
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

https://doi.org/10.1080/03081087.2016.1261079

http://hdl.handle.net/10251/104015

Taylor & Francis

Bru García, R.; Gasso Matoses, MT.; Gimenez Manglano, MI.; Santana-De Asis, MDJ.
(2017). Diagonal entries of the combined matrix of a totally negative matrix. Linear and
Multilinear Algebra. 65(10):1971-1984. doi:10.1080/03081087.2016.1261079



Diagonal entries of the combined matrix of a
totally negative matrix ∗

Rafael Bru?, Maria T. Gassó?, Isabel Giménez?
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Abstract

The combined matrix of a nonsingular matrix A is the Hadamard

(entrywise) product A◦
(
A−1

)T
. This paper deals with the character-

ization of the diagonal entries of a combined matrix C(A) of a given
nonsingular real matrix A. A partial answer describing the diagonal
entries of C(A) in the positive definite case was given by Fiedler in
1964. Recently in 2011, Fiedler and Markham characterized the se-
quence of diagonal entries of the combined matrix C(A) for any totally
positive matrix A when the size is 3. For this case, we characterize to-
tally negative matrices and we find necessary and sufficient conditions
for the sequence of diagonal entries of C(A), in both cases, symmetric
and nonsymmetric.
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1 Preliminaries

This paper deals with the characterization of the diagonal entries of the
combined matrix C(A) of a given real matrix A. A partial answer describing
the diagonal entries of C(A) in the positive definite matrix case was given by
Fiedler [9]. Recently, Fiedler and Markham [11] characterized the sequence
of the diagonal entries of the combined matrix C(A) for any totally positive
matrix A of size 3. In this work, we study this problem for totally negative
matrices.

All matrices in this paper are real. Let us recall the basic definitions
and properties. Some recent works on combined matrices are given in [3] for
positive and negative matrices, in [4] for sign regular matrices and in [5] for
H–matrices. Test to recognize total positive matrices has been studied in
[15].

We recall that the combined matrix C(A) of a nonsingular matrix A is

defined as C(A) = A ◦ (A−1)
T

= A ◦ A−T , where ◦ is the Hadamard (entry
wise) product, (A◦B)ij = aijbij. The combined matrix C(A) has the property
that

∑
j cij =

∑
i cij = 1 for rows and columns. As a consequence, if C(A) ≥

0, then C(A) is a doubly stochastic matrix. In [13] the interesting relationship
among diagonal entries and eigenvalues of a diagonalizable matrix is given.
Moreover, if A represents the gain of a control process, C(A) represents the
relative gain of the process [2]. This last representation can be applied to
economic or chemical problems.

A property of combined matrices we use later is the following: If we
multiply the matrix A by a nonsingular diagonal matrix from the left or
from the right, its combined matrix C(A) does not change.

We recall that a matrix A is totally positive (negative) if all its minors
of any order are positive (negative). That is, if for every subsets α, β ⊆ N :
det(A[α, β]) > 0 (det(A[α, β]) < 0). They are denoted by TP (t.n.).

We use the special submatrices defined in [10]. A submatrix of A of size
r × s is called relevant if has r consecutive rows and the first s columns or
if it has the first r rows and s consecutive columns, where r, s ∈ N .

Theorem 1.1 ([6]) Let A be a n × n matrix. A is totally negative if and
only if the minor of every relevant submatrix of A is negative.

In the next section we extend the results for totally positive matrices,
given by Fiedler and Markham in [11], to the totally negative case. We find
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necessary and sufficient conditions for the sequence of diagonal entries of
C(A) if A is a 3× 3 totally negative matrix.

2 Results

Note that in case n = 2,

A = [aij] =

[
a11 a12
a21 a22

]
→ A−1 = [αij] =

1

detA

[
a22 −a21
−a12 a11

]
and

a11α11 = a22α22, a12α12 = a21α21.

Therefore, we establish the following lemmas only for n ≥ 3.

Lemma 2.1 Let A = [−aij] be an n× n totally negative matrix. Let n ≥ 3
and B is a k × k, k ≤ n, submatrix of A. Then there exists a k × k matrix
Q with the same entries of B but the entry −akk is changed by −âkk with
âkk > akk and such that detQ = 0.

Proof: Without loss of generality, let k = n and then B = A. Denote the
(i, j) cofactor of B by Cij. Then,

−a1kC1k − a2kC2k − · · · −
(
akk +

detB

Ckk

)
Ckk = 0. (1)

Constructing the matrix Q of the lemma choosing

−âkk = −akk −
detB

Ckk
,

we have âkk > akk, since B es totally negative, and Ckk < 0. Note that the
left hand side of (1) is detQ, therefore, detQ = 0. �
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Lemma 2.2 Let A = [−aik] be an (n − 1) × n totally negative matrix. If
n ≥ 3 and a11 = a12, then

det


−a11 −a13 · · · −a1n
−a21 −a23 · · · −a2n

...
...

...
−an−1,1 −an−1,3 · · · −an−1,n



< det


−a12 −a13 · · · −a1n
−a22 −a23 · · · −a2n

...
...

...
−an−1,2 −an−1,3 · · · −an−1,n

 .
(2)

Proof: We use induction on n. If n = 3, the matrix A has the form

A =

[
−a11 −a12 −a13
−a21 −a22 −a23

]
with a11 = a12. Since A is totally negative, we have

det

[
−a11 −a12
−a21 −a22

]
< 0

and then a22 < a21. Hence

det

[
−a11 −a13
−a21 −a23

]
< det

[
−a12 −a13
−a22 −a23

]
.

Suppose now that n > 3 and that for (n− 2)× (n− 1) size the result holds.
We are going to apply Lemma 2.1 to obtain the submatrix Q such that

detQ = det


−a12 −a13 · · · −a1n
−a22 −a23 · · · −a2n

...
...

...
−an−1,2 −an−1,3 · · · −ân−1,n

 = 0

and ân−1,n > an−1,n. For that, given an ε > 0, the matrix

Fε =


−a11 −a12 · · · −a1n
−a21 −a22 · · · −a2n

...
...

...
−an−1,1 −an−1,2 · · · −ân−1,n + ε


4



has the same relevant submatrices that A except for the submatrix

Rε =


−a12 −a13 · · · −a1n
−a22 −a23 · · · −a2n

...
...

...
−an−1,2 −an−1,3 · · · −ân−1,n + ε

 .
Observe that detRε is equal to

det


−a12 −a13 · · · −a1n
−a22 −a23 · · · −a2n

...
...

...
−an−1,2 −an−1,3 · · · −ân−1,n

+ε det


−a12 −a13 · · · 0
−a22 −a23 · · · 0

...
...

...
−an−1,2 −an−1,3 · · · 1


where the first determinant is zero by Lemma 2.1 and the second one is
negative because A is totally negative. Therefore, by Theorem 1.1, Fε is
totally negative. Then by continuity

det


−a11 −a13 · · · −a1n
−a21 −a23 · · · −a2n

...
...

...
−an−1,1 −an−1,3 · · · −ân−1,n

 ≤ 0. (3)

Denoting by C1 and C2 the cofactors of the element −an−1,n in the left
and right hand sides of equation (2), the left hand side of this equation can
be written as

det


−a11 −a13 . . . −a1n
−a21 −a23 . . . −a2n

...
...

...
−an−1,1 −an−1,3 . . . (−an−1,n + ân−1,n)− ân−1,n



= (−an−1,n + ân−1,n)C1 + det


−a11 −a13 . . . −a1n
−a21 −a23 . . . −a2n

...
...

...
−an−1,1 −an−1,3 . . . −ân−1,n

 (4)
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and the right hand side can be written as

det


−a12 −a13 . . . −a1n
−a22 −a23 . . . −a2n

...
...

...
−an−1,2 −an−1,3 . . . (−an−1,n + ân−1,n)− ân−1,n



= (−an−1,n + ân−1,n)C2 + det


−a12 −a13 . . . −a1n
−a22 −a23 . . . −a2n

...
...

...
−an−1,2 −an−1,3 . . . −ân−1,n

 . (5)

Recall that an−1,n < ân−1,n by Lemma 2.1, C1 < C2 by induction hypothesis,
the determinant in (4) is less than or equal to zero by (3) and the determi-
nant in (5) is zero by Lemma 2.1. Then, the inequality (2) is true. �

Note that the diagonal elements of C(A) = A ◦ A−T and those of the
matrix A ◦A−1 are equal. Then, results referred to diagonal elements can be
established for both matrices.

Theorem 2.1 Let A = [−aij] be an n× n totally negative matrix. If n ≥ 3,
the diagonal entries ui of C(A) satisfy: ui < 0, i = 1, 2, . . . , n and

u1 > u2, (6)

un−1 < un. (7)

Proof: The negativity of the diagonal entries is evident, since A is totally
negative and

ui = −aii
Aii

detA
< 0, i = 1, 2, . . . , n.

Since C(A) does not change if we multiply a row or a column by a positive
number, we can assume that a11 = a12 = a22 = 1 and then our problem is to
show inequalities (6) and (7) for the matrix

A =

 −1 −1 −A13

−a21 −1 −A23

−A31 −A32 −A33


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where Aij are the appropriate submatrices of A. Since

u1 =
−1

det(A)
det

[
−1 −A23

−A32 −A33

]
and u2 =

−1

det(A)
det

[
−1 −A13

−A31 −A33

]
the proof of (6) reduces to prove the inequality

det

[
−1 −A13

−A31 −A33

]
< det

[
−1 −A23

−A32 −A33

]
. (8)

If we apply Lemma 2.2 to the following totally negative submatrices of A

A′ = A[1, 3|1, 2, 3] =

[
−1 −1 −A13

−A31 −A32 −A33

]

A′′ = A[1, 2, 3|2, 3] =

 −1 −A13

−1 −A23

−A32 −A33


we have

det

[
−1 −A13

−A31 −A33

]
< det

[
−1 −A13

−A32 −A33

]
and

det

[
−1 −A13

−A32 −A33

]
< det

[
−1 −A23

−A32 −A33

]
.

Then, the inequality (8) holds.
To prove inequality (7), we use the following: if A = [−aij] is an n × n

totally negative matrix and J is the n × n anti-identity matrix, the matrix
JAJ is also totally negative. Then, since

diag(JAJ) = (−ann,−an−1,n−1, . . . ,−a11),

applying (6) to JAJ we have un > un−1 and the proof is completed. �

Example 1 Let the t.n. symmetric matrix

A =

 −20 −16 −4
−16 −12.2 −2.8
−4 −2.8 −0.2

 .
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Then

A ◦ A−1 = C(A) =

 −27 32 −4
32 −36.6 5.6
−4 5.6 −0.6


where u1 = −27, u2 = −36.6, −u3 = −0.6 and the inequalities of Theorem
2.1 are satisfied.

Example 2 Given the t.n. nonsymmetric matrix

B =


−1 −2 −3 −4
−15 −15 −15 −15
−15 −14 −12 −8
−30 −27 −20 −3


then

diag(B ◦B−1) = diag(C(B)) = (−3,−110.5,−108,−1.5)

and so, the inequalities of Theorem 2.1 hold.
Note that this example gives also examples of the same result for different

3× 3 t.n. matrices.

3 Sequence of diagonal entries

Now let us formulate our problem: find necessary and sufficient conditions for
an ordered n-tuple of real numbers to be the ordered n-tuple of the diagonal
entries of C(A) if A is a totally negative n × n matrix. Let us proceed in
the same way as in [11], so we shall study and prove the result in the 3× 3
symmetric and nonsymmetric cases.

3.1 Symmetric case

Lemma 3.1 A 3× 3 symmetric matrix is totally negative if and only if it is
positively diagonally congruent to the matrix

T =

−1 −x3 −x2
−x3 −1 −x1
−x2 −x1 −1

 , (9)
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where x1, x2, x3 are positive numbers satisfying

xi > 1, i = 1, 2, 3, (10)

x2 > x1x3 and (11)

−1− 2x1x2x3 + x21 + x22 + x23 = detT < 0. (12)

Proof: (⇒) Let A = [−aij] be a 3 × 3 symmetric totally negative matrix
and let D be the positive diagonal matrix

D =

 √a11 0 0
0

√
a22 0

0 0
√
a33

 .
Then, A = DTD, where

T =

 −1 − a12√
a11a22

− a13√
a11a33

− a12√
a11a22

−1 − a23√
a22a33

− a13√
a11a33

− a23√
a22a33

−1

 .
Therefore, A is positively diagonally congruent to a matrix T as in (9), where

x1 =
a23√
a22a33

, x2 =
a13√
a11a33

, x3 =
a12√
a11a22

are positive numbers.
Since A is totally negative A11 = a22a33 − (a23)

2 < 0, then a23 >
√
a22a33

and x1 > 1. Similarly, we conclude that x2 > 1 and x3 > 1 since A22 < 0
and A33 < 0 respectively. Then condition (10) holds.

On the other hand, A31 = a12a23 − a22a13 < 0 implies that a13 >
a12a23
a22

and
a13√
a11a33

>
a12a23

a22
√
a11a33

. As a consequence

a13√
a11a33

>
a23√
a22a33

· a12√
a11a22

,

then x2 > x1x3 and condition (11) is true.

Finally, inequality (12) holds because detT =
detA

(detD)2
and A is totally

negative.
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(⇐) Since we have to prove that DTD is t.n. for a positive diagonal
matrix D, it is enough to prove that the matrix T given in (9) satisfying
conditions (10) - (12) is a t.n. matrix. All 1 × 1 and 3 × 3 minors are
negative by (10) and (12) inequalities. Denote by Tij the corresponding 2×2
minors of T . The 2 × 2 minors corresponding to diagonal entries satisfy
Tii = 1 − xi2 < 0 by (10). Now we need only to show that 2 × 2 minors Tij
for i 6= j are negative. Since T is symmetric, T13 = T31 = x1x3 − x2 < 0 by
(11). The minors T12 = T21 = x3 − x1x2 are negative since

x2 > x1x3 and x1 > 1 ⇒ x1x2 > x21x3 > x3.

Finally, T23 = T32 = x1 − x2x3 < 0 can be obtained by multiplying (11) by
x3 > 1. �

Note that inequality (11) in Lemma 3.1 can be replaced by x1x2 > x3 or
by x2x3 > x1.

Theorem 3.1 The necessary and sufficient condition for three negative num-
bers u1, u2 and u3, be the diagonal entries of the combined matrix of a 3× 3
symmetric totally negative matrix A is

u1 + u3 − u2 − 1 > 0. (13)

Proof: Let A be a 3 × 3 symmetric totally negative matrix. By Lemma
3.1 A is positively diagonally congruent to the matrix T of (9). Since
C(DA) = C(AD) = C(A) for any nonsingular diagonal matrix D, it fol-
lows that C(A) = C(T ). Thus we can rewrite our theorem in terms of T .
Note that the diagonal entries of C(T ) are

u1 =
−(1− x12)

detT
, u2 =

−(1− x22)
detT

, u3 =
−(1− x32)

detT
, (14)

and then

u1 + u3 − 1− u2 =
1

detT
(2x2)(x1x3 − x2). (15)

(⇒) By equation (15) we have u1 + u3 − 1 − u2 > 0 since detT < 0,
x1x3 < x2 and x2 > 0.
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(⇐) Note that xi
2 = 1 + ui detT, i = 1, 2, 3 by equations (14). Adding

these values on equation (12), we have

detT =− 1− 2
√

(1 + u1 detT )(1 + u2 detT )(1 + u3 detT )

+ (1 + u1 detT ) + (1 + u2 detT ) + (1 + u3 detT ),

which can be written as

4(detT )2u1u2u3 + detT [4(u1u2 + u1u3 + u2u3)

−(u1 + u2 + u3 − 1)2] + 4 = 0.
(16)

Let us see that this second degree equation written in brief as a(detT )2 +
b(detT ) + c = 0 has a negative root. Its discriminant satisfies b2 − 4ac > b2,
since −4ac = −64u1u2u3 > 0. Therefore always −b+

√
b2 − 4ac > 0. Then

−b+
√
b2 − 4ac

2a
< 0,

since a = 4u1u2u3 < 0. Hence there exists a solution satisfying detT < 0.
Coefficients xi satisfy xi > 1 since detT < 0 and ui < 0. Then inequalities

in (10) hold.
Moreover, by (15), we obtain x1x3 − x2 < 0 since detT < 0 and x2 > 0.

Then (11) is true. �

Example 3 It is easy to see that for the following 3 × 3 t.n. symmetric
matrix A, the diagonal entries of C(A) satisfy equation (13):

A =

−1 −3 −8
−3 −1 −2
−8 −2 −1

 → C(A) =

−0.15 1.95 −0.8
1.95 −3.25 2.2
−0.8 2.2 −0.4


where (u1 + u3 − 1) = −1.55 > −3.15 = u2.

Now let us see a converse example.

Example 4 Given u1 = −2, u2 = −8, u3 = −4 such that u1 +u3−u2−1 =
1 > 0, we will find a symmetric t.n. matrix T such that diag(C(T )) =
(u1, u2, u3).
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Replacing the given values in (16) it is obtained

−256(detT )2 − detT + 4 = 0.

This equation has a solution detT < 0, required by the theorem,

detT = −1 +
√

4097

512
≈ −0.1269684.

Using equations xi =
√

1 + ui detT , i = 1, 2, 3 we have

x1 ≈ 1.1197932, x2 ≈ 1.4197701, x3 ≈ 1.227955,

which satisfy x1x3−x2 < 0. Then, the conditions of Lemma 3.1 are satisfied
and T is a t.n. matrix. The combined matrix of T is

C(T ) =

 −2 3.5 −0.5
3.5 −8 5.5
−0.5 5.5 −4

 ·
where diag(C(T )) = (−2,−8,−4), just as we expected.

3.2 Nonsymmetric case

Let us turn now to the case of a general totally negative 3× 3 matrix. First
we prove the next lemma.

Lemma 3.2 A 3×3 matrix A is totally negative if and only if it is positively
diagonally equivalent to the matrix

T =

− v1
v1+1

−1 −p
−1 −1 −1
−q −1 − v3

v3+1

 , (17)

where
vi > 0, i = 1, 3, (18)

p, q > 1, (19)

detT =
(p− 1)(q − 1)(v1 + 1)(v3 + 1)− 1

(v1 + 1)(v3 + 1)
< 0. (20)

12



Proof: (⇒) Let A = [−aij] a 3× 3 totally negative matrix. Constructing

T =

 −a11a22
a12a21

−1 −a13a22
a12a23

−1 −1 −1
−a31a22
a32a21

−1 −a33a22
a32a23


and

D1 =

 a12 0 0
0 a22 0
0 0 a32

 , D2 =

 a21
a22

0 0

0 1 0
0 0 a23

a22

 ,
we have that A = D1TD2. Taking

v1 =
a11a22

a12a21 − a11a22
, v3 =

a33a22
a32a23 − a33a22

, p =
a13a22
a12a23

and q =
a31a22
a21a23

,

the matrix T has the form (17).
As A is a totally negative matrix, A33 < 0. This implies a11a22−a21a12 < 0

thus v1 > 0. In a similar way, A11 < 0 implies a33a22−a32a23 < 0, then v3 > 0.
Moreover, since A31 = a12a23 − a13a22 < 0 we have p > 1. From A13 < 0 we
obtain q > 1. Then, conditions (18) and (19) hold.

Finally, it is easy to check that condition (20) corresponds to detT and
detT < 0 since detA = detD1 detT detD2 < 0 and A is t.n.

(⇐) We need to show that if A is positively diagonally equivalent to T
satisfying the corresponding conditions, then A is totally negative. Our proof
reduces to show that T is totally negative.

By conditions (18) to (20), entries tij and detT are negative. If we define

v1
v1 + 1

= r and
v3

v3 + 1
= s,

then matrix T has the structure

T =

−r −1 −p
−1 −1 −1
−q −1 −s

 ,
where 0 < r, s < 1 and p, q > 1. From here is clear that all minors of T of
order 2 are negative and then T is t.n. �
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Theorem 3.2 The necessary and sufficient condition for three negative num-
bers u1, u2 and u3, be the diagonal entries of the combined matrix of a 3× 3
totally negative matrix A is

u1 + u3 − u2 − 1 > 0. (21)

Proof: Let A be a 3 × 3 totally negative matrix. By Lemma 3.1 A is
positively diagonally equivalent to a matrix T as in (17). Considering that
C(DA) = C(AD) = C(A) for all nonsingular diagonal matrix D, it follows
that C(A) = C(T ). Then, we assume that A = T .

(⇒) With the above consideration we will prove that given T defined by
(17) and satisfying conditions (18), (19), (20) and diag(C(T )) = (u1, u2, u3),
then u1 + u3 − u2 − 1 > 0.

First, we denote the diagonal entries of T−1 by (â11, â22, â33) and by d the
numerator of the fraction (20), Then

â11 =
1

detT

(
v3

v3 + 1
− 1

)
=

1

detT

(
−1

v3 + 1

)
=
−(v1 + 1)

d
,

â22 =
1

detT

(
v1v3

(v1 + 1)(v3 + 1)
− pq

)
=
v1v3 − pq(v1 + 1)(v3 + 1)

d
,

â33 =
1

detT

(
v1

v1 + 1
− 1

)
=
−(v3 + 1)

d
·

Thus, the diagonal entries of C(A) = A ◦ (A−T ) are

u1 =
v1
d
, u2 = −v1v3 − pq(v1 + 1)(v3 + 1)

d
, u3 =

v3
d
· (22)

Replacing equations (22) in the left part of condition (21), we have

u1 + u3 − u2 − 1 =
1

d
(v1 + v3 + v1v3 − pq(v1 + 1)(v3 + 1)− d).

Taking into account v1 + v3 + v1v3 = (v1 + 1)(v3 + 1)− 1, we have

u1 + u3 − u2 − 1 =
1

d
(v1 + 1)(v3 + 1)(1− pq − (p− 1)(q − 1))

is a positive number by conditions (18)–(20).
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(⇐) Now we will prove that if u1, u2, u3 are negative numbers such that

u1 + u3 − u2 − 1 > 0,

then we can built a matrix T with the structure (17) satisfying (18)–(20)
such that u1, u2, u3 are the diagonal entries of C(T ). That is, we are going
to prove that the system

u1 =
v1
d
, u2 = −v1v3 − pq(v1 + 1)(v3 + 1)

d
, u3 =

v3
d
, (23)

has the expected solutions.
Observe that u2d = pq(v1 + 1)(v3 + 1)− v1v3 implies

pq =
u2d+ u1u3d

2

(u1d+ 1)(u3d+ 1)
,

and this implies
1

p

1

q
=

(u1d+ 1)(u3d+ 1)

u2d+ u1u3d2
· (24)

From definition of d, it follows

(p− 1)(q − 1) =
(d+ 1)

(u1d+ 1)(u3d+ 1)
· (25)

From equation (24) it follows

(u1d+ 1)(u3d+ 1) =
u2d+ u1u3d

2

pq
· (26)

Replacing (26) in (25), we have

(p− 1)(q − 1) =
(d+ 1)pq

u2d+ u1u3d2
·

Finally

(1− 1

p
)(1− 1

q
) =

d+ 1

u2d+ u1u3d2
· (27)

Our system of equations (23) has been reduced to equations (24) and (27).
It is well known that a necessary and sufficient condition for the system

of equations xy = u, (1 − x)(1 − y) = v has solutions x, y ∈]0, 1[ is that

15



√
u +
√
v ≤ 1. Using this equivalence with x =

1

p
, y =

1

q
, the system given

by equations (24) and (27) has solutions in ]0, 1[ if and only if√
(u1d+ 1)(u3d+ 1)

u2d+ u1u3d2
+

√
d+ 1

u2d+ u1u3d2
≤ 1. (28)

If we replace d = −1 in left side of (28) and use equation (23) we have√
(−u1 + 1)(−u3 + 1)

−u2 + u1u3
=

√
(v1 + 1)(v3 + 1)

pq(v1 + 1)(v3 + 1)− v1v3 + v1v3
=

√
1

pq
< 1.

This inequality is strict since u1 + u3− u2− 1 > 0 implies (1− u1)(1− u3) <
−u2 + u1u3. Thus, there exists an small enough 0 < ε < 1 such that for
d = −1 + ε condition (28) holds. Then, there exist p, q > 1 satisfying the
system given by (24) and (27). This implies v1 = du1 > 0, v3 = du3 > 0 and

detT =
d

(v1 + 1)(v3 + 1)
< 0. �

The following example illustrates this last theorem.

Example 5 Let A be the 3 × 3 nonsingular nonsymmetric totally negative
matrix and A−1 its inverse

A =

 −8 −14 −19
−13 −20 −27
−17 −26 −35

 , A−1 =

 1 −2 1
−2 21.5 −15.5
1 −15 11


The combined matrix of A is

C(A) =

 −8 28 −19
26 −430 405
−17 403 −385

 .
As we can see the diagonal entries are negative numbers and satisfy the re-
quired condition.

Now let us see a converse example.
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Example 6 Given negative numbers u1 = −2, u2 = −8, u3 = −3 satisfying
condition u1+u3−u2−1 > 0, we will find a matrix T such that diag(C(T )) =
(u1, u2, u3).

Replacing the given values in equation (28) the value d = −3−
√
201

12
≈

−0.931454 gives the equality. So, taking a smaller value for example, d =
−0.94 we obtain v1 and v3. Using the equation (24) with the condition p, q > 1
we can obtain p and q, for instance, p = 1.00527 and q = 1.1604.

With these values we built the matrix

T =

 −0.66443 −1 −1.00527
−1 −1 −1

−1.1604 −1 −0.748111


and its combined matrix

C(T ) =

 −2 4.92693 −1.92693
3.07307 −8 5.92693

−0.0730739 4.07307 −3


has the given diagonal entries.
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[3] R. Bru, M. Gassó, I. Giménez and M. Santana. Nonnegative com-
bined matrices. J. Appl. Math., 2014(2014), Article ID 182354. (doi:
10.1155/2014/182354).
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