
Acad mic :

TRABAJO FIN DE MASTER EN INGENIERÍA INDUSTRIAL

AUTHORESS:

SUPERVISOR:

PALOMA BAHILO ALPUENTE

ÁNGEL VALERA FERNÁNDEZ

2017-18

VICENTE FERMÍN CASANOVA CALVO

SUPERVISOR:

DEVELOPMENT AND PROGRAMMING OF 
ALGORITHMS FOR THE AUTOMATIC 

COLLISION AVOIDANCE. APPLICATION TO 
TERRESTRIAL MOBILE ROBOTS

AUTHORESS:

SUPERVISOR:



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

“A	mis	padres,		
por	ser	mi	símbolo	de	esfuerzo	y	constancia.”



	 	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	 II	

	

ACKNOWLEDGEMENTS		

This	 project	 is	 the	 result	 of	 a	 six-year	 journey	 across	 the	 industrial	 engineering	
universe,	which	was	round	out	with	an	intense	exchange	term	at	the	Hong	Kong	University	of	
Science	 and	 Technology.	 It	 has	 been	 a	 worth	 taken	 journey	 that	 has	 driven	 me	 to	 the	
fascinating	area	of	Control,	Automation	and	Robotics.	I	gratefully	thank	my	two	advisors,	Ángel	
Valera	 Fernández	 and	 Vicente	 Fermín	 Casanova	 Calvo,	 for	 their	 enthousiastic	 and	 wise	
guidance,	 dedication	 and	 encouragement.	 I	 would	 also	 like	 to	 thank	 my	 family	 for	 making	
everything	easy	and	pushing	me	forward	to	achieve	my	goals.		 	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	 III	

	

	

		

	

	 	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	 IV	

ABSTRACT	

The	goal	of	this	Master	Thesis	is	to	design	and	implement	a	methodology	and	system	
to	 endow	 a	 mobile	 terrestrial	 robot	 with	 the	 capability	 to	 efficiently	 reach	 its	 goals	 in	 a	
bounded	environment	that	can	be	constrained	with	unknown	obstacles.	To	meet	this	goal,	the	
robotic	system	first	identifies	the	obstacles	in	the	environment	and	then	plans	the	best	robot	
trajectory	 that	 efficiently	 avoids	 any	possible	 collision,	which	 is	 a	 necessary	 requirement	 for	
the	 robot	 to	 stay	 safe	 and	 completely	 autonomous.	 The	 technique	 proposed	 in	 this	 thesis	
supports	planning	and	deploying	of	such	complex	robot	maneuvers	in	a	real	environment	and	
can	 be	 applied	 to	 any	 industrial	 environment.	 This	 is	 done	 by	 combining	 simple	 models,	
efficient	 implementations,	 and	 interactive	 simulations	 that	 leverage	 the	 agility	 and	
maneuverability	of	the	robot.	First,	an	optimal	solution	to	the	problem	of	obstacle	avoidance	is	
achieved	by	developing	in	Simulink	a	controller	that	relies	on	a	Matlab	implementation	of	the	
A*	algorithm,	a	classical	Artificial	 Intelligence	algorithm	that	 is	able	to	compute	minimal	cost	
paths	from	a	start	point	to	a	target	point	in	a	bounded	area.	The	proposed	navigation	strategy	
is	 first	 tested	with	S-Functions	 to	 interactively	validate	 the	controller’s	behavior,	and	 then	 in	
co-simulation	of	 Simulink	 and	 the	 Simscape	Multibody	 framework	 for	 a	more	 real	 view	 that	
considers	 the	 robot’s	 physical	 properties	 and	 friction.	 Starting	 from	a	matrix	 of	 input	 values	
that	correspond	to	an	image	of	the	environment	obtained	by	using	a	monocular	camera,	the	
image	 is	 segmented	 and	 processed	 in	 the	 Matlab	 software	 environment,	 and	 an	 optimal	
trajectory	is	computed	which	leads	from	the	starting	point	to	the	target	point	without	collision.	
The	path	trajectory	is	evaluated	by	using	co-simulation	to	visually	analyse	the	estimated	path	
trajectory	followed	by	the	robot.	Then,	the	technique	is	implemented	in	a	real	robotic	system,	
the	LEGO	MINDOSTORMS	EV3,	by	following	a	methodology	that	also	combines	two	different	
software	systems	 following	 two	complementary	approaches:	a	more	academic	one,	by	using	
LEGO	 MINDSTORMS	 EV3	 support	 library	 for	 Simulink,	 which	 allows	 the	 robot	 real-time	
behavior	 to	 be	 evaluated,	 and	 a	 more	 professional	 one,	 by	 using	 the	 C-based	 robotics	
programming	language	RobotC,	which	witnesses	its	applicability	to	any	industrial	system.		

	

	

	

Keywords:	 Mobile	 robot,	 Optimal	 path,	 A*	 Algorithm,	 Unknown	 Obstacles,	 Obstacle	
Avoidance,	Co-Simulation 

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	 V	

RESUMEN	

El	objetivo	de	este	Trabajo	Fin	de	Máster	es	diseñar	e	implementar	una	metodología	y	
sistema	para	dotar	a	un	robot	terrestre	móvil	con	la	capacidad	de	alcanzar	eficientemente	una	
posición	 objetivo	 dentro	 de	 un	 entorno	 limitado	 y	 que	 puede	 verse	 condicionado	 por	
obstáculos	desconocidos.	Para	cumplir	este	objetivo,	el	sistema	robótico	 identifica	en	primer	
lugar	 los	obstáculos	presentes	en	el	entorno	y,	a	continuación,	 	planifica	 la	mejor	trayectoria	
que	permita	al	robot	evitar	de	forma	eficiente	cualquier	posible	colisión,	lo	cuál	es	un	requisito	
necesario	 para	 su	 seguridad	 y	 completa	 autonomía.	 La	 técnica	 propuesta	 aborda	 la	
planificación	y	el	despliegue	de	tales	maniobras	complejas	del	robot	en	un	entorno	real	y	son	
aplicables	 a	 cualquier	 entorno	 industrial.	 Esto	 se	 logra	 combinando	 modelos	 simples,	
implementaciones	 eficientes	 y	 simulaciones	 interactivas	 que	 aprovechan	 la	 agilidad	 y	 la	
maniobrabilidad	del	robot.	En	primer	lugar,	se	obtiene	una	solucion	óptima	al	problema	de	la	
evasión	de	obstáculos	mediante	el	 desarrollo	de	un	 controlador	en	 Simulink	que	 se	basa	en	
una	implementación	en	Matlab	del	algoritmo	A*,	un	algoritmo	clásico	de	Inteligencia	Artificial	
que	 permite	 calcular	 trayectorias	 de	 coste	mínimo	 desde	 un	 punto	 inicial	 hasta	 un	 objetivo	
dado	en	un	área	delimitada.	La	estrategia	de	navegación	propuesta	se	prueba	primero	con	S-
Functions	 para	 validar	 interactivamente	 el	 comportamiento	 del	 controlador,	 y	 luego	 en	 co-
simulación	de	Simulink	y	el	framework	Simscape	Multibody,	para	obtener	una	visión	más	real	
al	considerar	las	propiedades	físicas	del	robot	y	la	fricción.	A	partir	de	una	matriz	de	entradas	
que	representa	una	imagen	del	entorno	obtenida	utilizando	una	cámara	monocular,	la	imagen	
se	 segmenta	 y	 se	 procesa	 utilizando	 la	 herramienta	 software	 Matlab,	 y	 se	 calcula	 una	
trayectoria	optima	para	ir	desde	un	punto	inicial	a	un	punto	final	evadiendo	los	obstáculos	del	
entorno.	La	trayectoria	calculada	se	evalúa	entonces	mediante	co-simulación,	 lo	que	permite	
analizar	 visualmente	 la	 ruta	 estimada	 seguida	 por	 el	 robot.	 A	 continuación,	 la	 técnica	 se	
implementa	 en	 un	 sistema	 robótico	 real,	 el	 LEGO	 MINDOSTORMS	 EV3,	 siguiendo	 una	
metodología	que	combina	también	dos	sistemas	software	diferentes	siguiendo	dos	enfoques	
complementarios:	 uno	 más	 académico,	 utilizando	 la	 biblioteca	 de	 soporte	 de	 LEGO	
MINDSTORMS	EV3	para	 Simulink,	 que	permite	 evaluar	 su	 comportamiento	 en	 tiempo	 real	 y	
otro	 más	 profesional,	 utilizando	 el	 lenguaje	 de	 programación	 basado	 en	 C	 para	 róbótica	
RobotC,	que	atestigua	su	aplicabilidad	a	cualquier	sistema	industrial.			

	

	

Palabras	 clave:	 Robot	 Móvil,	 Camino	 Óptimo,	 Algoritmo	 A*,	 Evasión	 de	 obstáculos,	 Co-
simulación	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	 VI	

RESUM	

 L'objectiu	d'aquest	Treball	Fi	de	Màster	és	dissenyar	i	implementar	una	metodologia	
i	 sistema	 per	 dotar	 un	 robot	 terrestre	 mòbil	 amb	 la	 capacitat	 d'arribar	 eficientment	 a	 una	
posició	 objectiu	 dins	 d'un	 entorn	 limitat	 i	 que	 es	 pot	 veure	 condicionat	 per	 obstacles	
desconeguts.	 Per	 complir	 aquest	 objectiu,	 el	 sistema	 robòtic	 identifica	 en	 primer	 lloc	 els	
obstacles	presents	en	 l'entorn	 i	 tot	 seguit	planifica	 la	millor	 trajectòria	que	permeti	 al	 robot	
evitar	de	manera	eficient	qualsevol	possible	col·lisió,	el	quin	és	un	requisit	necessari	per	a	 la	
seva	 seguretat	 i	 completa	 autonomia.	 La	 tècnica	 proposta	 aborda	 la	 planificació	 i	 el	
desplegament	d'aquestes	maniobres	complexes	del	robot	en	un	entorn	real	i	són	aplicables	a	
qualsevol	 entorn	 industrial.	 Això	 s'aconsegueix	 combinant	models	 simples,	 implementacions	
eficients	 i	 simulacions	 interactives	 que	 aprofiten	 l'agilitat	 i	 la	 maniobrabilitat	 del	 robot.	 En	
primer	 lloc,	 s'obté	 una	 solució	 òptima	 al	 problema	 de	 l'evasió	 d'obstacles	 mitjançant	 el	
desenvolupament	d'un	controlador	en	Simulink	que	es	basa	en	una	implementació	Matlab	de	
l'algoritme	A	*,	un	algoritme	clàssic	d'Intel·ligència	Artificial	que	permet	calcular	trajectòries	de	
cost	mínim	des	un	punt	inicial	fins	a	un	objectiu	donat	en	una	àrea	delimitada.	L'estratègia	de	
navegació	proposta	es	prova	primer	amb	S-Functions	per	provar	visualment	el	comportament	
del	controlador,	i	després	en	co-simulació	de	Simulink	i	el	framework	Simscape	Multibody,	per	
obtenir	una	visió	més	 real	en	considerar	 les	propietats	 físiques	del	 robot	 i	 la	 fricció.	A	partir	
d'una	 matriu	 d'entrades	 que	 representa	 una	 imatge	 de	 l'entorn	 obtinguda	 utilitzant	 una	
càmera	 monocular,	 la	 imatge	 es	 segmenta	 i	 es	 processa	 utilitzant	 el	 primer	 sistema	
programari,	l'eina	Matlab,	i	es	calcula	una	trajectòria	òptima	per	anar	des	d'un	punt	inicial	a	un	
punt	final	evadint	els	obstacles	de	l'entorn.	La	trajectòria	calculada	s'avalua	llavors	mitjançant	
co-simulació,	 el	 que	 permet	 analitzar	 visualment	 la	 ruta	 estimada	 seguida	 pel	 robot.	 A	
continuació,	la	tècnica	s'implementa	en	un	sistema	robòtic	real,	el	LEGO	MINDOSTORMS	EV3,	
seguint	una	metodologia	que	 combina	 també	dos	 sistemes	programari	diferents	 seguint	dos	
enfocaments	 complementaris:	 un	 més	 acadèmic,	 utilitzant	 la	 biblioteca	 de	 suport	 de	 LEGO	
MINDSTORMS	EV3	per	Simulink,	que	permet	avaluar	el	seu	comportament	en	temps	real	i	un	
altre	més	 professional,	 utilitzant	 l'entorn	 de	 programació	 basat	 en	 C	 per	 a	 robòtica	 RobotC,	
que	testimonia	la	seva	possible	aplicabilitat	a	qualsevol	sistema	industrial.	

	

Paraules	clau:	Robot	Mòbil,	Camí	Òptim,	Algoritme	A*,	Evasió	d'Obstacles,	Co-Simulació	 	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	 VII	

 

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	 VIII	

GENERAL	INDEX	

CONTENTS	OF	THE	TFM	

• DOCUMENT	Nº1:	Project	Report	

• DOCUMENT	Nº2:	Project	Budget	

DOCUMENT	Nº1:	PROJECT	REPORT	

CHAPTER	1:	Introduction		.....................................................................................................		 1		

1.1.	 Objectives	of	this	project	.......................................................................................		 1		

1.2.	 Motivation.	A	layman’s	Introduction	to	Robotics	..................................................		 3		

1.3.	 Background:	Fundamentals	of	Path	Finding	and	Obstacle	Avoidance	..................		 4		

CHAPTER	2:	Fundamentals	of	Robotic	Manipulation:	Rigid	Body	Transformations	.............		 7	

2.1.	 Rigid	Body	Transformations	..................................................................................		 7		

2.2.	 Properties	of	Rotation	Matrices	............................................................................		 8	

2.3.	 Rotation	Representations	......................................................................................		10		

2.4.	 Rigid	Body	Motions	................................................................................................		14		

2.5.	 Rigid	Body	Velocities	.............................................................................................		15		

CHAPTER	3:		A*	Algorithm	in	Artificial	Intelligence	..............................................................		17	

3.1.	 Algorithms	and	Artificial	Intelligence	....................................................................		17		

3.2.	 A-STAR:	Combination	of	Uniform	Cost	Seach	and	Heuristic	Search	......................		17	

3.3.	 Tree	Construction			................................................................................................		18		

CHAPTER	4:	Backbone	of	the	Proposed	Methodology		........................................................		21		

4.1.	 The	Proposed	Methodology	..................................................................................		21		

CHAPTER	5:	Implementation	of	the	A*	Algorithm	for	our	target	robot	...............................		25	

5.1.	 The	Proposed	Technique	.......................................................................................		25	

5.2.	 Implementation	.....................................................................................................		26	

5.3.	 Piecewise	Cubic	Hermite	Interpolating	Polynomial	...............................................		31	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	 IX	

CHAPTER	6:	Forward	and	Inverse	Kinematics	and	Robot	Configuration	..............................		33		

6.1.	 Introduction	to	Robot	Kinematics	.........................................................................		33	

6.2.	 Introduction	to	Forward	Kinematics	......................................................................		33	

6.3.	 Introduction	to	Inverse	Kinematics.	......................................................................		34		

6.4.	 Robot	Configuration.	.............................................................................................		34	

6.5.	 Forward	Kinematics	with	Differential	Configuration	Model.	................................		35	

6.6.	 Inverse	Kinematics	with	Differential	Configuration	Model.	..................................		36	

CHAPTER	7:		Position	Estimation	and	Control	of	Mobile	Robots	..........................................		37		

7.1.	 Position	Estimation	................................................................................................		37	

7.2.	 Control	of	Mobile	Robots	......................................................................................		38	

CHAPTER	8:		Simulink	Visualization	using	S-Functions	and	Simscape	Multibody	Simulation	41		

8.1.	 S-Functions	............................................................................................................		41		

8.2.	 Simscape	Multibody	..............................................................................................		45	

CHAPTER	9:		Implementation	Platforms	for	EV3		.................................................................		55	

9.1.	 LEGO	MINDSTORMS	EV3	Support	for	Simulink	.....................................................		56	

9.2.	 RobotC	Programming	Language	and	Platform	......................................................		58	

CHAPTER	10:	Computer	Vision	System	for	Obtention	of	the	Environment	Configuration		..		61	

10.1.	 Modeling	the	Environment	Configuration	by	means	of	a	Monocular	Camera	.....		61		

10.2.	 Perspective	Modeling			..........................................................................................		62	

10.3.	 Camera	Calibration			..............................................................................................		64	

CHAPTER	11:	Application	of	the	Developed	Methodology	and	System	to	a	Representative	
Case	Study	.......................................................................................................................		69	

11.1.	 Obstacle	Detection	by	Camera	Vision	System	and	Transference	to	Matlab		........		70	

11.2.	 Computing	the	Optimal	Path	Trajectory	using	A*	Algorithm	................................		71	

11.3.	 Simulation	of	the	Optimal	Path			...........................................................................		74		

11.4.	 Simulink	Implementation	for	EV3	..........................................................................		77		

11.5.	 RobotC	Implementation	for	EV3	...........................................................................		82	

CHAPTER	12:	Conclusion	and	Evaluation	..............................................................................		83	

12.1.	 Conclusion		............................................................................................................		83	

12.2.	 Evaluation			............................................................................................................		84	

CHAPTER	13:	References	......................................................................................................		87	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	 X	

DOCUMENT	Nº2:	PROJECT	BUDGET	

CHAPTER	1.	Unit	Prices		........................................................................................................		89		

1.1.	 Analysis	of	the	Path	Planning	and	Obstacle	Avoidance	Techniques			....................		89		

1.2.	 Design	of	a	Navigation	Methodology	....................................................................		89		

1.3.	 Simulation	of	the	Methodology	in	two	different	environments	...........................		89		

1.3.	 Application	of	the	obstacle	avoidance	in	the	EV3	.................................................		89		

1.4.	 Food	expenses	and	Meetings	................................................................................		90		

1.5.	 Additional	tasks	and	Activities	...............................................................................		90	

1.6.	 Other	Concepts	......................................................................................................		90		

	

CHAPTER	2:	Measurements	..................................................................................................		91	

2.1.	 Analysis	of	the	Path	Planning	and	Obstacle	Avoidance	Techniques			....................		91		

2.2.	 Design	of	a	Navigation	Methodology	....................................................................		91		

2.3.	 Simulation	of	the	Methodology	in	two	different	environments	...........................		91	

2.4.	 Application	of	the	obstacle	avoidance	in	the	EV3	.................................................		92		

2.5.	 Food	expenses	and	Meetings	................................................................................		92	

2.6.	 Additional	tasks	and	Activities	...............................................................................		92	

2.7.	 Other	Concepts	......................................................................................................		92		

	

CHAPTER	3:		Detailed	Budget	................................................................................................		93	

3.1.	 Analysis	of	the	Path	Planning	and	Obstacle	Avoidance	Techniques	......................		93		

3.2.	 Simulation	of	the	Methodology	in	two	different	environments	...........................		93		

3.3.	 Simulation	of	the	obstacle	avoidance	in	two	different	environments	..................		93		

3.4.	 Application	of	the	obstacle	avoidance	in	the	EV3	.................................................		94		

3.5.	 Food	expenses	and	Meetings	................................................................................		94		

3.6.	 Additional	tasks	and	Activities	...............................................................................		94	

3.7.	 Other	Concepts	......................................................................................................		94		

	

CHAPTER	4:	Total	Budget	of	the	Project	...............................................................................		95



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

XI	

INDEX	OF	FIGURES	

Figure	1.	Rigid	Body	Displacement	................................................................................................	8	

Figure	2.	Rotation	axes	..................................................................................................................	9	

Figure	3.	Composition	Rule	...........................................................................................................	9	

Figure	4.	Examples	of	differential	manifolds	locally	resembled	to	R2	.........................................	10	

Figure	5.	Exponential	Coordinates	..............................................................................................	13	

Figure	6.	Transformation	between	different	coordinate	frames	................................................	14	

Figure	7.	Compoistion	of	rigid	body	motion	...............................................................................	14	

Figure	8.		A*	Algorithm	Pseudocode	...........................................................................................	19	

Figure	9.	Intuitive	Trajectory	from	Start	Cell	(0.4,	0.4)	to	Target	Cell	(1.8,	1.8)	..........................	20	

Figure	10.	Path	generated	to	avoid	one	obstacle	.......................................................................	20	

Figure	11.	Path	generated	to	avoid	two	obstacles	......................................................................	20	

Figure	12.	The	proposed	methodology	.......................................................................................	21	

Figure	13.	Example	1,	A*	Trajectory	for	Map	1	...........................................................................	28	

Figure	14.	Example	2,	A*	Trajectory	for	Map	2	...........................................................................	28	

Figure	15.	Example	3,	A*	Trajectory	for	Map	3	...........................................................................	29	

Figure	16.	Example	4,	A*	Trajectory	for	Map	4	...........................................................................	29	

Figure	17.	Example	5,	A*	Trajectory	for	Map	5	...........................................................................	30	

Figure	18.	Example	6,	A*	Trajectory	for	Map	6	...........................................................................	30	

Figure	19.	Pchip	vs	Spline	............................................................................................................	31	

Figure	20.	Pchip	(red)	vs	Spline	(blue)	for	our	target	robot	........................................................	32	

Figure	21.	Forward	Kinematics	...................................................................................................	33	

Figure	22.	Inverse	Kinematics	.....................................................................................................	34	

Figure	23.	Differential	Configuration	..........................................................................................	35	

Figure	24.	Simulink	Forward	Kinematics	.....................................................................................	36	

Figure	26.	Mobile	Robot	Control	.................................................................................................	38	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

XII	

Figure	27.	Dynamic	Control	Simulink	Structure	..........................................................................	38	

Figure	28.	Dynamic	Control	Simulink	Structure	..........................................................................	39	

Figure	29.	Position	Control	by	Decentralized	Point	....................................................................	40	

Figure	30.	Simulink	Global	Structure	for	S-Functions	.................................................................	41	

Figure	31.	Example	1,	S-Functions	Map	1	...................................................................................	42	

Figure	32.	Example	2,	S-Functions	Map	2	...................................................................................	43	

Figure	33.	Example	3,	S-Functions	Map	3	...................................................................................	43	

Figure	34.	Example	4,	S-Functions	Map	4	...................................................................................	44	

Figure	35.	Example	5,	S-Functions	Map	5	...................................................................................	44	

Figure	36.	Example	6,	S-Functions	Map	6	...................................................................................	45	

Figure	37.	EV3	Real	Model	..........................................................................................................	46	

Figure	38.	Body	Structure	of	the	Robot	in	.stl	.............................................................................	46	

Figure	39.	The	Robot	following	the	Path	Simulation	..................................................................	47	

Figure	40.	The	wheel’s	properties	...............................................................................................	47	

Figure	41.	General	Simulink	Structure	........................................................................................	48	

Figure	42.	Joints	used	in	the	body,	considering	gravity	..............................................................	49	

Figure	43.	General	Floor	structure	with	third	hierarchical	level	subsystem	...............................	50	

Figure	44.	General	EV3	structure	................................................................................................	51	

Figure	45.	Each	of	the	wheel’s	structure	model	.........................................................................	52	

Figure	46.	The	Wheel’s	Behavior	................................................................................................	52	

Figure	47.	SM-Contact	Forces	for	each	wheel	............................................................................	53	

Figure	48.	The	Resulting	Simulation	Side	View	...........................................................................	53	

Figure	49.	The	Resulting	Upper	Simulation	.................................................................................	54	

Figure	50.	Simulation	Behaviour:	Desired,	Estimated	and	Real	Trajectory	.................................	54	

Figure	51.	Simulink	Support	Package	for	LEGO	MINSTORMS	EV3	Hardware	.............................	56	

Figure	52.	Global	Structure	.........................................................................................................	57	

Figure	53.	Wheel’s	Structure	......................................................................................................	57	

Figure	54.	System	Structure,	considering	Kinematics	and	Inverse	Kinematics	control	..............	57	

Figure	55.	Simulation	Behaviour	vs	Real	Behaviour	....................................................................	58	

Figure	56.	Thin	lens	perspective	projection	................................................................................	61	

Figure	57.	Pin	-hole	Camera	Model	.............................................................................................	62	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

XIII	

Figure	58.	Perspective	Projection	...............................................................................................	63	

Figure	59.	Pin-hole	Camera	Model	.............................................................................................	64	

Figure	60.	Calibration	object	.......................................................................................................	64	

Figure	62.	Case	Study:	Environment	Configuration	1	.................................................................	70	

Figure	63.	Case	Study:	Environment	Configuration	2	.................................................................	71	

Figure	 64.	 The	 Initial	 Position	 (left)	 and	 the	 Eroded	 and	 Segmented	 obstacles	 (right)	 of	
Configuration	2	...................................................................................................................	71	

Figure	65.	The	found	path	in	pixels	for	Environment	Configuration	1	........................................	72	

Figure	66.	The	found	path	in	pixels	for	Environment	Configuration	2	........................................	72	

Figure	67.	Obstacle	avoidance	Path	for	Environment	Configuration	1	.......................................	73	

Figure	68.	Obstacle	avoidance	Path	for	Environment	Configuration	2	.......................................	73	

Figure	69.	Visualization	with	S-Functions	for	Configuration	1	....................................................	74	

Figure	70.	Visualization	with	S-Functions	for	Configuration	2	....................................................	75	

Figure	71.	Simulink	Structure	requiring	changes	for	a	new	environment	configuration	............	75	

Figure	72.	Simulated	behavior	of	the	robot	with	Simscape	........................................................	76	

Figure	73.	Wheel	Velocity	...........................................................................................................	76	

Figure	74.	Simulation	with	Simscape	Multibody	Side	View	........................................................	77	

Figure	75.	Simulation	with	Simscape	Multibody		Upper	View	....................................................	77	

Figure	76.	Simulink	Model	for	Host	computer	............................................................................	78	

Figure	77.	Model	for	LEGO	MINDSTORMS	EV3	...........................................................................	78	

Figure	78.	EV3	Robot	following	the	path	trajectory	computed	by	the	Simulink	implementation
	............................................................................................................................................	79	

Figure	79.	Path	followed	by	the	robot	under	the	Simulink	control	implementation	..................	79	

Figure	80.		X	Values	with	Simulink	Implementation	...................................................................	80	

Figure	81.		Y	Values	with	Simulink	Implementation	....................................................................	80	

Figure	82.	Motor	C	Control	Behaviour	........................................................................................	81	

Figure	83.	Motor	B	Control	Behaviour	........................................................................................	81	

Figure	84.	EV3	Robot	following	the	path	trajectory	computed	by	the	RobotC	implementation	82	

	

	

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

XIV	

INDEX	OF	TABLES	

Table		1.	Rotation	Matrix	............................................................................................................	10	

Table		2.	Euler	Angles	..................................................................................................................	11	

Table		3.	Euler	Angle	Conversions	...............................................................................................	12	

Table		4.	Extraction	of	Environment		Configuration	using	Monocular	Camera	...........................	66	

	

	

	

	

		

	

	 	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

XV	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

I	

	

MASTER	DEGREE	IN		
INDUSTRIAL	ENGINEERING			

FINAL	PROJECT	

	

	

DOCUMENT	Nº1:		

PROJECT	REPORT	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

II	

	

	

	

	

	

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

III	

DOCUMENT	Nº1:	PROJECT	REPORT	

DOCUMENT	Nº1:	PROJECT	REPORT	

CHAPTER	1:	Introduction		.....................................................................................................		 1		

1.1.	 Objectives	of	this	project	.......................................................................................		 1		

1.2.	 Motivation.	A	layman’s	Introduction	to	Robotics	..................................................		 3		

1.3.	 Background:	Fundamentals	of	Path	Finding	and	Obstacle	Avoidance	..................		 4		

CHAPTER	2:	Fundamentals	of	Robotic	Manipulation:	Rigid	Body	Transformations	.............		 7	

2.1.	 Rigid	Body	Transformations	..................................................................................		 7		

2.2.	 Properties	of	Rotation	Matrices	............................................................................		 8	

2.3.	 Rotation	Representations	......................................................................................		10		

2.4.	 Rigid	Body	Motions	................................................................................................		14		

2.5.	 Rigid	Body	Velocities	.............................................................................................		15		

CHAPTER	3:		A*	Algorithm	in	Artificial	Intelligence	..............................................................		17	

3.1.	 Algorithms	and	Artificial	Intelligence	....................................................................		17		

3.2.	 A-STAR:	Combination	of	Uniform	Cost	Seach	and	Heuristic	Search	......................		17	

3.3.	 Tree	Construction			................................................................................................		18		

CHAPTER	4:	Backbone	of	the	Proposed	Methodology		........................................................		21		

4.1.	 The	Proposed	Methodology	..................................................................................		21		

CHAPTER	5:	Implementation	of	the	A*	Algorithm	for	our	target	robot	...............................		25	

5.1.	 The	Proposed	Technique	.......................................................................................		25	

5.2.	 Implementation	.....................................................................................................		26	

5.3.	 Piecewise	Cubic	Hermite	Interpolating	Polynomial	...............................................		31	

CHAPTER	6:	Forward	and	Inverse	Kinematics,	and	Robot	Configuration	.............................		33		

6.1.	 Introduction	to	Robot	Kinematics	.........................................................................		33	

6.2.	 Introduction	to	Forward	Kinematics	......................................................................		33	

6.3.	 Introduction	to	Inverse	Kinematics.	......................................................................		34		



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

IV	

6.4.	 Robot	Configuration.	.............................................................................................		34	

6.5.	 Forward	Kinematics	with	Differential	Configuration	Model.	................................		35	

6.6.	 Inverse	Kinematics	with	Differential	Configuration	Model.	..................................		36	

CHAPTER	7:		Position	Estimation	and	Control	of	Mobile	Robots	..........................................		37		

7.1.	 Position	Estimation	................................................................................................		37	

7.2.	 Control	of	Mobile	Robots	......................................................................................		38	

CHAPTER	8:		Simulink	Visualization	using	S-Functions	and	Simscape	Multibody	Simulation	41		

8.1.	 S-Functions	............................................................................................................		41		

8.2.	 Simscape	Multibody	..............................................................................................		45	

CHAPTER	9:		Implementation	Platforms	for	EV3		.................................................................		55	

9.1.	 LEGO	MINDSTORMS	EV3	Support	for	Simulink	.....................................................		56	

9.2.	 RobotC	Programming	Language	and	Platform	......................................................		58	

CHAPTER	10:	Computer	Vision	System	for	Obtention	of	the	Environment	Configuration		..		61	

10.1.	 Modeling	the	Environment	Configuration	by	means	of	a	Monocular	Camera	.....		61		

10.2.	 Perspective	Modeling			..........................................................................................		62	

10.3.	 Camera	Calibration			..............................................................................................		64	

CHAPTER	11:	Application	of	the	Developed	Methodology	and	System	to	a	Representative	
Case	Study	.......................................................................................................................		69	

11.1.	 Obstacle	Detection	by	Camera	Vision	System	and	Transference	to	Matlab		........		70	

11.2.	 Computing	the	Optimal	Path	Trajectory	using	A*	Algorithm	................................		71	

11.3.	 Simulation	of	the	Optimal	Path			...........................................................................		74		

11.4.	 Simulink	Implementation	for	EV3	..........................................................................		77		

11.5.	 RobotC	Implementation	for	EV3	...........................................................................		82	

CHAPTER	12:	Conclusion	and	Evaluation	..............................................................................		83	

12.1.	 Conclusion		............................................................................................................		83	

12.2.	 Evaluation			............................................................................................................		84	

CHAPTER	13:	References	......................................................................................................		87	

	

		



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

1	

CHAPTER	1.	INTRODUCTION	

1.1.	OBJECTIVES	OF	THIS	PROJECT	

	

The	problem	of	path	planning	for	a	mobile	robot	is	the	ability	to	compute	collision-free	
feasible	 routes	 from	 a	 specified	 start	 location	 to	 a	 desired	 goal	 destination	 through	 an	
unknown	environment	with	unknown	obstacles,	while	satisfying	certain	optimization	criteria.	
This	MSc	Thesis	developes	a	path	planning	methodology	and	system	for	a	prototype	industrial	
robot	that	deploys	optimal	non-colliding	robot	trajectories	in	a	real	environment.	The	process	
of	 obstacle	 avoidance	 is	 controlled	 by	 using	 a	 heuristic	 informed	 search	 algorithm,	 called	
A*	(pronounced	as	"A	star"),	which	 is	generally	used	to	efficiently	plot	paths	of	minimal	cost	
(e.g.,	 shortest	 time	 or	 least	 distance	 travelled)	 from	 a	 starting	 point	 to	 a	 target	 point	 in	 a	
bounded	area.	The	project	also	addresses	the	effective	implementation	of	the	path	planner	on	
a	 real	 system,	 the	 mobile	 terrestrial	 robot	 LEGO	 MINDSTORMS	 EV3.	 To	 reach	 the	 target	
without	collisions,	the	developed	robotic	system	has	been	endowed	with	perception,	decision-
making,	path	planning,	and	actions	capabilities.		

To	 validate	 the	 developed	 control	 strategy,	 two	 types	 of	 simulations	 have	 been	
developed:	 the	 first	 one	 consists	 of	 a	 trajectory	 visualization	 by	 using	 S-Functions	 and	 the	
second,	more	 realistic	 and	 faithful	 one,	 by	 using	 the	 Simscape	Multibody	 framework	 which	
considers	 the	 robot’s	 physical	 properties	 and	 friction.	 Starting	 from	a	matrix	 of	 input	 values	
that	correspond	to	an	image	of	the	environment	obtained	by	using	a	monocular	camera,	the	
image	 is	 segmented	 and	 processed	 in	 Matlab	 and	 an	 optimal	 non-colliding	 trajectory	 is	
computed	 that	 reaches	 the	 goal.	 The	 path	 trajectory	 is	 evaluated	 by	 using	 co-simulation	 to	
visually	 analyse	 the	 estimated	path	 trajectory	 followed	by	 the	 robot.	 Then,	 the	 technique	 is	
implemented	 in	 a	 real	 robotic	 system,	 the	 LEGO	MINDOSTORMS	EV3.	 Two	 implementations	
are	 provided.	 The	 first	 one	 relies	 on	 LEGO	MINDSTORMS	 EV3	 support	 library	 for	 Simulink,	
which	allows	 the	 robot	 real-time	behavior	and	control	action	on	 the	wheels	 to	be	evaluated	
with	 regard	 to	 the	 Simulink	 reference	model.	 The	 second	 one	 is	 developed	 in	 the	 robotics	
programming	 environment	 RobotC,	 which	 is	 used	 to	 provide	 an	 efficient,	 C-based	
implementation	of	 the	 controller	 for	 EV3	 to	 correctly	 trace	 the	optimal	 collision-free	output	
vector	trajectory.	Without	loss	of	generality,	the	obstacles	are	statically	fixed,	which	allows	us	
to	focuss	on	the	optimization	problem	and	key	important	aspects	of	the	process	such	as	real-
time	obstacle	detection,	optimal	control,	and	co-simulation.	

There	are	many	applications	where	mobile	terrestrial	robots	that	are	controlled	by	the	
designed	and	implemented	methodology	and	system	can	be	used.	This	includes	inspection	and	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

2	

maintenance	 applications,	 world	 modelling	 (environment	 mapping),	 intelligent	 surveillance,	
reconnaissance	actions	in	military	environments,	material	handling	and	transport	applications,	
and	exploration	and	mining	robots,	among	others.		

	

The	thesis	manuscript	is	organized	into	thirteen	chapters:	

	

CHAPTER	 1.	 This	 chapter	 provides	 an	 introduction	 to	 the	 objectives,	 motivation	 and	
background	of	the	master	thesis.		

CHAPTER	2.	This	chapter	contains	a	brief	 introduction	to	Rigid	Body	Transformations,	a	basic	
mathematical	theory	for	robotic	manipulation	that	is	needed	to	understand	the	project.	

CHAPTER	3.	This	chapter	summarizes	the	algorithm	A*	that	is	used	to	generate	the	fittest	path	
from	a	start	point	to	a	target	point	while	avoiding	any	obstacles	in	the	environment.	

CHAPTER	 4.	 This	 chapter	 describes	 the	 methodology	 that	 is	 used	 to	 construct	 the	 robotic	
system	developed	in	this	project.	

CHAPTER	 5.	 This	 chapter	 explains	 how	 the	 typical	 pathfinding	 A*	 algorithm	 is	 adapted	 to	
compute	the	optimal	collision-free	path	to	allow	mobile	robots	automatically	avoid	obstacles.	

CHAPTER	 6.	 This	 chapter	 summarizes	 the	main	 concepts	 of	 Forward	 and	 Inverse	 Kinematics	
that	 allow	 the	 cartesian	 space	 and	 the	 joint	 space	 of	 the	 robotic	 problem	 to	 be	 related	 by	
suitable	composing	transformations.	

CHAPTER	 7.	 This	 chapter	 presents	 the	 fundamentals	 of	 position	 estimation	 and	 control	 in	
mobile	robotics.	

CHAPTER	 8.	 This	 chapter	 provides	 a	 detailed	 explanation	 of	 the	 visualization	 of	 robot	
trajectories	 by	means	 of	 S-functions.	 Then,	 realistic	 simulations	 are	 addressed	 by	 using	 the	
Simscape	Multibody	 framework	 that	 allows	 friction	 to	 be	 considered	 by	 observing	 the	main	
physical	properties	of	the	robot,	such	as	body	mass,	inertia,	and	density.	

CHAPTER	9.	This	chapter	describes	the	implementation	of	the	proposed	navigation	technique	
on	a	real	system,	the	EV3.	Navigation	is	decomposed	into	three	tasks:	mapping	and	modelling	
the	environment;	path	planning;	and	path	following	with	collision	avoidance.	

CHAPTER	 10.	 This	 chapter	 focusses	 on	 the	 computer	 vision	 system	 used	 for	 perceiving	 the		
environment	configuration,	including	obstacle	detection.	

CHAPTER	11.	This	chapter	presents	a	complete	review	of	the	developed	methodology	and	its	
application	to	a	real	case	study.	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

3	

CHAPTER	12.	Evaluation	and	Conclusions.	

CHAPTER	13.	References.	 	

	

1.2.	MOTIVATION.	A	LAYMAN’S	INTRODUCTION	TO	ROBOTICS	

	

In	a	worldwide	constantly	evolving	economy,	robots	have	become	crucial	artifacts	that	
make	life	easier.	Robots	are	extensively	used	in	many	hazardous	industrial	fields	where	there	
may	be	dangers	for	people,	such	as	the	nuclear	power	industry,	the	mining	industry,	disaster	
sites	exploration,	and	aerospace	research.		

In	 the	 past	 30	 years,	 the	 number	 of	 robots	 has	 grown	 exponentially	 in	 the	 world.	
Looking	 at	 the	 current	cutting-edge	 developments	in	robotics,	 they	 range	 from	 industrial	
robots	 for	 assembly	 lines	 that	 are	 revolutionizing	 manufacturing,	 to	 surgical	 robots,	 legged	
robots	 and	 fully	 automated	 drones	 that	 are	 used	 for	 intelligent	 surveillance	 and	
reconnaissance.	 Since	 this	 rapidly	 growing	 field	 is	 just	 at	 the	 beginning	 of	 a	 vertiginous	
evolution	process,	there	is	widespread	interest	in	robotics,	with	a	huge	potential	of	growth	in	
the	next	years	and	big	expectations	for	novel	robot	applications.		

As	 mentioned	 in	 the	 Harvard	 Business	 Review	 (Lyall	 et	 all,	 2018):	 “Robots	 are	
improving	 productivity	 and	 margins	 in	 retail	 warehouses	 and	 fulfillment	 centers.	 Delivery	
drones	 and	 self-driving	 vehicles	 aren’t	 far	 off.	 Rio	 Tinto,	 the	 global	 mining-and-metals	
company,	is	 exploring	 how	digital	 technologies	 can	 automate	mine-to-port	 operations.	Using	
driverless	trains,	robotic	operators,	cameras,	lasers,	and	tracking	sensors,	the	company	will	be	
able	 to	manage	the	whole	supply	chain	 remotely	—	while	 improving	safety	and	reducing	 the	
need	for	workers	in	remote	locations.	Many	other	leading	companies	are	also	exploring	these	
possibilities,	using	robotics	and	artificial	 intelligence	to	digitize	and	automate	 labor-intensive,	
repetitive	and	transactional	tasks	and	processes”.	

In	 this	 project,	 we	 focus	 on	mobile	 robots	 although	 the	 proposed	 techniques	 could	
eventually	be	extended	to	other	types	of	robotic	structures	with	little	effort	(Valera	Fernandez,	
Á.,	 2017a).	Mobile	 robots	 appeared	 from	 the	 need	 to	 extend	 robotic	 applications.	 They	 are	
currently	used	in	industry	not	only	for	material	transport,	but	also	for	the	recreation	of	human	
movements	 and	 for	 exploration	 and	 rescue	missions.	 Their	 use	 has	 become	 popular	 in	 the	
army,	where	unmanned	robots	are	not	only	remotely	driven	but	can	be	fully	autonomous	

For	 robots	 to	 become	 entirely	 autonomous,	 collision	 avoidance	 is	 a	 key	 essential	
requirement	 that	may	 allow	 it	 to	 find	 a	 safe	 path	 in	 a	 dangerous	 environment.	 This	master	
thesis	 relies	 on	 an	 informed	 search	 approach	 that	 is	 know	 as	 A*	 for	 automatic	 collision	
avoidance	 in	 a	 robotic	 scenario,	 and	 validates	 the	 proposed	 robotic	 control	 by	 applying	 a	
cooperative	 simulation	 methodology.	 Cooperative	 simulation	 (a.k.a.	 co-simulation)	 is	 a	
methodology	 that	 allows	 individual	 components	 to	be	 simulated	with	 a	 variety	of	 tools	 that	
run	 at	 the	 same	 time	 and	 exchange	 information	 in	 a	 collaborative	 environment.	 This	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

4	

methodology	has	proven	its	effectiveness	in	different	industrial	fields	such	as	chemistry,	high-
level	 computing,	 multibody	 dynamics,	 mechatronics,	 and	 structural	 mechanics.	 These	
developments	have	proven	several	advantages	of	co-simulation,	such	as	 the	cooperative	use	
of	distinct	specialized	modeling	tool	environments,	collaborative	design,	model	obtainment	for	
faster	prototypes,	immediate	availability	of	the	new	model	and	development	of	processes	that	
can	be	executed	simultaneously.		

	

1.3.	BACKGROUND.	FUNDAMENTALS	OF	PATH	FINDING	AND	OBSTACLE	AVOIDANCE	

	

Mobile	robot	navigation	refers	to	the	robot’s	ability	to	move	to	a	target	position	from	
an	initial	position	given	a	prior	knowledge	of	the	environment.	Path	planning	is	a	fundamental	
problem	in	robot	navigation	in	order	to	obtain	a	non-collision	route	between	two	points	in	the	
presence	 of	 any	 kind	 of	 obstacles.	 There	 are	 several	 general	methodologies	 to	 address	 the	
problem	of	 path	planning	 in	 computing,	 but	 they	 all	 have	 in	 common	 that	 a	 given	map	and	
goal	 location	 are	 needed	 to	 generate	 the	 geometric	 path	 towards	 the	 target	 position.	 In	
robotics,	it	must	also	been	considered	that,	during	its	motion,	the	robot	can	face	a	number	of	
obstacles	(either	static	or	moving),	that	may	create	an	a-priori	uncertainty	about	the	optimal	
path.	Hence,	obstacle	detection	and	avoidance	must	be	considered	for	tracing	the	best	path.	

Throughout	time,	different	algorithms	for	obstacle	avoidance	have	been	developed:	

1. Bug’s	algorithm:	In	this	method	the	robot	moves	towards	the	target	position,	
unless	an	obstacle	is	found.	In	that	case,	the	robot	contours	the	obstacle	until	
motion	to	target	position	is	again	achievable.		

2. Path	planning	using	artificial	potencial	fields:		This	method	relies	on	the	idea	
that	 the	 target	 position	 and	 obstacles	 generate	 a	 potencial	 field	 in	 the	
environment,	in	which	the	robot,	which	is	considered	as	a	particle,	moves.	The	
obstacles	generate	a	repulsive	potencial	and	the	target	position	generates	an	
attractive	potencial.	Also,	a	velocity	vector	of	the	robot	must	be	defined	to	get	
to	the	target	position	without	encountering	any	obstacle.		

3. The	 Vector	 Field	 Histogram:	 Developed	 in	 1991	 by	 Johann	 Borenstein	 and	
Yoram	Koren,	this	method	is	based	on	the	generation	of	a	polar	histogram	for	
the	area	close	to	the	space	occupied	by	the	robot,	being	this	histogram	used	to	
select	 the	 lowest	polar	obstacle	density	sector	 in	order	 to	direct	 the	robot	 in	
that	direction.		

4. Elastic	Bands:	This	methodology	consists	on	a	combination	of	real-time	based	
robot	 control	 and	 global	 path	 planning,	 where	 the	 elastic	 band	 is	 just	 an	
obstacle	free	path,	that	is	able	to	deform	when	an	obstacle	is	detected	to	keep	
the	trajectory	collision-free.	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

5	

5. Dynamic	 approach:	 This	 approach	 considers	 the	 robot’s	 behavior	 as	 a	 non-
linear	 dynamic	 system,	 where	 the	 obstacles	 are	 considered	 as	 an	 unstable	
equilibrium	point,	while	the	direction	to	the	goal	is	considered	as	stable.		

6. Sampling	based	methods:	Two	types	must	be	distinguished:			
a. Probabilistic	 roadmap	 (PRM):	 This	 method	 is	 based	 on	 the	 idea	 of	

building	 a	 graph	 that	 characterizes	 the	 free	 configuration	 space	 in	 a	
probabilistic	manner	and,	afterwards,	use	a	graph	search	algorithm	to	
find	 the	 path.	 Even	 though	 this	 methodology	 can	 cope	 with	 high-
dimensional	systems	and	it	is	completely	based	on	probability,	it	must	
be	 considered	 that,if	 only	 a	 limited	 amount	 of	 samples	 are	 used	 to	
train	the	system,	a	suboptimal	solution	is	obtained,	and	that	detection	
of	possible	collisions	takes	up	the	greatest	part	of	the	time.		

b. Rapidly	 exploring	 random	 tree	 (RRT):	 This	methodology	 builds	 up	 a	
tree	while	 generating	 a	next	 step	 configuration	 from	 the	 initial	 point		
configuration.	 Even	 though	 this	methodology	 is	 simple,	 it	 is	 prone	 to	
be	probabilistically	incomplete.	Due	to	this	reason,	a	rewire	function	is	
introduced	that	is	used	to	swap	a	new	point	in	as	a	parent	a	node	for	
the	 nearby	 vertices	 that	 can	 be	 reached	 along	 the	 shortest	 path	
through	the	new	point.	The	extended	methodology	is	called	RRT*,	and	
is	asymptotically	optimal	(Karaman,	S.,	and	Frazzoli,	E.,	2011).	

7. Search-based	 methods:	 For	 each	 search	 problem,	 there	 is	 a	 corresponding	
state	space	graph	that	 is	associated	to	a	given	search	algorithm.	However,	 in	
the	 search-based	 methods,	 a	 search	 tree	 of	 outcomes	 is	 considered	 for	
different	 plans,	where	 each	 node	 in	 the	 search	 tree	 is	 an	 entire	 path	 in	 the	
program	graph.	By	simply	back-tracking	a	node	in	the	search	tree	you	return	to	
the	initial	state.	The	goal	of	this	type	of	methodology	is	to	find	the	best	path	to	
the	goal	as	soon	as	possible,	without	having	to	build	up	the	whole	tree:		

a. General	graph	search	DFS,	BFS:	Based	of	the	use	of	a	queue	containing	
all	 the	nodes	 for	 termination	check,	 the	queue	 is	 first	 initialized	with	
the	 starting	 state	 and	 then	 the	 set	 of	 nodes	 is	 expanded	 within	 a	
generation	 loop	 until	 the	 path	 is	 found	 and	 the	 target	 state	 is	
achieved.	

i. Depth	 First	 Search	 (DFS):	 The	 deepest	 node	 is	 removed	 (or	
expanded)	by	first	considering	a	“last	in	first	out”	queue	(LIFO).	

ii. Breadth	 First	 Search	 (BFS):	The	 shallowest	 node	 is	 expanded	
first,	maintaining	a	“first	in	first	out”	(FIFO)	queue.	In	practical	
search	problems,	 there	 is	 a	 cost	 for	moving	 from	 the	current	
state	to	the	next	one,	and,	in	case	all	weights	are	equal	to	one,	
this	 methodology	 finds	 the	 least-cost	 path	 with	 a	 minimal	
number	of	steps.		

b. Uniform	 Cost	 Search	 (UCS):	 This	 methodology,	 also	 known	 as	
Dijkstra’s	 algorithm,	 maintains	 a	 priority	 queue	 and	 expands	 the	
cheapest	accumulated	cost	g(n)	node	 first,	while	exploring	 increasing	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

6	

cost	contours.	However,	it	can	only	access	the	cost	accumulated	so	far	
and	no	information	regarding	the	target	location.		

c. Search	Heuristics:	This	methodology	 infers	 the	 least	 cost	 to	goal	and	
overcomes	the	limitations	of	uniform	cost.	

d. A*	search:	This	 is	 the	chosen	 technique	 that	 is	deeply	applied	 in	 this	
project.	 It	 is	 based	 on	 a	 combination	 of	 uniform	 cost	 search	 with	 a	
suitable	heuristic.	This	methodology	is	fully	explained	in	Chapter	3.		



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

7	

CHAPTER	2:	FUNDAMENTALS	OF	ROBOTIC	
MANIPULATION:	RIGID	BODY	TRANSFORMATIONS	

2.1.	RIGID	BODY	TRANSFORMATIONS			

The	movement	of	 particles	 in	 an	 Euclidean	 space	 is	 defined	by	 giving	 its	 location,	 at	
each	 instant	 of	 time,	 in	 regards	 to	 an	 inertial	 Cartesian	 coordinate	 frame.	 However,	 in	 the	
robotic	 field,	 the	 focus	of	 interest	 lies	 in	 the	collective	movement	of	a	set	of	particles	rather	
than	in	individual	particles.	Therefore,	we	consider	a	rigid	body	as	a	group	of	particles	with	the	
distance	 between	 particles	 being	 constant,	 regardless	 of	 any	 forces	 applied	 to	 the	 body	 or	
body	movements.	Consequently,	if	p	and	q	are	two	points	on	a	rigid	body,	as	the	body	moves,	
p	and	q	must	satisfy	the	following	equational	axiom	(Murray,	R.,	Li,	Z.	and	Sastry,	S.,	1994):	

||𝑝(𝑡) − 𝑞(𝑡)||  =  𝑝(0) − 𝑞(0)  =  𝐶,	for	a	given	constant	C	

	 The	position	and	orientation	of	a	rigid	body	is	associated	with	a	reference	frame	with	
three	 linearly	 independent	 basis	 vectors	 that	 are	 commonly	 denoted	 as	 a1,	 a2	 and	 a3	 for	
reference	 frame	A,	being	a1,	a2	and	a3	orthogonal	 to	each	other.	Each	of	 these	axes	denotes	
the	 direction	 vectors,	meaning	 that	 their	 norm	 is	 one.	 In	 robotics,	 it	 is	 commonly	 used	 the	
right-handed	 coordinate	 frames.	Any	 vector	 can	we	written	as	 a	 linear	 combination	of	 basis	
vectors	v	=v1a1	+	v2a2	+	v3a3,	where	v1,	v2,	v3	are	the	vector	component	of	v	on	the	coordinate	
frame	a1,	a2,	a3	respectively.		

Let	us	introduce	the	notation	that	is	used	in	this	project,	which	follows	the	following	norms:		

- Vectors:	x,	y,	a,	…	
- Reference	frames:	𝐴,𝐵,𝐶 𝑜𝑟 𝑎, 𝑏, 𝑐  
- Matrices:	A,	B,	C	
- Transformations:	AAB,	ARB,	Aab,	gab(.)	

A	 rigid	 body	 displacement	 is	 any	 transformation	 of	 points	 between	 two	 positions	 and	
orientations.	Given	an	object	Oϵℝ!,	a	rigid	body	displacement	occurs	in	ℝ!,	and	given	a	vector	
vϵO from	point	p	 to	q,	 its	 transformation	 is	based	on	a	displacement	or	 a	 transformation	of	
points,	 denoted	 as	𝑔∗(𝑣)  =  𝑔(𝑝) − 𝑔(𝑞),	 where	 the	 distance	 of	 point	 p	 to	 q	 remains	 the	
same,	which	means	that	 the	 length	of	 the	vector	v	 in	 the	original	and	transformed	frames	 is	
the	same.	Given	two	vectors	on	the	original	frame,	the	transformed	vectors	of	the	transformed	
frame	 will	 have	 the	 same	 cross	 product	 as	 the	 original	 ones,	 as	 the	 cross	 products	 are	
preserved	due	to	the	fact	that	internal	reflection	is	eliminated	(𝑥, 𝑦, 𝑧) à (𝑥, 𝑦, – 𝑧)	as	shown	
in	Figure	1	(Shen,	2017).	In	other	words,	rigid	body	transformations	are	mappings	that	satisfy	
these	important	properties:	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

8	

- Lengths	are	preserved	||𝑔(𝑝) − 𝑔(𝑞)||  =  ||𝑞 − 𝑝||	
- Cross	products	are	preserved	𝑔∗(𝑣)× 𝑔∗(𝑤)  =  𝑔∗(𝑣×𝑤)		
- Inner	products	are	preserved	𝑔∗(𝑣) ∙  𝑔∗(𝑤)  =  𝑣 ∙ 𝑤	

	

Figure	1.	Rigid	Body	Displacement	

2.2	PROPERTIES	OF	ROTATION	MATRICES		

	

Rotation	matrices	have	two	key	properties:		

1. Given	rotation	matrix	R ϵℝ!"!	with	r!, r!, r!ϵℝ!being	its	columns,	since	the	columns	of	
R	are	orthogonal	,	we	have	

r!! ⋅ r! =  0 if i ≠ j
1 if i = j	

R ⋅ R! = I	

2. Since	the	coordinate	frame	is	right-handed:	r!×r! =  r!,	which	means	that	

detR = r!! ⋅ (r!×r!) = r!! ⋅ r! = 1 (Special orthogonal group)	

The	set	of	all	3x3	matrices	which	satisfy	these	two	properties	is	denoted	as	SO(3).	

	

The	set	of	all	rotations	form	the	Special	Orthogonal	Algebraic	group,	where	:	

SO(n)	=	{Rϵℝ!"!| R ∙ R! = I, detR = 1}	

	 In	 this	 project,	we	 consider	 SO(3)	 ={Rϵℝ!"!| R ∙ R! = I, detR = 1},	 where	 SO(3)	 is	 a	
group	under	the	operation	of	matrix	multiplication.	This	group	satisfies	the	following	axioms:	

	
1. Closure:	If	R1,	R2	ϵSO 3 , then R! ∙ R! ϵSO 3  	
2. Identity:	The	identity	element	is	the	identity	matrix	I,	that	is	R! ∙ I = I ∙ R! = R!	
3. Inverse:	If	R	ϵSO 3 ,	then	R-1 ϵSO 3 	
4. Associativity	:	R!·(R!·	R!)	=	(R!·R!)	R!	

After	choosing	a	reference	frame,	a	rigid	body	is	described	in	the	space	by	its	orientation	
and	 position	 in	 regards	 to	 that	 frame,	 considering	 all	 coordinate	 frames	 are	 right-handed.	
Given	 a	 reference	 frame	 A,	 that	 is	 aligned	 to	 a	 reference	 frame	 B	 (same	 origin	 of	 axis),	 a	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

9	

rotation	matrix	is	required	in	order	to	transform	any	point	pϵℝ!	from	frame	B	to	frame	A.	The	
principal	axes	of	frame	A	follow	the	next	nomenclature:	x	=	[1	0	0]T	,	y	=	[0	1	0]T	and	z	=	[0	0	1]T	
as	shown	in	Figure	2;	while	the	principal	axes	of	frame	B	are	xab,	yab,	zab	ϵℝ!	and	the	rotation	
matrix	of	the	coordinates	of	principle	axes	of	B	related	to	A	are	denoted	as	Rab.		

	

Figure	2.	Rotation	axes	

		

Therefore,	in	order	to	transform	point	p	from	body	frame	B	to	inertial	frame	A,	a	rotation	
matrix	R	that	shows	the	rotation	of	coordinate	space	B	in	frame	A	is	used:		

- b1	=	R11a1	+	R12a2	+	R13a3	
- b2	=	R21a1	+	R22a2	+	R23a3	
- b3	=	R31a1	+	R32a3	+	R33a3	

- ARB		=[b!b!b!] =  
R!! R!" R!"
R!" R!! R!"
R!" R!" R!!

	

- pA=	p1b! +	p2b!	+	p3b! =  [b!b!b!]	pB	

Also,	 considering	 a	 third	 coordinate	 space	 C,	 the	 composition	 rule	 can	 be	 used	 to	 go	 from	
frame	C	to	A	as	shown	in	Figure	3:	

Rac	=	Rab	·Rbc	

	

Figure	3.	Composition	Rule	

	

where	Rab	=[xab,	yab,	zab]	preserves	the	following	axioms:	

- Length:	|| 𝑅𝑎𝑏 (𝑝𝑏 − 𝑞𝑏)||  = ||𝑝𝑏 − 𝑞𝑏||			
- Cross	product:	Rab	(v×w)=	(Rab	v)×	(Rab	w),	considering	R(v)^RT	=	(Rv)^,	where		



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

10	

(a)^	=	
0 −a! a!
a! 0 −a!
−a! a! 0

	is	the	skew-symmetric	matrix,	and	a×b = (a)^b	

2.3	ROTATION	REPRESENTATIONS		

Considering	SO(3)	a	continuous	group,	where	the	multiplication	and	inverse	operations	
are	also	 continuous,	 SO(3)	 is	 a	 smooth	manifold.	A	manifold	of	dimension	n	 is	 a	 set	M,	 that	
presents	near	each	point,	a	 locally	 resemblance	to	Euclidean	space	ℝ!,	as	shown	 in	Figure	4	
(Shen,	2017):	

	

Figure	4.	Examples	of	differential	manifolds	locally	resembled	to	R2	

There	are	several	ways	to	represent	rotations:	

1. Rotation	matrix:	classically	described	as		
	

Table		1.	Rotation	Matrix	

	

	

Rotation	Matrix	 Representation	

	
Rx	(𝛉)=	
𝟏 𝟎 𝟎
𝟎 𝐜𝐨𝐬(𝛉) −𝐬𝐢𝐧(𝛉)
𝟎 𝐬𝐢𝐧(𝛉) 𝐜𝐨𝐬(𝛉)

	

	

Ry	(𝛉)=	
𝐜𝐨𝐬 𝛉 𝟎 𝐬𝐢𝐧 𝛉
𝟎 𝟏 𝟎

− 𝐬𝐢𝐧 𝛉 𝟎 𝐜𝐨𝐬 𝛉
	

	

	

Rz	(𝛉)=	
𝐜𝐨𝐬(𝛉) −𝐬𝐢𝐧(𝛉) 𝟎
𝐬𝐢𝐧(𝛉) 𝐜𝐨𝐬(𝛉) 𝟎
𝟎 𝟎 𝟏

	

	

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

11	

2. Euler	 angles:	 based	 on	 elementary	 rotations,	 where	 any	 rotation	 can	 be	
described	 by	 three	 successive	 rotations	 about	 linear	 independent	 axes.	
Nevertheless,	this	is	an	almost	one-to-one	transform	with	singularities:	
Rz	(ψ) ·	Ry	(θ) ·	Rx	(ϕ)⟹ R		
Rz	(ψ) ·	Ry	(θ) ·	Rx	(ϕ)  ⇍ R	
	
	

Table		2.	Euler	Angles	

Elementary	Rotations	 Representation	

Rx	(𝛟)=	
𝟏 𝟎 𝟎
𝟎 𝐜𝐨𝐬(𝛟) −𝐬𝐢𝐧(𝛟)
𝟎 𝐬𝐢𝐧(𝛟) 𝐜𝐨𝐬(𝛟)

	

	

Ry	(𝛉)=	
𝐜𝐨𝐬 𝛉 𝟎 𝐬𝐢𝐧 𝛉
𝟎 𝟏 𝟎

− 𝐬𝐢𝐧 𝛉 𝟎 𝐜𝐨𝐬 𝛉
	

	

Rz	(𝛙)=	
𝐜𝐨𝐬(𝛙) −𝐬𝐢𝐧(𝛙) 𝟎
𝐬𝐢𝐧(𝛙) 𝐜𝐨𝐬(𝛙) 𝟎
𝟎 𝟎 𝟏

	

	

	

There	are	different	Euler	angle	conversions,	such	as	the	ones	shown	in	Table	3:	

	

	

	

	

	

	

	

	

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

12	

Table		3.	Euler	Angle	Conversions	

Proper	Euler	Angles	

	

	

	

	

	

	

	
	

3. Exponential	coordinates	
	
Some	important	ingredients	to	be	considered	are:	
		

o The	scalar	differential	equation:	

	
	

o The	matrix	differential	equation:	

	
o The	degree-of-freedom	of	SO(3)	

	
R	has	only	3	independent	parameters,	considering	6	constraints	from:	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

13	

r!! ⋅ r! =  0 if i ≠ j
1 if i = j		,	being		R =  

r!! r!" r!"
r!" r!! r!"
r!" r!" r!!

	

o The	 motion	 of	 a	 point	 about	 a	 rotating	 link	𝜔	 at	 constant	 unit	
velocity	as	shown	in	Figure	5	

	
Figure	5.	Exponential	Coordinates	

o The	 motion	 of	 a	 point	 about	 a	 rotating	 link 𝜔	 at	 constat	 unit	
velocity:	

											 	

	
o Rotating	about	𝜔	at	unit	velocity	for	𝜃	units	

	
o The	vector	 space	of	all	3x3	skew-symmetric	matrices,	denoted	as	

so(3)	=	{Sϵℝ!"!: S! = −𝑆}	
o The	exponential	map,	which	follows	the	following	equation:	

	
o Hence,	𝑒!!𝜖𝑆𝑂 3 ,	with	det 𝑒!! = 1	

	
4. Angle	 axis	 parameterization	 and	 Quaternions,	 not	 considered	 in	 this	

project.	
	
	
	
	
	
	
	
	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

14	

2.4	RIGID	BODY	MOTIONS	

	

General	 rigid	 body	motions	 include	 not	 only	 rotation	 but	 also	 translations,	 forming	 the	
product	 space	 of	 ℝ! and	 𝑆𝑂 3 ,𝑤hich	 is	 denoted	 by	 𝑆𝐸 3   and	 known	 as	 the	 Special	
Euclidean	group:	

	

	Each	point	in	SE(3)	can	be	transformed	between	different	coordinate	frames	as	shown	in	
Figure	6:	

	

	

Figure	6.	Transformation	between	different	coordinate	frames	

Next,	the	composition	rule	for	rigid	body	motion	is	presented	and	illustrated	in	Figure	7:	

	

Figure	7.	Compoistion	of	rigid	body	motion	

Considering	 SE(3) = { 𝑝,𝑅 : 𝑝𝜖ℝ!!!,𝑅𝜖𝑆𝑂(3)} = ℝ!×𝑆𝑂(3), SE(3)	 is	 a	 group	 under	 the	
operation	of	multiplication,	satisfying	the	axioms	of	closure,	identity,	inverse	and	associativity	
explained	before	and	g ϵ 𝑆𝐸(3)	 is	a	rigid	body	transformation,	where	the	cross	products	and	
lengths	are	preserved.		

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

15	

2.5 RIGID	BODY	VELOCITIES		

	

	 Given	a	spatial	frame	A	and	a	body	frame	B,	considering	a	point	attached	to	the	rigid	
body	following	a	rotational	path	in	the	spatial	frame	pa(t)=Rabpb,	the	velocity	of	the	point	in	the	
spatial	frame	can	be	denoted	as:	

- vpa(t)	=	
!
!"
p! t = R!"(t)p!	

	

Considering	RRT=I	⟹	RR! + RR! = 0		

	

- vpa	(t)	=	R!"(t)R!"
!!
(t)R!"(t)p!,	where	R!" t R!"!!is	a	skew-symmetric	matrix.		

	

In	regards	to	the	angular	velocity:	

- The	instantaneous	spatial	angular	velocity	is		ω!"
!=R!"R!"

!!
	

- The	instantaneous	body	angular	velocity	is	ω!"
!=R!"!!R!"	

where	ω!"
!=R!"!!ω!"

!	and	ω!"!=R!"!!ω!"!	
- The	velocity	induced	by	rotational	motion	is	

o vpa	=ω!"
!·R!"·pb		=	ω!"!×pa	

o vpb	=R!"!·	vpa		=	ω!"!×pb	

	

Therefore,	by	considering	numerical	integration,	we	have:	

𝑅 = 𝑅𝜔!  𝑎𝑛𝑑 𝑅=𝜔!𝑅	

The	velocity	of	a	point	in	the	spatial	frame	or	body	frame,	is	respectively	given	by:		

- vpa	=	ω!"!×pa	-ω!"!×pab	+	pab	
- vpb	=ω!"!×pb	+	R!"! ∙ pab	

	
These	concepts	are	crucial	for	a	real	understanding	of	robot’s	kinematics,	explained	in	Chapter	
5.	For	further	details,	please	refer	to	(Murray,	R.,	Li,	Z.	and	Sastry,	S.,	1994).	

	

	

	

	

	

	

	

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

16	

	

	

	

	

	

	

	

	

	

	

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

17	

CHAPTER	3:	A*	ALGORITHM	IN	ARTIFICIAL	
INTELLIGENCE	

3.1.	ALGORITHMS	AND	ARTIFICIAL	INTELLIGENCE	

	

An	algorithm	 is	 just	a	 structured	method	 runned	by	 computers.	Artificial	 Intelligence	
(AI)	 is	 a	 research	 area	 of	 Computer	 Science	 that	 is	 based	 on	 the	 construction	 of	 specific	
algorithms	 which	 behave	 in	 a	 way	 that	 recreates	 human	 behavior	 and	 can	 be	
considered	intelligent.	 There	 are	 lots	 of	 subareas	 that	 conform	 AI,	 such	 as:	 reasoning,	
perception,	planning,	 learning,	natural	 language	processing,	knowledge	representation,	social	
intelligence,	 general	 intelligence	 or	motion	 and	manipulation.	When	 the	 artificial	 intelligent	
systems	are	 implemented	 for	working	 in	 the	 real	world,	 then	 the	 robotic	 field	gets	 involved.	
Due	to	an	algorithm	running	 in	a	computer,	mechanical	 interactions	are	obtained	 in	 the	real	
world,	with	algorithms	telling	individual	motors	when	and	how	to	move.		

In	AI,	search	techniques	are	typically	used	for	problem	solving.	One	of	the	best	known	
AI	 search	 techniques	 is	 based	 on	 the	 A-star	 algorithm,	 which	 is	 widely	 used	 in	 path-
finding	and	graph	traversal.	The	A*	algorithm	searches	all	possible	routes	from	an	initial	point	
until	it	finds	the	path	with	the	cheapest	cost	to	a	goal	(e.g.,	the	shortest	path).		

3.2.	A-STAR:	COMBINATION	OF	UNIFORM	COST	SEARCH	AND	HEURISTIC	SEARCH	

	

	 The	A*	algorithm	implemented	in	this	MSc	Thesis	is	the	result	of	combining	Dijkstra’s	
algorithm	(Uniform	Cost	Search)	and	search	heuristics	using	search	trees.	On	the	one	hand,	the	
Uniform	Cost	 Search	 expands	 the	 cheapest	 accumulated	 cost	𝑔 𝑛  node	 first,	maintaining	 a	
priority	queue,	and	explores	increasing	cost	contours,	being	the	node	expanded	guaranteed	to	
have	the	smallest	cost	from	the	start	state.	Afterwards,	the	accumulated	costs	𝑔 𝑚  of	all	the	
neighbours	“m”	of	node	“n”	are	updated.	However,	it	can	only	see	the	cost	𝑔 𝑛  accumulated	
so	 far	 and	 has	 no	 information	 about	 the	 target	 location.	 On	 the	 other	 hand,	 the	 search	
heuristics	 are	 able	 to	 infer	 the	 least	 cost	 to	 goal,	 ℎ 𝑛  and	 overcomes	 the	 limitations	 of	
uniform	cost.	 Therefore,	 in	 the	A*	methodology,	 the	estimated	cost	 from	 the	 initial	 state	 to	
the	 target	 state	 passing	 though	 node	 n	 is	𝑓 𝑛 =  𝑔 𝑛 +  ℎ 𝑛 ,	 where	𝑔 𝑛  is	 the	 current	
best	 estimation	 of	 the	 accumulated	 cost	 from	 the	 initial	 state	 to	 node	 𝑛	 and	 𝑔 𝑛  is	 the	
estimated	least	cost	from	node	n	to	the	target	state.	Hence,	the	node	with	the	cheapest	cost	
estimated	𝑓 𝑛  is	expanded	in	the	A*	Search	(and	then	the	accumulated	costs	𝑔 𝑚  for	all	the	
unexpanded	 neighbours	 m	 are	 calculated).	 Then,	 the	 accumulated	 cost	 g(n)	 and	 𝑓 𝑛  are	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

18	

obtained	 for	 the	 node’s	 children	 that	 have	 not	 been	 expanded	 yet,	 where	 a	 node	 that	 has	
been	expanded	is	guaranteed	to	have	the	smallest	cost	from	the	start	state.	This	methodology	
does	not	end	when	the	target	position	is	enqueued,	but	when	it	is	dequeued.			

	 In	order	to	obtaining	an	optimal	A*	path,	the	estimate	d	cost	has	to	be	 less	than	the	
actual	 least	 cost	 to	 goal	 for	 all	 the	nodes,	which	means	 that	ℎ 𝑛 < ℎ∗(𝑛),	 being	ℎ∗(𝑛)	 the	
real	least	cost	to	reach	the	goal	from	node	n.		

	

3.3.	TREE	CONSTRUCTION		

	

As	 mentioned	 above,	 in	 order	 to	 apply	 the	 A*	 algorithm	 a	 search	 tree	 must	 be	
constructed.	For	the	construction	of	a	search	tree,	a	closed	container	must	be	mantained	to	
store	all	the	nodes	already	visited:	when	a	node	is	found,	 it	 is	stored	in	the	memory	of	the	
container.	Also,	a	priority	queue	is	kept	in	order	to	store	all	the	nodes	to	be	expanded.	Each	
node	 can	 only	 be	 visited/expanded	 once.	 The	 priority	 queue	 is	 initialized	 with	 the	 initial	
state.	 The	 heurisitc	 function	 ℎ(𝑛)	 for	 each	 node	 is	 pre-defined,	 with	 the	 cheapest	
accumulated	cost	 	𝑔(𝑛)  =  ∞	 for	all	nodes	 in	 the	graph	except	 for	 the	 initial	 state,	where	
𝑔 𝑋𝑠 = 0.	A	 loop	is	required	to	remove	from	the	queue	each	visited	node	(the	node	with	
the	lowest	cost	estimate	f(n)),	where	the	visited	node	is	marked	as	expanded	and	added	to	
the	container.	Then,	all	the	unexpanded	neighbours	of	the	node,	where	each	neighbor	node	
cost	 𝑔(𝑚)  =  ∞,	 are	 pushed	 into	 the	 priority	 queue,	 but	 if	 𝑔(𝑚) > 𝑔(𝑛)  +  𝐶!",	 then,	
𝑔(𝑚) =  𝑔(𝑛)  +  𝐶!".	The	loops	ends	whenever	the	queue	is	empty,	or	the	reached	node	
“𝑛”	is	the	goal	state.			

	

For	 a	 better	 understanding,	 UAB’s	 pseudocode	 of	 the	 A*	 Algorithm	 is	 provided	 in	
Figure	8,	where	the	goal	node	is	denoted	by	“node_goal”	and	the	source	node	is	denoted	by	
“node_start”	(UAB,	2018):	

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

19	

	

Figure	8.		A*	Algorithm	Pseudocode	

	

To	illustrate	the	behavior	a	simple	example	is	shown	in	Figures	9-11,	for	an	environment	where	
the	 initial	 position	 is	 (0.4,	 0.4)	 and	 the	 target	position	 is	 (1.8,	 1.8).	As	 shown	 in	 Figure	9,	 by	
intuition	it	is	expected	that	the	generated	trajectory	goes	from	the	initial	position	to	the	target	
position	following	a	straight	line.	If	an	obstacle	is	encountered	in	this	trajectory	in	the	position	
(0.6,	0.6),	the	result	obtained	with	the	A*	algorithm	will	be	the	one	shown	in	Figure	10,	where	
the	A*	algorithm	creates	a	path	to	avoid	this	obstacle	considering	the	lowest	distance	from	the	
start	 node	 (G	 cost)	 and	 distance	 from	 end	 node	 (Heuristic	 H	 cost),	 which	 gives	 the	 F	 cost.	
Figure	11	illustrates	the	result	given	by	the	algorithm	in	case	a	new	obstacle	is	encountered	in	
its	way.	

	

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

20	

	

Figure	9.	Intuitive	Trajectory	from	Start	Cell	(0.4,	0.4)	to	Target	Cell	(1.8,	1.8)	

	

Figure	10.	Path	generated	to	avoid	one	obstacle	

	

	

Figure	11.	Path	generated	to	avoid	two	obstacles	

	

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
X axis (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Y 
ax

is
 (m

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
X axis (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Y 
ax

is
 (m

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
X axis (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Y 
ax

is
 (m

)



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

21	

CHAPTER	4:	BACKBONE	OF	THE	PROPOSED	
METHODOLOGY	

This	 chapter	 describes	 the	methodology	 that	 is	 used	 to	 construct	 the	 robotic	 system	
developed	in	this	project.	

4.1.	THE	PROPOSED	METHODOLOGY		

	

The	methodology	developed	in	this	project	is	summarized	in	Figure	12:	

	

Figure	12.	The	proposed	methodology	

	

In	more	detail,	the	proposed	methodology	is	structured	as	follows:		

	

Chapter	5	
• Path	planning	with	obstacle	avoidance	technique	using	the	A*	algorithm			

Chapter	6	
• Direct	and	inverse	kinema�cs	models	for	the	differen�al	configura�on	robot	

Chapter	7	
• Posi�on	and	Control	es�ma�on		

Chapter	8	

• Simula�on:	Control	algorithm	tested	with	S-Func�ons	and	Co-Simula�on	
between	Simulink	and	Simscape	Mul�body	

Chapter	9	

• Implementa�on	on	EV3	by	using	LEGO	MINDSTORMS	EV3	Support	for	Simulink	
and	Implementa�on	on	EV3	by	using	RobotC	

Chapter	10	
• Environment	Configura�on	obtained	with	Computer	Vision	System	

Chapter	11	
• Applica�on	of	the	Methodology	to	a	Case	Study	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

22	

1. In	 an	 initial	 stage,	 the	 path	 planning	 technique	 with	 obstacle	 avoidance	 is	
designed	and	implemented	by	relying	on	the	A*	algorithm	as	described	in	Chapter	
5.	 This	 chapter	 explains	 how	 the	 classical	 Artificial	 Intelligence	 algorithm	 A*	 is	
adapted	 to	 compute	 the	 optimal	 collision-free	 path	 to	 allow	 mobile	 robots	
automatically	avoid	obstacles	by	 computing	 the	minimal	 cost	paths	 from	a	 start	
point	to	a	target	point	in	a	bounded	area.	
	

2. Next,	a	Simulink	control	 structure	 is	developed	by	considering:	1)	 the	direct	and	
inverse	kinematics	models	for	a	differential	configuration	robot	(Chapter	6),	which	
allow	the	cartesian	space	and	the	joint	space	of	the	robotic	problem	to	be	related	
by	 suitable	 composing	 transformations;	 and	 2)	 the	 robot	 position	 and	 control	
estimation	model	configurations	(Chapter	7).	

	

3. Third,	 the	trajectory	 is	 thoroughly	tested	by	visualizing	the	results	 from	Simulink	
with	 S-Functions	 and	 by	 a	 co-simulation	 between	 Simulink	 and	 Simscape	
Multibody	 (Chapter	 8).	 In	 the	 simulation,	 the	 system	 receives	 a	 vector	 input	
values	that	are	of	calculated	by	 	Matlab	and	 interacts	with	a	second	software	to	
automatically	 validate	 the	 robot’s	 behavior	 in	 both	 a	 simple	 visualization	 of	
Simulink’s	 results	 (with	 S-Functions)	 and	 a	 more	 realistic	 and	 faithful	 one	 that	
considers	 the	 effect	 that	 friction	 has	 on	 the	 robot	 (the	 co-simulation	 between	
Simulink	and	Simscape	Multibody).		

	

4. Once	 the	models	 are	 validated,	 the	 technique	 is	 implemented	 on	 the	 EV3.	 Two	
independent	 implementations	 are	 provided:	 on	 the	 one	 hand,	 by	 using	 LEGO	
MINDSTORMS	 EV3	 Support	 for	 Simulink,	 which	 supports	 academic	 applications	
and	allows	the	robot	real-time	behavior	to	be	evaluated;	on	the	other	hand,	the	
by	 using	 the	 C-based	 robotics	 programming	 language	 RobotC,	 which	 supports	
industrial-strength	applications.	

	

5. Then,	 computer	 vision	 system	 is	 used	 to	 set	 the	 particular	 workspace	
configuration.	This	includes	not	only	perceiving	the	starting	point	and	target	point	
in	 the	 environment	 configuration	 but	 also	 the	 process	 of	 obstacle	 detection	
(Chapter	10).	

	

6. Lastly,	 the	methodology	 is	applied	to	a	particular	case	study	that	 is	 independent	
from	any	particular	industrial	bias	(Chapter	11).	

	

As	 shown	 in	 Chapter	 11,	 the	 whole	 methodology	 is	 applicable	 in	 a	 simple	 and	 automated	
manner	by	following	the	following	steps:		



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

23	

1. Get	the	environment	configuration	by	running	vision_detect	(explained	in	Chapter	
10)	and	compute	the	path	trajectory	for	obstacle	avoidance	by	implementing	the	path	
planning	 	 technique	 based	 on	 the	 A*	 Algorithm	 (explained	 in	 Chapter	 5).	 Save	 the	
created	 map	 in	 workspace	 "Map"	 as	 a	 matrix,	 and	 the	 generated	 trajectory	 as	
"Trayect_optimal"	for	further	use	in	the	code.		

 

As	requirements	for	this	step,	it	must	be	considered	that	an	image	acquisition	system	
is	 needed.	 In	 this	 project	 the	 type	 of	 camera	 used	 is	monocular,	 	which	 implies	 the	
depth	 of	 the	 environment	was	 disregarded.	 In	 order	 to	 consider	 the	 depth,	 using	 a	
stereo	 camera	 or	 a	 RGB-D	 sensor	 should	 be	 needed.	 In	 the	 case	 when	 there	 is	 no	
camera	 available	 that	 is	 compatible	 with	 the	 given	 workspace,	 the	 starting	 point,	
target	 point	 and	 obstacle	 coordinates	 could	 be	 introduced	manually	 as	 will	 be	 fully	
explained	in	Chapter	5.		
	
Make	sure	that	the	dimensions	of	the	industrial	space	where	the	methodology	is	going	
to	be	implanted	correspond	to	maximum	coordinates	identified	in	the	A*	Algorithm	as	
“maximum_x”	 and	 “maximum_y”.	 	 For	 the	working	 environment	 of	 this	 project,	 the	
dimensions	were	a	3x2.5	m2	grid.	 

	
2. Make	 sure	 the	 robot	 configuration	 of	 the	 industrial	 robot	 going	 to	 be	 used	 is	

differential,	as	 the	one	used	 in	 this	project.	Otherwise,	 change	 the	control	 system	 in	
Simulink	explained	in	Chapter	6	and	7	before	proceeding	to	step	3.	
	
Visually	 check	 the	 behaviour	 automatedly	 (using	 the	 control	 explained	 in	 Chapter	 6	
and	7)	with	S-Functions	by	running	sim('tfm_sfun') (developed	in	Chapter	8.1) 

 

REMARK:	
If	SM	Contact	Forces	Library	is	not	installed,	please	before	step	4,	run:	
run startup_Contact_Forces  

(This	step	is	fully	constructed	in	Chapter	8.1)	
	

3. In	order	to	faithfully	simulate	a	realistic	behaviour	which	considers	robot	parameters	
such	as	weight,	inertia	moments	and	friction,	then	as	explained	in	Chapter	8.2,	run		
sim('simulationwithsimscape') 

Be	aware	 that	 initial	 and	 target	positions	 and	well	 as	obstacles	 location	must	be	 set	
manually	in	the	environment	for	each	working	configuration.		

		
4. Make	the	EV3	follow	the	trajetory	by	running		

run tfm_lego 

which	allows	the	robot	behaviour	to	be	observed. 
To	 change	 the	 robot's	 IP	 adress	 go	 to	Model	 Configuration	 Parameters	 ->	Hardware	
Implementation.	This	step	is	fully	explained	in	Chapter	9.1.		
	
It	must	 be	 considered	 that	 the	 firmware	 version	 of	 the	 EV3	 robot	 that	 enables	Wifi	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

24	

connection	 is	 version	 1.06H	 (latest	 version	 1.09H	 is	 incompatible)	 and	 that	 the	
required	connection	protocol	is	WPA2	Personal	(or	none).	It	 is	also	required	to	install	
the	Netgear	N150	wifi	dongle.		

	
5. As	explained	 in	Chapter	9.2,	 the	methodology	can	be	easily	applied	 to	any	 industrial	

robot.	 Fed	 the	 system	 with	 the	 path	 trajectory	 obtained	 in	 step	 2	 and	 run	
"ALGORITHM_A"	 (eventually,	 the	controller	can	be	easily	 rewritten	using	a	 similar	C-
based		robot	programming	language	if	needed).	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

25	

CHAPTER	5:	IMPLEMENTATION	OF	THE	A*	
ALGORITHM	FOR	OUR	TARGET	ROBOT	

5.1.	THE	PROPOSED	TECHNIQUE		

	

This	 chapter	 focuses	 on	 developing	 a	 suitable	 technique	 of	 path	 finding	 and	 obstacle	
avoidance	for	our	target	robot	EV3.	The	underlying	algorithm	is	A*	algorithm,	a	combination	of	
Dijkstra’s	 algorithm	and	heuristic	 search	described	 in	Chapter	3.	 In	order	 to	obtain	 the	 least	
estimated	 cost	 f(n)	 from	 the	 start	 state	 to	 the	 goal	 state	 passing	 through	 node	 “n”,	 we	
consider	 the	 sum	 of	 the	 accumulated	 cost	 g(n)	 of	 each	 node	 (which	 is	 the	 current	 best	
estimate	of	the	accumulated	cost	from	the	start	node	to	“n”)	and	the	heuristic	h(n),	being	h(n)	
the	 estimated	 least	 cost	 from	node	n	 to	 the	 goal	 state.	 The	developed	 strategy	 is	 based	on	
expanding	the	node	with	the	cheapest	cost	f(n)	and	then	update	the	accumulated	cost	g(m)	for	
all	 the	 unexpanded	 neighbors	 “m”	 of	 node	 “n”,	 considering	 that	 a	 node	 that	 has	 been	
expanded	is	guaranteed	to	have	the	smallest	cost	from	the	start	state.		

	In	order	to	implement	this	algorithm,	the	first	module	to	be	defined	is	the	declaration	
of	the	2D	grid	map	array	representation	that	includes	the	obstacles,	starting	point	and	target	
point,	as	well	as	a	given	initialization	of	the	location	of	the	obstacles	and	target	point.	

Aftwerwards,	 a	 priority	 queue	must	 be	 created	 in	 order	 to	 store	 all	 nodes	 that	 are	
pending	to	be	expanded	(variable	“queue”),	which	is	considered	as	an	open	container.	Also,	a	
close	container	is	needed	to	keep	the	set	of	nodes	that	have	been	already	evaluated	(variable	
“set_closed”).	 The	heuristic	 function	h(n)	 for	 all	 nodes	 is	 pre-defined	using	 function	 “dis”	 to	
calculate	 the	 distance	 between	 nodes.	 The	 priority	 queue	 is	 initialized	 with	 the	 start	 state	
(“value_of_x”,	 “value_of_y”),	 for	 which	 the	 function	 “add_to_queue”	 is	 used;	 similarly,	 the	
obstacles	are	added	to	the	closed	container	“set_closed”.	The	accumulated	cost	for	the	rest	of	
the	nodes	in	the	graph	is	set	to	infinite	and	the	accumulated	cost	for	the	starting	node	is	set	to	
zero.	The	main	loop	is	based	on	the	fact	that	nodes	with	the	cheapest	estimated	cost	f(n)	are	
expanded	until	 the	 path	 is	 determined,	 using	 function	 “queue_of_expanded”	 to	 explore	 the	
search	space	and	function	“add_to_queue”	to	add	a	new	node	to	the	queue.	As	soon	as	the	
priority	queue	is	empty,	the	loop	is	exited;	meanwhile,	the	node	“n”	with	the	lowest	cost	f(n)	
from	the	priority	queue	is	removed	and	marked	as	expanded	by	introducing	it	into	the	closed	
container.	

	In	 order	 to	 identify	 the	 node	 with	 the	 lowest	 cost	 f(n),	 the	 function	
“minimum_function”	 is	 introduced.	 The	 node	 in	 the	 open	 container	 with	 the	 lowest	 f(n)	 is	
selected	as	the	current	node.	Once	processed,	this	node	is	removed	from	the	open	container	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

26	

and	 transfered	 to	 the	 closed	 container	 “set_closed”.	 Afterwards,	 its	 parent	 nodes	 are	
subsequently		processed.	

A	whistle	 blows	when	 the	 goal	 state	 is	 reached,	 and	 once	 the	 path	 is	 completed,	 a	
Boolean	parameter	“centinel”	is	used	to	get	out	of	the	loop.	If	a	neighbour	node	of	the	current	
node	 is	 already	 set	 in	 the	 closed	 container,	or	not	 traversable,	 the	 routine	 skips	 to	 the	next	
node.	Also,	 for	 all	 the	unexpanded	neighbors	 “m”	of	 node	 “n”,	 if	 g(m)=	∞,	 the	node	 “m”	 is	
pushed	into	the	queue,	and	if	g(m)	>	g(n)	+	Cnm	à	g(m)	=	g(n)	+	Cnm	(considering	it	has	not	
been	added	to	the	closed	container	yet),	the	least	cost	f(n)	of	the	neighbor	node	must	be	set.	
Also,	 considering	 that	 the	 neighbor	 node	 was	 selected	 as	 the	 current	 node	 in	 the	 open	
container,	 its	 parents	 are	 then	 considered	 as	 current	 nodes.	 When	 all	 nodes	 have	 been	
processed,	 the	 loop	ends,	 and	 the	path	 is	 backtraced	by	using	 the	 “find_predecessor_node”	
function	that	stepwisely	gathers	all	predecessor	nodes.		

5.2.	IMPLEMENTATION	AND	VALIDATION	

	

To	 validate	 the	 implemented	 algorithm,	 different	 configuration	 maps	 were	 created.	
These	maps	 represent	 the	 initial	 state,	 the	 obstacles	 and	 the	 target	 state.	 Due	 to	 technical	
limitations	 of	 the	 robot,	 it	 can	 only	 move	 forwards	 at	 a	 speed	 of	 0.1	 m/s	 ,	 so	 the	 initial	
trajectory	 that	 considered	 a	 distance	 of	 10	m	 had	 to	 be	 downscalated	 accordingly.	 A	 set	 of	
seven	 maps	 were	 initially	 considered	 to	 test	 the	 implemented	 algorithm.	 These	 maps	 are	
represented	 by	 using	 a	 matrix	 structure,	 where	 the	 first	 row	 of	 the	 matrix	 represents	 the	
coordinates	of	the	initial	point	and	the	last	row	represents	the	target	point.	The	intermediate	
rows	represent	the	obstacles	in	the	environment	:	

	

MAP1 = [0.2 0.2; ...% initial point 
       0.4 0.2; ...     %  obstacles 
       0.6 1.0; ...  
       0.6 0.4; ...  
       1.4 0.8; ... 
       1.0 1.4; ...   
       0.8 1.2; ...   
       1.0 1.2; ...  
       1.8 1.6];        % target point 
 
MAP2 = [0.2 0.2; ... % initial point 
       0.4 0.2;  ...   %  obstacles                                                                                                                                                                               
       0.6 1.0; ...  
       0.6 0.4; ...  
       1.4 0.8; ... 
       1.0 1.4; ...   
       0.8 1.2; ...   
       1.0 1.2; ...   
       1.0 1.2; ...  
       0.6 0.6; ...   
       0.4 1.2; ...   
       1.8 1.6];        % target point 
 



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

27	

MAP3 = [0.2 0.2; ... % initial point 
       0.4 0.2;  ...   %  obstacles                                                                                                                                                                               
       0.6 1.0; ...  
       0.6 0.4; ...  
       1.4 0.8; ... 
       1.0 1.4; ...   
       0.8 1.2; ...   
       1.0 1.2; ...   
       1.0 1.2; ...  
       0.6 0.6; ...   
       0.4 1.2; ...  
       1.6 1.4; ...    
       1.8 1.6];        % target point 
 
 
MAP4 = [1.6 0.4; ...% initial point 
       0.8 0.8; ...     %  obstacles 
       1.0 0.8; ...  
       1.2 0.8; ...  
       1.4 0.8; ... 
       1.6 0.8; ...   
       0.8 1.0; ...   
       1.0 1.0];        % target point 
 
 
MAP5 = [1.6 0.4; ...% initial point 
       0.8 0.8; ...     %  obstacles 
       1.0 0.8; ...  
       1.2 0.8; ...  
       1.4 0.8; ... 
       1.6 0.8; ...  
       1.8 0.6; ...    
       0.8 1.0; ...   
       1.0 1.0];        % target point 
 
 
MAP6 = [1.6 0.4; ...% initial point 
       0.8 0.8; ...     %  obstacles 
       1.0 0.8; ...  
       1.2 0.8; ...  
       1.4 0.8; ... 
       1.6 0.8; ...  
       1.8 0.6; ...    
       0.8 1.0; ...  
       1.4 1.0; ...    
       1.0 1.0];        % target point 

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

28	

	

Figure	13.	Example	1,	A*	Trajectory	for	Map	1	

	

Figure	14.	Example	2,	A*	Trajectory	for	Map	2	

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
X axis (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Y 
ax

is
 (m

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
X axis (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Y 
ax

is
 (m

)



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

29	

	

Figure	15.	Example	3,	A*	Trajectory	for	Map	3	

	

Figure	16.	Example	4,	A*	Trajectory	for	Map	4	

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
X axis (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Y 
ax

is
 (m

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
X axis (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Y 
ax

is
 (m

)



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

30	

	

Figure	17.	Example	5,	A*	Trajectory	for	Map	5	

	

Figure	18.	Example	6,	A*	Trajectory	for	Map	6	

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
X axis (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Y 
ax

is
 (m

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
X axis (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Y 
ax

is
 (m

)



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

31	

5.3.	PIECEWISE	CUBIC	HERMITE	INTERPOLATING	POLYNOMIAL	METHOD	

	

The	 trajectories	 previously	 computed	 by	 the	 implemented	 A*	 algorithm	 consist	 of	 a	
limited	number	of	points.	 In	order	to	 increase	the	accurancy	of	the	generated	trajectory,	the	
piecewise	 cubic	 hermite	 interpolating	 polynomial	 method	 has	 been	 used	 to	 compute	
intermediate	 points	 between	 each	 two	 points	 that	 increase	 the	 number	 of	 points	 in	 the	
trajectory	path.	

This	method	returns	a	piecewise	polynominal	structure	by	finding	out	the	values	of	an	
underlying	 interpolating	 function	 𝑃 𝑥 at	 intermediate	 points,	 where	 on	 each	 subinterval	
𝑥! ≤ 𝑥 ≤ 𝑥!!!,	 𝑃(𝑥)	 represents	 the	 cubic	 Hermite	 interpolant	 to	 the	 slopes	 at	 the	 two	
endpoints	and	the	given	values	(Izmiran,	2005).	𝑃(𝑥)	interpolates	𝑦,	where	𝑃(𝑥!)= 𝑦!,	and	the	
first	 derivative	 𝑃′(𝑥)is	 continuous.	 It	 must	 be	 considered	 that	 𝑃!! 𝑥  is	 probably	 not	
continuous.	The	slopes	at	the	𝑥! 	are	chosen	in	such	a	way	that	𝑃 𝑥  preserves	the	shape	of	the	
data,	while	respecting	its	monotonicity.		

This	type	of	polynomial	was	choosen	due	to	the	fact	that	it	presents	no	overshoots	and	
less	oscillation	if	the	data	are	not	smooth	with	respect	to	the	spline	function	polynomial,	and	is	
less	expensive	 to	 set	up.	 Initially,	 the	 spline	polynomial	was	also	 considered,	as	 it	presented	
some	advantages	(Izmiran,	2005):	by	obtaining	a	continuous	second	derivative	it	may	produce	
smoother	 results	 whenever	 the	 considered	 data	 contains	 values	 of	 a	 smooth	 function,	 as	
shown	 in	 Figure	 19.	 Since	 this	 is	 not	 fulfilled	 in	 our	 case,	 the	 piecewise	 cubic	 hermite	
interpolating	polynomial	was	choosen	instead.	Also,	the	spline	method	presents	a	more	curvy	
trajectory,	 but	 for	 obstacle	 avoidance	 is	 really	 important	 that	 the	 points	 are	 directly	 joined	
without	 an	 overshoot;	 otherwise,	 the	 robot	 could	 encounter	 an	 obstacle,	 as	 can	 be	 seen	 in	
Figure	20.	

	

Figure	19.	Pchip	vs	Spline	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

32	

	

	

Figure	20.	Pchip	(red)	vs	Spline	(blue)	for	our	target	robot	

	

By	considering	the	time	required	to	move	from	the	initial	point	to	the	target	point	and	
the	required	intervals,	each	set	of	points	is	broken	down	to	make	the	distance	between	each	
pair	of	consecutive	points	smaller.		

	

	

	

	

	

	

	

	

	

	

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
X axis (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Y 
ax

is
 (m

)



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

33	

CHAPTER	6:	FORWARD	AND	INVERSE	KINEMATICS,	
AND	ROBOT	CONFIGURATION.	

6.1.	INTRODUCTION	TO	ROBOT	CINEMATICS	

	

As	 it	 is	 known,	 kinematics	 is	 the	 study	 of	 the	 movement	 of	 mechanical	 systems,	
without	considering	the	forces	that	caused	that	movement.	The	kinematics	theory	 is	used	to	
obtain	the	expresions	that	relate	the	position	and	orientation	of	a	given	element	of	the	robot	
with	the	adopted	values	of	the	node’s	variables.	There	exist	two	types	of	kinematic	problems	
to	 solve:	 forward	 and	 inverse	 kinematics.	 In	 order	 to	 solve	 these	 two	 types	 of	 problems,	 it	
must	be	considered	that	the	robot	is	composed	by	a	set	of	rigid	bodies,	where	each	element	
has	an	associated	Cartesian	reference	frame.	Therefore,	the	orientation	and	position	of	each	
element	 of	 the	 robot	 can	 be	 obtained	 from	 the	 reference	 frames,	 and	 from	 these,	 the	
orientation	and	position	of	the	end	part	of	the	robot	can	also	be	obtained.		

6.2.	INTRODUCTION	TO	FORWARD	KINEMATICS	

	

Forward	kinematics	allows	 the	position	and	orientation	of	 the	outermost	part	of	 the	
robot	to	be	obtained	by	considering	the	variables	in	each	joint	for	robotic	manipulators,	and	to	
also	obtain	the	position	and	orientation	of	the	robot	by	considering	the	position	and	velocities	
of	the	wheels.	It	is	based	on	a	vector	function	𝑓!(𝑙! , 𝑞)	that	relates	the	geometric	properties	of	
the	mechanical	system	li	and	the	joint	coordinates	𝑞 ∈ ℝ!	with	the	Cartesian	coordinates	[𝑥,	
𝑦, 𝑧 ]!  ∈  ℝ!	and	the	robot’s	orientation	[θ,	φ,	ψ	  ]!  ∈  ℝ!	as	shown	in	Figure	21,	borrowed	
from	(Valera	Fernández,	Á.,	2017b):		

	

Figure	21.	Forward	Kinematics	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

34	

Therefore,	the	forward	kinematics	problem	provides	only	one	solution	for	each	set	of	variables	
of	the	considered	joint.	There	are	several	ways	to	solve	this	problem,	such	as	using	geometric	
methods	or	homogenous	matrices.		

6.3.	INTRODUCTION	TO	INVERSE	KINEMATICS	

	

Inverse	kinematics	 allows	 the	values	of	 the	 variables	 in	each	 joint	 to	be	obtained	by	
considering	 the	 position	 and	 orientation	 of	 the	 outermost	 part	 of	 the	 robot.	 This	 type	 of	
kinematics	is	based	on	a	non-linear	problem	that,	in	the	case	or	robotic	manipulators,	creates	
a	relationship	between	the	orientation	and	joint	coordinates	of	the	robot’s	tools	at	its	end,	as	
shown	in	Figure	22,	taken	from	(Valera	Fernández,	Á.,	2017b).	In	mobile	robotics,	it	allows	the	
position	and	velocities	of	 the	wheels	 to	be	obtained,	which	allows	 the	robot	 to	be	given	the	
desired	position	and	orientation:	

	

Figure	22.	Inverse	Kinematics	

Therefore,	by	considering	a	known	cartesian	position,	the	inverse	kinematics	problem	consists	
in	finding	the	articulation	coordinates	 𝜃!, 𝜃!, 𝜃!, 𝜃!, 𝜃!, 𝜃! = 𝑓(𝑥, 𝑦, 𝑧,𝛼,𝛽, 𝛾).	Considering	it	
is	 generally	 a	 redundant	 problem	 as	 it	 provides	 more	 than	 one	 solution.	 There	 are	 several	
methods	 to	 solve	 this	 problem,	 such	 as	 using	 geometric	 methods,	 taking	 the	 homogenous	
matrix	 as	 a	 start	 point,	 applying	 kinematic	 decoupling	 (being	 this	 one	 the	 most	 commonly	
used)	 or	 by	 iteration.	 Taking	 into	 consideration	 that	 the	 explicit	 solution	 of	 the	 system	 is	
required,	Pieper’s	theorem	must	be	taken	into	account:	any	6	dof	(degrees	of	freedom)	robot	
with	3	consecutive	axes	meeting	at	a	point	has	solvable	inverse	kinematics.		

6.4	ROBOT	CONFIGURATION	

	

There	 are	 several	 kinematic	 configurations	 for	 mobile	 robots,	 such	 as	 differential	
configuration,	caterpillar	configuration,	trycicle	and	ackerman	configuration.	The	configuration	
of	the	project	robot	EV3	is	the	differential	configuration,	which	presents	two	traction	wheels	
and	a	front	support	wheel.		



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

35	

	

Figure	23.	Differential	Configuration	

6.5	FORWARD	KINEMATICS	WITH	DIFFERENTIAL	CONFIGURATION	MODEL	

	

	 For	 implementing	 the	 forward	 kinematics	 problem	 with	 a	 differential	 configuration	
model,	aa¡nd	considering	the	wheels’	velocity	𝑣!  𝑎𝑛𝑑 𝑣!,	the	linear	velocity	of	the	robot	v	and	
the	angular	velocity	of	the	robot	𝜔,	the	following	equations	are	generated:		

	

=

𝑐𝑜𝑠𝜃
𝑣! + 𝑣!
2

𝑠𝑖𝑛𝜃
𝑣! + 𝑣!
2

𝑣! −  𝑣!
2𝑏

	

	

From	these	equations,	the	Simulink	structure	can	be	built:	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

36	

	

Figure	24.	Simulink	Forward	Kinematics	

6.6	INVERSE	KINEMATICS	WITH	DIFFERENTIAL	CONFIGURATION	MODEL	

For	 implementing	 the	 inverse	 kinematics,	 the	 following	 equations	 must	 be	 considered,	
leading	to	the	Simulink	structure	shown	in	Figure	25:		

		

	

														 	

															 	

	

Figure	25.	Inverse	Kinematics	Simulink	Structure	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

37	

CHAPTER	7:	POSITION	ESTIMATION	AND	CONTROL	
OF	MOBILE	ROBOTS	

7.1.	POSITION	ESTIMATION		

	

Taking	 into	 consideration	 the	 rigid	 body	 motion	 described	 in	 Chapter	 2,	 and	
considering	 the	 robot’s	 velocity	 and	 the	 integral	 of	 the	 robot’s	 differential	 equation	 in	
recursive	 form,	and	doing	an	 integral	approximation	of	 the	differential	equation,	considering	
△ 𝑡 𝑜𝑟 𝜃	small	enough,	it	can	be	considered:	

		 	

	

							 	

In	discrete	position	estimation,	the	robot’s	position	is	given	by	the	following	equations:	

	

where	the	angular	and	linear	velocities	of	the	wheels	satisfy	the	following	equations:	

			



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

38	

This	yields	the	following	equations	for	the	robot’s	velocities:						 	

7.2.	CONTROL	OF	MOBILE	ROBOTS	

	

Two	 types	 of	 controls	 are	 required	 for	 mobile	 robots:	 kinematic	 and	 dynamic.	 It	
corresponds	 to	a	 cascade	control,	where	 the	dynamic	 control	 represents	 the	outer	 loop	and	
the	kinematic	control	the	inner	one,	as	shown	in	Figure	26	(Valera	Fernández,	Á.,	2017b):	

	

Figure	26.	Mobile	Robot	Control	

1.	 DYNAMIC	 CONTROL:	 	 This	 type	 of	 control	 is	 generally	 obtained	 with	 a	 basic	 type	 of	
control	 (P,	 PD,	 PI	 or	 PID	 of	 velocity	 and/or	 angular	 positions	 of	 the	 motos	 of	 the	
robot).	For	the	differential	configuration,	the	dynamic	control	establishes	the	wheel’s	
velocity	control,	as	shown	in	Figure	27:	

	

	

Figure	27.	Dynamic	Control	Simulink	Structure	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

39	

2.	KINEMATIC	CONTROL:	This	type	of	control	is	generally	more	complex	than	the	dynamic	
one.	It	is	based	in	the	determination	of	the	required	robot’s	actions	to	take	it	from	the	
actual	position	to	a	target	final	position,	taking	into	consideration	its	orientation	and	
velocities	as	shown	in	Figure	28	that	will	be	fully	explained	below:	

	

Figure	28.	Dynamic	Control	Simulink	Structure	

3.	 TRAJECTORY	 CONTROL:	 There	 are	 different	 ways	 to	 control	 trajectories,	 such	 as	
proportional	 control	 with	 pre-feeding,	 proportional-integral	 with	 pre-feeding	 or	 position	
control	by	decentralized	point,	being	this	last	option	the	one	considered	in	this	project.	For	this	
type	of	control,	the	control	is	established	from	the	position	and	velocity	of	a	point	at	distance	e	
from	 the	 traction	axis	of	 the	 robot.	The	derivative	of	 the	position	of	 the	decentralized	point	
follows	the	following	equations:		

	
being	the	kinematic	of	the	differential	robot	as	follows:	

	
where,	 by	 substitution	 of	 the	 kinematic	 equation	 of	 the	 differential	 robot,	 the	
following	equations	are	obtained:		

	
Therefore,	the	wheels	have	the	following	reference	velocities:	

	
being	the	velocity	of	the	decentralized	point	(kinematic	control),	as	follows	:	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

40	

	
and	being	the	dynamic	control	as	follows:	

	
Hence,	the	position	control	by	decentralized	point	presents	the	following	structure:		

	

Figure	29.	Position	Control	by	Decentralized	Point	

	

4.	 PATH	 CONTROL:	 	 The	 path	 control	 for	 the	 proposed	 obstacle	 avoidance	methodology	 is	
postponed	to	Chapter	8.	

	

	

	

	

	

	

	

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

41	

CHAPTER	8:	SIMULINK	VISUALIZATION	USING	S-
FUNCTIONS	AND	SIMSCAPE	MULTIBODY	

SIMULATION	

Before	 implanting	the	developed	control	system	for	obstacle	avoidance	based	on	the	
programmed	algorithm,	two	types	of	system	visualization	were	considered	to	test	the	robot’s	
behavior:	 a	 simple	 one	 by	 using	 S-Functions	 that	 can	 easily	 be	 applied	 to	 any	 system	 in	 an	
automated	 way,	 and	 a	more	 complex	 one	 based	 in	 a	 co-simulation,	 specially	 tailored	 for	 a	
particular	 system,	where	 the	 robot’s	physical	parameters	and	 the	environment	structure	are	
considered.	

8.1.	S-FUNCTIONS		

	

System	functions	(S-functions)	consist	of	an	extension	of	the	capabilities	of	Simulink’s	
environment	for	discrete,	continuous	and	hybrid	systems.	As	previously	explained	in	Chapter	
5,	in	order	to	validate	the	optimal	paths,	different	maps	have	been	created.	Remember	that	
the	optimal	path	is	obtained	by	considering	the	sum	of	the	current	best	estimate	g(n)	of	the	
accumulated	cost	from	the	start	node	to	“n”	and	the	heuristically	estimated	least	cost	h(n)	
from	node	n	to	the	given	goal	state.		

S-Functions	consist	on	two	elements:	a	Matlab	function	and	a	Simulink	structure.	The	
code	used	in	this	project	is	structured	in	3	parts:	case	0,	where	the	variables	are	initialized,	
case	 3,	 where	 the	 outputs	 are	 calculated	 and	 case	 9,	 which	 represents	 the	 end	 of	 the	
visualization. 

	Simulink’s	structure	for	the	S-Functions	of	Figure	30	represents	a	combination	of	the	
kinetic	 control,	 inverse	 kinematics	 control	 and	 the	 Real	 Lego	 Robot	 structures	 previously	
explained:	

	

Figure	30.	Simulink	Global	Structure	for	S-Functions	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

42	

With	this	structure,	different	visualizations	for	each	map	can	be	obtained	as	shown	in	
Figures	31-37,	where	the	robot	moves	by	following	the	optimal	trajectory	 in	both	a	XY	and	
XYZ	plane	view,	and	where	 the	 trajectory	 can	be	 left	hidden	 if	wanted	by	 the	user.	At	 the	
middle	top	of	each	figure,	the	user	can	also	see	the	general	frame	coordinates	followed	by	
the	 robot	 as	 it	 moves.	 This	 methodology	 can	 be	 extrapolated	 to	 any	 type	 of	 real	 world	
environment	to	test,	in	an	easy	and	safe	manner,	if	the	robot	will	eventually	collide	with	an	
obstacle	while	following	its	planned	trajectory	from	the	starting	point	to	the	target	point	(in	
meters).		

	

	

Figure	31.	Example	1,	S-Functions	Map	1	

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

43	

	

Figure	32.	Example	2,	S-Functions	Map	2	

	

	

Figure	33.	Example	3,	S-Functions	Map	3	

	

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

44	

	

Figure	34.	Example	4,	S-Functions	Map	4	

	

	

Figure	35.	Example	5,	S-Functions	Map	5	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

45	

	

Figure	36.	Example	6,	S-Functions	Map	6	

8.2.	SIMSCAPE	MULTIBODY			

	

Simscape	Multibody	 provides	 a	 simulation	 environment	 for	 the	 Lego	 Robot	 EV3	 by	
resolving	the	diferential	equations	of	the	mechanical	system.	This	type	of	simulation	yields	a	
more	 realistic	 approach	 to	 modeling	 the	 behavior	 of	 the	 real	 robot	 that	 considers	 its	
structure,	dimensions,	weight,	inertia	and	other	general	properties.	Therefore,	the	first	task	
required	for	this	type	of	simulation	was	to	obtain	the	Solidoworks	model	of	the	robot,	whose	
general	structure	was	obtained	from	Grabcad	(GrabCad	site,	2018).	However,	the	real	Lego	
Robot	 (shown	 in	 Figure	 37)	 has	 a	 slightly	 different	 structure,	 so	 the	 structure	 had	 to	 be	
modified	in	order	to	turn	it	into	the	configuration	used	in	this	project,	being	the	result	shown	
in	Figure	38.		



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

46	

	

Figure	37.	EV3	Real	Model	

	

	

Figure	38.	Body	Structure	of	the	Robot	in	.stl	

	

Once	the	model	was	modified,	the	structure	was	split	into	several	parts	before	being	
introduced	 to	 Simulink.	 In	 order	 to	 obtain	 a	 basic	 view,	 a	 .stl	 type	 of	 model	 was	 initially	
introduced,	which	considered	each	part	of	the	robot’s	structure	as	a	point	mass	in	the	center	
of	 masses	 (reason	 why	 four	 wheels	 were	 considered,	 whereas	 the	 real	 robot	 has	 a	
differential	 configuration),	 instead	 of	 considering	 its	 real	 properties	 (mass,	 inertia…).	
Following	 the	previous	S-Functions	visualization,	 the	position	vector	was	 introduced	 to	 the	
body	structure	joint.	The	images	shown	in	this	section	correspond	to	Map	1	(Figure	13),	but	
it	 can	 be	 extrapolated	 to	 any	 environment	 and	 set	 of	 obstacles.	 The	 result	 was	 quite	
accurate	as	shown	in	Figure	39.		



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

47	

	

Figure	39.	The	Robot	following	the	Path	Simulation	

	

Nevertheless,	 in	 order	 to	 obtain	 a	 more	 realistic	 approximation	 of	 the	 robot’s	 real	 world	
behavior,	the	model	had	to	include	the	weight,	inertia,	density,	center	of	mass	and	moment	of	
inertia	of	each	structure,	so	it	had	to	be	considered	the	material’s	density,	which	considering	it	
is	 PP	 plastic,	 is	 0.91g/cm3	 as	 shown	 in	 Figure	 40.	 As	 the	 STEP	 file	 is	 introduced	directly,	 the	
dimensions	 of	 the	 rigid	 body	 are	 directly	 evaluated	 and	 inertia	 moment	 and	 weight	 are	
inmediately	calculated	by	considering	the	given	density.	

	

	

Figure	40.	The	wheel’s	properties	

	

To	ensure	compability	with	Simscape	Multibody	(in	particular,	strict	limitations	on	the	size	of	
files),	 the	 previous	 body	 structure	 had	 to	 be	 slightly	 modified	 to	 work	 properly.	 Also,	 SM-
Contact	 Forces	 were	 considered	 in	 order	 to	 simulate	 the	 wheel’s	 friction	with	 the	 floor	 as	
shown	 in	 Figure	 47.	 Moreover,	 following	 a	 professional	 methodology,	 a	 new	 Simulink	
structure	 was	 created	 in	 order	 to	 introduce	 the	 wheel’s	 reference	 angular	 velocity	 to	 the	
wheels	 and	 simulate	 its	 behavior	 (instead	 of	 introducing	 the	 position	 coordinates,	 as	
explained	 previously).	 The	 general	 structure	 is	 shown	 in	 Figures	 41-49,	 where	 each	 figure	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

48	

follows	a	hierarchical	structure,	 from	a	general	structure	higher	structure	to	a	more	specific	
structure.	

	

Figure	41.	General	Simulink	Structure	

	

As	can	be	observed,	Figure	41	presents	the	higher	hierarchical	level	of	the	Simulink	structure,	
with	three	main	subsystems:	the	floor	subsystem,	containing	the	floor	platform,	the	obstacles,	
target	 position	 and	 initial	 position	 which	 can	 be	 observed	 in	 Figure	 43,	 the	 EV3	 Structure,	
which	 includes	 the	 controller	 structure	 (which	 sends	 the	 control	 action	 into	 the	 wheels	
structure),	 the	 body	 structure	 (connected	 to	 the	 wheels	 and	 its	 corresponding	 SM-Contact	
forces	blocks	which	consider	the	friction	of	the	wheels	with	the	floor),	as	shown	in	Figure	46	
and	 the	 subsystem	 that	 connects	 the	 body	 structure	 to	 the	 floor,	 shown	 in	 Figure	 42.	 It	 is	
important	 to	 note	 that	 the	 World	 frame	 is	 connected	 to	 the	 floor	 to	 fix	 the	 position	 and	
considers	an	 inertial	coordinate	frame.	A	mechanism	configuration	block	 is	considered	to	set	
the	gravity	parameter.	

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

49	

		

Figure	42.	Joints	used	in	the	body,	considering	gravity	

	

As	shown	in	Figure	42,	there	are	different	structures	to	be	considered	in	Simscape:	a	rigid	body	
(introduced	as	STEP	file)	,	a	rigid	transform	between	points	(where	the	rotation	and	translation	
between	 two	 points	 are	 considered),	 different	 types	 of	 joints,	 depending	 on	 the	 degrees	 of	
freedom	of	the	body	and	the	conversión	blocks	from	Simscape	back	to	Simulink.	

	

In	 case	 the	 environment	 structure	 would	 change,	 the	 only	 required	 changes	 in	 the	
configuration	of	 this	Simscape	file	structure	should	be	done	 in	the	general	 floor	structure:	 in	
particular,	 the	 floor	dimensions	might	need	to	be	changed	or	 the	start	point,	 target	point	or	
obstacles	 should	 be	modified.	 These	 parameters	 are	 simply	 changed	 by	 introducing	 in	 each	
rigid	transform	structure	its	coordinates	in	regards	to	the	World	Frame.	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

50	

	

	

	

Figure	43.	General	Floor	structure	with	third	hierarchical	level	subsystem	

	

Figure	44	presents	the	General	EV3	structure,	where	the	velocity	for	each	wheel	(left	and	right)	
is	obtained	from	the	controller	structure	(equivalent	to	the	one	in	Figure	30),	converted	from	
Simulink	 to	 Simscape	 type	 of	 block	 and	 introduced	 in	 the	 revolute	 joint	 of	 each	 wheel	 as	
shown	in	Figure	45,	with	a	resulting	velocity	shown	in	Figure	46.	At	the	same	time,	each	wheel	
is	connected	to	the	body	structure	of	Figure	38	and	connected	to	the	SM-Contact	Forces	blocks	
shown	in	Figure	50.			



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

51	

	

Figure	44.	General	EV3	structure	

	

The	EV3	structure	subsystem	is	crutial	for	this	project.	It	presents	an	innovative	co-simulation	
structure	 between	 the	 controller	 and	 the	mechanic	 structure,	 allowing	 the	 behavior	 of	 the	
robot	to	be	checked	in	respect	of	its	physical	parameters	(center	of	mass,	moments	of	inertia	
and	 products	 of	 inertia	 calculated	 from	 the	 introduced	 density	 of	 the	material)	 and	 friction	
before	being	implemented	on	the	real	system.	For	this	project,	since	the	parameter	introduced	
into	 the	wheel	 from	the	controller	 is	 the	velocity	of	 the	 robot,	 the	 type	of	motion	actuation	
considered	 is	 provided	by	 the	 input,	 and	 the	 torque	 is	 automatically	 computed	 as	 shown	 in	
Figure	47.	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

52	

	

Figure	45.	Each	of	the	wheel’s	structure	model	

	

Figure	46.	The	Wheel’s	Behavior	

A	 contact	 force	 is	 then	 considered	between	 the	wheel	 and	 the	 floor	 as	 shown	 in	 Figure	 47.	
Considering	the	wheel	radius,	the	sphere	around	it	is	considered	to	have	a	radius	of	0.03	m.		

	

0 2 4 6 8 10 12 14 16 18
Time (s)

-80

-60

-40

-20

0

20

40

60

Ve
loc

ity
 (r

ad
/s)

Wheel Velocity

Right Wheel
Left Wheel



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

53	

	

Figure	47.	SM-Contact	Forces	for	each	wheel	

	

Figures	 48	 and	 49	 shows	 the	 result	 of	 this	 co-simulation	 between	 Simulink	 and	 Simscape	
Multibody,	 which	 has	 allowed	 the	 behavior	 of	 the	 robot	 to	 be	 precisely	 proved	 before	
implementation,	as	shown	in	Figure	50.	

	

Figure	48.	The	Resulting	Simulation	Side	View	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

54	

	

Figure	49.	The	Resulting	Upper	Simulation	

	

Figure	50.	Simulation	Behaviour:	Desired,	Estimated	and	Real	Trajectory	

	

As	 illustrated	 in	Figure	50,	 the	obtained	result	 is	quite	accurate	and	models	 the	robot’s	 real	
behavior	better	than	the	previous	visualization.		

	

	

	

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
X axis (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Y 
ax

is
 (m

)

Desired, Estimated and Real Trajectory

Estimated
Real
Reference



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

55	

CHAPTER	9:	IMPLEMENTATION	PLATFORMS	FOR	
EV3	ROBOT	

After	 having	 tested	 the	 robot’s	 behavior	 with	 several	 simulations,	 and	 in	 particular,	
with	the	more	precise	one	that	considers	the	robot’s	friction	with	the	floor,	its	density,	inertia	
moments	 and	mass,	 the	 proposed	 techniques	 are	 implemented	 in	 the	 EV3	 real	 robot.	 Two	
independent	 implementations	 have	 been	 developed:	 the	 first	 one	 uses	 LEGO	MINDSTORMS	
EV3	 Support	 for	 Simulink,	 whereas	 the	 second	 one	 uses	 the	 cross-robotics-platform	
programming	 environment	 RobotC.	 In	 both	 implementations	 the	 following	 phases	 for	
parameter	obtention	are	observed:	

	

1.	

• Coordinates	x	and	y	for	each	point	in	the	op�mal	path	obtained	from	the	A*	algorithm,	using	Matlab.	The	sequence	
of	points	in	the	trajectory	is	completed	un�l	reading	1001	points	using	the	pchip	command	of	matlab,	which	stands	
for	 connec�ng	 a	 piecewise	 polynominal	 structure.	 These	 points	 are	 transfered	 to	 the	 corresponding	 pla�orm	 in	
matrix	form.	

2.	
• For	each	dimension,	x	and	y,	the	reference	velocity	is	obtained	by	subtrac�ng	the	reference	posi�on	from	the	actual	
reference	posi�on,	considering	a	�me	step	of	0.02	s	for	a	simula�on	�me	of	20s.		

3.	

• Develop	 the	 two	 classical	 types	of	 controls	 required	 for	mobile	 robots:	 kinema�c	and	dynamic.	 The	global	 control	
corresponds	to	a	cascade	control,	where	the	dynamic	control	represents	the	outer	 loop	and	the	kinema�c	control,	
the	inner	one.	By	applying	the	kinema�c	control	theory,	the	decentralized	posi�on	points	are	obtained.	

4.		
• By	applying	the	inverse	kinema�cs	control	theory,	the	velocity	of	each	wheel	is	obtained	(considering	one	right	wheel	
and	one	le�	wheel	with	different	veloci�es).	

5.	
• By	mul�plying	by	the	radius,	the	reference	angular	velocity	is	obtained	for	each	wheel.		

6.	
• By	 using	 a	 dynamic	 control	 structure	 consis�ng	 of	 a	 propor�onal	 Kp=9,	 the	 wheel’s	 velocity	 control	 is	 obtained,	
where	the	velocity	parameter	is	passed	to	the	robot’s	motors	in	the	wheels.		

7.	
• The	encoders	get	the	wheel’s	pulse,	that	has	to	be	subtracted	by	the	wheel’s	previous	�me	step	state	and	divided	by	
the	step	�me	in	order	to	obtain	the	robot’s	real	angular	velocity	(and	transformed	to	radians).	

8.	
• This	angular	velocity	is	transformed	into	linear	by	mul�plying	by	the	radius	of	the	wheel	and	then,	using	the	forward	
kinema�cs	control	for	the	differen�al	model,	the	robot’s	real	posi�on	x,	y	and	its	theta	angle	is	obtained.	

9.	
• This	real	parameters	x,	y	and	theta	are	used	to	feedback	the	ini�al	kinema�cs	control.	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

56	

9.1	LEGO	MINDSTORMS	EV3	SUPPORT	FOR	SIMULINK	

	

LEGO	MINSTORMS	EV3	support	for	Simulink	provides	a	hardware	library	where	all	the	
structure	parts	 that	 compose	 the	 robot	are	considered,	as	 shown	 in	Figure	51.	Therefore,	 in	
order	 to	 implement	 the	 system	 the	 first	 task	 was	 to	 download	 the	 library	 as	 an	 add-on	 to	
Simulink.	

	

Figure	51.	Simulink	Support	Package	for	LEGO	MINSTORMS	EV3	Hardware	

	

In	order	to	connect	to	the	robot	via	WIFI,	the	Netgear	N	150	adapter	was	required.	It	also	had	
to	 be	 installed	 the	 firmware	 version	 of	 the	 robot	 that	 allowed	 the	 connection,	 being	 the	
correct	firmware	version	1.06H.	The	required	connection	protocol	in	order	to	connect	is	WPA2	
Personal	(or	none).		

	 	

The	 general	 structure	 of	 the	 implementation	 is	 shown	 in	 Figure	 52,	 showing	 a	 high	
level	hierarchical	structure,	where	the	kinematics	control	as	well	as	the	inverse	kinematics	are	
inside	the	control	subsystem	(Figure	54)	and	the	reference	angular	velocity	is	introduced	to	the	
wheel’s	motor	in	the	subsystem	for	each	wheel.		Figure	53	shows	the	wheels’	structure.	After	
obtaining	 the	 robot	 real	 angular	 velocity	 and	multipling	 it	 by	 the	 radius	 in	 order	 to	 get	 the	
linear	velocity,	it	is	introduced	into	the	Forward	Kinematics	control	subsystem.	

	 	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

57	

	

Figure	52.	Global	Structure	

	

Figure	53.	Wheel’s	Structure	

	

Figure	54.	System	Structure,	considering	Kinematics	and	Inverse	Kinematics	control	

	

Figure	55	shows	the	robot’s	behavior	in	both	the	reference	simulation	and	the	real	behavior	of	
the	robot.		



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

58	

	

Figure	55.	Simulation	Behaviour	vs	Real	Behaviour	

	

9.2	ROBOTC	PROGRAMMING	PLATFORM	AND	LANGUAGE	

	

C	 is	 one	 of	 the	 most	 widely	 used	 programming	 languages	 of	 all	 times,	 having	
influenced	many	 programming	 languages	 later.	 RobotC	 is	 a	 C-based	 programming	 language,	
especially	 	 designed	 for	 robotics	 applications.	 To	 take	 advantage	 of	 the	 widespread	 of	 the	
RobotC	 language,	 the	proposed	methodology	has	been	adapted	 to	RobotC	and	 implanted	 in	
the	Robotics	Lab	of	the	ai2	Institute	of	the	UPV.		

For	implementing	the	control	structure,	the	following	procedure	is	considered:	
	

a. Compute	angular	velocities	of	the	wheels		
	

𝑤𝑑 = 𝑝𝑢𝑙2𝑟𝑎𝑑 ∗ (𝑤ℎ𝑒𝑒𝑙𝑑𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 − 𝑤ℎ𝑒𝑒𝑙𝑑𝑁𝑜𝑤)/0.02 
𝑤𝑖 = 𝑝𝑢𝑙2𝑟𝑎𝑑 ∗ (𝑤ℎ𝑒𝑒𝑙𝑖𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 − 𝑤ℎ𝑒𝑒𝑙𝑖𝑁𝑜𝑤)/0.02 

b. Compute	linear	velocities	of	the	wheels		
	

𝑣 =  𝑤 ∗ 𝑟𝑎𝑑𝑖𝑢𝑠 
𝑣𝑑 = 𝑤𝑑 ∗ 𝑟𝑎𝑑𝑖𝑢𝑠𝑤ℎ𝑒𝑒𝑙 
𝑣𝑖 = 𝑤𝑖 ∗ 𝑟𝑎𝑑𝑖𝑢𝑠𝑤ℎ𝑒𝑒𝑙 

c. Compute	linear	velocity	of	the	robot	
	

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
X axis (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Y 
ax

is
 (m

)

Simulation Behaviour vs Followed by the Robot

Real
Reference



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

59	

𝑣𝑒𝑙𝐿𝑖𝑛_𝑟𝑜𝑏𝑜𝑡 = (𝑣𝑑 + 𝑣𝑖)/2 
d. Compute		angular	velocity	of	the	robot	

	
𝑣𝑒𝑙𝐴𝑛𝑔_𝑟𝑜𝑏𝑜𝑡 = (𝑣𝑑 − 𝑣𝑖)/(2 ∗ 𝑏) 

e. Compute	X-Y	position	and	orientation	of	the	robot			
	

𝑥 = 𝑥 + 𝑣𝑒𝑙𝐿𝑖𝑛_𝑟𝑜𝑏𝑜𝑡 ∗ 𝑐𝑜𝑠(𝑡ℎ𝑒𝑡𝑎) 
𝑦 = 𝑦 + 𝑣𝑒𝑙𝐿𝑖𝑛_𝑟𝑜𝑏𝑜𝑡 ∗ 𝑠𝑖𝑛(𝑡ℎ𝑒𝑡𝑎) 
𝑡ℎ𝑒𝑡𝑎 = 𝑡ℎ𝑒𝑡𝑎 + 𝑣𝑒𝑙𝐴𝑛𝑔_𝑟𝑜𝑏𝑜𝑡 

	
f. Implement	the	kinematic	control	

	
𝑥𝑝_𝑝𝑜𝑖𝑛𝑡 = 𝑘𝑟𝑣 ∗ 𝑣𝑒𝑙_𝑥𝑟𝑒𝑓 + 𝑘𝑟𝑝 ∗ (𝑥𝑟𝑒𝑓 − (𝑥 + 𝑔 ∗ 𝑐𝑜𝑠(𝑡ℎ𝑒𝑡𝑎))) 

                             𝑦𝑝_𝑝𝑜𝑖𝑛𝑡 = 𝑘𝑟𝑣 ∗ 𝑣𝑒𝑙_𝑦𝑟𝑒𝑓 + 𝑘𝑟𝑝 ∗ (𝑦𝑟𝑒𝑓 − (𝑦 + 𝑔 ∗ 𝑠𝑖𝑛(𝑡ℎ𝑒𝑡𝑎))) 

	

g. Implement	the	inverse	kinematics	control:	compute	the	velocity	of	each	wheel	
(considering	one	right	wheel	and	one	left	wheel	with	different	velocities).	

		 𝑔𝑐𝑜𝑠_𝑡ℎ𝑒𝑡𝑎 = 𝑔 ∗ 𝑐𝑜𝑠(𝑡ℎ𝑒𝑡𝑎) 

                            𝑔𝑠𝑖𝑛_𝑡ℎ𝑒𝑡𝑎 = 𝑔 ∗ 𝑠𝑖𝑛(𝑡ℎ𝑒𝑡𝑎) 

                            𝑏𝑠𝑖𝑛_𝑡ℎ𝑒𝑡𝑎 = 𝑏 ∗ 𝑠𝑖𝑛(𝑡ℎ𝑒𝑡𝑎) 

                            𝑏𝑐𝑜𝑠_𝑡ℎ𝑒𝑡𝑎 = 𝑏 ∗ 𝑐𝑜𝑠(𝑡ℎ𝑒𝑡𝑎) 

𝑣𝑑!"# =
𝑔𝑐𝑜𝑠!ℎ𝑒𝑡𝑎 − 𝑏𝑠𝑖𝑛!ℎ𝑒𝑡𝑎 ∗ 𝑥𝑝!"#$% + 𝑔𝑠𝑖𝑛!ℎ𝑒𝑡𝑎 + 𝑏𝑐𝑜𝑠!ℎ𝑒𝑡𝑎 ∗ 𝑦𝑝!"#$%

𝑔
	

	

𝑣𝑖!"# =
𝑔𝑐𝑜𝑠!ℎ𝑒𝑡𝑎 + 𝑏𝑠𝑖𝑛!ℎ𝑒𝑡𝑎 ∗ 𝑥𝑝!"#$% + 𝑔𝑠𝑖𝑛!ℎ𝑒𝑡𝑎 − 𝑏𝑐𝑜𝑠!ℎ𝑒𝑡𝑎 ∗ 𝑦𝑝!"#$%

𝑔
	

	

h. Compute	the	linear	velocity	is	obtained	for	each	wheel		
		

𝑤𝑑_𝑟𝑒𝑓 = 𝑣𝑑_𝑟𝑒𝑓/ 𝑟𝑎𝑑𝑖𝑢𝑠𝑤ℎ𝑒𝑒𝑙 
𝑤𝑖_𝑟𝑒𝑓 = 𝑣𝑖_𝑟𝑒𝑓/𝑟𝑎𝑑𝑖𝑢𝑠𝑤ℎ𝑒𝑒𝑙	
 

i. Implement	 the	 dynamic	 control	 structure:	 compute	 the	 wheel’s	 velocity	
controller	 and	 transfer	 the	 wheel	 velocity	 parameter	 to	 the	 robot’s	 motors		
	

𝑎𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝐴 = 𝑒𝑟𝑟𝑜𝑟_𝑤𝑑 ∗ 𝑘𝑚𝑝 
𝑎𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝐵 = 𝑒𝑟𝑟𝑜𝑟_𝑤𝑖 ∗ 𝑘𝑚𝑝	
 

j. Compute	the	robot’s	real	angular	velocity	(and	transformed	to	radians):	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

60	

i. The	value	of	the	encoders	give	the	value	of	the	wheel’s	pulse.	
𝑤ℎ𝑒𝑒𝑙𝑑𝑁𝑜𝑤 = 𝑔𝑒𝑡𝑀𝑜𝑡𝑜𝑟𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑙𝑒𝑓𝑡𝑀𝑜𝑡𝑜𝑟) 
𝑤ℎ𝑒𝑒𝑙𝑖𝑁𝑜𝑤 = 𝑔𝑒𝑡𝑀𝑜𝑡𝑜𝑟𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑟𝑖𝑔ℎ𝑡𝑀𝑜𝑡𝑜𝑟) 

i. Calculate	the	angular	velocity	of	the	wheels	by	subtracting	from	the	
actual	value	of	the	pulse	given	by	the	encoders,	the	wheel’s	previous	
pulse,	and	divide	it	by	the	step	time:	
𝑤𝑑 = 𝑝𝑢𝑙2𝑟𝑎𝑑 ∗ ( 𝑤ℎ𝑒𝑒𝑙𝑑𝑁𝑜𝑤 − 𝑤ℎ𝑒𝑒𝑙𝑑𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠)/0.02 
𝑤𝑖 = 𝑝𝑢𝑙2𝑟𝑎𝑑 ∗ (𝑤ℎ𝑒𝑒𝑙𝑖𝑁𝑜𝑤 − 𝑤ℎ𝑒𝑒𝑙𝑖𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠)/0.02 

	
k. Estimate	 the	wheel’s	angular	velocity	errors	and	apply	 the	control	actions	 to	

each	wheel.	

	 	 					 𝑒𝑟𝑟𝑜𝑟_𝑤𝑑 = 𝑤𝑑_𝑟𝑒𝑓 − 𝑤𝑑; 

𝑒𝑟𝑟𝑜𝑟_𝑤𝑖 = 𝑤𝑖_𝑟𝑒𝑓 − 𝑤𝑖; 

    𝑎𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝐴 = 𝑒𝑟𝑟𝑜𝑟_𝑤𝑑 ∗ 𝑘𝑚𝑝; 

    𝑎𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝐵 = 𝑒𝑟𝑟𝑜𝑟_𝑤𝑖 ∗ 𝑘𝑚𝑝; 

l. Run	the	code	transferred	to	the	robot	and	retrieve	the	datalog	text	file	to	be		
subsequenttly	transferred	to	matlab	to	graphically	analyze	the	results.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

61	

CHAPTER	10:	COMPUTER	VISION	SYSTEM	FOR	
OBTENTION	OF	THE	ENVIRONMENT	

CONFIGURATION		

In	previous	chapters,	the	location	of	the	starting	point	of	the	robot	trajectory,	as	well	
as	 the	 target	 point	 and	 the	 obstacles	 in	 the	 environment	were	 introduced	manually.	 In	 this	
chapter,	 the	 locations	of	 the	obstacles	 into	 the	environment	 are	automatedly	 recognized	by	
processing	the	 images	that	are	captured	by	a	camera	by	using	a	very	simple	computer	vision	
system.	

	

10.1.	 MODELING	 THE	 ENVIRONMENT	 CONFIGURATION	 BY	 MEANS	 OF	 A	 MONOCULAR	
CAMERA	

	

For	recreating	an	unknown	industrial	environment,	a	randomly	located	set	of	obstacles	
are	automatedly	detected	by	using	a	monocular	camera	installed	on	the	ceiling.	Then,	they	are	
conveniently	encoded	and	introduced	in	Matlab	as	the	set	of	obstacles	to	be	considered	by	the	
implemented	 A*	 algorithm.	 Considering	 a	 thing	 lens,	 where	 the	 thickness	 is	 negligible	
compared	to	the	radius	of	lens	surfaces	curvature,	rays	through	the	center	of	the	lens	do	not	
change	direction.	After	surpassing	the	lens,	rays	that	are	parallel	to	the	optical	axis	meet	focus	
as	shown	in	Figure	56.	Considering	perspective	projection,	the	image	will	become	bigger	as	the	
object	gets	closer	(Shen,	2017).	

	

	

Figure	56.	Thin	lens	perspective	projection	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

62	

Considering	the	pin-hole	camera	model	shown	in	Figure	57	(Shen,	2017),	 the	object	 image	 is	
upside	down,	so	it	is	important	to	assume	that	the	image	plane	is	in	front	of	the	lens.	

	

	

	

Figure	57.	Pin	-hole	Camera	Model	

	

	
It	 is	crutial	 to	expect	an	offset	 in	 the	x	and	y	coordinates	caused	by	the	error	and	to	

calibrate	the	camera	accordingly.		

	

10.2	PERSPECTIVE	PROJECTION	

	
Considering	a	perspective	projection	as	 the	one	 shown	 in	Figure	58,	 the	optical	 axis,	

being	the	z-axis,	is	perpendicular	to	the	image	plane(u,v),	where	the	intersection	of	these	two	
planes	 is	 the	 image	 center	 (uo,	 v0)	 and	 f	 is	 the	 distance	 in	 pixels	 of	 the	 image	 plane	 to	 the	
origin.	The	formulas	to	consider	for	computing	the	image	plane	coordinates	are	the	following:	

𝑢 =
𝑓 ∙ 𝑋!
𝑍!

+  𝑢!	

𝑣 =
𝑓 ∙ 𝑌!
𝑍!

+  𝑣!	

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

63	

	

Figure	58.	Perspective	Projection	

	

As	a	result,	the	following	matrix	form	equation	must	be	considered:		

	

Together	with	the	equation	that	translate	the	camera	parameters	to	world	frame:	

	

The	complete	pin-hole	camera	model	is	presented	in	Figure	59,	where	the	unkown	depth	can	
be	obtained	considering	the	pixel	values,	intrinsic	camera	calibration	camera	pose	and	world	
point	(Shen,	2017):	

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

64	

	

Figure	59.	Pin-hole	Camera	Model		

	

It	must	be	considered	that	wide	angle	 lenses	have	radial	distortions,	where	the	straight	 lines	
become	curves,	but	this	was	not	our	case	as	the	proposed	camera	had	a	thin	lens.		

	

10.3	CAMERA	CALIBRATION	

	

For	calibrating	the	image,	a	calibration	object	as	required	is	shown	in	Figure	60:	

	

Figure	60.	Calibration	object	

	

Using	this	object,	intrinsic	parameters	and	poses	of	the	cameras	with	respect	to	the	calibration	
object	 are	 obtained.	 Using	 the	 following	 equation,	 where	 the	 pixel	 values	 are	 obtained	 by	
careful	measurement,	the	world	point	is	known	and	the	intrinsic	calibration	matrix	and	camera	
posed	is	estimated.	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

65	

	

	

The	calibration	matrix	is:	

	

𝑡ℎ𝑒𝑡𝑎 = [−5.557190660439   0.142628475911   0 
                       0.115215296172   5.533663392034   0 

                                          1521.5431137392655   − 190.250769088174   1]; 
 

Once	the	camera	is	calibrated,	the	initial	and	target	positions	can	be	obtained,	as	well	
as	the	obstacle	positions.		

In	 this	 project,	 the	 initial	 position	 is	 considered	 a	 red	 triangle,	 the	 target	 position	 a	
green	one,	 and	 the	obstacles	 are	 signaled	by	 yellow	 triangles.	With	 the	use	of	 a	webcam,	 a	
photo	of	the	general	environment	is	taken.	Afterwards,	it	is	required	to	segment	the	image	so	
that	it	only	considerly	the	triangular	red	card	that	is	the	initial	position	of	the	robot,	the	green	
card	as	the	final	position,	and	the	yellow	cards	as	the	obstacles	while	disregarding	any	other	
information.	With	 the	 segmented	 and	 eroded	 image	 of	 the	 initial	 and	 final	 position	 of	 the	
robot,	the	perimeter	of	each	card	is	obtained,	as	well	as	the	distance	between	border	points	
and	 the	 center	 of	 gravity	 of	 the	 object,	 and	 its	 initial	 orientation.	 In	 order	 to	 apply	 the	
algorithm,	 the	 center	 of	 the	 pixels	 is	 considered.	 For	 the	 obstacle	 cards,	 the	 image	 is	 also	
segmented	and	eroded,	but	afterwards,	a	matrix	with	the	positions	occupied	by	the	obstacles	
(value	equal	 to	1)	 is	created,	where	the	positions	 free	of	obstacle	have	a	value	equal	 to	0.	A	
map	matrix	considering	the	initial	and	target	positions	and	obstacles	is	created.	

Several	sequences	of	examples	illustrating	the	extraction	of	the	environment	using	the	
monocular	camera	are	shown	in	Table	4,	where	the	first	 image	of	the	sequence	 is	the	 image	
taken	of	the	environment,	the		second	image	corresponds	to	the	trajectory	given	in	pixels	and	
the	 third	 image	 of	 each	 sequence	 is	 the	 real	 trajectory	 given	 in	 meters.	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	Application	to	terrestrial	mobile	robots	
	

	
	

66	

Table		4.	Extraction	of	Environment		Configuration	using	Monocular	Camera	

Photo	of	the	Environment	 Trajectory	in	Calibrated	Image	(in	Pixels)	 Computed	Robot	Trajectory	(in	meters)	

Example	1	

	 	 	

Example	2	

	 	 	
	

0 0.5 1 1.5 2 2.5 3
x

0

0.5

1

1.5

2

2.5

y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

y



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	Application	to	terrestrial	mobile	robots	
	

	
	

67	

Example	3	

	 	 	

Example	4	

	 	 	

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

y



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	Application	to	terrestrial	mobile	robots	
	

	
	

68	

Example	5	

	 	 	
	

Example	6	

	 	 	

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

y



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

69	

CHAPTER	11:	APPLICATION	OF	THE	DEVELOPED	
METHODOLOGY	TO	A	REPRESENTATIVE	CASE	

STUDY	

This	 chapter	 presents	 a	 complete	 overview	 of	 the	 application	 of	 the	 designed	 and	
implemented	methodology	and	system	to	a	representative	case	study	that	is	developed	in	the	
Robotics	Lab	of	the	ai2	Institute	of	the	UPV,	shown	in	Figure	61.	

	For	doing	this,	the	following	procedure	is	fully	explained:		

	

	

		

• Obstacle	detecKon	by	camera	vision	system	
and	image	processing	using	Matlab	1.	

• A*-based	 Path	 Planning	 with	 Obstacle	
avoidance	Algorithm	2.	

• VisualizaKons:	 Control	 algorithm	 tested	
with	 S-FuncKons	 and	 Co-SimulaKon	
between	Simulink	and	Simscape	MulKbody	

3.		

• OpKmal	 path	 matrix	 is	 then	 tested	 with	
Simulink	on	the	EV3	and	sent	to	RobotC	4.	

• RobotC	 controller	 guides	 the	 robot	 along	
the	 planned	 route.	 The	 followed	 trajectory	
is	transfered	back	from	the	robot	to	Matlab	
in	 order	 to	 double	 check	 it	 followed	 the	
correct	 trajectory	 and	 the	 control	 was	
accurate	

5.	

Figure	61.	The	applied	Methodology	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

70	

As	already	discussed,	the	co-simulation	allows	individual	components	to	be	simulated	
with	diverse	complementary	tools	running	at	the	same	time	and	exchanging	information	in	a	
collaborative	 environment.	 Following	 this	 methodology,	 the	 leading	 component	 in	 the	 co-
simulation	 receives	 a	 vector	 of	 input	 values	 that	 are	 calculated	 by	 using	 Matlab,	 which	
interacts	with	a	 second	 software,	 to	automatically	 visualize	 the	 robot’s	behavior	 considering	
the	implemented	control	and	physical	properties	of	the	robot.		

After	 having	 accurately	 simulated	 the	 robot’s	 behavior	 with	 the	 co-simulation,	 the	
technique	is	implemented	in	a	real	robotic	system,	the	LEGO	MINDOSTORMS	EV3,	by	following	
a	methodology	that	also	combines	two	different	software	systems:	a	more	academic	one,	by	
using	LEGO	MINDSTORMS	EV3	support	 library	 for	Simulink,	which	allows	 the	 robot	 real-time	
behavior	 to	 be	 evaluated,	 and	 a	 more	 professional	 one,	 by	 using	 the	 C-based	 robotics	
programming	language	RobotC,	which	supports	industrial-strength	applications	and	witnesses	
its	applicability	to	any	industrial	system.		

	

11.1	OBSTACLE	DETECTION	BY	CAMERA	VISION	SYSTEM	AND	TRANSFERENCE	TO	MATLAB	

	

The	methodology	is	fully	applied	to	two	different	environment	configurations	that	are	
shown	in	Figures	62	and	63.	As	already	explained,	the	initial	position	is	marked	by	means	of	a	
red	triangle,	the	target	position	by	a	green	one,	and	the	obstacles	as	yellow	triangles	as	shown	
in	Figures	62	and	63.		The	image	is	segmented	by	colors	to	obtain	the	initial	and	final	position,	
as	well	 as	 the	 obstacles	 as	 shown	 in	 Figure	 62	 (right)	 for	 Configuration	 1	 and	 Figure	 64	 for	
Configuration	2.	

	

Figure	62.	Case	Study:	Environment	Configuration	1	

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

71	

	

Figure	63.	Case	Study:	Environment	Configuration	2	

	

Figure	64.	The	Initial	Position	(left)	and	the	Eroded	and	Segmented	obstacles	(right)	of	
Configuration	2	

	

	

11.2	COMPUTING	THE	OPTIMAL	PATH	TRAJECTORY	USING	A*	ALGORITHM	

	

	

Considering	the	fixed	initial	and	final	position	of	the	robot,	as	well	as	a	robot	diameter	
of	 the	 robot	 =	 (10	 cm),	 the	 minimum	 cost	 path	 from	 the	 initial	 to	 the	 target	 position	 is	
calculated	 using	 the	 previously	 explained	 A*	 algorithm.	 Afterwards,	 the	 coordinates	 are	
obtained	from	the	calculated	nodes	and	joined	using	a	spline	and	using	the	calibration	matrix.	
The	pixel	coordinates	of	the	first	configuration	are	shown	in	Figure	65	and	in	Figure	66	for	the	
second	one.	The	 robot	 configuration	 trajectory	 (calibrated	 in	meters)	 in	 shown	 in	Figures	67	
and	68.	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

72	

	

Figure	65.	The	found	path	in	pixels	for	Environment	Configuration	1	

	

Figure	66.	The	found	path	in	pixels	for	Environment	Configuration	2	

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

73	

	

Figure	67.	Obstacle	avoidance	Path	for	Environment	Configuration	1	

	

Figure	68.	Obstacle	avoidance	Path	for	Environment	Configuration	2	

	

	

	

	

	

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
X axis (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Y 
ax

is
 (m

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
X axis (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Y 
ax

is
 (m

)



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

74	

11.3	SIMULATION	OF	THE	OPTIMAL	PATH	

	

The	trajectory	obtained	with	the	A*	algorithm	in	Matlab	and	controlled	with	Simulink,	
is	 tested	 by	 using	 S-Functions	 (as	 shown	 in	 Figure	 69	 for	 Configuration	 1	 and	 Figure	 70	 for	
Configuration	 2).	 Then,	 in	 order	 to	 consider	 physical	 properties	 and	 friction,	 the	 optimal	
trajectory	obtained	 for	 the	case	study	configurations	 is	 tested	using	 the	Simscape	Multibody	
framework	using	the	model	shown	 in	Figure	41,	considering	the	created	map	with	the	 initial	
and	target	positions	and	obstacles,	which	are	introduced	into	each	system.	This	validates	that	
the	robot	reaches	its	goal	with	no	collision.	

Similarly,	for	any	new	environment	configuration	acquired	with	the	vision	system,	the	
variable	 matrices	 “trajectory”	 and	 “map”	 generated	 with	 Matlab	 in	 step	 2	 must	 be	
conveniently	 saved	 to	 be	 input	 to	 the	 S-Function	 visualization.	 Then,	 by	 simply	 running	 the	
Simulink	model,	a	simulation	is	automatically	obtained	for	the	new	environment	configuration.	
This	 is	a	 simple	way	 to	visually	detect	 that	 the	computed	angle	and	position	of	 the	 robot	at	
each	point	of	the	path	trajectory	are	adequate.		

	

	

	

Figure	69.	Visualization	with	S-Functions	for	Configuration	1	

	

	

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

75	

	

Figure	70.	Visualization	with	S-Functions	for	Configuration	2	

In	regards	to	the	more	realistic	visualization	regarding	Simscape	Multibody	simulation,	
it	 imports	a	 step-type	model	of	 the	 robot	and	considers	physical	 characteristics	of	 the	 robot	
such	 as	 inertia	 moments,	 weight,	 precise	 dimensions	 and	 configuration	 structure.	 The	
visualization	 for	 a	 new	 environment	 is	 almost	 as	 simple	 and	 automated	 as	 the	 one	 for	 S-
Functions.	 For	 the	 same	 type	 of	 differential	 configuration	 robot,	 only	 the	 positions	 of	 the	
target	and	initial	position,	as	well	as	the	obstacle	location	have	to	be	conveniently	replaced	as	
shown	in	Figure	71.	

	

Figure	71.	Simulink	Structure	requiring	changes	for	a	new	environment	configuration	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

76	

Figures	72	and	73	show	the	simulated	behavior	of	the	robot	for	the	case	study	Configuration	1	
using	Simscape	simulation.	The	whole	simulated	environment	 is	 illustrated	 in	Figures	74	and	
75.		

	

Figure	72.	Simulated	behavior	of	the	robot	with	Simscape		

	

	

Figure	73.	Wheel	Velocity	

0 0.5 1 1.5 2 2.5
X axis (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Y 
ax

is
 (m

)
Simulated behavior of the robot with Simscape

Estimated
Reference
Real

0 2 4 6 8 10 12 14 16 18 20
Time (s)

-8

-6

-4

-2

0

2

4

6

8

Ve
lo

ci
ty

 (r
ad

/s
)

Wheel Velocity

Right Wheel
Left Wheel



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

77	

	

Figure	74.	Simulation	with	Simscape	Multibody	Side	View	

	

Figure	75.	Simulation	with	Simscape	Multibody		Upper	View	

	

11.4	SIMULINK	IMPLEMENTATION	FOR	EV3	

	

By	 considering	 the	 initial	 controller	 and	 using	 the	 LEGO	 MINDSTORMS	 library	 for	
Simulink,	 the	 implementation	 structure	 corresponding	 to	 Figure	 52	 has	 been	 split	 into	 two	
parts,	 using	 the	 UPD	 structure:	 the	 Simulink	model	 for	 Host	 computer	 (Figure	 76),	 and	 the	
model	 to	be	executed	on	the	LEGO	MINDTORMS	EV3	 (Figure	77),	which	allows	to	run	the	S-
Function	 visualization	 in	 real-time.	 This	way,	 via	UPD,	 considering	 the	 IP	 address	 of	 the	 EV3	
hardware,	a	communication	system	 is	established	via	Wifi	using	 the	Netgear	adapter,	where	
the	 robot	 control	 is	 applied	 to	 the	 robot	 by	 clicking	 on	 “run	 on	 target	 hardware”	 and	 the	
Simulink	 model	 runs	 in	 the	 host	 computer	 in	 real	 time,	 allowing	 the	 visualization	 via	 S-
Functions	to	be	computed.	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

78	

	

Figure	76.	Simulink	Model	for	Host	computer	

	

	

Figure	77.	Model	for	LEGO	MINDSTORMS	EV3	

	

Figures	78	and	79	illustrate	the	real	trajectory	followed	by	the	EV3	robot	in	the	environment.	
The	 graph	 shown	 in	 Figure	 79	 is	 generated	 in	 real-time	 as	 the	 robot	moves,	 as	 well	 as	 the	
graphs	shown	in	Figures	82	and	83,	visually	describing	the	wheel’s	control	behavior.		



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

79	

	

Figure	78.	EV3	Robot	following	the	path	trajectory	computed	by	the	Simulink	
implementation	

	

Figure	79.	Path	followed	by	the	robot	under	the	Simulink	control	implementation		

	

Figure	80	and	81	show	the	variation	with	time	of	the	position	in	x	and	y	axis	for	the	reference	
and	real	trajectory	coordinates.	

	

	

0 0.5 1 1.5 2 2.5
X axis (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Y 
ax

is
 (m

)

Path followed by Robot using Simulink Implementation

Reference
Real



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

80	

	

Figure	80.		X	Values	with	Simulink	Implementation	

	

Figure	81.		Y	Values	with	Simulink	Implementation	

	

2 4 6 8 10 12 14 16 18
Time (s)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

X 
va

lu
es

 (m
)

X values

Real
Estimated

2 4 6 8 10 12 14 16 18 20
Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Y 
va

lu
es

 (m
)

Y values

Real
Estimated



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

81	

	

Figure	82.	Motor	C	Control	Behaviour		

	

	

Figure	83.	Motor	B	Control	Behaviour		

	

	

	

	

	

0 2 4 6 8 10 12 14 16 18 20
Time (s)

-8

-6

-4

-2

0

2

4

6

M
ot

or
 C

on
tro

l A
ct

io
n 

(V
)

Motor C Control Behavior

0 2 4 6 8 10 12 14 16 18 20
Time (s)

-3

-2

-1

0

1

2

3

4

5

M
ot

or
 C

on
tro

l A
ct

io
n 

(V
)

Motor B Control Behavior



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

82	

11.5	ROBOTC	IMPLEMENTATION	FOR	EV3	

	

This	section	reports	on	the	robotC	implementation	of	the	controller,	accordingly	to	the	
algorithm	 previously	 explained.	 Given	 the	 case	 study	 Configuration	 1,	 the	 robot	 follows	 the	
computed	trajectory	that	is	shown	in	Figure	84.	

	

Figure	84.	EV3	Robot	following	the	path	trajectory	computed	by	the	RobotC	implementation	

	

In	order	to	double	check	the	followed	path,	a	datalog	including	the	reference	positions	and	the	
positions	actually	visited	by	the	robot	is	created,	and	transfered	back	to	Matlab	for	evaluation.	

	

The	complete	code	implementation	consists	of	1297	lines	of	Matlab	code,	601	lines	of	RobotC	
code	and	167	KB	of	Simulink	code	(structures).		

	

	

	

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

83	

CHAPTER	12:	CONCLUSION	AND	EVALUATION	

12.1	CONCLUSION	

	

In	the	last	years,	mobile	robots	have	become	a	subject	of	significant	interest	because	
they	 are	 open	 to	 a	 broad	 range	 of	 possible	 applications	 in	 many	 industrial	 sectors.	 In	 this	
project,	 a	 methodology	 and	 system	 have	 been	 developed	 that	 provide	 mobile	 terrestrial	
robots	with	a	path	finding	navigation	strategy	 in	a	grid-map	forming	static	environment	with	
unknown	 obstacles.	 In	 any	 navigation	 scheme,	 the	 desire	 is	 to	 reach	 a	 destination	 without	
crashing	or	getting	lost.	Moreover,	when	the	mission	is	executed,	it	is	necessary	that	a	feasible	
and	optimal	 path	 is	 planned	 that	 not	 only	 avoids	 obstructions	 in	 its	way	 but	 also	minimizes	
costs	such	as	time,	distance,	or	energy.	The	proposed	path	finding	provides	the	mobile	robot	
more	autonomy	and	intelligence.		

	The	 robotic	 system	developed	 in	 this	 project	 efficiently	 performs	 autonomous	 tasks	
including	basic	recognition,	positioning,	decision-making,	trajectory	planning,	and	action	in	an	
industrial	enclave.	The	proposed	methodology	relies	on	a	computer	vision	system	that	is	able	
to	acquire	and	interpret	the	working	configuration.	Such	a	configuration	is	then	processed	by	a	
developed	Matlab	program	that	implements	the	classical,	Artificial	Intelligence	A*	Algorithm	in	
order	 to	 synthesize	 an	 optimal,	 least-cost	 path	 trajectory	 from	 the	 initial	 position	 to	 the	
specified	target	position	without	collision	based	on	the	current	map	and	reliable	 localization.	
Then,	starting	out	from	the	start	position	in	the	grid,	the	mobile	robot	autonomously	heads	for	
its	destination	position	in	the	grid	to	reach	the	target.	

Several	 set	 up	 environments	 are	 tested	 in	 the	 simulations	 within	 a	 rectangular	
workspace	map.	The	environment	mapping	depends	on	different	colours	that	are	identified	in	
the	environment	set	up.	The	robotic	system	can	identify	three	colors	inside	the	environment:	
red,	 yellow	 and	 green.	 The	 yellow	 color	 is	 interpreted	 as	 an	 obstacle	 area;	 the	 red	 colour	
designs	the	starting	position;	and	the	green	colour	stands	for	the	target	position.			

In	order	to	validate	the	generated	paths	from	the	starting	point	to	the	goal,	they	are	
tested	with	 S-Functions	 and	 in	 co-simulation	between	 Simulink	 and	 the	 Simscape	Multibody	
framework.	 Considering	 a	 differential	 configuration	 robot	 EV3,	 a	 model	 configuration	 of	 its	
direct	and	inverse	kinematics	models	are	developed	in	Simulink,	which	allows	its	position	to	be	
visually	 controlled	 to	 validate	 the	 robot’s	 behavior.	 Roughly	 speaking,	 this	 is	 done	by	 feding	
Simulink	 with	 the	 trajectory	 matrix	 generated	 by	 Matlab	 so	 that	 a	 co-simulation	 is	
automatically	generated:	first	a	simple	visualization	(S-Functions)	and	then	a	more	dependable	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

84	

one	that	considers	the	effect	that	ground	friction	causes	on	the	robot	based	in	a	co-simulation	
between	Simulink	and	Simscape	Multibody.		

The	 simulation	 part	 is	 an	 estimation	 of	 the	 real	 expected	 result.	 The	 algorithms	 are	
implemented	in	Matlab	whereby	the	environment	is	studied	in	a	two	dimensional	coordinate	
system.	 The	 algorithm	 permits	 the	 robot	 to	 move	 from	 the	 initial	 position	 to	 the	 desired	
position	following	an	estimated	trajectory.		

Once	the	models	are	validated	by	testing	the	considered	trajectories,		the	technique	is	
implemented	 in	 a	 real	 robotic	 system,	 the	 LEGO	 MINDOSTORMS	 EV3,	 by	 following	 a	
methodology	that	combines	two	different	approaches	and	software	systems.	On	the	one	hand,	
by	using	LEGO	MINDSTORMS	EV3	support	for	Simulink,	which	supports	academic	applications	
and	allows	to	evaluate	the	robot’s	real-time	behavior.	On	the	other	hand,	to	assess	the	validity	
of	the	methodology	for	real	 industrial	robots,	the	algorithm	is	 implemented	and	tested	using	
RobotC,	which	provides	for	industrial-strength	applications.	Finally,	the	trajectory	followed	by	
the	robot	in	our	case	study		is	sent	back	to	Matlab	for	evaluation.		

	

	

12.2	EVALUATION	

	

In	 this	 present	 project,	 the	 problem	 of	 path	 planning	 in	 a	 2-dimentional	 workspace	
with	obstacles	 avoidance	has	been	addressed.	Given	an	environment	 configuration	and	goal	
position,	 the	 techniques	 proposed	 in	 this	 thesis	 support	 planning	 and	 deploying	 of	 complex	
robot	maneuvers	 for	 obstacle	 avoidance.	 This	 is	 done	 by	 developing	 algorithms,	 interactive	
simulations	and	efficient	implementations	that	have	allowed	the	creation	of	a	fully	automated	
methodology	that	can	be	applied	to	any	industrial	environment.		

It	has	been	proven	that	this	methodology	can	be	applied	to	different	industrial	robots	
(with	a		differential	configuration)	in	an	automated	manner.	The	vision	system	allows	a	precise	
description	of	the	environment	configuration	to	be	acquired.	In	regards	to	the	least-cost	path	
finding	algorithm	A*,	which	is	based	on	a	combination	of	uniform	cost	search	with	a	suitable	
heuristic,	it	has	been	proven	well-suited	for	obstacle	avoidance	applications,	as	its	application	
delivers	highly	precise,	accurate	path	trajectories	for	obstacle	avoidance.	The	obtained	path	is	
the	shortest	path	from	all	possible	free	trajectories..		

By	 using	 two	 types	 of	 simulations,	 the	 computed	 trajectory	 is	 thoroughly	 evaluated	
before	 implementing	 and	 deploying	 the	 real	 system.	 Considering	 the	 control	 system	
implemented	in	Simulink,	a	completely	automated	and	simple	(ideal)	recreation	of	the	robot’s	
behavior	 is	 obtained	 by	 using	 S-Functions.	 In	 order	 to	 evaluate	 the	 behavior	 under	 lifelike	
conditions,	critical	parameters	such	as	friction,	mass,	and	inertia	moments	are	considered	with	
the	 Simscape	Multibody	 Simulation.	 It	 is	worth	 noting	 that	 the	 resulting	 trajectory	 for	 both	
types	 of	 simulations	 are	 very	 much	 in	 agreement,	 proving	 the	 accuracy	 of	 the	 developed	
algorithms	and	techniques.	We	have	run	our	simulation	in	several	set	up	environments	where,	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

85	

in	 each	 situation,	 the	 robot	 succeeds	 to	 avoid	 the	 obstacles	 and	 reach	 its	 target.	 Our	
navigation	approach	has	an	advantage	of	adaptivity	as	it	works	perfectly	even	in	an	unknown	
environment.		

After	 simulation,	 the	 path	 finding	methodology	 is	 implemented	 in	 a	 real	 robot,	 the	
LEGO	 MINDOSTORMS	 EV3,	 by	 following	 an	 approach	 that	 combines	 two	 different	 robot		
programming	 platforms:	 Simulink	 and	 RobotC.	 The	 implementation	 in	 Simulink	 allows	 the	
robot’s	real	time	behavior	to	be	evaluated	as	data	are	transferred	from	Simulink	to	the	robot	
via	Wifi,	which	has	been	proven	to	be	really	useful	and	it	 increased	the	safety	of	the	system.	
The	methodology	has	also	been	implemented	in	a	C-based	language	within	the	cross-robotics-
platform	programming	environment	RobotC.	The	C	programming	 language	 runs	 in	almost	all	
platforms,	 which	 makes	 our	 system	 virtually	 platform-independent	 and	 opens	 up	 a	 wider	
range	of	applications	of	the	developed	methodology	and	system	for	industrial	robots.	Also,	it	
has	been	 found	 that	both	 implementations	are	accurate	and	work	equally	precisely,	proving	
the	benefits	of	the	co-simulation	technique.		

To	conclude,	the	methodology	developed	in	this	MSc	thesis	can	be	considered	highly	
precise	and	is	potentially	applicable	to	any	industrial	context	and	terrestrial	mobile	robot. The	
proposed	path	finding	strategy	has	the	advantage	of	being	generic	and	can	be	parameterized	
at	the	user’s	demand.	Since	the	algorithm	is	general	for	any	obstacle	detection	the	obstacles	
can	take	any	shape.	This	approach	works	perfectly	even	 in	an	unknown	environment,	where	
the	robot	is	able	to	understand	the	structure	of	the	environment	and	find	a	non-colliding	way	
towards	its	goal.		

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

86	

	

	

	

	

	

	



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

87	

CHAPTER	13:	REFERENCES	

Books	

(Murray,	R.,	Li,	Z.	and	Sastry,	S.,	1994):	A	Mathematical	Introduction	to	Robotic	Manipulation.	
CRC	Press,	California.	

	

Journal	articles		

(Karaman,	 S.,	 and	 Frazzoli,	 E.,	 2011):	 Incremental	 Sampling-based	 Algorithms	 for	 Optimal	
Motion	Planning.	International	Journal	of	Robotics	Research,	76.	

	

Electronic	material	

	(GrabCad	 site,	 2018)	 Hudák,	 J.,	 2018.	 LEGO	MINDSTORMS	 EV3 [consulted	 15th	 April	 2018].	
Available	at:		<	https://grabcad.com/>	

(Izmiran,	2005)	Pchip.	The	MathWorks	site	[consulted	2nd	and	3rd	February	2018].	Available	at:		
<	http://matlab.izmiran.ru/>	

(Lyall,	 A.,	 Mercier,	 P.,	 and	 Gstettner,	 S.,	 2018)	 	 The	 Death	 of	 Supply	 Chain	 Management.	
Harvard	Business	Review	site	[consulted	16th	May,	2018].	Available	at:	<https://hbr.org/>	

(UAB,	 2018)	 Universitat	 Autònoma	 de	 Barcelona	 contributors.	 A*	 Algorithm	 pseudocode 
[consulted	2nd	February	2018].	Available	at:															 	 													
<http://www.uab.cat/matematiques/>	

	

Miscelaneous	

(Shen,	 S.,	 2017):	 Introduction	 to	 Aerial	 Vehicles.	 HKUST	 MSc	 on	 Electronic	 and	 Computer	
Engineering,	Hong	Kong	Univeristy	of	Science	and	Technology.	

(Valera	 Fernández,	 Á.,	 2017a):	 Aplicaciones:	 Mini/Micro-Robótica.	 ETSINF,	 Universitat	
Politècnica	de	València.	

(Valera	Fernández,	Á.,	2017b):	Robótica	Industrial.	ETSII,	Universitat	Politècnica	de	València.	

	

 



	
	

Development	and	programming	of	algorithms	for	the	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	
	

88	

 

 



	
	

I	

 

 

	

MASTER	DEGREE	IN		
INDUSTRIAL	ENGINEERING			

FINAL	PROJECT		

	

DOCUMENT	Nº2:		

PROJECT	BUDGET	
	

	

	

	

	

	

	

	

	

	 	



	
	

Development	and	programming	of	algorithms	for	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	 II	

	

	

	

	

	

	

	

	

	

	

	

	

	



	
	

Development	and	programming	of	algorithms	for	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	 III	

DOCUMENT	Nº2:	PROJECT	BUDGET	
	

CHAPTER	1.	Unit	Prices		........................................................................................................		89		

1.1.	 Analysis	of	the	Path	Planning	and	Obstacle	Avoidance	Techniques	......................		89		

1.2.	 Design	of	a	Navigation	Methodology	....................................................................		89		

1.3.	 Simulation	of	the	Methodology	in	two	different	environments	...........................		89		

1.3.	 Application	of	the	obstacle	avoidance	in	the	EV3	.................................................		89		

1.4.	 Food	expenses	and	Meetings	................................................................................		90		

1.5.	 Additional	tasks	and	Activities	...............................................................................		90	

1.6.	 Other	Concepts	......................................................................................................		90		

	

CHAPTER	2:	Measurements	..................................................................................................		91	

2.1.	 Analysis	of	the	Path	Planning	and	Obstacle	Avoidance	Techniques	......................		91		

2.2.	 Design	of	a	Navigation	Methodology	....................................................................		91		

2.3.	 Simulation	of	the	Methodology	in	two	different	environments	...........................		91	

2.4.	 Application	of	the	obstacle	avoidance	in	the	EV3	.................................................		92		

2.5.	 Food	expenses	and	Meetings	................................................................................		92	

2.6.	 Additional	tasks	and	Activities	...............................................................................		92	

2.7.	 Other	Concepts	......................................................................................................		92		

	

CHAPTER	3:		Detailed	Budget	................................................................................................		93	

3.1.	 Analysis	of	the	Path	Planning	and	Obstacle	Avoidance	Techniques	......................		93		

3.2.	 Design	of	a	Navigation	Methodology	....................................................................		93		

3.3.	 Simulation	of	the	Methodology	in	two	different	environments	...........................		93		

3.4.	 Application	of	the	obstacle	avoidance	in	the	EV3	.................................................		94		

3.5.	 Food	expenses	and	Meetings	................................................................................		94		

3.6.	 Additional	tasks	and	Activities	...............................................................................		94	

3.7.	 Other	Concepts	......................................................................................................		94		

	

CHAPTER	4:	Total	Budget	of	the	Project	...............................................................................		95	



	
	

Development	and	programming	of	algorithms	for	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	 IV	

	

	

	

	

	

	

	

	



	
	

Development	and	programming	of	algorithms	for	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	 89	

This	document	contains	the	budget	of	this	project	for	implementing	the	methodology	and	
system	for	robot	path	planning	with	obstacle	avoidance	in	industrial	companies.	

CHAPTER	1:	UNIT	PRICES	
1.1. 	ANALYSIS	OF	THE	PATH	PLANNING	AND	OBSTACLE	AVOIDANCE	TECHNIQUES			

Description	 Unit	Prices	
Robot	Manipulation	and	Obstacle	Avoidance	bibliography	review		 40€/hour	
Planification	of	the	activities	to	carry	out	in	order	to	solve	the	
problem	

40€/hour	

Typing	and	text	editing	 10€/day	
Required	Electricity		 0.3€/day	
Computing	system	wear	and	tear	 1€/day	

	

1.2. DESIGN	OF	A	NAVIGATION	METHODOLOGY		

Description	 Unit	Prices	
Planification	of	the	activities	to	carry	out	in	order	to	solve	the	
problem	 40€/hour	
Development	of	path	planning	and	obstacle	avoidance	trajectory	
based	on	the	A*	Algorithm	 40€/hour	
Typing	and	text	editing	 10€/day	
Required	Electricity		 0.3€/day	
Computing	system	wear	and	tear	 1€/day	

	

1.3. SIMULATION	OF	THE	METHODOLOGY	IN	TWO	DIFFERENT	ENVIRONMENTS	

Description	 Unit	Prices	
Consulting	experts	of	the	industrial	setting			 40€/hour	
Constructing	the	required	CAD	files	 40€/hour	
Bibliography	study	on	S-Functions	and	Simscape	Multibody	 40€/hour	
Planification	of	the	activities	to	carry	out	in	order	to	solve	the	problem	 40€/hour	
Designing	the	simulation	 40€/hour	
Implementation	and	experimental	testing	 40€/hour	
Calculating	time	and	presenting	results	 40€/hour	
Typing	and	text	editing	 10€/day	
Required	Electricity		 0.3€/day	
Computing	system	wear	and	tear	 1€/day	

	

	

	



	
	

Development	and	programming	of	algorithms	for	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	 90	

1.4.	IMPLEMENTATION	IN	THE	EV3	

Description	 Unit	Prices	

Learning/training	on	RobotC	and	the	EV3	Library	 40€/hour	
EV3	Robot		 349.18€/10	years	
Netgear	Wna1100	Adaptador	 38.33€/year	
Implementation	 40€/hour	
Typing	and	text	editing	 10€/day	
Required	Electricity		 0.3€/day	
Computing	system	wear	and	tear	 1€/day	

	

1.5 ADDITIONAL	TASKS	AND	ACTIVITIES		

Description	 Unit	Prices	
Developing	technical	documentation	and	reporting	 40€/hour	
Typing	and	text	editing	 10€/day	
Electricity	required		 0.3€/day	
Computing	system	wear	and	tear	 1€/day	

	

1.6	OTHER	CONCEPTS		

Description	 Unit	Prices	
Microsoft	Office	2016	and	Matlab	 18€/month	
General	office	items	 45	€	
Book	printing	and	binding	 50	€	

	

	

	

	

	

	

	

	



	
	

Development	and	programming	of	algorithms	for	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	 91	

	CHAPTER	2:	MEASUREMENTS	

	
2.1 ANALYSIS	OF	THE	OBSTACLE	AVOIDANCE	TECHNIQUES			

Description	 Measurement	
Robot	Manipulation	and	obstacle	avoidance	Bibliography	review		 10	hours	
Planification	of	the	activities	to	carry	out	in	order	to	solve	the	
problem	

8	hours	

Typing	and	text	editing	 2	days	
Required	Electricity		 2	days	
Computing	system	wear	and	tear	 2	days	

	

2.2 DESIGN	OF	A	NAVIGATION	METHODOLOGY		

Description	 Measurement	
Planification	of	the	activities	to	carry	out	in	order	to	solve	the	
problem	

6	hours	

Development	of	path	planning	and	obstacle	avoidance	trajectory	
based	on	the	A*	Algorithm	

30	hours	

Typing	and	text	editing	 4	days	
Required	Electricity		 4	days	
Computing	system	wear	and	tear	 4	days	

	

2.3 SIMULATION	OF	THE	METHODOLOGY	IN	TWO	DIFFERENT	ENVIRONMENTS	

Description	 Measurement	
Consulting	experts	of	the	industrial	setting			 20	hours	

Constructing	the	required	CAD	files	 4	hours	

Bibliography	study	on	S-Functions	and	Simscape	Multibody	 15	hours	

Planification	of	the	activities	to	carry	out	in	order	to	solve	the	problem	 8	hours	

Designing	the	simulation	 8	hours	

Implementation	and	experimental	testing	 70	hours	

Calculating	time	and	presenting	results	 20	hours	

Typing	and	text	editing	 5	days	
Required	Electricity		 5	days	
Computing	system	wear	and	tear	 5	days	

	

	

	



	
	

Development	and	programming	of	algorithms	for	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	 92	

2.4		IMPLEMENTATION	IN	THE	EV3	

Description	 Measurement	

Learning/training	on	RobotC	and	the	EV3	Library	 12	hours	
EV3	Robot		 1	unit/10	years	
Netgear	Wna1100	Adaptador	 1	unit	
Implementation	 80	hours	
Typing	and	text	editing	 30	days	
Required	Electricity		 30	days	
Computing	system	wear	and	tear	 30	days	
	

2.5	ADDITIONAL	TASKS	AND	ACTIVITIES		

Description	 Measurement	
Developing	technical	documentation	and	reporting	 30	hours	
Typing	and	text	editing	 7	days	
Electricity	required		 7	days	
Computing	system	wear	and	tear	 7	days	

	

2.6	OTHER	CONCEPTS		

Description	 Measurement	
Microsoft	Office	2016	and	Matlab	 6	months	
General	office	items	 1	unit	
Book	printing	and	binding	 1	unit	

	

	

	

	

	

	

	

	



	
	

Development	and	programming	of	algorithms	for	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	 93	

CHAPTER	3:	DETAILED	BUDGET	
	

3.1 ANALYSIS	OF	THE	OBSTACLE	AVOIDANCE	TECHNIQUES			

Description	 Unit	Prices	 Measurement	 Cost	
Robot	Manipulation	and	obstacle	
avoidance	Bibliography	review		

40€/hour	 10	hours	 400€	

Planification	of	the	activities	to	carry	out	
in	order	to	solve	the	problem	

40€/hour	 8	hours	 320€	

Typing	and	text	editing	 10€/day	 2	days	 20€	
Required	Electricity		 0.3€/day	 2	days	 0.6€	
Computing	system	wear	and	tear	 1€/day	 2	days	 2€	

	

3.2 DESIGN	OF	A	NAVIGATION	METHODOLOGY		

Description	 Unit	Prices	 Measurement	 Cost	
Planification	of	the	activities	to	carry	
out	in	order	to	solve	the	problem	 40€/hour	

6	hours	 240€	

Development	of	path	planning	and	
obstacle	avoidance	trajectory	based	on	
the	A*	Algorithm	 40€/hour	

30	hours	 1200€	

Typing	and	text	editing	 10€/day	 4	days	 40€	
Required	Electricity		 0.3€/day	 4	days	 1,2€	
Computing	system	wear	and	tear	 1€/day	 4	days	 4€	

	

3.3 SIMULATION	OF	THE	METHODOLOGY	IN	TWO	DIFFERENT	ENVIRONMENTS	

Description	 Unit	Prices	 Measurement	 Cost	
Consulting	experts	of	the	industrial	
setting			 40€/hour	

20	hours	 800€	

Constructing	the	required	CAD	files	 40€/hour	 4	hours	 160€	
Bibliography	study	on	S-Functions	and	
Simscape	Multibody	 40€/hour	

15	hours	 600€	

Planification	of	the	activities	to	carry	out	
in	order	to	solve	the	problem	 40€/hour	

8	hours	 320€	

Designing	the	simulation	 40€/hour	 8	hours	 320€	
Implementation	and	experimental	
testing	 40€/hour	

70	hours	 2800€	

Calculating	time	and	presenting	results	 40€/hour	 20	hours	 800€	

Typing	and	text	editing	 10€/day	 5	days	 50€	
Required	Electricity		 0.3€/day	 5	days	 1.5€	
Computing	system	wear	and	tear	 1€/day	 5	days	 5€	



	
	

Development	and	programming	of	algorithms	for	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	 94	

	

3.4 IMPLEMENTATION	IN	THE	EV3	

	

	

3.5 ADDITIONAL	TASKS	AND	ACTIVITIES		

Description	 Unit	Prices	 Measurement	 Cost	
Developing	technical	documentation	
and	reporting		

40€/hour	 30	hours	 1200€	

Typing	and	text	editing	 10€/day	 7	days	 70€	
Electricity	required		 0.3€/day	 7	days	 2.1€	
Wear	and	tear	of	computing	system	 1€/day	 7	days	 7€	

	

3.6 .OTHER	CONCEPTS		

	

	

	

	

	

	

	

	

Description	 Unit	Prices	 Measurement	 Cost	
Learning/training	on	RobotC	and	the	
EV3	Library	 40€/hour	 12	hours	

480€	

EV3	Robot		
349.18€/10	
years	 1	unit/10	years	

34.918€	

Netgear	Wna1100	Adaptador	 38.33€/year	 1	unit/1	year	 38.33€	

Implementation	 40€/hour	 80	hours	 3200€	

Typing	and	text	editing	 10€/hour	 30	days	 300€	
Required	Electricity		 1€/km	 30	days	 300€	
Computing	system	wear	and	tear	 1€/day	 30	days	 9€	

Description	 Unit	Prices	 Measurement	 Cost	
Microsoft	Office	2016	and	Matlab	 18€/month	 6	months	 108€	
General	office	items	 45	€	 1	unit	 45€	
Book	printing	and	binding	 50	€	 1	unit	 50€	



	
	

Development	and	programming	of	algorithms	for	automatic	collision	avoidance.	
Application	to	terrestrial	mobile	robots	

	

	 95	

CHAPTER	4:	TOTAL	BUDJET	OF	THE	PROJECT	

	
Description	 Cost	

Obstacle	Avoidance	Technique	Analysis	 742.6	€	
Design	of	the	A*Algorithm	

1485.2	€	
Simulation	Designs	 5856.5	€	
Implementation	on	the	EV3	 4362.25	€	
Tasks	and	additional	activities	 1279.1	€	
Other	Concepts	 203	€	
Project	total	budget	without	VAT	 13	928.65€	
Tax	Value	added	(21%)	 2925.02	€	
Project	total	budget	with	VAT	 16	853.66	€	

	

The	total	budget	of	the	project	is	16	853.66	€.		


