple straight lines with more than 4 points in each 

If each line i is defined by ni points then we can define ni-2 equations for each line, forming a system of equations 

with as many unknowns as the number of coefficients we wish to determine. The system calculation is carried out 

through (11), taking into account that the vector of unknowns now yields (14): 

  1

2

PBS

PBS

b

c

P
X

P

dx

dy

 
 
 
 

  
 
 
 
  

      (14) 

Everything expressed above with respect to (12) and (13) remains valid in relation to reliability, accuracy of the 

results, and number of coefficients that we are able to determine. 

 

 

 

 

 

 

 

 

 

Figure 1. Point 1: point corrected for distortion using a residual for measurement error. Points 2 and 3: corrected positions for point 1 by the 

conventional method based upon the straight line studied. Point 4: position of point 1 corrected using the new algorithm, Eq. (8). 
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  3 

     2 

  4 
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The proposed calculation allows the use of points belonging to multiple lines simultaneously, taking into account the 

fact that each point must have a unique residual for each coordinate (dxi or dyi), the unknowns of which must be in 

vector [R].  In contrast, in the traditional methods an algorithm is proposed based upon the equation of a line of the 

type ·cos ·sinx y      [16]. For its resolution a residual is added to the equation in the direction perpendicular to 

the straight line. The solutions for the system allow the minimum value of the corrections for the measured points to 

be obtained so that they are aligned after the correction is applied. 

However, the correction for x and y must be analyzed independently in order to obtain the minimum displacement 

that will align the points, using (8). The traditional methods present a problem when a point belongs to multiple 

straight lines. In such cases, resolution of the system provides a different residual value for the same point on the 

different lines (Fig. 1). Since it is not possible to use a single residual value to correct the position of the point for all 

of the lines at once, these points will end up being inconsistent and will become unusable. In the case where grids 

are used (the usual case in calibration), all of the points belong to multiple straight lines. This means that the 

traditional method will generate multiple equations under erroneous conditions compared to the algorithm developed 

in the present work. When applying (8), the unknowns are unique for each point, regardless of whether the point 

belongs to one straight line or more than one, and therefore many more equations with many more points can be 

generated (with the points found at the intersections of straight lines being optimal). 

3. Results 

The algorithm developed uses only the coordinates of points and IOPs are therefore not required, which means that it 

is possible to correct images of unknown origin (scanned form a textbook, video frames, etc.). In this section we will 

therefore analyze two different cases. For the first case a photograph has been taken using a handheld, non-metric 

camera (photographing a common scene), which will be used to check the method’s accuracy depending upon the 

number of coefficients calculated. For the second case, photos were taken of a calibration grid using a semi-metric 

camera designed for engineering purposes, with this portion of the study used to check the method’s accuracy versus 

the most widely used software applied in this type of work. Because no internal parameters are used, no data are 

shown for either of the cameras. 

3.1. Applying the algorithm to a photo from a handheld (non-metric) camera 

In order to check the accuracy of the algorithm in relation to the number of coefficients calculated, we have taken a 

photograph of a normal scene with a handheld camera, with the photo including a favorable type of object (one large 
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rectangular element that occupies almost the entire image). Points were measured on the straight lines of the object, 

which appear curved in the image. In order to assess the accuracy with which the algorithm corrects the image 

(depending upon the options proposed), different configurations of points were taken on the same element, 

progressively increasing the redundancy in the calculation. First 3 points were taken on each edge, then 4 points, and 

finally 8 points, with different adjustments made in each case (Fig. 2). 

 

 
 

Figure 2. a) Image with distortion and with 28 points measured (on 4 straight lines).  
b) Image distortion corrected using the algorithm developed. 

 

The results obtained for the distortion coefficients and PBS decentering value using (8) are shown in Table 1 below 

for each case. 

Distance from 
the origin 

Distortion 
(Adjustment using 3 

points) 

Distortion 
(Adjustment using 4 

points) 

Distortion 
(Adjustment using 8 

points) 

0 0.00 0.00 0.00 

100 -3.58 -2.99 -3.06 

200 -6.82 -5.73 -5.86 

300 -9.37 -7.92 -8.11 

400 -10.90 -9.30 -9.52 

500 -11.07 -9.55 -9.78 

600 -9.54 -8.34 -8.55 

700 -5.96 -5.30 -5.43 

800 0.00 0.00 0.00 

900 8.69 8.01 8.23 

1000 20.45 19.27 19.80 

Coefficient a -3.63472e-2 -3.03821e-2 -3.10661e-2 
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Coefficient b 5.67924e-8 4.36000e-8 4.44000e-8 

Coefficient c --- 6.05000e-15 6.47000e-15 

Coefficient P1 --- --- 8.33e-10 

Coefficient P2 --- --- -6.42e-10 

dxPBS --- --- 44.5 

dyPBS --- --- 30.2 
 

Table 1. Distortion coefficients and PBS decentering values resulting from the adjustment with lines defined by 3 points, 4 points and 8 points 

(expressed as pixels). 

 
The results for the radial distortion coefficients show significant variation in the b coefficient between the 3-point 

adjustment and the other two. On the other hand, the variations in coefficient b and coefficient c between the 4-point 

adjustments and the >4 point adjustments are minimal. Calculation of the tangential distortion and decentering of the 

PBS is only possible in the case with >4 points (see section 2.2.4). Therefore, the adjustment of straight lines using 3 

points is possible, but the accuracy is insufficient and it does not allow calculation of the c coefficient, the value of 

which is shown to be relevant in the distortion curve, whereas when using 4 points or more this is possible (Fig. 3). 
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Figure 3. Distortion curves obtained by adjustment using straight lines with 3 points (blue), 4 points (red) and >4 points (green). 
 

In these processes it is necessary to stablish null distortion, having three possibilities: it is possible to stablish null 

distortion at the beginning (distance = 0), it is possible to stablish just the half area of the photogram inside dr=0 and 

the other half outside dr=0, or it is possible to stablish null distortion at any point. As it can be seen in Figure 3, in 

this case the second option has been chosen. 
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Since the coordinate measurements can be taken very quickly using any image processing software, it is logical to 

always perform redundant measurements so that the best possible settings can be obtained and the accuracy can be 

analyzed using reliability tests. Using the 4 straight lines measured in the image in this case, if all of the points are 

used the resulting system has 20 equations (the first and third lines have 8 points and each generate 6 equations, the 

second and fourth lines have 6 points and each generate 4 equations), and there are 2 unknowns for distortion (b and 

c), 2 for PBS decentering (dx and dy), and 2 for tangential distortion (P1 and P2). This means that as seen in Table 2 

there are 14 redundancies obtained for the equations. 

 Eq. 1 Eq. 2 Eq. 3 Eq. 4 Eq. 5 Eq. 6 
Line 1 (points 1-8) 0.62 0.51 0.75 0.79 0.62 0.51 
Line 2 (points 9-14) 0.76 0.70 0.75 0.79 --- --- 

Line 3 (points 15-22) 0.69 0.82 0.59 0.68 0.76 0.59 
Line 4 (points 23-28) 0.74 0.80 0.74 0.78 --- --- 

 
Table 2. Particularized redundancies obtained for each equation in each line measured 

 
The plot of the cofactor matrix of the residuals characterizes the contribution of each coordinate to the system, 

resulting in the cofactor matrix diagonal of the residuals (Table 3). 

 Line 1 Line 2 Line 3 Line 4 

 x y x y x y x y 

1st point 0.00 0.14 0.62 0.00 0.12 0.54 0.39 0.00 

2nd point 0.12 0.49 0.27 0.00 0.00 0.19 0.62 0.00 

3rd point 0.11 0.47 0.39 0.00 0.08 0.46 0.28 0.00 

4th point 0.12 0.45 0.52 0.00 0.13 0.46 0.57 0.00 

5th point 0.00 0.13 0.53 0.00 0.00 0.35 0.54 0.00 

6th point 0.11 0.47 0.66 0.00 0.12 0.45 0.64 0.00 

7th point 0.12 0.48 --- --- 0.11 0.54 --- --- 

8th point 0.11 0.46 --- --- 0.13 0.49 --- --- 
 

Table 3. The cofactor matrix diagonal of the residuals for each measured point in each line (expressed as pixels) 

 

Based upon their smaller values it can be seen that lines 2 and 4 are nearly vertical and it is the x-coordinate that 

affects the issue. Similarly, lines 1 and 3 are nearly horizontal and it is the y-coordinate that really causes the 

problem. The residuals obtained and their values according to the Baarda test result are shown for the first line in 

Table 4. 

Line 1 Coordinate Residual Baarda Test value 

1st point 
X 0.01 2.50 

Y 0.21 2.92 
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2nd point 
X -0.01 0.17 

Y -0.37 1.52 

3rd point 
X -0.03 0.54 

Y 0.36 1.53 

4th point 
X 0.02 0.33 

Y -0.39 1.74 

5th point 
X 0.01 2.50 

Y 0.14 2.19 

6th point 
X 0.01 0.18 

Y 0.16 0.68 

7th point 
X -0.03 0.50 

Y -0.18 0.75 

8th point 
X 0.04 0.71 

Y 0.12 0.52 
 

Table 4. Residuals obtained (expressed as pixels) and associated Baarda Test values for each coordinate of each point on Line 1.  

 
Analysis of the lines 2, 3, and 4 can be performed in the same way. This method thus enables us to study the 

redundancy of any point, whether it belongs to n straight lines or not. We can also obtain the redundancy of each 

equation for each of the lines regardless of which points may affect it. If any equation or point has a small 

redundancy, we can study the geometry that causes this and add more points or improve the positions of the 

measured points. 

Once the calculations are complete the covariance matrix can be obtained for the unknowns, which can then be used 

to calculate the accuracy of each of the corrected coordinates or vector positions in the image. Table 5 shows the 

application of 4 values for r. 

r  σr 
0 0.40 

500 0.44 
1000 1.65 
1500 6.61 

 
Table 5. Standard deviation values for the position of a distortion-corrected point 

(expressed as pixels). 

 
3.2. Applying the algorithm when using a calibration grid for engineering purposes (semi-metric camera) 

Now that the algorithm and its capability for analysis have been validated, its accuracy can also be confirmed using a 

calibration process (for both the typical and most demanding circumstances in which it will be applied) by means of 

a grid. Camera calibration is a basic task in photogrammetry that is usually carried out by using calibration grids, and 
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in this case we make use the Photomodeler® calibration grid). This grid will provide high data density in order to 

generate very precise redundant calculation systems (Fig. 4).  We then compare the results obtained using the 

algorithm presented in this paper to the results obtained using Photomodeler® as well as those obtained by using 

other algorithms based on plumb-line methods. 

 

 
 

Figure 4. A sample of the images using the Photomodeler® calibration grid (out of ten total). 
 
 

This comparison was initiated by taking a total of ten photographs of a calibration grid with 121 marks. Next we 

calculated the distortion coefficients and PBS decentering value using the newly developed algorithm as well as by 

using Photomodoler® software (which is conventionally used in this type of work) in order to analyze the results. 

In both cases the calculation was performed using the total number of points, and in both cases we also used the 

Photomodeler® automatic measurement points in order to make use of the same observables, so that any variations 

obtained could only be caused by the algorithms. The total number of lines employed in each of the images was of 

56 (30 horizontal or vertical lines and 26 diagonal lines). Table 6 presents a comparison of the results obtained using 

the newly developed algorithm and those obtained using Photomodeler®. 

 

 dxPBS dyPBS Coefficient 
b  

Coefficient 
c  

Coefficient  
P1 

Coefficient  
P2 

σ0 

Adjustment using 1 
image (60 lines) 

24.11 -12.61 1.813e-4 -7.792e-7 6.479e-6 -13.91e-6 0.236 
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Adjustment using 3 
images (180 lines) 

21.32 -15.62 1.794e-4 -7.842e-7 6.406e-6 -14.21e-6 0.324 

Adjustment using 6 
images (360 lines) 

26.49 -24.65 1.789e-4 -7.764e-7 6.314e-6 -12.36e-6 0.339 

Adjustment using 10 
images (600 lines) 

19.44 -20.11 1.787e-4 -7.751e-7 6.308e-6 -13.90e-6 0.352 

Photomodeler® --- --- 1.804e-4 -7.737e-7 6.232e-6 -13.13e-6 0.472 
 

Table 6. Coefficients resulting from adjustment using the new algorithm (with 1 image, 3 images, 6 images, and 10 images) and using Photomodeler®.  

 

The differences obtained for the values of the PBS are seen in Table 6. Photomodeler® does not include this 

calculation; instead it calculates the principal point of autocollimation (PPA) and uses this as an approximation for 

the PBS. With respect to the differences seen in the coefficients of tangential distortion compared to Photomodeler®, 

these are also negligible since for radius values of 1000 pixels they are all less than 1 pixel (Table 7). 

 

Tangential distortion 
at 1000 pixels 

Difference versus 
Photomodeler® 

15.34 0.81 
15.59 0.95 
13.88 -0.65 
15.32 0.79 
14.53 0.00 

 
Table 7. Differences in tangential distortion (expressed as pixels).   

 

The graph below shows the distortion polynomials resulting from the previous calculation (Table 6) and their 

differences from those calculated using Photomodeler® (Fig. 5): 
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Figure 5: Distortion differences obtained in the four settings using the new algorithm (Table 2) with respect to Photomodeler® 

 
 

As before, null distortion has to be stablished too. In this case we have stablished it at 20mm distance (being 

approximately a half of the photogram area). In Table 6 it can be seen that when compared to the adjustment using 

10 images, the adjustment made using a single image presents a maximum deviation of 1.4% for coefficient b and 

0.53% for coefficient c, while with Photomodeler® the absolute variations in the solution offered under the different 

settings show maximum differences of 0.9% for coefficient b and 1.3% for coefficient c. Based upon these results 

(taking into account that the same observables were used), and noting that the change in the accuracy of the 

adjustment can be considered to be no more than 1.5% when using more than one image, we can say that the 

algorithm successfully solves the determination of distortion using a single image, while Photomodeler® requires a 

minimum of 6 to provide a reliability similar to that obtained according to our statistical indicators (standard 

deviations of 0.236, 0.324, and 0.352 for the adjustments using 1, 3, and 10 images, respectively). Figure 6 shows the 

resulting images of the calibration grid after correcting distortion using the new algorithm developed. 
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Figure 6. Corrected images of the calibrated grid (out of ten total). 

 
 
With respect to the traditional algorithms based on plumb-lines, a sample of the previous calculation can be seen 

below. Four lines have been used, where points 1, 2, 3, and 4 each belong to two straight lines (Fig. 7). With 

traditional methods these would have to be eliminated since their residuals would differ depending upon which line 

they were considered as belonging to, while with the new algorithm developed as (8), the same residual value is 

obtained regardless of the line considered (Table 8). 
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Figure 7. a) Calibration grid with 16 points selected for calculation of distortion. Points 1, 2, 3, and 4 each belong to two straight lines. b) Scheme 

defined for points and straight lines. 

 

  New algorithm, (8) Traditional algorithms 
Line Point Residual x Residual y Residual x Residual y 

Line 1 

1 0.22 0.23 0.00 -0.22 
2 -0.17 -0.17 -0.00 -0.16 

139 0.00 -0.41 0.00 0.39 
142 0.00 0.36 0.00 0.36 
145 -0.01 -0.32 -0.01 -0.32 

Line 2 

3 -0.12 0.16 -0.01 0.16 
4 0.26 -0.14 0.00 -0.15 

205 0.03 -0.40 0.01 -0.40 
208 -0.00 0.32 -0.00 0.32 
211 -0.01 0.11 -0.01 0.10 

Line 3 

1 0.22 0.23 0.23 0.00 
3 -0.12 0.16 -0.12 0.00 

123 -0.23 0.00 -0.23 0.00 
172 -0.18 -0.00 -0.18 -0.00 
221 0.25 0.01 0.25 0.01 

Line 4 

2 -0.17 -0.17 -0.17 -0.00 
4 0.26 -0.14 0.25 -0.00 

129 0.11 0.00 0.10 0.00 
178 -0.16 0.01 -0.16 0.01 
227 -0.04 -0.01 -0.04 -0.01 

 
Table 8. Residuals calculated using the two methods, for points that define the four lines in the image that contain common  

points (expressed in pixels).  

 
 
4. Conclusions 

The algorithm proposed has been shown to be valid and the process of application has proven to be simple and quick, 

since it only requires measurement of a series of points aligned along different lines in the image (which are straight 

lines in the object space). The method can be applied manually in the case of conventional scenarios or else 

automatically when using calibration grids.  

The adjustment process requires the start and end of each line to be defined so that our software can calculate the 

possible combinations of lines with intermediate points (horizontal, vertical, and diagonal). In cases where a 

calibration grid is employed, the availability of points always allows calculation by least squares. However, if only a 

common scene is available the lines can be measured manually, with a variable number of points defined depending 

on the length of each line. In any event, use of the new algorithm is perfectly feasible in either case. However, it is 

clear that the most reliable distortion calculation will involve the use of a calibration grid, since the redundancy of 

data is huge and the distribution of points is optimal.  
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The results obtained show that accuracy is very high even when using only a single image (in the case where 

multiple straight lines with more than four points are used), while with Photomodeler® a series of images taken from 

different positions is required. Our algorithm presents this advantage because the number of equations it generates is 

much higher (there are many more possible combinations of straight lines than collinearity equations), which 

produces a more precise adjustment in cases where the number of observables is limited. It also allows the PBS to be 

calculated in a single joint calculation process. Given that the PPA is a point that is found as a projection of the 

optical center onto the Reseau plate, its position neither depends upon nor affects the geometric characteristics of the 

image (it cannot be obtained for reasons related to distortion of straight lines). Instead the PBS, which does contain 

the characteristics of symmetry from the distortion in the image, can be obtained by image analysis. Since the 

precision obtained from calculation of the PBS does not tend to be high, the majority of the programs used 

approximate it as being equal to the PPA. In metric cameras it is obviously not possible to calculate the PBS since 

there is no radial distortion (and therefore it is impossible to determine the point from which there is greatest 

symmetry in something that does not exist). Furthermore, although our process is less automated compared to the use 

of Photomodeler® (when using a calibration grid), it can be applied in all cases, both in common scenes and when 

using calibration grids, as well as with a single image and/or with a small amount of points. 

Unlike other methods based upon plumb-lines, our method does not depend on the direction of the lines in the image, 

because it only uses point coordinates for its calculations, and these are independent of the direction or position of 

the lines within the scene. Additionally, it is possible to use points that belong to multiple straight lines at the same 

time, since the calculation of residuals is unique for each point. This means that there are no inconsistent equations in 

the calculation system that will assign different residuals to the same point when it lies on different straight lines. 

References 

[1] O. Faugeras, Three-dimensional Computer Vision: A Geometric Viewpoint, MIT Press, Cambridge, 

Massachusetts, 1993. 

[2] JG. Fryer, Close Range Photogrammetry and Machine Vision, K.B.Atkinson, Whittles, Caithness, 1996. 

[3] K. Krauss, J. Jansa and H. Kager, Photogrammetry. Volume 2. Advanced Methods and Applications, Dümmler, 

Bohn, 1997. 

[4] PR. Wolf and BA. Dewitt, Elements of Photogrammetry with Applications in GIS, Thrid edition, McGraw-Hill, 

New York, 2000. 



21 

[5] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 

Cambridge, 2003. 

[6] TA. Clarke and JG. Fryer, “The development of camera calibration methods and models,” Photogrammetric 

Record 16(91) (1998) 51-66.  

[7] F. Remondino and C. Fraser, “Digital camera calibration methods: considerations and comparisons,” 

International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36(5) (2006) 266-

272. 

[8] DC. Brown, “Close-range camera calibration,” Photogrammetric Engineering and Remote Sensing 37(8) (1971) 

855-866. 

[9] YI. Abdel-Aziz and HM. Karara, Direct linear transformation from comparator coordinates into object-space 

coordinates in close-range photogrammetry, American Society of Photogrammetry Symposium on Close-Range 

Photogrammetry, Urbana, Illinois, 1-18. 

[10] Z. Zhang, A flexible new technique for camera calibration, IEEE transactions on Pattern Analysis and Machine 

Intelligence 22(11) (2000) 1330-1334. 

[11] RY. Tsai, A versatile camera calibration technique for high accuracy 3D machine vision metrology using off-

the-self TV cameras and lenses, IEEE International Journal Robotics and Automation 3(4) (1987) 323-344. 

[12] J. Weng, P. Cohen, and M. Herniou, Camera calibration with distortion models and accuracy evaluation, IEEE 

Transactions on on Pattern Analysis and Machine Intelligence 16(5) (1992) 469-479.  

[13] CS. Fraser, Digital camera self-calibration, ISPRS Journal of Photogrammetry and Remote Sensing 52(4) (1997) 

149-159.  

[14] DD. Lichti and MA. Chapman, Constrainted FEM self calibration, Photogrammetric Engineering and Remote 

Sensing 63(9) (1997) 1111-1119. 

[15] JG. Frayer and DC. Brown, Lens distortion for close-range photogrammetry, Photogrammetric Engineering and 

Remote Sensing 52(1) (1986) 51-58. 

[16] R. Swaminathan and S. Nayar, Nonmetric calibration of wide-angle lenses and polycameras, IEEE Trans. 

Pattern Anal. Mach. Intell 22(10) (2000) 1172-1178. 

[17] JG. Habib, M. Morgan and YR. Lee, Bundle adjustment with self-calibration using straight lines, 

Photogrammetric Record 17(100) (2002) 635-650. 



22 

[18] E. Rosten and R. Loveland, Camera distortion self-calibration using the plumb-line constraint and minimal 

Hough entropy, Machine Vision and Applications 22 (2011) 77-85. 

[19] J. Herraez, JL. Denia, P. Navarro, J. Rodriguez. and MT. Martin, Epipolar image rectification through geometric 

algorithms with unknown parameters, Journal of Electronic Imaging 22(4) (2013) 043021. 



23 

Figure Captions 

Figure 1. Point 1: point corrected for distortion using a residual for measurement error. Points 2 and 3: corrected 

positions for point 1 by the conventional method based upon the straight line studied. Point 4: position of 

point 1 corrected using the new algorithm, Eq. (8). 

Figure 2. a) Image with distortion and with 28 points measured (on 4 straight lines). b) Image distortion corrected 

using the algorithm developed. 

Figure 3. Distortion curves obtained by adjustment using straight lines with 3 points (blue), 4 points (red) and >4 

points (green). 

Figure 4. A sample of the images using the Photomodeler® calibration grid (out of ten total). 

Figure 5: Distortion differences obtained in the four settings using the new algorithm (Table 2) with respect to 

Photomodeler® 

Figure 6. Corrected images of the calibrated grid (out of ten total). 

Figure 7. a) Calibration grid with 16 points selected for calculation of distortion. Points 1, 2, 3, and 4 each belong to 

two straight lines. b) Scheme defined for points and straight lines. 
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Table Captions 

Table 1. Distortion coefficients and PBS decentering values resulting from the adjustment with lines defined by 3 

points, 4 points and 8 points (expressed as pixels). 

Table 2. Particularized redundancies obtained for each equation in each line measured 

Table 3. The cofactor matrix diagonal of the residuals for each measured point in each line (expressed as pixels) 

Table 4. Residuals obtained (expressed as pixels) and associated Baarda Test values for each coordinate of each 

point on Line 1.  

Table 5. Standard deviation values for the position of a distortion-corrected point (expressed as pixels). 

Table 6. Coefficients resulting from adjustment using the new algorithm (with 1 image, 3 images, 6 images, and 10 

images) and using Photomodeler®.  

Table 7. Differences in tangential distortion (expressed as pixels).   

Table 8. Residuals calculated using the two methods, for points that define the four lines in the image that contain 

common points (expressed in pixels).  

 

 


