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Abstract 9 

Hydrology-oriented forest management sets water as key factor of the forest management for 10 

adaptation due to water is the most limiting factor in the Mediterranean forest ecosystems. The 11 

aim of this study was to apply Bayesian Network modeling to assess potential indirect effects 12 

and trade-offs when hydrology-oriented forest management is applied to a real Mediterranean 13 

forest ecosystem. Water, carbon and nitrogen cycles, and forest fire risk were included in the 14 

modeling framework. Field data from experimental plots were employed to calibrate and 15 

validate the mechanistic Biome-BGCMuSo model that simulates the storage and flux of water, 16 

carbon, and nitrogen between the ecosystem and the atmosphere. Many other 50-year long 17 

scenarios with different conditions to the ones measured in the field experiment were simulated 18 

and the outcomes employed to build the Bayesian Network in a linked chain of models. 19 

Hydrology-oriented forest management was very positive insofar as more water was made 20 

available to the stand because of an interception reduction. This resource was made available to 21 

the stand, which increased the evapotranspiration and its components, the soil water content and 22 

a slightly increase of deep percolation. Conversely, Stemflow was drastically reduced. No effect 23 

was observed on Runof due to the thinning treatment. The soil organic carbon content was also 24 

increased which in turn caused a greater respiration. The long-term effect of the thinning 25 

treatment on the LAI was very positive. This was undoubtedly due to the increased vigor 26 
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generated by the greater availability of water and nutrients for the stand and the reduction of 27 

competence between trees. This greater activity resulted in an increase in GPP and vegetation 28 

carbon, and therefore, we would expect a higher carbon sequestration. Itis worth emphasizing 29 

that this extra amount of water and nutrients was taken up by the stand and did not entail any 30 

loss of nutrients.  31 

Keywords: Hydrology-oriented forest management, Bayesian Network modeling, Biome-32 

BGCMuSo model. 33 

1. Introduction 34 

One important objective of adaptive forest management is to reduce the climate-related 35 

vulnerabilities of forests (Fitzgerald et al., 2013), through tree and stand resilience against 36 

droughts, maintaining site productivity, reducing forest fire risk, enhancing soil water content 37 

and increasing the blue (water available for distribution to adjacent ecosystems, groundwater or 38 

surface water pathways, represented as runoff and deep percolation or groundwater recharge) 39 

/green water (evapotranspiration) ratio. 40 

An in-depth review of the research effort carried out over the last 40 years aiming to assess the 41 

relationship between forests and water around the world (e.g. Levia et al., 2011 review) has 42 

demonstrated that forest management can modify water yields (Webb et al., 2012). In semi-arid 43 

areas water is the most limiting factor, and therefore, the water cycle is controlled by the canopy 44 

cover (Bargués Tobella et al., 2014). But it has been also demonstrated that forest and water 45 

interactions are very complex (Garcia-Prats et al., 2016). Related to this last effect, Molina and 46 

Del Campo (2012) coined the term Hydrology-Oriented Silviculture to bear on the particular 47 

case that forest management aims to quantify and manipulate the water cycle components in 48 

forests according to specific objectives. The effect of forest management on water issues in 49 

semi-arid regions like the Mediterranean basin has been emphasized elsewhere (Ungar et al., 50 

2013). In these areas, adaptive management might be focused on addressing how the physical 51 

structure of the forest can be modified in order to optimize a particular water cycle component 52 
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(rainfall interception, throughfall, transpiration, run-off, soil moisture and deep infiltration) 53 

(Ungar et al. 2013). 54 

Villà-Cabrera et al. (2018) reviewed 239 case studies of forest management strategies for 55 

adaptation to climate change published in scientific papers until 2015. They built a theoretical 56 

framework based on 5 different strategies: i) Reduction of stand density, ii) Management of 57 

understory, iii) Promoting mixed forests, iv) Changing species, and v) Promoting spatial 58 

heterogeneity at the landscape scale. They pointed out that all those case studies demonstrated 59 

the validity of each strategy enhancing the capacity of adaptation, but at the same time, did not 60 

address other trade-offs or indirect effects that may reduce the ecosystem benefit of the 61 

management strategy.     62 

Thus, although the targets and methods -management strategies- on the basis of the Hydrology-63 

Oriented Silviculture in the Mediterranean area are well known  (Molina and del Campo, 2012), 64 

it is no less true that could have indirect effects, both positive and negative ones, and then, 65 

trade-offs could arise. The maintenance of the chemical, biological and physical properties and 66 

processes of soils have to be accounted for in sustainable forest management (Wic Baena et al., 67 

2013; Bastida et al., 2017). We might think that after the disturbance involved in a thinning 68 

treatment, soil organic carbon stock -usually high and in equilibrium in a natural forest 69 

ecosystems- could diminish because of the removal of certain amounts of biomass and timber 70 

(Jandl et al., 2007; Diochon et al., 2009; Nave et al., 2010). However, there are studies 71 

indicating that historic changes in forest management had not perceptible effects on forest soil 72 

organic carbon content (Wäldchen et al., 2013). On the other hand, the nitrogen cycle may be 73 

also affected —and enhanced— by forest management (Overby et al., 2015; Johnson et al., 74 

2016; Hume et al., 2018). Because of these potential effects, hydrological-based forest 75 

management must target and address both soil and biogeochemical issues as well (Del Campo et 76 

al., 2017). 77 

Changes in forest structure due to partial removal of the forest canopy are also a fire preventive 78 

silviculture inasmuch as it breaks the fuel continuity and reduces its availability. Thus, the 79 
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reduction of fire risk through forest treatments should be quantified in order to provide a more 80 

comprehensive understanding of the effects of adaptive forest management on promoting 81 

enhanced resilience (Garcia-Prats et al., 2015). 82 

With all those considerations in mind, we need a tool capable to cope with complex and 83 

uncertain relationships among variables involved in forest ecosystems management. A Bayesian 84 

Network (BN) is a probabilistic graphical model in which the nodes of the graph are random 85 

variables and the edges between the nodes represent probabilistic dependencies among them. 86 

Structured analysis of complex systems is the main scope of Bayesian Networks (BNs) (van 87 

Dam et al., 2013). BNs can be used to represent the uncertainty underlying the current 88 

understanding and variability in ecosystem response (Perez-Miñana, 2016). BNs are suitable to 89 

handle with problems that involve high levels of uncertainty and complexity due to its capacity 90 

to integrate different domains of knowledge (Perez-Miñana, 2016; Phan et al., 2016; Molina 91 

et al., 2013; Aguilera et al., 2011). Thus, BNs are well suited to include modelling results, 92 

expert knowledge and experimental field data into a single framework. This tool allows for 93 

investigating the impacts of management options through analysis of scenarios, assessing the 94 

consequences of management hypothesis or potential actions (Perez-Miñana, 2016). Many 95 

recent efforts can be found in the literature on solving complex problems in the field of 96 

ecohydrology (Woznicki et al., 2015), water resources (Xue et al., 2017), groundwater 97 

management (Martín de Santa Olalla et al., 2007), forestry (Nyberg et al., 2006), irrigation and 98 

farming (Wang et al., 2009), climate change (Molina et al., 2013), biosecurity (Lohr et al., 99 

2017), public health (Beaudequin et al., 2016) -and many others-, using BNs. Of special interest 100 

some systematic reviews: Aguilera et al. (2011) classified 128 case studies by fields. Phan et al., 101 

(2016) analyzed 111 case studies in the field of water resources, and Perez-Miñana (2016) 102 

compared capacities of six BN existing tools.  103 

The objective of this paper was to apply Bayesian network modeling to assess potential indirect 104 

effects and possible trade-offs when Hydrology-Oriented forest management is applied to a real 105 

Mediterranean forest ecosystem. Linking the intervention with those management strategies 106 

described in Vilà-Cabrera et al. (2018), in the experimental plots were reproduced both the first 107 

http://www.sciencedirect.com/science/article/pii/S1364815216304698#bib1
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and second strategies in a single intervention: i) Reduction of stand density, and ii) management 108 

of understory (the most frequently silvicultural interventions employed according to the regional 109 

forest authority). In the future would be interesting to test the other strategies as well. Soil 110 

organic carbon and nitrogen cycles, forest fire risk and water cycle were included in the 111 

modeling framework to uncover hidden relationships or associations between factors. Field data 112 

from experimental plots where Hydrology-Oriented silvicultural operations were applied and 113 

effects on soil, water and nutrients were monitored and employed to calibrate and validate 114 

Biome-BGCMuSo (Hidy et al., 2016). Biome-BGCMuSo is a mechanistic biogeochemical 115 

model that simulates the storage and flux of water, carbon, and nitrogen between the ecosystem 116 

and the atmosphere. In order to generate enough variability, the validated and calibrated model 117 

was employed to simulate many other scenarios with different conditions to the ones measured 118 

in the field experiment. Outcomes of simulated scenarios were employed to build the Bayesian 119 

Network in a linked chain of models (Couture et al., 2018). This method allows us to analyze 120 

the aforementioned effects in the long run, and not only the immediate effect of the silvicultural 121 

intervention recorded in the experimental dataset.    122 

 123 

2. Material and Methods 124 

2.1 Site description and experimental plots 125 

Experimental plots involved in this work were implemented in a marginal oak forest located in 126 

the southwest of Valencia Region (Spain), at latitude 39º04'-N, longitude 1º14'-W and elevation 127 

1080-1100 m a.s.l. (Figure 1). The slope of the plots was 31% with NW aspect. According to 128 

the historic meteorological dataset (1960-2011) recorded in a nearby station (located at 900 m 129 

a.s.l.) the mean annual temperature is 12.8 °C, the mean annual rainfall is 466 mm, the mean 130 

annual potential evapotranspiration is 749 mm (Thornthwaite), and the reference 131 

evapotranspiration is 1200 mm (Hargreaves). Soil depth ranged from 10 to 40 cm, loam 132 

textured and basic pH (8.0±0.1) were encountered. Underneath the soil, the karstified Jurassic 133 

limestone parent rock give rise to rocky soils with a high stones and rocks fraction ranging from 134 

48 to 69% according to the depth. According to the WRB the soils of the area are classified as 135 
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Rendzic Leptosol and Litic Leptosol with outcrop of Chromic Luvisols and Kastanozem Calcic, 136 

identifying the soil of the plots as Kastanozem Calcic. Eight boreholes up to four meters depth 137 

were drilled along the experimental plots which revealed a huge degree of rock fissuring 138 

providing important reservoirs of deep water. The water table was no encountered within the 4 139 

meters of the boreholes.   140 

 141 

Figure 1. Experimental Site location 142 

 143 

The stand was characterized as coppice oak forest with high stem densities consequence of the 144 

traditional fuelwood harvesting -abandoned in the seventies of the last century-, being the 145 

dominant species Holm oak (Quercus ilex subsp. ballota (Desf.) Samp.). Other species found 146 

were Pinus halepensis, Juniperus phoenicea, Q. faginea, and J. oxycedrus. Due to the fact that 147 

this stand play the role of marginal and protective forest, there has not been any silvicultural 148 

intervention since it was abandoned about 50 years ago. 149 

In May 2012 a hydrology-oriented silvicultural intervention based on a thinning and scrub 150 

clearing took place with the following experimental design: two rectangular plots of 1800 m2 151 

each were delimited, the first one was treated and the second one acted out as control. Every 152 

plot was split into three replicates or blocks of similar size (no randomized layout). In the 153 
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thinning treatment, about 2/3 of the initial standing trees with smaller diameter were removed 154 

besides most of the shrubs, being the final density about 317 trees·ha-1 and looking for the most 155 

homogeneous tree distribution and canopy cover. Initial canopy cover was about 63%, in the 156 

control plot, whilst the final canopy cover after the thinning treatment was reduced to about 157 

40%. The thinning treatment was supervised by the forest service of the Valencia Region. 158 

Timber and coarse woody debris were removed outside the plots whereas fine woody debris 159 

was piled and grinded into mulch onto the plots.  160 

With the aim of characterizing the stand structure, the following measures were taken within the 161 

six blocks: basal area (BA, in m2·ha-1), tree density (TD, in trees· ha-1), diameter at basal and 162 

breast heights (DB, and DBH respectively, in cm) and its distribution by diametric classes, 163 

canopy cover (CC, in %) and leaf area index (LAI, in m2·m-2). The CC was measured by means 164 

a GRS densitometer with 50 readings per block. The LAI was seasonally measured in each 165 

block using a LI-COR LAI-2000 sensor. Further details about the methodology employed in the 166 

LAI measurement can be found in Molina and Del Campo, (2011). Table summarizes the 167 

characterization of the stand structure. 168 

 169 

Table 1. Stand structure in control (C) and treated plot (T)  170 

 
DB (cm) DBH (cm) BA (m2·ha-1) TD (trees· ha-1) CC (%) LAI (m2·m-2) 

C 11.87+6.26 8.62+5.46 8.3 1020 62.7 1.1 

T 18.09+8.51 14.18+7.14 5.22 317 39.3 0.6 

 171 

 172 

Meteorological variables were registered on site using different instruments connected to a 173 

Campbell scientific CR1000 data-logger: Air temperature (Tmp, in ºC) and relative humidity 174 

(RH, in %) were recorded using a Decagon Devices Tmp/RH sensor located at 2 m abode 175 

ground. Precipitation (P, in mm) was continuously measured by means of a Davis tipping-176 

bucket rain gauge with 0.2-mm resolution and located in an open area at 20 m apart from the 177 

experimental plots. Throughfall and Stemflow (Th, St, in mm) were measured using the 178 
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methodology described in Molina and Del Campo (2012). Wind speed (V, in m·s-1) and wind 179 

direction were obtained from a Davis anemometer located in a mast above the canopy. Finally, 180 

shortwave radiation (Rs, in MJ·m-2·day-1) was measured using a Davis pyranometer. All 181 

meteorological variables were programmed to measure at 10-minute intervals and averaged on a 182 

daily basis.      183 

Run-off was concentrated in a collecting trench at the lower boundary of the slope, piped and 184 

measured by means a Diehl Metering Altair v4 volumetric counter. Soil water content (SWC, in 185 

m3·m-3) was recorded using Decagon Devices EC-5 capacitance probes horizontally installed at 186 

5, 15 and 30 cm depth. To deal with the heterogeneity usually involved in this type of measures, 187 

a total of 15 probes in the thinned plot a 15 probes in the control plot were installed. 188 

Gravimetric soil moisture was determined in different sampling dates ranging from field 189 

capacity (FC) to wilting point (WP) to carry out the calibration of the probes. The data-logger 190 

was programmed to measure at 10-minute intervals and records were averaged on a daily basis. 191 

With those daily values, the relative extractable water (REW) was computed after Chen et al. 192 

(2014) and Kumagai et al. (2004): 193 

REW =  
SWC− SWCmin

SWCmax − SWCmin
       (1) 194 

 195 

Where SWC is the daily measure of soil water content and SWCmin and SWCmax are the 196 

minimum and maximum soil water content registered in the series.   197 

 198 

Transpiration (T, in mm) was derived from measures of sap flow velocity. Sap flow velocity 199 

(Vs, in cm·h-1) was registered using the heat ratio method (Burguess et al., 2001) by means 14 200 

ICT International sap flow sensors installed on the upslope side of the trunk, distributed 201 

proportionally within the different diameter classes. Sap flow was up-scaled by the density of 202 

trees to obtain the stand transpiration (T, mm) accounting for the tree diameter frequency 203 

distribution in both, thinned and control plots.  204 
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N mineralization was measured using the resin core method. Mineralization rates were 205 

determined by comparing concentrations in the resin cores after two-month field incubation to 206 

initial soil samples. Soil respiration was measured on a monthly basis using a PP System EGM-207 

4 CO2 gas analyzer.  208 

Finally, aboveground biomass was obtained by means allometric models based on the stand 209 

characteristics previously described in Table 1. Wood samples were sent to the ionic laboratory 210 

for the carbon content test. They used a Leco SC-144DR for elemental analysis. 211 

 212 

2.2 Biome-BGCMuSo calibration and validation using experimental data 213 

The two-year period of experimental dataset (hydrological years 2012-2013 and 2013-2014) 214 

was employed to calibrate and validate the Biome-BGCMuSO model (Hidy et al., 2016). This 215 

model is an improved version of the previous Biome-BGC model (Thornton et al., 2002). The 216 

source code is publicly available on the Internet (NTSG 2001). The main model improvements 217 

especially relevant in this study are the soil layer sub-model, the drought effect on plant 218 

transpiration and functioning, and the management options where forest thinning is included. 219 

The model operates on a daily time step and describes the dynamics of energy, water, carbon 220 

and nitrogen in a defined terrestrial ecosystem. The model uses a scale of 1 m2 and requires 221 

daily weather data, information about the general environment (soil, vegetation and site 222 

conditions) and parameters describing the eco-physiological characteristics of the vegetation 223 

understudy, such as specific leaf area, water interception coefficient or light extinction 224 

coefficient (see supplementary material).  225 

Calibration was carried out using a two-stage procedure. First, automated model parameter 226 

estimation was conducted using PEST (model-independent parameter estimation program) 227 

(Doherty, 2007). PEST has implemented a variant of the Gauss-Marquardt-Levenberg method 228 

of nonlinear parameter estimation. PEST minimizes the weighted sum of squared residuals 229 

between observed and predicted values of the selected variables. In a second stage we 230 

repeatedly solved the forward problem with ad hoc adjustment of parameters until results match 231 

observations. 232 
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 Calibration and validation periods were assessed separately. The model was first calibrated 233 

using the water year 2012-2013 field dataset from the not thinned plot (control), as it represents 234 

a mature and stable ecosystem. A set of eco-physiological parameters representative of such 235 

ecosystem were obtained. Subsequently, the thinned plot was simulated using the management 236 

options, particularly forest thinning, which was initiated over the calibrated model. Then, the 237 

model was validated by comparing simulated to observed field data, on the one hand the water 238 

year 2013-2014 for the control plot, and on the other hand, 2012-2014 for the thinned plot. The 239 

variables included in the calibration and validation procedure were: a) related to the water cycle, 240 

T and SWC; and b) related to the biochemical cycles (C and N), punctual field data of soil N 241 

mineralization, soil respiration and aboveground vegetation carbon. 242 

A complete assessment of model performance should include at least one absolute error 243 

measure and one or several goodness-of-fit measurements (Legates and McCabe, 1999). For 244 

these reasons, the behaviour of the model was assessed using root mean square error (RMSE), 245 

Index of agreement d (Willmott, 1981), Modified Index of agreement d1 (Willmott, 1984), R2 246 

coefficient of determination, and the Nash-Sutcliffe modelling efficiency E (Nash and Sutcliffe, 247 

1970).  248 

 249 

2.3 Extended period Biome-BGCMuSo simulations 250 

As we stated before, experimental data only cover a period of two years. This period is utterly 251 

insufficient to build a BN model directly from data, and only would include the experimental 252 

plots conditions. In order to generate enough variability for the overall variables included in the 253 

BN model, a sequence of 50 years for the all possible USDA-NRCS Hydrologic Soil Group (4 254 

types) - Aspect (4 orientations) - Canopy Cover Treatment (1 original canopy cover + 5 thinning 255 

intensities) combinations described in Table 2 were simulated using the calibrated and validated 256 

Biome-BGCMuSo model. The final number of simulated scenarios was 4x4x5 = 80 for the 257 

thinning treatment experimental plot and 4x4x1=16 for the control plot. Due to the number of 258 

years within each simulation was 50, the total number of simulated years was 96x50 = 4800.      259 

 260 
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Table 2. USDA-NRCS Hydrologic Soil Group, Aspect and Canopy Cover simulated 261 

combinations. 262 

EXPERIMENTAL PLOT USDA-NRCS HYDROLOGIC SOIL GROUP ASPECT CANOPY COVER (%) 

Control plot 

A 

B*  

C 

D 

NE 

NW** 

SE 

SW 

Original CC 

63% 

Thinning treatment plot 

A 

B*  

C 

D 

NE 

NW** 

SE 

SW 

25% out 63% removed 

35% out 63% removed 

45% out 63% removed 

55% out 63% removed 

65% out 63% removed 

*Experimental plot soil group; **Experimental plot aspect  263 

 264 

USDA-NRCS (1986, 2009) classified the overall textural classes into 4 Hydrologic Soil Groups 265 

(HSG) accounting for the potential run-off. The A group has the lower run-off potential and the 266 

higher infiltration rate, and the opposite properties for the D group. The original soil of the 267 

experimental plot was classified into the B group according to its texture. For the other three 268 

groups, an intermediate texture within each group was selected and employed in the simulations 269 

of Biome-BGCMuSo model. The hydraulic properties of each texture were derived from the 270 

pedotransfer functions of Saxton and Rawls (2006). Texture and hydraulic properties of each 271 

soil can be found in Table 3. 272 

The way the plot is oriented really modify the amount of photosynthetically active radiation 273 

received, and therefore, both hydrological and biogeochemical cycle performances might be 274 

modified. That is why several aspects had to be simulated. Due to the fact that experimental 275 

plots were oriented to North West (NW), the other three perpendicular aspects were accounted 276 

for the simulations as well (NE = North East, SE = South East, SW = South West).      277 

 278 

 279 
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Table 3. Texture and hydraulic properties of each soil utilized in the simulations. 280 

   HYDROLOGIC  

SOIL GROUP 

Textural 

Class 
% Clay % Sand 

Wilting 

Point 

Field 

Capacity 
Saturation 

Saturated 

Hydraulic 

Conductivity 

Bulk Density 

 (g·cm-3) 

A 
Loamy 

Sand 
6 82 5.7 12.1 45.7 91.26 1.45 

B* Loam 23 44 15.4 28.5 45.4 12.50 1.44 

C 
Silty Clay 

Loam 
34 10 21 37.9 51 5.93 1.30 

D Silty Clay 47 7 28.7 41.6 53.2 3.81 1.24 

*Experimental plot soil group 281 

 282 

2.4 Keetch and Byram Drought Index (KBDI) 283 

There exists a wide variety of meteorological, drought and dryness indices employed as forest 284 

fire risk indices. The Keetch and Byram Drougth Index (Keetch and Byram, 1968) is an 285 

example of this. The importance and utility of those indices is proven insofar as they are 286 

integrated in the most important fire rating systems in the world (Canadian Forest Fire Danger 287 

Rating System, United States National Fire Danger Rating System, etc.). The KBDI calculates a 288 

daily simple water balance and accounts for cumulative soil water depletion due to the effects of 289 

evapotranspiration and precipitation on deep duff and upper soil layers. It ranges from 0 to 290 

203.2 when rainfall is expressed in mm, (from 0 to 800 when is expressed in hundredths inches) 291 

from low to high fire risk or from no soil water depletion to very dry conditions. 292 

García-Prats et al. (2015) demonstrated that the original version of the KBDI is not sensitive to 293 

forest management and is not capable to differentiate between managed and unmanaged forests. 294 

To avoid this trouble, they proposed to recalibrate the coefficients of the index specifically for 295 

each stand using series of measured soil moisture. This methodology was employed to obtain 296 

the forest fire risk on a daily basis in each Biome-BGCMuSo simulated scenario. Further details 297 

about the KBDI calculation can be found in García-Prats et al. (2015)       298 

 299 
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2.5 Bayesian Network Construction 300 

All the steps of the BN construction and exploitation were developed using GeNIe Modeler 301 

v.2.2, available free of charge for academic research use from BayesFusion, LLC, under license 302 

from the University of Pittsburgh. 303 

A Bayesian Network is a statistical graphic model with two components: i) A qualitative 304 

component -cause-effect diagram- defined by means of a directed acyclic graph (DAG). In this 305 

graph, each node represents one variable in the model, and each arc represents statistical 306 

dependence among linked variables. ii) A quantitative component defined by means the 307 

conditional probability tables –one per node- (CPT) quantifying the strength of the node 308 

dependency.  309 

 310 

2.5.1 Data preprocessing 311 

Quantitative data to apply the BN model was derived from the outputs of the aforementioned 312 

simulations using Biome-BGCMuSo. First of all, a qualitative statistical analysis including 313 

average, variance, standard deviation, maximum and minimum values, was developed in order 314 

to accept or reject the outputs of Biome-BGCMuSo. After that, 55% and 65% thinning 315 

treatment simulations were directly rejected for two reasons. On the one hand, the model 316 

outputs were no coherent (the forest directly died), and on the other hand, this silvicultural 317 

intervention intensity is far from what is usually done.     318 

 319 

A few number of variables used in the BN construction were discrete variables (e.g. Aspect, 320 

HSG, Canopy Cover Treatment (CCT), etc.) However, most of the variables were continuous 321 

variables that had to be categorized. Continuous data were discretized in 5 states using a 322 

hierarchical procedure based on clustering. Table 3 summarized the list of variables included in 323 

the BN model, its states and units. 324 

 325 

 326 

 327 
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Table 3. List of variables, states, units and time-related information. 328 

Name States Units Observation 

Aspect NE, NW, SE, SW - - 

Canopy Cover 

Treatment (CCT) 
Control, Treatment25, 35, 45 - 

Original Plot (Control) had a canopy cover of 63%. Each treatment 

indicate % of canopy removal out 63%. 

Deep percolation  <48,48-143,143-234,234-396,>396 mm·year-1 Daily values aggregated into 50 sum annual values 

Evapotranspiration  <125,125-193,193-310,310-377,>377 mm·year-1 Daily values aggregated into 50 sum annual values 

Gross Primary 

Production (GPP) 

<0.17,0.7-0.77,0.77-1.34,1.34-

1.80,>1.80 
kgC·m-2·year-1 Daily values aggregated into 50 sum annual values 

Interception  <32,32-97,97-127,127-156,>156 mm·year-1 Daily values aggregated into 50 sum annual values 

KBDI 
<167,167-330,330-488,488-629,629-

715,>715 

hundredths of 

Inch 
Daily values aggregated into 50 maximum annual values 

LAI 
<0.22,0.22-1.46,1.46-2.25,2.25-

3.13,>3.13 
m2·m-2 Daily values aggregated into 50 average annual values 

Minimum Soil 

Temperature  

<1.15,1.15-2.68,2.68-3.88,3.88-

4.89,>4.89 
ºC 50 minimum annual values 

N leaching  
<0.02,0.02-0.05,0.05-0.09,0.09-

0.15,>0.15 
kgN·ha-1·year-1 Daily values aggregated into 50 average annual values 

REW 
<0.21,0.21-0.48,0.48-0.64,0.64-

0.86,>0.86 
- Daily values aggregated into 50 average annual values 

Rainfall  <321,321-366,366-433,433-473,>473 mm·year-1 Daily values aggregated into 50 sum annual values 

Runoff  <15,15-25,25-39,39-72,>72 mm·year-1 Daily values aggregated into 50 sum annual values 

Soil Organic Carbon  
<1.91,1.91-2.54,2.54-3.21,3.21-

3.63,>3.63 
kgC·m-2 Daily values aggregated into 50 average annual values 

Soil Evaporation  <62,62-76,76-96,96-108,>108 mm·year-1 Daily values aggregated into 50 sum annual values 

Hydrologic Soil Group 

(HSG) 
A,B,C,D - - 

N Soil Mineralization  
<1.95,1.95-5.61,5.61-7.53,7.53-

10.22,>10.22 
kgN·ha-1·year-1 Daily values aggregated into 50 average annual values 

Soil Respiration  
<0.19,0.19-0.56,0.56-0.75,0.75-

1.02,>1.02 
kgC·m-2·year-1 Daily values aggregated into 50 average annual values 

Stemflow  <6,6-11,11-19,19-26,>26 mm·year-1 Daily values aggregated into 50 sum annual values 

Transpiration  <24,24-63,63-155,155-237,>237 mm·year-1 Daily values aggregated into 50 sum annual values 

Vegetation Carbon  
<0.02,0.02-0.15,0.15-0.23,0.23-

0.33,>0.33 
kgC·m-2 Daily values aggregated into 50 average annual values 

  329 
 330 

 331 

 332 
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2.5.2 Model Learning 333 

The initial cause-effect DAG was derived from the aforementioned dataset using the Essential 334 

Graph Search structure learning algorithm, proposed by Dasch and Druzdzel (1999) 335 

implemented in GeNIe Modeler v2.2. It is a combination of the Bayesian Search Approach and 336 

the Constraint-Based Search (PC algorithm) algorithms. The Bayesian Search Approach was 337 

introduced by Cooper & Herkovitz, (1992) and refined by Heckerman et al. (1995). It follows 338 

essentially a hill climbing procedure, guided by a scoring heuristic, with random restarts. PC 339 

algorithm was introduced by Spirtes et al. (1993). Essential Graph Search performs a search for 340 

essential graphs using the PC algorithm and scores the various essential graphs using the 341 

Bayesian search approach (GeNIe Modeler User Manual, 2017). 342 

(https://www.bayesfusion.com/genie-modeler). 343 

The initial DAG was reviewed by local experts in forest management. The assumptions 344 

underlying the diagram were discussed and evaluated. A very few number of relations were 345 

erased or modified.  346 

The procedure of parameter learning and elicitation of the CPTs was based exclusively on the 347 

series of simulated data, previously discretized as explained before. The final cause-effect DAG 348 

can be found in Figure 2. 349 

 350 
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 351 

 352 

Figure 2. BN cause-effect structure. The color of the node aims to group variables in water-soil-353 

atmosphere-vegetation-management related. 354 

A crucial element of learning process is validation of the results. To do that, that dataset is 355 

divided into two subsets for training and testing. GeNIe Modeler v2.2. implements the K-fold 356 

crossvalidation method that allows to both learn and evaluate the model on the same dataset. In 357 

this method, the data set is divided into K parts of equal size, trains the network on K-1 parts, 358 

and test it the results on the last Kth part. The process is repeated K times on which a different 359 

part of the dataset is selected for testing. 360 

Result of the validation process is the accuracy of predicting the selected variables. In our case, 361 

16 outcomes of interest (nodes) were selected: N-leaching, Soil Organic Carbon, N-Soil 362 

Mineralization, Runoff, REW, LAI, Vegetation carbon, Deep percolation, Interception, GPP, 363 

KBDI, Transpiration, Soil Evaporation, Stemflow, Evapotranspiration and Soil Respiration. The 364 

average accuracy obtained was 73%. The final DAG with the probability distributions in its 365 

initial state can be seen in Figure 3. 366 
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 367 

Figure 3. Hydrology oriented forest management BN model and elicited CPTs. The color of the 368 

node aims to group variables in water-soil-atmosphere-vegetation-management related. 369 

 370 

3. Results and discussion 371 

3.1 Calibration and validation of the Biome-BGCMuSo model  372 

Calibration and validation periods were evaluated using RMSE, d, d1, R2 and E model 373 

performance statistics. Table 4 summarizes the obtained results of those statistics, which 374 

showed a good agreement between modeled and measured values of T and SWC in both 375 

calibration and validation periods. As was explained before, the model was first calibrated using 376 

the water year 2012-2013 field dataset from the control plot representing those conditions of an 377 

unmanaged forest. Subsequently, the thinned plot was simulated using the thinning management 378 

option of the model which was initiated over the calibrated model. Then, the model was 379 

validated by comparing simulated to observed field data, on the one hand the water year 2013-380 

2014 for the control plot, and on the other hand, 2012-2014 for the thinned plot.  381 

The validation under natural conditions -unmanaged forest- confirmed the good performance of 382 

the model in reproducing the natural hydrologic dynamics of a forest ecosystem, which leads to 383 

a E = 0.6 for SWC and 0.47 for T, or R2 = 0.8 for SWC and 0.71 for T respectively. In the same 384 



18 
 

way, the validation using field data from the managed plot stated the good performance of the 385 

model in simulating artificial forest thinning, where E ranged from 0.68 to 0.78 for SWC and 386 

from 0.46 to 0.53 for T, or R2 ranging 0.71<R2<0.72 for SWC and 0.72<R2<0.79 for T 387 

respectively. The other goodness-of-fit statistics summarized in Table 4 showed similar results. 388 

RMSE –as usual- was lower in SWC than in T. For SWC ranged from 0.02 to 0.03 whilst 389 

ranged from 0.1 to 0.2 for T. The agreement between measured and modeled SWC and T can be 390 

seen graphically along the entire period in Figure 4, both in the control and treated plots. 391 

Nevertheless, despite the fact the model shows a satisfactory accuracy, its performance under 392 

high thinning intensities appears to be unrealistic as the forest is not capable of recovering after 393 

a 65 % treatment when it is NE or NW orientated. These results are probably due to the fact that 394 

the model does not consider resprouting, a very important strategy of the species under 395 

situations like high thinning intensities. 396 

 397 

Table 4. Evaluation of model performance for soil water content (SWC) and transpiration (T) in 398 

the control (C & water year) and thinned (T & water year) experimental plot per water year, in 399 

calibration and validation phases. 400 

Statistic 

Calibration Validation 

T SWC T SWC 

C 12/13 C 12/13 C 13/14 T 12/13 T 13/14 C 13/14 T 12/13 T 13/14 

RMSE 0.07 0.02 0.14 0.10 0.20 0.03 0.02 0.03 

E 0.57 0.53 0.47 0.53 0.46 0.60 0.78 0.68 

R2 0.77 0.76 0.71 0.72 0.79 0.80 0.71 0.72 

d 0.92 0.88 0.86 0.91 0.75 0.91 0.93 0.92 

d1 0.74 0.64 0.70 0.85 0.70 0.65 0.74 0.66 

 401 

 402 
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403 

 404 

405 

 406 

Figure 4. Time series comparing SWC and T between measured and modeled values in the 407 

control and treated plots. 408 
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The accuracy reached in this study when reproducing the dynamics of a forest ecosystem is 410 

comparable to that of the bibliography. Chiesi et al. (2002) used the FOREST-BGC (the former 411 

version of BIOME-BGC) to simulate two deciduous forest stands in Tuscany (central Italy), and 412 

reported a R2 of 0.86 for Quercus cerris and 0.87 Quercus pubescensduring simulation of 413 

transpiration during the growing season. Pietsch et al. (2003) used the BIOME-BGC to simulate 414 

a floodplain deciduous forest stand at the northeastern edge of the Viennese Basin, and obtained 415 

an R2 between 0.76 and 0.88 for the transpiration predictions. González-Sanchis et al (2015) 416 

obtained E of 0.35-0.74 when simulating transpiration and soil water content of a semi-arid 417 

Aleppo pine plantation under different management intensities. Likewise, other modeling 418 

approaches have resulted in a similar accuracy for daily transpiration and/or soil water content 419 

predictions. Keenan et al. (2009) have used the GOTILWA+ (Gracia et al., 1999) and the 420 

ORCHIDEE (Krinner et al., 2005) models to simulate evapotranspiration in four mono-specific 421 

stands of Quercus ilex, Quercus cerris, Fagus sylvatica, and Pinus ponderosa and reported an 422 

R2 of 0.42–0.83 (GOTILWA+) and 0.47–0.78 (ORCHIDEE). Finally, Chen et al., (2014) 423 

reported a R2 of 0.70 and 0.9 and a RMSE of 0.03 m3·m-3 and 1.07 mm·d-1 for SWC and T 424 

respectively using the WAVES model in an arid-zone of Acacia savanna woodland in Australia. 425 

Regarding to the model performance in terms of biogeochemical cycling, it was evaluated by 426 

comparing punctual observations of N mineralization, soil respiration and vegetation carbon. 427 

The model showed satisfactory results in both plots, thinned and not thinned when simulating N 428 

mineralization and soil respiration (see Table 5). In the same way, the aboveground vegetation 429 

carbon, which in Biome-BGCMuSo corresponds to the C stored in leafs, fruits and soft stems, 430 

was compared to the measured value in the control plot. Both estimations were within the same 431 

order of magnitude, being the simulated 0.21 KgC·m-2 and the observed 0.28 KgC·m-2. 432 

Hence, according to these results, the use of the model is considered reliable to reproduce the 433 

hydrological and biogeochemical dynamics of situations, natural conditions and forest thinning. 434 

 435 
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Table 5. Performance statistics between simulated and observed N mineralization and soil 436 

respiration at the thinned and not thinned plots.  437 

 438 

Parameter 

Control plot Treatment plot 

N mineralization 

KgN·m-2 

Soil respiration 

KgC·m-2·day-1 

N mineralization 

KgN·m-2 

Soil respiration 

KgC·m-2·day-1 

R2 0.64 0.83 0.56 0.82 

RMSE 9.80E-09 7.06E-06 8.77E-08 5.99E-06 

 439 

3.2 BN Sensitivity analysis 440 

Prior to analyze the effect of management alternatives a sensitive analysis was applied to 441 

identify network components that have the greatest influence on the outcomes of interest. For 442 

this task GeNIe implements the algorithm proposed by Kjaerulff and van der Gaag (2000). 443 

Given a target node, the derivative of the posterior probability distribution over each parameter 444 

is calculated. The larger the derivative is, the biggest the sensitivity of the output of interest -445 

target- to this parameter. To illustrate this process, in Figure 5, following a color code, we can 446 

see that the output of interest “Deep percolation” is very sensitive to Hydrological Soil Group 447 

(HSG) and Rainfall, and less sensitive to Transpiration, Interception, REW and 448 

Evapotranspiration. Aspect, LAI and Canopy Cover Treatment (CCT) have a slight effect, 449 

whilst the other variables of the model were absolutely insensitive, i.e. big changes in the 450 

parameters have no effect on the Deep percolation. A sensitive analysis including the 16 outputs 451 

of interest was summarized in Figure 6.   452 



22 
 

 453 

Figure 5. Example of sensitivity analysis. Case of “Deep percolation”. Red colors indicate high 454 

sensitivity whilst grey color indicates insensitivity.  455 

 456 

  457 
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 458 

Figure 6. Sensitivity analysis for the outputs of interest. 459 

 460 

The sensitivity analysis confirmed that water –rainfall- controls the main processes that occur in 461 

a Mediterranean forest system. Besides, note that there are two constant factors not modifiable 462 

at all, HSG (based on texture) and Aspect. Both have a deep influence on most of the outputs of 463 

interest. In the analysis of scenarios, the separated effect of HSG and Aspect was accounted for.   464 

On the other hand, a high or very high influence of CCT over the hydrologic cycle that implies 465 

more water for the plant (Evapotranspiration, Transpiration, Interception, Soil Evaporation, 466 

REW) was observed. However, the influence of CCT on export of water out of the soil-water-467 

plant continuum by means Deepoff percolation or Runoff was relatively low.  468 

Forest fire risk (KBDI) resulted sensitive to forest management (CCT), which means a positive 469 

effect.  470 

Finally, carbon and nitrogen cycles were influenced by CCT, which means that might be 471 

plausible stablishing forest management strategies based on those effects, or at least account for 472 

them avoiding negative effects. 473 

3.3 BN simulation analysis 474 
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The analyzed scenarios have been organized as follows: First of all, unmodifiable parameters 475 

were instantiated to the state that agrees with the experimental plots, i.e. Aspect = NW, HSG = 476 

B and CCT=Control or Treatment 25. In this “business as usual” scenario, outputs of interest 477 

were compared with the equivalent experimental registered data. It is worth emphasizing that 478 

the direct analysis of the experimental data allows assessing the short term effect of the 479 

silvicultural intervention. This short term effect it is pretty important and is being analyzed in 480 

other parallel work. However, this effect has to be addressed in the long run as well, in order to 481 

make decisions based on the overall benefit of the intervention. BN simulated scenarios aims at 482 

precisely asses this long run effect on which the transient’s effects produced by the treatment 483 

are stabilized. Thus, when experimental and BN modeled data were compared, the key factor 484 

was the sign of the effect (increase, decrease, without effect) instead of specific values.            485 

Secondly, the influence of the unmodifiable parameters Aspect and HSG on the outputs of 486 

interest was evaluated in order to identify if different forest management strategies according to 487 

this parameters might be proposed. In this scenario one unmodifiable parameter was instantiated 488 

whilst the effect of CCT=Control and CCT= Treatment 25 was evaluated.    489 

Finally the effect of the thinning intensity (CCT = Control, Treatment 25, Treatment 35, and 490 

Treatment 45) on the outputs of interest is assessed without instantiating any other parameter 491 

with the aim to detect positive or negative trade-offs.    492 

 493 

3.3.1 Experimental plots scenario 494 

In this “business as usual” scenario or Scenario 1, the effect of the canopy cover treatment was 495 

evaluated in the same conditions as the experimental plot. To do that, unmodifiable parameters 496 

were instantiated to the states that agrees with the experimental plots, i.e., Aspect = NW, HSG = 497 

B and changing from CCT = Control to CCT = Treatment 25. 498 

Results can be seen in Table 6 and Figures 7 and 8. We can claim that all the variables have 499 

behaved in the same way as was observed in the experimental plots according to the sign of the 500 

effect (increase, decrease, without effect) produced on the outputs of interest. The hydrologic 501 

cycle was modified in such a way that more water was available to the stand because of an 502 
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important reduction of the interception, which moves from the states S1=<33, S2=33-97, 503 

S3=97-127 and S4=127-157 mm·year-1 equally shared, to be mainly in S2=33-97 mm·year-1. 504 

This resource was made available to the stand, which increased both Evapotranspiration (moves 505 

from a 74% likelihood of being in state S3=193-310 mm·year-1 to 57% likelihood of being in 506 

state S3=193-310 and 32% in state S4=310-377 mm·year-1) and its components, Transpiration 507 

and Soil Evaporation. This effect can be seen as well in the increase of soil water content REW, 508 

which slightly increase the probability to be in states with higher REW. Conversely, Stemflow 509 

was drastically reduced –in agreement with the field observations- consequence of the reduction 510 

of both the number of trees per hectare and the Interception. Finally, no effect was observed on 511 

Runoff, unless Rainfall was instantiated in the highest state (>473 mm). It is worth pointing out 512 

that Runoff not only changed, but it was below 15 mm·year-1 (the lowest possible). However, 513 

Deep percolation was slightly increased because of the thinning treatment, reducing the 514 

probability of being in the first state, and increasing the S3 and S4 states associated to a highest 515 

amount of deep percolation. Note that the soil depth in the experimental plots ranged from 10 to 516 

40 cm, beneath which there was a karstified Jurassic limestone parent rock with a huge degree 517 

of rock fissuring. In this work, deep percolation was considered the one that passes through the 518 

layer of 30 cm depth. This does not mean that all this water reach the aquifer, since within the 519 

rock there are roots uptaking water as well.    520 

The long-term effect of the thinning treatment on the LAI was very positive, which moved from 521 

the state S3=1.46-2.25 to the state S4=2.25-3.13. This is undoubtedly due to the increased vigor 522 

generated by the greater availability of water for the stand. This in turn results in an increase in 523 

GPP, which passed from the state S3 = 0.77-1.34 kgC·m-2·year-1 to the state S4=1.34-1.8 524 

kgC·m-2·year-1, and the Vegetation Carbon that moved from the state S3=0.15-0.23 kgC·m-2 to 525 

the state S4 = S4=0.23-0.33 kgC·m-2. Those values are within the order of magnitude of the 526 

ones encountered by Makineci et al., (2015) in a forest of similar characteristics. 527 

The soil organic carbon content was also increased from the state S3=2.54-3.21 kgC·m-2 to the 528 

state S4= 3.21-3.63 kgC·m-2 which in turn caused a greater respiration, which moved from S3 = 529 

0.56-0.75 kgC·m-2·year-1 to S4 = 0.75-1.02 kgC·m-2·year-1. Increases in soil organic carbon 530 
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content by increasing LAI agrees with other authors like Kumar et al. (2018). As far as the 531 

nitrogen is concerned, the mineralization from organic matter remained practically unchanged 532 

and the loss of N by leaching increased as it was associated with the deep percolation, but in 533 

very small quantity. The probability of being in the state S1 = <0.02 kgN·ha-1·year-1 was 534 

reduced by 3% and the probability of being in the state S2 = 0.02-0.05 kgN·ha-1·year-1 increased 535 

this same amount. These values are consistent with other studies such as Avila et al. (2002) who 536 

in a forest with similar characteristics found that the export of N outside the system was 0.05 537 

kgN·ha-1·year-1. 538 

Finally, the risk of fire was reduced with the thinning treatment. The probability of the state S5 539 

= 629-715 (state with high risk) decreased at the cost of increasing the probability of being in 540 

other states with lesser fire risk. 541 

 542 

Table 6. Treatment effects on the outputs of interest in the experimental plots scenario 543 

Name State Units 
Probability (%) 

Control 

Probability (%) 

Treatment 25 

Treatment 

effect 

Match with Field 

Experiment 

Deep percolation S1 below 48 mm·year-1 35 32 Increase Yes 

 
S2 48-143 

 
50 52 

  

 
S3 143-234 

 
9 9 

  

 
S4 234-396 

 
6 6 

  

 
S5 up to 396 

 
0 0 

  
Evapotranspiration S1 below 125 mm·year-1 20 11 Increase yes 

 
S2 125-193 

 
1 0 

  

 
S3 193-310 

 
74 57 

  

 
S4 310-377 

 
4 32 

  

 
S5 up to 377 

 
0 0 

  
Gross Primary 

Production 
S1 below 0.17 kgC·m-2·year-1 

20 11 
Increase Not measured 

 
S2 0.17-0.77 

 
1 0 

  

 
S3 0.77-1.34 

 
74 7 

  

 
S4 1.34-1.80 

 
4 81 

  

 
S5 up to 1.80 

 
0 2 
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Interception S1 below 33 mm·year-1 23 11 Descrease yes 

 
S2 33-97 

 
27 71 

  

 
S3 97-127 

 
22 3 

  

 
S4 127-157 

 
23 6 

  

 
S5 up to 157 

 
5 10 

  

KBDI S1 below 167 
hundredths of 

Inch 

1 2 
Descrease yes 

 
S2 167-330 

 
40 56 

  

 
S3 330-488 

 
40 31 

  

 
S4 488-629 

 
12 9 

  

 
S5 629-715 

 
6 3 

  

 
S6 up to 715 

 
0 0 

  
LAI S1 below 0.22 - 20 1 Increase yes 

 
S2 0.22-1.46 

 
2 0 

  

 
S3 1.46-2.25 

 
77 6 

  

 
S4 2.25-3.13 

 
0 82 

  

 
S5 up to 3.13 

 
0 0 

  
N leaching S1 below 0.02 kgN·ha-1·year-1 88 87 Increase yes 

 
S2 0.02-0.05 

 
12 12 

  

 
S3 0.05-0.09 

 
0 1 

  

 
S4 0.09-0.15 

 
0 0 

  

 
S5 up to 0.15 

 
0 0 

  
REW S1 below 0.21 - 4 3 Increase yes 

 
S2 0.21-0.48 

 
9 4 

  

 
S3 0.48-0.64 

 
53 58 

  

 
S4 0.64-0.86 

 
22 21 

  

 
S5 up to 0.86 

 
13 14 

  
Runoff S1 below 15 mm·year-1 97 96 = yes 

 
S2 15-25 

 
2 3 

  

 
S3 25-39 

 
1 1 

  

 
S4 39-72 

 
0 0 

  

 
S5 up to 72 

 
0 0 

  
Soil Organic Carbon S1 below 1.91 kgC·m-2 10 5 Increase yes 

 
S2 1.91-2.54 

 
8 4 

  

 
S3 2.54-3.21 

 
80 64 
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S4 3.21-3.63 

 
2 26 

  

 
S5 up to 3.63 

 
0 1 

  
Soil Evaporation S1 below 62 mm·year-1 53 52 Increase yes 

 
S2 62-76 

 
26 32 

  

 
S3 76-96 

 
14 11 

  

 
S4 96-108 

 
5 3 

  

 
S5 up to 108 

 
3 1 

  

Soil N Mineralization S1 below 1.95 kgN·ha-1·year-1 
2 3  

= 
yes 

 
S2 1.95-5.61 

 
93 94 

  

 
S3 5.61-7.53 

 
3 1 

  

 
S4 7.53-10.22 

 
1 0 

  

 
S5 up to 10.22 

 
1 1 

  
Soil Respiration S1 below 0.19 kgC·m-2·year-1 20 11 Increase yes 

 
S2 0.19-0.56 

 
2 1 

  

 
S3 0.56-0.75 

 
72 6 

  

 
S4 0.75-1.02 

 
6 82 

  

 
S5 up to 1.02 

 
0 0 

  
Stemflow S1 below 6 mm·year-1 46 76 Increase yes 

 
S2 6-11 

 
6 6 

  

 
S3 11-19 

 
38 9 

  

 
S4 19-26 

 
9 7 

  

 
S5 up to 26 

 
1 2 

  
Transpiration S1 below 24 mm·year-1 20 11 Increase yes 

 
S2 24-63 

 
1 1 

  

 
S3 63-155 

 
43 36 

  

 
S4 155-237 

 
36 50 

  

 
S5 up to 237 

 
0 2 

  
Vegetation Carbon S1 below 0.02 kgC·m-2 20 11 Increase Not measured 

 
S2 0.02-0.15 

 
2 0 

  

 
S3 0.15-0.23 

 
74 6 

  

 
S4 0.23-0.33 

 
4 83 

  

 
S5 up to 0.33 

 
0 0 

  
 544 

 545 

 546 
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 547 

Figure 7. Effect of Control on the outputs of interest under experimental plots conditions. The 548 

color of the node aims to clasify variables in water-soil-atmosphere-vegetation-management 549 

related. 550 

 551 

 552 

Figure 8. Effect of treatment 25 on the outputs of interest under experimental plots conditions. 553 

The color of the node aims to clasify variables in water-soil-atmosphere-vegetation-554 

management related. 555 

 556 



30 
 

 3.3.2 Aspect and Hydrologic Soil Group effects 557 

In this scenario –Scenario 2 and 3-, unmodifiable parameters such as Aspect and HSG were 558 

sequentially instantiated to their possible states at the same time that CCT changed from CTT= 559 

Control to CTT= Treatment 25. In this way, the effect of forest management was evaluated in 560 

conditions different from those found in the experimental plots. 561 

Regarding the Aspect effect (Scenario 2): Differences were found when compared the N 562 

orientations (NE-NW) to the S orientations (SE-SW), however no differences were found within 563 

each group (NE vs NW or SE vs SW). The thinning treatment produced the same general effects 564 

described in the previous section, but with greater intensity for the southern orientations 565 

consequence of the combination of more water available to the stand together with a greater 566 

received solar radiation. As a general rule, forest management effect (treatment) on LAI, Soil 567 

Respiration, Soil Organic Carbon, GPP and Vegetation Carbon increased from State 2 to State 3 568 

when Aspect was N, and from State 3 to State 4 for southern orientations. The hydrological 569 

cycle was intensified in the southern orientations with respect to the northern ones, so there was 570 

more Evapotranspiration, Transpiration and Soil Evaporation, with a small reduction in REW 571 

and no perceptible effect in Runoff and Deep percolation. Soil organic carbon content increased, 572 

N mineralization was slightly reduced and no changes were observed in N leaching in the 573 

southern orientation compared to the north.  574 

In conclusion, in the southern orientations, the adaptation treatment analyzed was equally 575 

beneficial, so it does not seem appropriate to prescribe specific actions according to the Aspect. 576 

As regards the HSG effect (Scenario 3): It had a very important influence on Runoff production 577 

and Deep Percolation. Thus, when HSG was instantiated in the state HSG = D, the probability 578 

of being Runoff in the state S1 = <15 mm · year -1 was 70% and 20% of being in the state S2 = 579 

15-25 mm · year -1, whilst instantiating HSG = B were 96% probability of being in state S1 and 580 

3% in S2. In the same way, the type of soil also controls the Deep percolation and related to 581 

this, the N-Leaching, which is much higher in sandy soils (A) than in clay soils (D). When HSG 582 

was instantiated in state HSG = D, the probability of being Deep percolation in state S1= <48 583 

mm · year-1 was 82% and 10% of being in state S2 = 48-143 mm · year-1, whilst those 584 
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probabilities change to 33% and 53% respectively when HSG was instantiated to HSG = B. 585 

However N-leaching increased only 8% the probability of being in state S2 = 0.02-0.05 kgN·ha-586 

1·year-1 instead of the state S1 = <0.02 kgN·ha-1·year-1. As a general rule, it can be stated that 587 

forest management improved Deep percolation, but conditioned to the existence of soils with 588 

good infiltration capacity and without affecting the loss of nitrogen. Taking into account that a 589 

real case of forest management would normally be marked by the heterogeneity of its soils, it 590 

does not seem appropriate to propose specific actions by type of soil. 591 

 592 

3.3.3 Hydrological Forest Management Scenario 593 

In this scenario –Scenario 4- any variable was instantiated with the exception of CCT that was 594 

the effect analyzed. CCT was sequentially instantiated to its possible states CCT = Control, 595 

Treatment 25, Treatment 35, and Treatment 45. Results can be seen in Figure 9. 596 

It is worth emphasizing that greater intensities than Treatment 25 did not produce changes in the 597 

behavior of the outputs of interest. The positive effects of the treatment (produced by the 598 

reduction of the interception that increased the amount of water available for uptake by plants) 599 

described in previous scenarios were achieved with the first intensity. No additional water 600 

reaches the soil when higher thinning intensities were applied. Note that in this scenario, only 601 

CTT was instantiated. Therefore, all those effects produced by Aspect, HSG or Rainfall were 602 

compensated with each other, and the final probabilities did not reflect substantial changes in 603 

the long run.    604 
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605 

606 

 607 

Figure 9. Evolution of the final probabilities of several outputs of interest in the simulated 608 

hydrological forest management scenarios. 609 

 610 

Regarding the comparison between CCT = Control and CCT = Treatment 25, there were hardly 611 

any differences with respect to the analysis made in the previous section. The outputs of interest 612 

behaved in general terms as described in Table 6. The reduction of the Interception produced an 613 

increase in the water available for the stand with the consequent increase in vigor: LAI, GPP, 614 

Vegetation Carbon and Soil Organic Carbon increased. The Runoff and Deep percolation were 615 
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hardly affected, and associated with it, there was a small increase in N-leaching, which in any 616 

case was negligible. The risk of fire was reduced and N mineralization and Respiration were 617 

activated.  618 

In Figure 10 can be seen the evolution of the final probabilities of several outputs of interest 619 

along the described scenarios.  620 

 621 

 622 

 623 

 624 

Figure 10. Evolution of the final probabilities of several outputs of interest along the BN 625 

simulated scenarios. 626 

 627 
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4. Conclusions 628 

Many efforts can be found in the literature along the last 15 years addressing the broadly 629 

recognized need for adaptation of forest ecosystems in the Mediterranean basin. Hydrology-630 

oriented forest management could respond to this need in those areas on which water is the most 631 

limiting factor. In those areas, adaptive management might be focused on forest and water 632 

relationships. 633 

However, it should be recognize that research on forest management for adaptation has focused 634 

on demonstrating the short-term improvement in specific issues (reducing drought vulnerability, 635 

increasing resilience, decreasing forest fire risk, etc.) leaving aside other than those for which 636 

they were intended effects and leaving aside the long-term effects as well. To deal with both a 637 

broad range of variables involved and the long-term effects, biogeochemical models that 638 

simulate the storage and flux of water, carbon, and nitrogen between the ecosystem and the 639 

atmosphere, calibrated and validated using the short-term experimental datasets, proved to be a 640 

good solution. Nevertheless, outputs of models should be analyzed using a tool capable to cope 641 

with complex and uncertain relationships among variables involved in forest management. 642 

Structured analysis of complex systems is the main scope of Bayesian Networks. This tool 643 

allowed for investigating the impacts of management options through analysis of scenarios, 644 

assessing the consequences of management hypothesis and potential actions.  645 

Specific results offered by the BN model showed that hydrology-oriented forest management 646 

was very positive insofar as more water was made available to the stand because of an important 647 

reduction of the interception. This resource was made available to the stand, which increased 648 

both Evapotranspiration and its components -Transpiration and Soil Evaporation-. This effect 649 

could be seen also in the increase of soil water content REW and a slightly increase of deep 650 

percolation. Conversely, Stemflow was drastically reduced consequence of the reduction of both 651 

the number of trees per hectare and the Interception. Finally, no effect was observed on Runof 652 

due to the thinning treatment.  653 

As far as the nitrogen is concerned, the mineralization from organic matter remained practically 654 

unchanged and the loss of N by leaching increased as it was associated with the deep 655 
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percolation, but in a negligible amount. The Soil organic carbon content was also increased 656 

which in turn caused a greater respiration. The long-term effect of the thinning treatment on the 657 

LAI was very positive. This was undoubtedly due to the increased vigor generated by the 658 

greater availability of water and nutrients for the stand and the reduction of competence between 659 

trees. This greater activity resulted in an increase in GPP and Vegetation Carbon, and therefore, 660 

we would expect a higher carbon sequestration. It is worth emphasizing that this extra amount 661 

of water and nutrients was taken up by the stand and did not entail any loss of nutrients. Finally, 662 

the risk of fire was also reduced with the thinning treatment. 663 

Intensities of thinning with canopy cover removal greater than 25% in the 50–year unmanaged 664 

forest analyzed in this study did not offer any advantage compared to the lowest intensity.  665 

Although the results obtained in the analysis of scenarios using the BN model showed 666 

differences between type of soil and aspect, the heterogeneity of those parameters in a real case 667 

discourage proposing different management strategies according to them. 668 

Further studies including other issues and ecosystem services like pests resilience, biodiversity 669 

or economic treats should be done in the future.   670 

 671 
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