
Departamento de Informática
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Abstract

Accessing main memory represents a major performance bottleneck in current
processors, since the different cores compete among them for the limited off-
chip bandwidth, aggravating even more the so called memory wall. Several
techniques have been applied to deal with the core-memory performance gap,
with the most preeminent ones being prefetching and hierarchical caching.

Hierarchical caches leverage the temporal and spacial locality of the accessed
data, mitigating the huge main memory access latencies. To limit the number
of accesses to the off-chip DRAM memory, current processors feature large
Last Level Caches. These caches are shared between all the cores to improve
the utilization of the cache space and reduce cost. This approach significantly
improves the performance of most applications compared to using smaller
private caches. Cache sharing, however, presents an important shortcoming:
the interference between applications. Prefetching, on the other hand, brings
data blocks to the caches before they are requested, hiding the main memory
latency. Unfortunately, since prefetching is a speculative technique, inaccurate
prefetches may pollute the cache with blocks that will not be used. In addition,
the prefetches interfere with the regular memory requests, both the ones from
the application running on the core that issued the prefetches and the others.

This thesis focuses on reducing the inter-application interference, both in the
shared cache and in the access to the main memory. To reduce the inter-
application interference in the access to main memory, the proposed approach
regulates the aggressiveness of each core prefetcher, and selectively activates
or deactivates some of them, depending on their individual performance and
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Abstract

the main memory bandwidth requirements of the other cores. With respect to
interference in shared caches, this thesis proposes two LLC partitioning tech-
niques that give more cache space to the applications that have their progress
diminished due inter-application interferences. The first cache partitioning
proposal requires dedicated hardware not available in commercial processors,
so it has been evaluated using a simulation framework. The second proposal
dealing with cache partitioning presents a family of partitioning policies that
overcome the limitations in the number of partitions and the number of avail-
able ways by grouping applications and overlapping cache partitions, so multi-
ple applications share the same ways. Since it has been implemented using the
cache partitioning features of modern Intel processors it has been evaluated
in a real machine.

Experimental results show that the proposed selective prefetching mechanism
reduces the number of main memory requests by 20%, which translates to
improvements in unfairness, performance, and energy consumption. On the
other hand, regarding the proposed partitioning schemes, compared to a sys-
tem with no partitioning, both reduce unfairness more than 25% on average,
regardless of the number of applications running in the multicore, and this
reduction in unfairness does not negatively affect the performance.
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Resum

L’accés a la memòria principal en els processadors actuals suposa un important
coll d’ampolla per a les prestacions, ja que els diferents nuclis competeixen pel
limitat ample de banda de memòria, agreujant la bretxa entre les prestacions
del processador i les de la memòria principal. Diferents tècniques ataquen
aquest problema, sent les més rellevants l’ús de jerarquies de memòria cau
multinivell i la prebusca.

Les memòries cau jeràrquiques aprofiten la localitat temporal i espacial que en
general presenten els programes en l’accés a les dades per mitigar les enormes
latències d’accés a memòria principal. Per limitar el nombre d’accessos a
la memòria DRAM, fora del xip, els processadors actuals compten amb grans
caus d’últim nivell (LLC). Per millorar la seva utilització i reduir costos, aque-
stes memòries cau solen compartir-se entre tots els nuclis del processador.
Aquest enfocament millora significativament el rendiment de la majoria de les
aplicacions en comparació amb l’ús de caus privades més menudes. Compartir
la memòria cau, no obstant, presenta una problema important: la interferència
entre aplicacions. La prebusca, per altra banda, porta blocs de dades a les
memòries cau abans que el processador els sol·licite, ocultant la latència de
memòria principal. Desafortunadament, donat que la prebusca és una tècnica
especulativa, si no té èxit pot contaminar la memòria cau amb blocs que no
fan falta. A més, les prebusques interfereixen amb els accessos normals a
memòria, tant els del nucli que emet les prebusques com els dels altres.

Aquesta tesi es centra en reduir la interferència entre aplicacions, tant en les
cau compartides com en l’accés a la memòria principal. Per reduir la in-
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Resum

terferència entre aplicacions en l’accés a la memòria principal, el mecanisme
proposat en aquesta dissertació regula l’agressivitat de cada prebuscador, ac-
tivant o desactivant selectivament alguns d’ells, en funció del seu rendiment
individual i dels requisits d’ample de banda de memòria principal dels altres
nuclis. Pel que fa a la interferència en caus compartides, aquesta tesi pro-
posa dues tècniques de particionat per a la LLC, les quals atorguen més espai
de memòria cau a les aplicacions que progressen més lentament a causa de
la interferència entre aplicacions. La primera proposta per al particionat de
memòria cau requereix hardware espećıfic no disponible en processadors com-
ercials, per la qual cosa s’ha avaluat utilitzant un entorn de simulació. La
segona proposta de particionat per a memòries cau presenta una famı́lia de
poĺıtiques que superen les limitacions en el nombre de particions i en el nom-
bre de vies de memòria cau disponibles mitjançant l’agrupació d’aplicacions
en clústers i la superposició de particions de memòria cau, de manera que di-
verses aplicacions comparteixen les mateixes vies. Atès que s’ha implementat
utilitzant els mecanismes per al particionat de la LLC que ofereixen alguns
processadors Intel moderns, aquesta proposta s’ha avaluat en una màquina
real.

Els resultats experimentals mostren que el mecanisme de prebusca selectiva
proposat en aquesta tesi redueix el nombre de sol·licituds a la memòria prin-
cipal en un 20%, cosa que es tradueix en millores en l’equitat del sistema, el
rendiment i el consum d’energia. Per altra banda, pel que fa als esquemes de
particiónat proposats, en comparació amb un sistema sense particions, amb-
dues propostes redueixen la iniquitat del sistema en més d’un 25% de mitjana,
independentment de la quantitat d’aplicacions en execució, i aquesta reducció
en la iniquitat no afecta negativament el rendiment.
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Resumen

El acceso a la memoria principal en los procesadores actuales supone un impor-
tante cuello de botella para las prestaciones, dado que los diferentes núcleos
compiten por el limitado ancho de banda de memoria, agravando la brecha
entre las prestaciones del procesador y las de la memoria principal. Distintas
técnicas atacan este problema, siendo las más relevantes el uso de jerarqúıas
de caché multinivel y la prebúsqueda.

Las cachés jerárquicas aprovechan la localidad temporal y espacial que en gen-
eral presentan los programas en el acceso a los datos, para mitigar las enormes
latencias de acceso a memoria principal. Para limitar el número de accesos a la
memoria DRAM, fuera del chip, los procesadores actuales cuentan con grandes
cachés de último nivel (LLC). Para mejorar su utilización y reducir costes, es-
tas cachés suelen compartirse entre todos los núcleos del procesador. Este
enfoque mejora significativamente el rendimiento de la mayoŕıa de las aplica-
ciones en comparación con el uso de cachés privados más pequeños. Compartir
la caché, sin embargo, presenta una problema importante: la interferencia en-
tre aplicaciones. La prebúsqueda, por otro lado, trae bloques de datos a las
cachés antes de que el procesador los solicite, ocultando la latencia de memo-
ria principal. Desafortunadamente, dado que la prebúsqueda es una técnica
especulativa, si no tiene éxito puede contaminar la caché con bloques que no
se usarán. Además, las prebúsquedas interfieren con los accesos a memoria
normales, tanto los del núcleo que emite las prebúsquedas como los de los
demás.
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Resumen

Esta tesis se centra en reducir la interferencia entre aplicaciones, tanto en las
caché compartidas como en el acceso a la memoria principal. Para reducir la
interferencia entre aplicaciones en el acceso a la memoria principal, el mecan-
ismo propuesto en esta disertación regula la agresividad de cada prebuscador,
activando o desactivando selectivamente algunos de ellos, dependiendo de su
rendimiento individual y de los requisitos de ancho de banda de memoria prin-
cipal de los otros núcleos. Con respecto a la interferencia en cachés compar-
tidos, esta tesis propone dos técnicas de particionado para la LLC, las cuales
otorgan más espacio de caché a las aplicaciones que progresan más lentamente
debido a la interferencia entre aplicaciones. La primera propuesta de parti-
cionado de caché requiere hardware espećıfico no disponible en procesadores
comerciales, por lo que se ha evaluado utilizando un entorno de simulación. La
segunda propuesta de particionado de caché presenta una familia de poĺıticas
que superan las limitaciones en el número de particiones y en el número de v́ıas
de caché disponibles mediante la agrupación de aplicaciones en clústeres y la
superposición de particiones de caché, por lo que varias aplicaciones comparten
las mismas v́ıas. Dado que se ha implementado utilizando los mecanismos para
el particionado de la LLC que presentan algunos procesadores Intel modernos,
esta propuesta ha sido evaluada en una máquina real.

Los resultados experimentales muestran que el mecanismo de prebúsqueda se-
lectiva propuesto en esta tesis reduce el número de solicitudes de memoria
principal en un 20%, cosa que se traduce en mejoras en la equidad del sis-
tema, el rendimiento y el consumo de enerǵıa. Por otro lado, con respecto a
los esquemas de partición propuestos, en comparación con un sistema sin par-
ticiones, ambas propuestas reducen la iniquidad del sistema en un promedio de
más del 25%, independientemente de la cantidad de aplicaciones en ejecución,
y esta reducción en la injusticia no afecta negativamente al rendimiento.
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Chapter 1

Introduction

This chapter introduces important concepts to ease the understanding of this
dissertation and the motivation for the work done. It first describes the prob-
lems associated with the so called memory wall, the difference between the
rates at which the processor cores consume data and the rates at which these
data come from main memory. Then, it discusses how modern processors
tackle this problem, focusing on two main techniques, caching and prefetch-
ing, presenting their benefits and drawbacks, especially when used in mul-
ticore processors where the different cores compete for the shared memory
resources. This topic, the interference between cores when competing for the
shared memory resources, is the main problem tackled by this thesis.

1.1 Problem Description

Following the Moore’s law, the amount of transistors in the processors roughly
doubles every two years. As a corollary of Moore’s law, microprocessor per-
formance has steadily increased year by year. DRAM technology, in contrast,
has had more modest performance improvements, but it has experienced im-
portant capacity increases. This trend has favored the so called memory wall,
the difference in performance between the cores and the main memory, which
represents the main bottleneck in current processors.
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Chapter 1. Introduction

Several techniques have been applied to deal with the core-memory perfor-
mance gap. The most preeminent one is hierarchical caching. Since, in gen-
eral, computer programs tend to access data blocks multiple times (temporal
locality), and to accessed addresses usually are consecutive (spatial locality),
storing recently used data in faster but smaller caches greatly improves the
performance. Because of this, current processors feature several cache mem-
ory levels, where the closest to the core are the smallest and fastest, and they
increase in size and become slower as they get closer to main memory. The
current trend in high performance processors of different manufacturers is to
have per core private L1 and L2 caches and a much bigger, shared, L3 cache.
For example, the recent Intel Xeon CPU E5-2620 v4 features 32KB L1 in-
struction and data caches, 256KB L2 caches, and a huge 20MB L3, shared
between 8 cores.

While due to the locality principle most of the accesses find the data they
are looking for in L1 and L2 caches, the Last Level Cache (LLC) plays a key
role in the effective performance of the processor. The reason is that the huge
main memory latencies (in the order of 100s of cycles) are too important to
be hidden by the out-of-order execution engine, so eventually, the LLC misses
block the Re-Order Buffer (ROB), stopping the instruction issuing and stalling
the processor. For this reason, the trend is to increase the size of the LLC, in
order to maximize its hit ratio. However, the space in the chip is limited, so
to improve its cost/effectiveness the LLC tends to be shared. Unfortunately,
cache sharing also presents shortcomings, with the most prominent one being
the interference between cores, which will be analyzed in the next sections.

Nevertheless, caching is only useful if the data is accessed again and it does
not solve the latency of the first access that brings the block to the cache
from main memory (i.e. cold misses). To deal with this, current processors
use prefetching, i.e. fetching the data from lower levels of the memory hierar-
chy (i.e. main memory) before it is requested by the processor. To this end,
a per-core engine detects patterns in the data and instruction accesses and
speculatively requests new cache blocks. While this mechanism can dramati-
cally improve the performance for most applications, its predictions may fail
or it may be too aggressive in some cases, causing the so called cache pollu-
tion. Since the prefetchers of all the cores bring blocks to the shared LLC and
compete for the limited off-chip memory bandwidth, in some cases they can
destructively interfere and significantly damage the performance of specific
applications.
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1.1 Problem Description

1.1.1 Chip Multiprocessors

The demand for more and more computing power drove the microprocessor
industry to produce faster chips, exploiting the reductions in the integration
scale to both increase the processor frequency and to increase its complex-
ity. As a consequence, new designs introduced larger reorder buffers, more
complex cache structures, added more physical registers for register renam-
ing and improved the support for speculative execution. However, increasing
the complexity of a circuit tends to increase its switched capacitance, which,
in turn, increments the dynamic power consumption, that is proportional to
capacitance (C), frequency (f), and squared voltage (V 2): Pdyn = CV 2f .

Since power consumption is a growing design concern, in order to reduce en-
ergy consumption and thus, power dissipation, processor manufacturers moved
to multicore designs, that provide more aggregated performance with less
power consumption. Nowadays, multicore processors are the standard for
high-performance computing, but also in the battery-constrained mobile mar-
ket.

A multicore processor is usually a single processor that contains multiple cores,
i.e. computing units with private caches, typically L1 and L2. These cores
are linked by an interconnection network and may share the LLC, usually
distributed, and the main memory bandwidth.

Multicore designs help with power consumption and performance, but with
this power and performance benefits also come some major challenges. One
important challenge with multicores is that applications do not automatically
run faster with more cores. An application needs to be specifically designed
(i.e. parallelized) to make use of the additional cores and benefit from them.
However, new compilers that auto-parallelize code, new libraries and frame-
works, and a slow change in programming paradigms are contributing to make
this issue less critical. Another challenge that is gaining importance as the core
count increases is the management of the shared processor resources: namely
the cache hierarchy and the main memory bandwidth. As the number of cores
sharing resources increases, so does the risk of destructive inter-core interfer-
ence.

3



Chapter 1. Introduction

1.1.2 The Last Level Cache

Since the introduction of multicores, which further stressed the already limited
main memory bandwidth, current high-performance processors tend to include
huge Last Level Caches (LLC) of the order of tens of megabytes [39] to mitigate
capacity misses. While the percentage of accesses served by these caches is
small compared with the L1 and L2 cache levels, a miss in the last level of cache
implies an onerous access to main memory, so they tend to have an important
impact on the overall system performance. In addition to their size, they are
usually implemented with a high degree of associativity, with more than 16
ways, to keep conflict misses low. The reason is the same: accessing main
memory is expensive.

The LLCs, as implemented in recent processors, are usually shared between
the different cores, as this improves their utilization (i.e. the space not used
by one core can be used by others). However, as all the cores access the same
cache, they can interfere and evict data that is being used by others, damaging
the performance. As a consequence, the performance of individual applications
running on a multicore processor with co-runners (i.e. other applications) is
usually significantly worse than when executed alone in the same system.

Nowadays, a significant amount of computer power is devoted to cloud com-
puting services, where virtual machines or containers are used to provide a
platform to allow customers to develop, run, and manage applications. These
customers usually share physical machines, but their workloads have to be as
isolated from other customers’ workloads as possible. A shared LLC compli-
cates this issue and can impact the whole system performance and fairness.

1.1.3 Cache Partitioning

A lot of effort has been invested in finding ways to mitigate cache interference
in multicores, with the most prominent one being cache partitioning. The
idea behind cache partitioning is to retain the benefits of a monolithic and
shared cache and, at the same time, avoiding the disadvantages of cache in-
terference. By mitigating cache interference, a well-crafted cache partitioning
policy can improve performance [87], fairness [78], and isolate applications for
security [96] and quality of service (QoS) reasons [8].

Cache partitioning allows system software to divide the cache space between
cores, threads or applications. There are different ways to partition the cache,
doing set-partitioning from software with page coloring [101] way partition-
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1.1 Problem Description

ing from hardware [78, 70] or using probabilistic cache replacement mecha-
nisms [58].

Regarding page coloring, it works as follows. When there is a cache access,
the address is divided into three parts: tag, index and offset, as shown in
Figure 1.1. The offset is the position in the cache block, the index indicate the
set, and the tag is compared with the blocks in the set to decide if the access is a
hit or a miss. The idea behind page coloring is simple: use the remaining index
bits after the page offset (see Figure 1.1) to control to which set the blocks of a
given page are placed to. This approach has several limitations, though. It is
incompatible with superpages, which provide important performance benefits;
it is common for the LLC of modern systems to use hash-based addressing1;
and repartitioning usually implies copying memory pages, which is expensive.

Block offsetTag

4KB page offsetColor bits

Set index

051731

Figure 1.1: Physical address bits used for partitioning a 4MB 16-way associative LLC with
page coloring and 64 colors.

Way partitioning, on the other hand, works by keeping a registry of the ways
used in each set per core. Then, when there is a miss, if the core has more
cache lines occupied than it has been assigned, it evicts one of them. If the
core is occupying less lines than assigned, it evicts one from another core.

The probabilistic cache partitioning policies work similarly to way partitioning
approaches but, unlike way-partitioning, where the evicted block depends on
the number of blocks each core has, they choose an eviction candidate based
on probability distributions. The rationale is that controlling the eviction
probability of the lines of each core, one can control the cache space they
occupy with a finner granularity than with way-partitioning.

Since hardware-based cache partitioning techniques (e.g. way-based partition-
ing, probabilistic partitioning) require specialized hardware structures or per-
formance counters not available in commodity processors, most research has
been conducted using detailed simulation frameworks [7, 91, 5]. Due to the
promising simulation results of these works, some companies like Intel [32],
ARM [2], and Cavium [95] have introduced in some of their most recent
products way-partitioning capabilities. This dissertation leverages both ap-

1The LLC in Intel processors is divided into multiple slices, each operating as a typical set-
associative cache. Intel uses an undisclosed hash function to map memory locations to cache
slices [100].
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proaches, simulation and experimentation in commercial Intel machines, to
design, implement and evaluate the different cache partitioning schemes. Each
approach has its pros and cons: experimenting on a real machine provides ar-
guably more reliable results and the experiments usually run orders of magni-
tude faster, but it is constrained to the capabilities provided by the hardware.

1.1.4 Hardware Prefetching

As already stated, data caching is not enough, by itself, to solve the challenge
that high latency memory accesses pose. To further deal with this problem,
the cache controller can try to predict future accesses and bring the data from
main memory to the cache before it is requested. One can prefetch data to
any cache level and kind (i.e. instructions or data), but each one has its pecu-
liarities, which have to be taken into account when deciding which prefetching
mechanism is the most adequate. For example, L1 caches are smaller than
other cache levels, so unrestricted prefetching can cause undesired evictions of
blocks that would be accessed by the processor, damaging the performance.
This effect is referred to as cache pollution. L3, being considerably larger,
tolerates better a more aggressive prefetching scheme. On the other hand,
from the L3 cache level one does not have access to useful information (from
the prefetching point of view) like the Program Counter (PC) of the loads
and stores accessing the cache or their virtual addresses, and this limits the
kind of prefetching techniques that can be used. Another example would be
instruction caches. Due to their access patterns, it may be enough to use
simple prefetchers that bring the next cache line after one is accessed (i.e. One
Block Lookahead). Other caches may benefit from more convoluted prefetch-
ing mechanisms.

To be effective, the prefetches must be both accurate and timely. A prefetch
is accurate when the prefetched data is requested by the core before it is
evicted from the cache. A prefetch is timely if the data has been already
brought to the cache when requested, and the demand access does not have
to wait for it. It may be difficult to improve both metrics at the same time,
since to be timely a prefetcher may have to aggressively fetch a lot of data,
and fetching big amounts of data usually sacrifices the prefetcher accuracy.
Inaccurate prefetches waste energy and bandwidth, and can pollute the cache
and negatively impact the performance. Also, CMPs share the main memory
bandwidth, the interconnection network and some levels of cache hierarchy,
so an aggressive prefetcher may be accurate and improve the performance of
its associated core but, at the same time, decrease the performance of other
cores executing applications concurrently.
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For this reason, usually the prefetchers first detect a pattern and then launch
prefetches following it. Three common prefetchers that follow this approach
are stride prefetchers, Markov prefetchers and delta correlation prefetchers.
Stride prefetchers first group accesses by Program Counter or by some of the
higher bits of the address, and then compute the strides between the accesses.
When two equal strides are found in a row, a prefetch is triggered.

Markov prefetchers store in a FIFO buffer the cache accesses, indexed by
address. When a miss occurs, the address that immediately followed that
access in the past is prefetched. Delta correlation prefetchers index accesses
by Program Counter and compute the deltas with previous accesses with the
same index. When there is a miss, it searches the delta history to find the
last time the two last deltas occurred, and prefetches the next delta or deltas,
depending on the prefetcher aggressiveness.

1.1.5 Pros and Cons of Resource Sharing

Both prefetchers and huge last-level shared caches are used to hide long mem-
ory latencies. Each core has its own prefetchers that bring blocks to the shared
LLC, and consume part of the shared main memory bandwidth. This resource
sharing between CMP cores is a common way to reduce costs and improve the
utilization of the system resources. Also, when only an application is run-
ning, it can entirely utilize the shared resources. The same applies when there
are several applications running but some of them have a low resource usage.
Since each core could potentially have all the shared resources for itself, it
avoids having to overprovision them to face demand spikes.

However, resource sharing has, unfortunately, an important drawback: unfair-
ness among co-running applications. In this dissertation a system is considered
to be fair when all the applications in execution progress at the same pace. In
this context, the progress of an application is computed [23, 22, 92, 27] as the
ratio of its execution time while running with other applications, relative to its
execution time in isolation2, as shown in Equation 1.1; Progress is, therefore,
a value between 0 and 1, or between 0 and 100, if expressed as a percentage.

Progress =
ExecCyclesalone
ExecCycles

(1.1)

2Note that progress is considered on a per-application basis, regardless of the application type,
i.e., single-threaded or multi-threaded.
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Another related metric is the slowdown, computed as the inverse of progress,
as shown in Equation 1.2. The slowdown of an application is always a value
equal to or larger than 1. Both metrics, progress and slowdown, are used to
estimate how interference between applications degrades performance. When
they are equal to 1, the performance of the application is not affected by the
other competing applications. When considering them to estimate interfer-
ence, one can define a system as completely fair when all the tasks in the
system experience the same progress or slowdown [8, 17, 27, 62].

Slowdown =
ExecCycles

ExecCyclesalone
(1.2)

Based on this statement, some works [14] propose the ratio between the
progress of the application that progresses the most and the application that
progresses the least as a way to quantify unfairness. However, this metric only
considers extreme values. To overcome this limitation, an alternative metric
was proposed in [92], which uses the coefficient of variation (CoV) [20] of the
progresses of the running applications with respect to the mean to measure
how unfair the system is. This metric is shown in Equation 1.3, where σ refers
to the standard deviation and µ to the mean progress:

Unfairness =
σProgress

µProgress

(1.3)

Unfairness is a major concern in current CMP design, which threatens scal-
ability and causes critical undesirable behaviors: (i) it makes execution time
unpredictable, which complicates the analysis of both hardware and software
implementations, (ii) it complicates priority-based Operating System schedul-
ing, and (iii) it enables denial of service attacks. Despite this, unfairness is
still a pending problem in current microprocessors.

1.1.6 Performance metrics

While fairness is important, it should never be attained at the cost of per-
formance. Through this dissertation the system performance is measured us-
ing the System Throughput (STP) Average Normalized Turnaround Time
(ANTT) metrics, shown in equations 1.4 and 1.5. Both are two recent and
well-defined metrics extensively used in the literature [23, 22], which compute
aggregated progress and average slowdown, respectively. Since they quantify
different aspects of multiprogram performance (overall system performance
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versus per-application performance), both should be considered when evalu-
ating a system.

STP =
∑

t∈Tasks

Progresst (1.4)

ANTT = µSlowdown (1.5)

1.2 Objectives

The main objective of this thesis is to deal with a major design concern of
multicore processors: the interference at the shared resources when multiple
concurrently running applications compete for a limited amount of shared
main memory bandwidth and LLC space. The goal is to achieve a good trade
off between performance and system unfairness (i.e. improving performance
without increasing the unfairness or improving unfairness while sustaining the
performance).

Regarding main memory bandwidth, this dissertation pursues a prefetch man-
aging mechanism that acts in each core prefetcher, taking decisions regarding
prefetching aggressiveness that consider not only core-specific metrics but also
global information, like the memory bandwidth requirements of other cores.
This mechanism regulates the aggressiveness of each prefetcher and selectively
activates and deactivates some of them. It estimates when the prefetches are
going to be useful and not harm other cores, rising the aggressiveness in such
a case, and saving memory bandwidth otherwise.

With respect to interference in shared caches, this dissertation focuses on its
most nefarious effect, the inequalities between the progresses of the applica-
tions running on the different cores of a CMP. To mitigate this problem, this
thesis employs LLC partitioning techniques to provide additional cache space
to the applications that have their progress diminished due to inter-application
interference, effectively reducing unfairness.

9



Chapter 1. Introduction

1.3 Contributions of the Thesis

This thesis presents three major contributions: a selective prefetching mech-
anism targeting multicore processors with constrained main memory band-
width, and two proposals that improve system fairness by partitioning the
LLC, one that requires dedicated hardware, not currently available in com-
mercial processors, and another that uses commodity hardware. The first
cache partitioning approach presented in this work has been evaluated in a
simulation framework, and the second one has been implemented and evalu-
ated in a real machine with an Intel processor featuring Intel Cache Allocation
Technology. Below these contributions are listed with more detail.

• Selective prefetching under limited memory bandwidth. Cur-
rent multicore systems implement multiple hardware prefetchers to tol-
erate the large main memory latencies. However, memory bandwidth
is a scarce shared resource which becomes critical with the increasing
core count. To deal with this fact, recent work has focused on adap-
tive prefetchers, which control the prefetcher aggressiveness to regu-
late the main memory bandwidth consumption. Nevertheless, in lim-
ited bandwidth scenarios with memory-hungry workloads, keeping ac-
tive the prefetcher may damage the system performance and increase
energy consumption. This dissertation introduces a selective prefetcher
that deactivates, throttles and reactivates individual prefetchers to bet-
ter distribute main memory bandwidth, improving energy consumption
and performance.

• Unfairness reduction with LLC partitioning. Shared caches have
become the common design choice in the vast majority of modern multi-
core and many-core processors, since cache sharing improves throughput
for a given silicon area. Sharing the cache, however, has a downside: the
requests from multiple applications compete among them for cache re-
sources, so the execution time of each application increases over isolated
execution. The degree in which the performance of each application is
affected by the interference becomes unpredictable yielding the system to
unfairness situations. To mitigate this effect, this dissertation proposes
the Fair-Progress Cache Partitioning (FPCP), a low-overhead hardware-
based cache partitioning approach that addresses system fairness by par-
titioning the LLC cache. To adjust partitions, our approach estimates
during multicore execution the time each application would have taken
in isolation, relying on additional hardware to estimate the inter-core
interference. Since the required hardware is not yet available in com-
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mercial processors, this proposal has been evaluated using a simulation
framework.

• Unfairness reduction with LLC partitioning using Intel CAT.
Existing proposals targeting unfairness reduction require extra hardware,
which makes them impractical in commercial processors. Recent Intel
Xeon processors feature Cache Allocation Technology (CAT), a hardware
cache partitioning mechanism that can be controlled from userspace soft-
ware and that allows to create partitions in the LLC and assign different
groups of applications to them. This contribution consists of a family
of clustering-based cache partitioning policies that target unfairness re-
duction in real systems that feature Intel’s CAT. They act at two levels:
applications showing similar amount of core stalls due to LLC accesses
are first grouped into clusters, after which each cluster is given a number
of ways using a simple mathematical model. To the best of our knowl-
edge, this is the first attempt to address system fairness using the cache
partitioning hardware in a real product.

1.4 Thesis Outline

The remaining of this dissertation is organized into 6 chapters as follows:

• Chapter 2 discusses previous works.

• Chapter 3 describes the experimental frameworks used to evaluate the
proposals.

• Chapter 4 presents the selective prefetcher for multicore processors.

• Chapter 5 proposes Fair Progress Cache Partitioning, a LLC partitioning
technique for unfairness reduction.

• Chapter 6 introduces a family of cache partitioning policies that also
target unfairness reduction but have been implemented in commercial
Intel processors featuring Intel Cache Allocation Technology.

• Finally, Chapter 7 draws the conclusions, discusses future work, and
enumerates the related publications.
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Chapter 2

Related Work

This chapter discusses the state-of-the-art of the topics covered by this disser-
tation. First, it is introduced the related work regarding prefetching techniques
to tackle main memory congestion. Then, the related work on cache parti-
tioning is revised, covering proposals implemented and evaluated both with
simulators and with real machines.

2.1 Prefetching

This section describes previous work focusing on the prefetcher aggressiveness
and the reduction in the number of memory requests in multicores.

In [64] the AC/DC adaptive method for prefetching data from main memory
to the L2 cache is proposed. Like the selective prefetcher presented in this
dissertation, AC/DC uses concentration zones (also called CZones) [67] that
divide memory into fixed size zones. The mechanism is enhanced to make use
of delta correlations to find access patterns. They propose an adaptive algo-
rithm that dynamically adjusts the prefetch degree ranging from 2 to 16 cache
blocks. The mechanism provides the opportunity to turn off the prefetcher but
only in those cases where prefetching hurts the system performance, and no
policy is devised to turn on the prefetcher again. More recently, PATer [52] has
been proposed. It uses a prediction model based on machine learning with the
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aim of dynamically tuning the prefetcher parameters of the IBM POWER8,
which has 225 possible configurations. This prediction is based on the value of
performance monitoring counters. Unlike our proposal, this approach is only
applicable to POWER8 processors.

The FDP adaptive approach, presented in [85], dynamically selects among
five different levels of aggressiveness, ranging from very conservative to very
aggressive. The baseline prefetcher is a stream prefetcher like the one used in
this dissertation for the proposal presented in Chapter 4. Similarly to this dis-
sertation selective prefetcher, FDP selects at the end of each sampling interval
the aggressiveness for the next interval. For this purpose, accuracy, lateness,
and pollution metrics are used to throttle up or down the aggressiveness level.
This mechanism was extended for multicores in another proposal, the Hier-
archical Prefetcher Aggressiveness Control (HPAC) [19]. In HPAC each core
implements a FDP prefetcher, but local decisions to change the aggressiveness
can be overridden by the memory controller, which collects global information
about the memory requirements of each application. Unlike our work, these
proposals always keep the prefetcher enabled.

Other previous proposals are based on prefetch filtering techniques. In [6] it
is proposed a weighted majority filter to predict the usefulness of the prefetch
addresses. Other works, like [104, 13] estimate a priori if a given prefetch
will be useful or not, discarding it in the latter case. While their goal is the
same as ours, the metrics used to guide the prefetcher are not. For example,
our proposal considers the memory contention for decision making, and not
just if a prefetch is useful for the core that has issued it. Additionally, the
way the goal is achieved is also different. Our approach throttles and disables
the prefetcher, but filtering techniques dynamically decide whether to issue
or not a prefetch, based on prefetch history. However, both techniques are
orthogonal to each other, so using them together could further reduce the
amount of wasted bandwidth.

A prefetcher that classifies prefetches according to their impact on performance
is proposed in [57]. This impact is estimated with a history table indexed by
the program counter that collects the stall cycles caused by each load. The
mechanism prioritizes the prefetches associated to loads that have caused more
Reorder Buffer (ROB) stalls. That is, the prefetcher is mainly guided by core
performance instead of prefetcher performance.

In [69], Sandbox Prefetching, a mechanism to select at runtime the most ap-
propriate prefetcher from a set of different prefetchers is proposed. Rather
than actually fetching data into the cache to evaluate the prefetcher accuracy,
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the tags of the blocks that the evaluated prefetcher would fetch are stored
in a Bloom Filter. On each memory access, the Bloom Filter is checked to
estimate the expected accuracy of the prefetcher. The candidate prefetchers
are evaluated one at a time, in a multiplexed fashion, with the sandbox being
reset in between evaluations. The main weakness of this mechanism, unlike
ours, is that prefetch decisions are taken locally in the core, without consider-
ing global system conditions. More recently, Best-Offset Prefetching [60] has
been proposed as a Sandbox improvement by considering prefetch timeliness
to calculate the prefetch offset.

Prefetching performance can be also improved by enhancing the policies man-
aging memory requests at the shared resources, that is, the arbiter at the NoC
or the scheduling policy at the memory controller. Regarding the NoC, some
interesting approaches [10, 50] implement virtual channels and dynamically
use them to adjust the priority between regular and prefetch requests com-
ing from multiple cores. With respect to memory controller policies, recent
proposals [18, 54, 53] have also focused on multicores. These policies take
into account the prefetcher performance to dynamically select the priority of
both regular and prefetch requests. NoC and memory controller works are
orthogonal to our proposals and can be applied together to achieve further
improvements.

2.2 Cache Interference Analysis and Fairness

Inter-application interference at the shared caches, both in CMPs and SMTs,
is a well-known effect that rises as the number of processing units sharing
the resource increases and that can yield the system to important unfairness
scenarios. A key challenge to address unfairness is to be able to estimate the
interference at the shared cache. Eyerman et al. [15] and Du Bois et al. [21]
propose an approach to measure this interference by duplicating a fraction
of the shared LLC cache tags. Ebrahimi et al. [17] propose to keep track
of the lines evicted by the different competing cores using a hash table to
estimate interference and use this estimation to enforce fairness. Subramania
et al. [87] employ an approach similar to Eyerman et al. to estimate application
slowdown due to inter-application interference.

Most techniques aimed at achieving fair system performance, are software-
based and rely on OS scheduling [24, 98, 99]. Ebrahimi et al. [17] improve
system fairness by dynamically adapting the rate at which different cores inject
requests into the memory subsystem. The approach proposed by Sharifi et
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al. [80] is based on changing the cache replacement policy to focus on fairness
among cores by penalizing the core with the highest IPC in favor of the others.

Different metrics have been proposed in the literature to quantify unfairness.
Some works [14] propose the ratio between the progress of the application that
progresses the most and the application that progresses the least as a way to
quantify unfairness. However, this metric only considers extreme values. An
alternative metric without this handicap was proposed in [92], which uses
the coefficient of variation [20] of the progresses of the different applications
running in the system. This is the metric used throughout this dissertation to
estimate unfairness.

2.3 Cache Partitioning

A large body of research has focused on LLC partitioning during the last years,
with different goals and techniques. In order to facilitate their understand-
ing, the cache partitioning proposals are classified according to three axes,
depicted in Figure 2.1. The first axis is the goal of the proposal, which can
range from performance or fairness to QoS or security. The second axis is
how the partitions are enforced, separating proposals that enforce partitions
using only pure software methods (i.e. no hardware support is required) from
others which require hardware support (e.g. way-partitioning, changes in re-
placement policy). The last axis is how the proposal has been implemented
and evaluated, if using a real machine or a simulation framework. Pure soft-
ware approaches tend to be easier to evaluate in real systems, while approaches
that require hardware support have been traditionally evaluated in simulators.
The reason is that, until the last few years, there was little or no hardware
that supported cache partitioning. This is slowly changing, with some Intel
and ARM designs featuring hardware support for cache partitioning in their
LLCs [36, 2]. Following this trend a growing number of cache partitioning
proposals that require hardware support are being evaluated in real systems.

Below, we discuss cache partitioning approaches, classifying them into two
main groups according to the third characterization axis; that is, if a given
proposal has been implemented and evaluated on a real machine or on a sim-
ulator. For each group, further refinements are done, separating proposals
depending on the second axis. Finally, the goal of each proposal (first axis) is
briefly explained.
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Figure 2.1: Three axes taxonomy of cache partitioning proposals.

Dynamic LLC management in real machines. This approaches can be
divided in two categories depending on if they are hardware- or software-
based. Regarding hardware-based proposals, this section focuses on the ones
that use Intel’s Cache Allocation Technology, a feature of some recent In-
tel processors that provides cache partitioning support. These proposals use
CAT to control the LLC usage, targeting different goals. The first work us-
ing a prototype of this technology is the one by Cook et al. [12], where they
measure the energy and performance benefits of a LLC-partitioning scheme
and propose a simple dynamic partitioning policy. Later proposals, like Hera-
cles [56] and Dirigent [103], utilized more mature versions of CAT. They both
focus on maximizing utilization in large-scale datacenters without affecting
user-perceived latency in latency-critical applications. To do so, they classify
applications a priori as batch or latency-critical, and use CAT to limit the
amount of cache resources that batch applications can consume. Another pro-
posal, Ginseng [26], focuses on cloud computing providers that rent virtual
machines, and uses a market-driven auction system to partition the LLC into
non-overlapping partitions depending on how much each guest is willing to
pay and how that affects the rest. El-Sayed et al. [76] has a more broad goal,
targeting performance. They group applications into clusters, assigning them
to different CLOSes. While it manages to significantly improve throughput in
selected workloads, it uses a detailed profiling, which introduces overhead.

Regarding software-based partitioning proposals, a significant amount of work
has focused on this cache partitioning technique. Most of it is based on page-
coloring [101, 89, 102, 81]. With page-coloring one can control into which
cache sets the application data is mapped, effectively partitioning the cache
with set granularity. Some of them, such as [55], perform application profiling
at runtime and choose the page coloring used. However the overhead of this
profiling can be high. Solari et al. [77] use page coloring, but with the novelty
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of considering an LLC addressing scheme similar to the one used by Intel
Sandy Bridge processors.

Partitioning proposals using simulation frameworks. Approaches in
this group propose the use of extra hardware was not available in commercial
processors, so their evaluation was performed using simulation frameworks.

UCP [70] and ASM-Cache [87] use set sampling and duplicate cache tags to
gather information that is later used to partition the cache with way level
granularity. Gupta and Zhou [29] also use way-partitioning to divide the
cache while increasing spatial locality with aggressive prefetching. Kim et
al. [49] improve system fairness by partitioning the shared L2 cache. However,
their approach requires offline profiling, which makes it impractical. These
proposals work by keeping a count of the blocks that each core has in a given
set. Therefore, when there is an eviction, if the core that causes it is occupying
more lines than what the partitioning policy states, one of its blocks is selected
as the victim. On the contrary, if it has less lines than assigned, the victim
block is selected from another core.

Other proposals use a different approach to enforce cache partitions. This is
the case of PriSM [58], which manages the cache occupancy of the different
cores by directly controlling the eviction probabilities of their cache lines. Sim-
ilarly, Kahn et al. [48] modify the replacement policy to dynamically create two
logical partitions, one for clean lines and another for dirty lines, with different
eviction probabilities. Futility Scaling (FS) [94] is yet another replacement-
based cache partitioning scheme. Its goal is to precisely partition the cache
while still maintaining high associativity even with a large number of parti-
tions.

A different approach is used in Vantage [75] and Ubik [46]. Both employ
ZCaches [74] to partition the cache with block granularity. Vantage optimizes
partitions to enhance the performance, while Ubik ensures QoS and improves
the performance of batch applications. Iyer [42] presents the CQoS cache
management framework, which provides prioritized service to multiple hetero-
geneous threads sharing a cache structure. Chang and Sohi [9] select multiple
partitions and enforce them in a time-sharing manner across multiple epochs
within a stable program phase. They propose a QoS metric that modulates
the allocated cache space for a given thread.
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Experimental Framework

This chapter describes the experimental framework used to perform the exper-
iments presented in this thesis. The results presented in chapters 4 and 5 have
been obtained with the Multi2Sim simulation framework, while the results of
Chapter 6 have been gathered implementing the approach on a real machine.
This chapter presents the characteristics of both systems, the benchmark suites
used, and the metrics studied. The workloads employed to evaluate both sys-
tems, have been the same: sets of applications from the SPEC CPU 2006 and
the NASA Advanced Supercomputing benchmark suites.

3.1 Simulation Framework

The proposals presented in chapters 4 and 5 of this dissertation propose the
use of additional hardware that is not available in commercial processors. For
this reason, they have been implemented and evaluated using the simulation
software packages described in this section.
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3.1.1 Multi2Sim

Multi2Sim [91] is a cycle accurate event driven simulation framework for CPU-
GPU heterogeneous computing written in C. It includes models for super-
scalar, multithreaded, and multicore CPUs, as well as GPU architectures.

The CPU simulation framework consists of two major interacting software
components: the functional simulator and the architectural simulator. The
functional simulator (i.e. emulator) mimics the execution of a guest program
on a native x86 processor, by interpreting the program binary and dynamically
reproducing its behavior at the ISA level. The architectural simulator (i.e.
detailed or timing simulator) obtains a trace of x86 instructions from the
functional simulator, and tracks execution of the processor hardware structures
on a cycle-by-cycle basis.

The experimental results of this dissertation have been obtained using ver-
sion 4.2 of Multi2Sim, which supports the execution of a number of different
benchmark suites without requiring any porting, including SPEC CPU 2006,
as well as custom self-compiled user code. The architectural simulator mod-
els many-core superscalar pipelines with out-of-order execution, a complete
memory hierarchy with cache coherence, interconnection networks, and can
be easily extended to model additional components.

A key shortcoming of Multi2Sim is that it does not implement a detailed model
of the main memory or the memory controller. Consequently, main memory
requests have no contention at all and latencies are constant values. This is
not realistic [44] and a serious limitation when evaluating proposals that deal
with the memory subsystem, like the ones presented in this dissertation. To
overcome this, we have integrated DRAMSim2 [72], a dedicated main memory
simulator, into the Multi2Sim framework.

3.1.2 DRAMSim2

DRAMSim2 is an open source cycle accurate simulator that implements de-
tailed timing models for a variety of existing memories, including DDR3. It
models commercial DRAM devices, as the ones used in commodity DIMM
modules. DRAMSim2 faithfully models the internal organization of the DRAM
devices, which are composed of multiple independent banks that can be ac-
cessed in parallel.

As in real hardware, DRAMSim2 allows to group the devices into ranks work-
ing in lockstep, ensuring that all the required timing constraints are meet.
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Note that DRAMSim2 models the memory refresh and its timing constraints
and the In addition to the structure of the DRAM memory system, this sim-
ulator accurately models the command-based protocol to access the DRAM
banks which, in its most simple form, is composed of three commands: i) a
precharge command to precharge the row bitlines, ii) an activate command
to open the row corresponding to the row address into the row buffer, and
finally iii) a read/write command to access the row buffer at the position indi-
cated by the column address. DRAMSim2 also models the memory controller.
Specifically, it defines the Row-Buffer-Management Policy, the Address Map-
ping Scheme, and the Memory Transaction and DRAM Command Ordering
Scheme.

The high level of detail of the model allows DRAMSim2 to accurately estimate
the power consumption of the modeled DRAM devices from their configuration
parameters and the memory requests served.

3.1.3 Baseline Machine Parameters of the Simulated Systems

The baseline system used throughout the simulation related chapters (i.e.
Chapter 4 and Chapter 5) consists of four major components: the cores, the
cache hierarchy, the interconnection network and the main memory. This
system is an Out-of-Order multicore with 2, 4, or 8 cores, depending on the
specific experiment performed, running at 3GHz. Each core has private 32KB
8-way L1 caches, while the LLC is private and has 256KB when evaluating
the proposal presented in Chapter 4, and is shared and has a capacity of 1MB
per core when evaluating the proposal presented in Chapter 5.

For the evaluation of the selective prefetcher proposal presented in Chapter 4
a prefetcher engine that brings blocks to the LLC is added to this baseline
system. This prefetcher engine is a CZone-based stride prefetcher that detects
strided accesses by keeping a record of previous cache accesses in a Global
History Buffer [65, 64].

The basic idea behind this prefetcher is to dynamically partition the physical
address space in different zones, referred to as CZones, and to detect strided
references within each of these zones. The processor sets the size of the zones
by storing a mask in memory-mapped references. Usually CZones have the
same size as pages. Strided references within each partition are dynamically
detected by using a finite state machine, which checks whether the last three
accesses are offsetted by a fixed stride. If so, a pattern has been detected
and the engine triggers new prefetches. Prefetches based on history buffers
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indexed by CZones have the desirable property of not needing the program
counter value of the load or store instruction that accessed the cache to predict
the following accesses, which is interesting for L2 and lower cache levels. The
maximum aggressiveness of the prefetcher has been set to 4 cache blocks (i.e.
4 blocks are brought to the cache when a stride is detected).

In addition, the NoC and the memory controller have been also modeled in
detail for the sake of accuracy. The NoC, which connects all the cores and
memory controllers has been modeled as a ring, as in Intel multicores. Con-
gestion and contention in the NoC are realistically modeled, since they may
contribute to the latency perceived by the core when accessing the memory
subsystem [79, 68, 34].

The system has a main memory controller with an unified queue for both de-
mand requests and prefetches. The parameters of the DRAM devices modeled
with DRAMsim2 have been set according to a commercial MICRON DDR3
memory device [90]. In addition, requests to main memory are scheduled on a
first come first served (FCFS) basis with a closed-page row buffer policy. The
address mapping used to access the DRAM memory is shown in Figure 3.1.
Note that the simulated processor’s maximum address space is 4GB, so ad-
dresses are 32 bits wide. In addition, the number of bits for row and column
are fixed (device dependent) and the number of banks in DDR3 is 8. Since
the bus is 64 bits wide [45] the number of bits for the byte offset is also fixed.
That limits the number of ranks and banks that can be addressed.

Figure 3.1: Main memory address mapping.

Table 3.1 summarizes the main configuration parameters of the cores, the cache
hierarchy, the interconnection network and the main memory of the system.

3.2 Real Machine: The Intel Xeon E5 2658A v3

All the experiments presented in Chapter 6 have been performed on the Intel
Xeon E5 2658 v3 processor [39]; one of the first Intel processors to support
Cache Allocation Technology (CAT).

This processor implements HyperThreading and is deployed with twelve cores
supporting up to two simultaneous threads each. However, to avoid intra-core
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Core characteristics

Core count 2/4/8 cores at 3GHz
Issuing policy Out-of-order
Issue/Commit width 4 instructions/cycle
ROB size 128 entries
Load/Store queue 64/48 entries

Cache hierarchy

IL1 (private) 32KB, 8ways, 64B-line, 2cc
DL1 (private) 32KB, 8ways, 64B-line, 2cc
LLC (private) (4 cores, Chapter 4) 256KB, 16ways, 64B-line, 11cc, 16 MSHR
LLC (shared) (2 cores, Chapter 5) 2MB, 16ways, 64B-line, 11cc, 16 MSHR
LLC (shared) (4 cores, Chapter 5) 4MB, 32ways, 64B-line, 11cc, 16 MSHR
LLC (shared) (8 cores, Chapter 5) 8MB, 32ways, 64B-line, 11cc, 16 MSHR

Interconnection network

Topology Ring
Input/ouput buffer size 128B
Link bandwidth 64B/cycle

Main memory & memory controller

Memory controllers 1
DRAM bus freq. 1066MHz
DRAM device DDR3 (2133 Mtransfers/cycle)
Latency tRP , tRCD, tCL 13.09ns each
DRAM banks 8
Page size 8KB
Burst length (BL) 8
Scheduling policy FCFS

Table 3.1: Simulated system configuration.

interference, experiments have been conducted allocating a single thread per
core. The base core frequency its 2.20GHz, up to 2.90GHz with Turbo Boost.
Each core includes a 32 KB L1 data cache and a 256 KB L2 cache, both of
which are private. All the cores share an L3 cache, the LLC in the system, with
30 MB and 20 ways (which gives an average of 2.5 MB per core). The entire
cache hierarchy is inclusive [36]. The processor cores, memory controllers and
data buses are connected using a NoC composed of two rings, as depicted in
Figure 3.2.
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Figure 3.2: Block diagram for the Intel Xeon E5 2658A v3.

3.2.1 Intel Cache Allocation Technology

Intel’s Cache Allocation Technology provides primitives that can be used to
control the maximum amount of cache space that a given application, con-
tainer, virtual machine or hardware thread can consume. It works by parti-
tioning the cache with cache way granularity. With Intel CAT, the operating
system, a hypervisor or even user code can use CAT to dynamically isolate
or prioritize specific applications to improve their performance, for security
reasons or to provide QoS.

CAT has three key concepts: Class of Service (CLOS), Resource Monitoring ID
(RMID), and Capacity Bitmask. The RMIDs are IDs assigned to applications,
containers, virtual machines, etc. that will have its cache space monitored and
controlled by CAT. A CLOS encompasses a set of RMIDs and a Capacity
Bitmask, where the bitmask marks the cache ways that can be written by
the RMIDs. The Capacity Bitmasks can overlap, which means that some
ways can be shared by different classes of service. A limitation of CAT is
that the writable ways defined in a Capacity Bitmask have to be contiguous.
For instance, a CBM like 1111-0000-1111-0000 would not be valid. Note
that CAT has no effect by default, since all the applications start mapped to
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Figure 3.3: Cache Allocation Technology example.

CLOS #0, which, if not modified, has a CBM that allows full access to all the
LLC ways.

This technology is available in a subset of the Intel Xeon E5-2600 v3 processors
and in all the processors of the Intel Xeon E5 v4 family. The Xeon E5 v4
family provides more CLOSes than prior-generation processors, moving from
4 CLOSes to 16. While this allows for a greater flexibility, the partitioning
is done in a per-way granularity, so the limiting factor is usually the LLC
associativity, usually 20 ways.

There are three different ways of configuring Intel CAT. The first one is
to use Machine Specific Registers (MSR), as stated in the Intel’s Software
Developer’s Manuals [37]. Another option is to use the Intel-provided user
space library [41], and the last option is to use the Linux kernel interface to
CAT (resctrl), that first appeared in Linux 4.10. This dissertation makes use
of the first approach, the Intel-provided user space library.

Figure 3.3 shows an example of a possible cache partitioning scheme in a
processor of the Xeon E5 2600 v3 family. Each of the four possible classes
of service (CLOS 0 to CLOS 3) has a subset of the 20 ways of the LLC
assigned, and each thread is assigned to a CLOS. Each CLOS is identified by
a color/pattern which marks both the threads that belong to the CLOS and
the ways they can write. For instance, thread 0 of core n − 3 is assigned to
CLOS 2 and thread 1 to CLOS 0. Note that all the CBMs are contiguous and
that CLOS 3 shares some of its assigned ways with CLOS 1 and CLOS 2.
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3.3 Benchmark Suites

The proposals presented in this dissertation have been evaluated using a wide
set of benchmarks from the SPEC CPU 2006 benchmark suite [86] with the
ref input set and the NASA Advanced Supercomputing Parallel Benchmark
suite [63] (single-threaded runs). A brief description of the benchmarks used
is presented below.

3.3.1 SPEC CPU 2006

The SPEC CPU 2006 benchmark suite is a CPU-intensive benchmark suite,
stressing a system’s processor, memory subsystem and compiler, developed by
the Standard Performance Evaluation Corporation. This suite contains differ-
ent applications from the High Performance Computing field and is divided
between integer and floating point benchmarks. The integer benchmarks are
listed next.

perlbench: C, Programming Language. Derived from Perl V5.8.7. The
workload includes SpamAssassin, MHonArc (an email indexer), and specdiff
(SPEC’s tool that checks benchmark outputs).

bzip2: C, Compression. Julian Seward’s bzip2 version 1.0.3, modified to do
most work in memory, rather than doing I/O.

gcc: C, C Compiler. Based on gcc Version 3.2, generates code for Opteron.

mcf: C, Combinatorial Optimization. Vehicle scheduling. Uses a network
simplex algorithm (which is also used in commercial products) to schedule
public transport.

gobmk: C, Artificial Intelligence. Plays the game of Go, a simply described
but deeply complex game.
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hmmer: C, Search Gene Sequence. Protein sequence analysis using profile
hidden Markov models (profile HMMs).

sjeng: C, Artificial Intelligence: chess. A highly-ranked chess program that
also plays several chess variants.

libquantum: C, Physics / Quantum Computing. Simulates a quantum com-
puter, running Shor’s polynomial-time factorization algorithm.

h264ref: C, Video Compression. A reference implementation of H.264/AVC,
encodes a videostream using 2 parameter sets. The H.264/AVC standard is
expected to replace MPEG2.

omnetpp: C++, Discrete Event Simulation. Uses the OMNet++ discrete
event simulator to model a large Ethernet campus network.

astar: C++, Path-finding Algorithms. Pathfinding library for 2D maps,
including the well known A* algorithm.

xalancbmk: C++, XML Processing. A modified version of Xalan-C++,
which transforms XML documents to other document types.

The remaining benchmarks of the suite make intensive usage of floating point
arithmetics.

bwaves: Fortran, Fluid Dynamics. Computes 3D transonic transient lami-
nar viscous flow.

gamess: Fortran, Quantum Chemistry. Gamess implements a wide range
of quantum chemical computations. For the SPEC workload, self-consistent
field calculations are performed using the Restricted Hartree Fock method,
Restricted open-shell Hartree-Fock, and Multi-Configuration Self-Consistent
Field.
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milc: C, Physics / Quantum Chromodynamics. A gauge field generating
program for lattice gauge theory programs with dynamical quarks.

zeusmp: Fortran, Physics / CFD. ZEUS-MP is a computational fluid dy-
namics code developed at the Laboratory for Computational Astrophysics
(NCSA, University of Illinois at Urbana-Champaign) for the simulation of
astrophysical phenomena.

gromacs: C and Fortran, Biochemistry / Molecular Dynamics. Molecular
dynamics, i.e. simulate Newtonian equations of motion for hundreds to millions
of particles. The test case simulates protein Lysozyme in a solution.

cactusADM: C and Fortran, Physics / General Relativity. Solves the Ein-
stein evolution equations using a staggered-leapfrog numerical method.

leslie3d: Fortran, Fluid Dynamics. Computational Fluid Dynamics (CFD)
using Large-Eddy Simulations with Linear-Eddy Model in 3D. Uses the Mac-
Cormack Predictor-Corrector time integration scheme.

namd: C++, Biology / Molecular Dynamics. Simulates large biomolecular
systems. The test case has 92,224 atoms of apolipoprotein A-I.

dealII: C++, Finite Element Analysis. C++ program library targeted at
adaptive finite elements and error estimation. The testcase solves a Helmholtz-
type equation with non-constant coefficients.

soplex: C++, Linear Programming / Optimization. Solves a linear program
using a simplex algorithm and sparse linear algebra. Test cases include railroad
planning and military airlift models.
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povray: C++, Image Ray-tracing / Image rendering. The testcase is a
1280×1024 anti-aliased image of a landscape with some abstract objects with
textures using a Perlin noise function.

calculix: C and Fortran, Structural Mechanics. Finite element code for lin-
ear and nonlinear 3D structural applications. Uses the SPOOLES solver li-
brary.

GemsFDTD: Fortran, Computational Electromagnetics. Solves the Maxwell
equations in 3D using the finite-difference time-domain (FDTD) method.

tonto: Fortran, Quantum Chemistry. An open source quantum chemistry
package, using an object-oriented design in Fortran 95. The test case places
a constraint on a molecular Hartree-Fock wavefunction calculation to better
match experimental X-ray diffraction data.

lbm: C, Fluid Dynamics. Implements the “Lattice-Boltzmann Method” to
simulate incompressible fluids in 3D.

wrf: C and Fortran, Weather. Weather modeling from scales of meters to
thousands of kilometers. The test case is from a 30km area over 2 days.

sphinx3: C, Speech recognition. A widely-known speech recognition system
from Carnegie Mellon University.

3.3.2 NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB), designed by the NASA Advanced Su-
percomputing Division, are a small set of programs designed to help evaluate
the performance of supercomputers. The benchmarks are derived from com-
putational fluid dynamics (CFD) applications and consist of five kernels and
three pseudo-applications. Problem sizes in NPB are predefined and indicated
as different classes. The five kernels and pseudo-applications are listed below.
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IS: Integer Sort, random memory access.

EP: Embarrassingly Parallel.

CG: Conjugate Gradient, irregular memory access and communication.

MG: Multi-Grid on a sequence of meshes, long- and short-distance commu-
nication, memory intensive.

FT: discrete 3D fast Fourier Transform, all-to-all communication.

BT: Block Tri-diagonal solver.

SP: Scalar Penta-diagonal solver.

LU: Lower-Upper Gauss-Seidel solver.
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Chapter 4

Selective Prefetching under
Limited Memory Bandwidth

This chapter introduces the concept of selective prefetching, where individual
prefetchers are activated, throttled or deactivated to improve both main mem-
ory energy consumption and performance. It proposes ADP, a prefetcher that
deactivates local prefetchers in some cores when they present low performance
and co-runners need additional main memory bandwidth. Then, based on
heuristics, an individual prefetcher is reactivated or throttled up when perfor-
mance enhancements are foreseen.

4.1 Introduction

Addressing memory latencies is a major design concern in modern multi-
cores. In this regard, hardware prefetching plays a key role in modern high-
performance processors with deep cache hierarchies. Modern microproces-
sors [82, 84, 66, 1] implement multiple prefetchers, which work along the dif-
ferent levels of the cache hierarchy. For example, the IBM POWER8 [82,
4] has an instruction cache prefetcher and a data cache prefetcher. The in-
struction prefetcher fetches up to three sequential cache lines in single thread
mode. The stream based data prefetcher detects strides in load requests and
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optionally store requests, issuing prefetches in all the three levels of the cache
hierarchy. Modern Intel processors [1], have four prefetchers per core two L1-
data cache prefetchers and two L2 prefetchers. The L1 prefetchers are an One
Block Lookahead prefetcher (OBL), that fetches the next cache line, and a
prefetcher that detects strides in the load history by indexing the loads with
the program counter. The two L2 cache prefetchers are an L2 adjacent cache
line prefetcher, and another one that fetches additional cache lines.

In current processors, prefetching requests from multiple cores (i.e. applica-
tions) compete with regular memory requests for off-chip main memory band-
width. Therefore, since prefetching is a speculative technique, it increases the
total number of accesses to main memory [6, 52, 25]. In scenarios of high mem-
ory bandwidth consumption, this fact can turn into significant performance
losses in some individual applications, which are affected by the prefetches of
their co-runners.

A straightforward solution to increase bandwidth availability would be to turn
off all the individual prefetchers and, therefore, remove all the speculative
prefetches. However, this is not an acceptable solution from a performance
perspective, since aggressive hardware prefetching can bring large performance
improvements in some applications. A solution recently proposed [85] to keep
prefetches under control is to implement throttling up/down mechanisms that
regulate the aggressiveness of the prefetchers. An individual prefetcher is
then throttled down when no performance benefits are expected. However,
due to limited bandwidth, keeping active the prefetchers when no benefits are
expected, even with a low aggressiveness, may damage the performance of
some applications, due to inter-application interference.

To provide further insights on the impact of prefetching on performance and
bandwidth consumption, this chapter characterizes the relation between main
memory accesses (prefetches and regular accesses) and IPC, for the appli-
cations in the SPEC CPU 2006 benchmark suite. The study shows that
some applications exhibit different execution phases from the main memory
and prefetching points of view. Some of these phases are highly benefited
by prefetching, while some others are negligibly benefited or even negatively
affected. The amount of main memory bandwidth consumed also is phase-
dependant: some phases consume significant amounts of memory bandwidth,
some others consume much less bandwidth. This study suggests that, in multi-
core execution, throttling the memory bandwidth consumed by the prefetches
of applications in prefetch unfriendly phases may improve the performance of
other co-runners.
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This chapter proposes the Activation/Deactivation Prefetcher (ADP), which
in addition to throttle up/down the aggressiveness, activates and deactivates
individual per-application prefetchers considering both local and global in-
formation (i.e. inter-application interference). Deactivation policies turn off
the prefetcher in specific cores, thereby increasing the available bandwidth for
those prefetchers that require it to improve their cores’ performance. Acti-
vation policies rely on activation conditions that estimate when an individual
prefetcher could improve the performance. The key challenge of activation
conditions is that they cannot have updated information about the prefetcher
activity, since it is disabled. Therefore, either data from previous phases or
other metrics should be used.

4.2 Characterization Study

The aim of this section is to study the relation between memory activity,
prefetching, and performance (i.e. IPC) in order to provide insights in the
design of selective prefetchers. For this purpose, first, all the benchmarks are
analyzed in isolation with the aim of identifying those execution phases where
prefetching can bring benefits, paying special attention to phases with high
memory activity, since in such cases, a selective prefetcher can potentially
provide extra main memory bandwidth for the co-runners.

4.2.1 Characterizing Benchmark Phases

To analyze the benefits of prefetching in individual applications, all the bench-
marks have been run in isolation in a system with and without the baseline
prefetcher described in Section 3.1.3. Based on the gathered results, the phases
of the applications have been classified according to two main axes: band-
width consumption (intensive or not), and the effect of the prefetcher on IPC
(friendly or not), which gives four possible categories. For illustrative pur-
poses, Figure 4.1 shows examples of benchmarks showing execution phases
belonging to each category. Each graph shows the IPC evolution of an appli-
cation (left Y axis) with and without prefetching. To analyze the relationship
with the memory activity, the cumulative amount of memory accesses (right
Y axis) is also shown in the same plot using a logarithmic scale, broken down
into regular and prefetch requests, labeled as Accesses No Pref and Accesses
Pref, respectively. Below, the four categories are presented, highlighting the
main characteristics of each of them:
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Figure 4.1: Characterization study. Examples of benchmarks in the different categories.
No prefetching compared to aggressive prefetching.

• Memory Intensive, Prefetch Unfriendly (MIPU). This category refers to
memory intensive phases where prefetching does not improve the perfor-
mance. This kind of phase can be observed at the end of the execution
of zeusmp (see Figure 4.1a).

• Memory Intensive, Prefetch Friendly (MIPF). This category includes
memory intensive phases where prefetching brings important performance
benefits. This kind of behavior dominates through the entire execution
of some benchmarks, like cactusADM, as shown in Figure 4.1b.

• non Memory Intensive, Prefetch Unfriendly (nMIPU). These phases refer
to those parts of the execution where the main memory activity is rather
low and prefetching brings scarce or no benefit. Examples of phases
of this category can be observed in povray across all its execution (see
Figure 4.1c) and at the beginning of the execution of zeusmp.
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• non Memory Intensive, Prefetch Friendly (nMIPF). This category refers
to non memory intensive phases in which prefetching still boosts the
performance. This behavior can be observed in Figure 4.1d during the
first part of the execution of namd.

An execution phase is defined as an interval of the execution of an application
where the IPC behavior is homogeneous or follows the same pattern. There-
fore, a new phase of the execution starts when the IPC changes its trend, so
a given phase does not has a predetermined length but it varies according to
the application behavior. We found that these changes are usually related to
variations in memory activity.

During prefetch unfriendly phases (categories MIPU and nMIPU), the prefetcher
could be turned off or throttled down with minimal impact on performance.
This claim can be observed at the end of the execution in Figure 4.1a, where
a significant amount of prefetches (notice the log scale) brings minor perfor-
mance benefits. Therefore, deactivating the prefetcher could result in impor-
tant main memory energy savings, especially in MIPU phases where a high
number of accesses can be reduced.

In prefetch friendly phases (categories MIPF and nMIPF), the prefetcher
should be enabled to enhance the performance; however, its aggressiveness
should be adjusted. This would reduce wasted energy and it is particularly
useful when executing multiprogram workloads, in order to leave more band-
width available to the co-runners. Especial care should be taken in the case
of nMIPF phases, since the potential energy savings might not justify the
possible performance losses.

4.2.2 Analysis in Multiprogram Execution

As mentioned above, prefetching brings scarce or null benefits in MIPU ap-
plications/phases in spite of having high memory activity. This observation is
especially relevant when individual prefetching requests compete among them
for main memory resources. Therefore, if prefetching were selectively disabled
in specific cores (and enabled when required), then, an extra amount of band-
width would become available for those co-running applications that really
benefit from it. Moreover, important savings in main memory energy could
be achieved.

This claim can be observed in Figure 4.2, which compares the memory activ-
ity and performance of a selective prefetcher (ADP, the prefetcher presented
in Section 4.3) with respect to an aggressive prefetcher when executing a 4-
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Figure 4.2: Selective ADP prefetcher vs. baseline prefetcher.

application workload. The IPC of the execution with ADP is normalized over
the baseline aggressive prefetcher. The value for each point has been computed
from the start of the execution. Therefore, the last value represents the final
normalized performance. It can be appreciated that the selective prefetcher
reduces the number of memory accesses (compare figures 4.2a and 4.2c) by
detecting phases in the individual benchmarks where the prefetchers can be
disabled. Not only does the reduction in prefetchers not decrease the perfor-
mance, but instead, as shown in Figure 4.2b, it increases it.

There are two points in Figure 4.2b of the execution of the applications that
are interesting to analyze. The first one, at the beginning of the execution, is a
significant increase in performance in comparison with the baseline prefetcher.
It appears because the selective prefetcher reduces the amount of prefetches
issued by libquantum and wrf. This reduction unclogs the main memory
access, improving the IPC across all the benchmarks. The other point of in-
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terest occurs when approximately 3.5e7 instructions have been executed. At
this point, the main memory suffers an important congestion that bottlenecks
the system performance. Consequently, the reduction of prefetches alleviates
the congestion, reducing the perceived memory latency, which turns into per-
formance enhancements. This claim can be observed in the 8% rise in the IPC
of bzip2 at the same point of the execution in Figure 4.2b. This application
is the most affected one, since it is the most memory intensive at that point.

Note that the minor performance loses exhibited by wrf (around 1%) are be-
cause the selective prefetcher prioritizes unclogging the main memory access
and reduces the aggressiveness of the core where wrf is being executed. How-
ever, this slight reduction in the performance of this application is clearly
compensated by the increase in performance that the co-runners experience.

The reduction in main memory accesses can be also appreciated in Figure 4.2d,
which presents, for each approach (not prefetching, baseline prefetcher and
ADP), the total amount of main memory reads, classified in two main groups:
prefetch requests and on demand accesses. Looking at the figure, two im-
portant observations can be drawn: i) the baseline prefetcher significantly
increases the total amount of main memory accesses in some applications over
not prefetching, while ADP does not suffer this drawback; and ii) an impor-
tant fraction of on demand accesses are replaced by prefetches, which indicates
that the prefetches are useful and their timeliness is adequate, since the block
is already in cache when requested, and thus, the main memory access is not
performed.

In summary, this analysis has shown that selective prefetching can provide a
good trade-off between main memory accesses reduction (and therefore, energy
savings) and performance. Moreover, a good design could enhance both of
them. The key challenge that designers must face is devise policies to decide
when individual prefetchers should be either activated or deactivated, and the
adequate prefetching aggressiveness.

4.3 ADP Mechanism

The proposed ADP approach, apart from throttling up or down core prefetch-
ers, also selectively activates and deactivates them, considering both local and
global information. This information is used by the devised mechanism to bet-
ter distribute the available memory bandwidth among the competing cores,
leading to a more effective prefetching scheme.
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Figure 4.3: ADP aggressiveness states and transition rules.

This section introduces the Finite State Machine (FSM) that governs the
behavior of the selective prefetcher and discusses the throttling/deactivation
and activation policies.

4.3.1 Finite State Machine of the ADP Prefetcher

Existing prefetchers generally use two metrics, accuracy (ACC) and coverage
(COV), to quantify the prefetcher performance. They are depicted in Equa-
tion 4.1 and Equation 4.2, respectively.

Accuracy =
Useful Prefetches

Total Prefetches
(4.1)

Coverage =
Useful Prefetches

Misses+ Useful Prefetches
(4.2)

Based on these performance metrics, the aggressiveness is throttled accord-
ingly. A recent metric that is being considered in multicore execution is the
memory bandwidth needed by others (BWNO) [19]. It is computed as follows.
First, we define the Bandwidth Consumed by Core i (BWCi) on a given cycle
as the number of DRAM banks servicing requests from core i. Therefore, for
a system with DDR3 memory modules and only one main memory rank, this
value is between 0 and 8. Additionally, we define the Bandwidth Needed by
Core i as the number of banks that are busy serving a request from a core
other than i, and that have requests pending from core i. Based on these
definitions, the Bandwidth Needed by Others (BWNO) from the perspective
of core i is computed as the sum of the bandwidth needed by the cores other
than i. While BWNO values are computed every cycle, they are averaged for
50K-cycle intervals.
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Thresholds

Low Accuracy Low Coverage Rise in misses High % ROB stall High BWNO
< 40% < 30% > 15% > 60% > 2.75 banks

Table 4.1: Thresholds used in ADP.

ADP uses the three mentioned metrics not only to throttle down the prefetcher
aggressiveness but also to completely deactivate the mechanism when it is es-
timated that the prefetcher is not obtaining performance benefits. In addi-
tion, an extra set of performance metrics has been explored to reactivate the
prefetcher. The final design uses two metrics to activate the prefetcher (see
Section 4.3.3): the percentage of time the Reorder Buffer (ROB) is stalled
due to a long latency memory access (referred to as ROB condition) and the
increase in the number of L2 misses (MISSES condition).

Notice that simple hardware is required to implement the ADP prefetcher
and much of it is based on performance counters already available in current
processors [38]. Both the per process number of cache misses and stall cycles
can be gathered on most current commercial processors with the available
performance counters. ACC can be calculated as the ratio of two hardware
counters that keep track of the number of useful prefetches and the total
number of prefetches in each core. This can be done by adding a single bit
to each cache entry to indicate that the block has been prefetched [83, 28].
The first counter is updated when there is a hit in a prefetched block, and
the second one is increased each time a prefetch is issued. COV requires a
counter for misses and a counter for keeping track of useful prefetches, already
described. With respect to BWNO, it requires three simple counters in the
memory controller which are updated every cycle.

Figure 4.3 depicts the FSM of the ADP prefetcher. The number between
brackets within each node represents a prefetcher aggressiveness level and the
arcs represent transitions between states. Transitions are labeled with the con-
dition driving the corresponding state change. Upward and downward arrows
in the labels mean high or low values (e.g. high or low accuracy), respectively,
compared to a threshold (see Table 4.1). These parameters were empirically
determined using a limited number of simulation runs and optimized to reduce
the number of memory accesses. Therefore, further performance improvements
could be achieved, but at the cost of increasing the number of main memory
accesses.
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if co-runners need more bandwidth (BWNO) then
if low accuracy and low coverage then

disable prefetch (2→ 0 ‖ 4→ 0)

else
reduce local aggressiveness (2→ 2 ‖ 4→ 2)

else
if low coverage then

increase local aggressiveness (2→ 4 ‖ 4→ 4)

Figure 4.4: Deactivation/throttling algorithm.

The devised policies adjust the prefetchers depending on the values of the men-
tioned performance metrics, which are gathered during fixed-length intervals
of 50K processor cycles. At the end of each interval, the hardware logic de-
termines the machine state for the following interval. Below, the deactivation,
throttling and activation policies are discussed in detail.

4.3.2 Deactivation and Throttling Policy

While the prefetcher is active, this policy is applied at the end of each interval
to decide, using the gathered data, if a prefetcher state change is required.
Three decisions can be taken: throttle up the aggressiveness, throttle down the
aggressiveness, or turn off the prefetcher. Algorithm 4.4 depicts the conditions
that must be satisfied to carry out such actions. On the right side of each
action, the associated transition in the FSM (Figure 4.3) is presented.

When some co-runners need more bandwidth, the option to reduce or even
deactivate the local prefetcher is checked. In case the local prefetcher is per-
forming poorly (low accuracy and coverage), then the prefetcher is completely
disabled. Otherwise, the aggressiveness is set to a medium level (remember
that ADP aggressiveness levels are to 0 –disabled–, 2, and 4) to increase mem-
ory bandwidth availability for the co-runners. On the other hand, if BWNO
is not a constraint and the local prefetcher is not saving enough cache misses
(low coverage), then the mechanism speculatively increases the aggressiveness
(aggressiveness level is set to 4, the maximum value) to improve its perfor-
mance. If this increase in aggressiveness does not work well, the algorithm
returns to the previous aggressiveness in the subsequent interval.
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4.3 ADP Mechanism

if sudden rise in misses (MISSES) or high ROB stalls due to memory
instructions (ROB) then

if co-runners do not need more bandwidth (BWNO) then
activate prefetcher (0→ 2)

Figure 4.5: Activation algorithm.
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(b) Performance of cactusADM in execution
with gcc, hmmer and libquantum.

Figure 4.6: Normalized IPC of ADP over the baseline prefetcher using different activation
conditions.

4.3.3 Activation Policy

This policy is applied to cores with a disabled prefetcher to decide whether
it should be reactivated for the next interval. When a local prefetcher is
disabled, all the prefetcher related structures like stride and pattern detection
are disabled, thus no information about the prefetcher activity is available.

The proposed activation policy estimates if there were noticeable performance
losses with respect to the last interval the prefetcher was enabled, and based
on this information it decides if the prefetcher should be reactivated. The
rationale for this is that execution phases tend to exhibit the same behavior
for a relatively long time, as found in Section 4.2.1. The challenge is choosing
the adequate performance metrics.

Several metric were explored to drive the activation policy. Among them, the
most promising were the IPC, the percentage of ROB stalls, and the MISSES
in the LLC. With respect to IPC and MISSES, the activation policy takes
into account the difference (in percentage) between the value in the current
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interval and in the last interval the prefetcher was enabled. Experimental
results proved that IPC and the percentage of time ROB is stalled are inversely
correlated, since when the ROB is blocked the core cannot keep decoding
instructions, and consequently, the IPC drops. In addition, the ROB is mainly
blocked because of long latency memory instructions, therefore a ROB based
metric can be used to provide insights about when the prefetcher can improve
performance. On the other hand, a primary goal of prefetching is saving cache
misses. Therefore, a sudden rise in misses since the last time the prefetcher
was enabled can be used as a hint to reactivate the prefetcher. The final design
activates the prefetcher when the ROB stalls or MISSES surpass a threshold.

Of course, using only one of them would be more restrictive and would provide
additional bandwidth savings, but at the cost of performance. Experimental
results show that the use of any of them alone yields to significant performance
losses in some applications of the studied workloads. This can be appreciated
in Figure 4.6. Each graph shows the IPC of an individual benchmark in multi-
core execution (normalized over the IPC obtained by an aggressive prefetcher)
for the proposed ADP approach using both activation conditions jointly (ROB
+ MISSES) and individually. As observed, at the end of the execution, using
the ROB condition alone drops the performance by 6% in mcf (Figure 4.6a)
and using only the MISSES condition penalizes performance around 7% in
cactusADM (Figure 4.6b).

Algorithm 4.5 summarizes the devised activation mechanism. If any of the
metrics (ROB stalls and cache MISSES) suffers a sudden rise, that is, if any of
the two conditions is meet, then the local prefetcher is activated, provided that
the co-runners do not need more bandwidth. The reason for this restriction
is that reactivating the prefetcher when bandwidth is scarce could rise the
congestion and damage the global performance.

4.4 Experimental Setup

As explained in Chapter 3 this proposal has been evaluated with the Multi2sim [91]
simulation framework. The Table 3.1 shows the configuration parameters of
the core, the interconnection network, and the main memory. In addition
to the hardware described in the table, the system has, per core, a stream
prefetcher that detects constant stride patterns in the accesses to the cache,
described in Section 3.1.3.

The experiments have been performed with 4-application multiprogram work-
loads composed of applications from the SPEC CPU 2006 benchmark suite.
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Mix type Benchmarks (categories)

Combined tonto (4) h264ref (3) hmmer (2) omnetpp (1)
bwaves (2) gamess (3) GemsFDTD (3) sjeng (3)
astar (1) bzip2 (1) gcc (2) GemsFDTD (3)
gamess (3) GemsFDTD (3) leslie3d (2) wrf (2)

Memory xalancbmk (1) gcc (2) gobmk (2) dealII (1)
intensive leslie3d (2) dealII (1) soplex (2) gromacs (2)

mcf (2) soplex (2) perlbench (2) xalancbmk (1)
dealII (1) soplex (2) xalancbmk (1) gobmk (2)

Table 4.2: Mix composition. Numbers 1, 2, 3 and 4 between brackets correspond to
categories MIPU, MIPF, nMIPU, and nMIPF, respectively, defined in Section 4.2.

Each application runs until it commits 300M instructions after executing 500M
instructions to warm up the system. To avoid performance differences caused
by early finalization of the execution of some benchmarks, all the applications
are kept running until the slowest benchmark commits the targeted number
of instructions. This implies that some benchmarks will execute more instruc-
tions than the targeted number. Consequently, metrics are only gathered for
the first 300M committed instructions.

4.4.1 Mix Design

The characterization study presented in Section 4.2, classified application
phases in four categories. The same rationale, however, can be used to classify
applications. Following this approach, the applications in the SPEC CPU 2006
benchmark suite have been classified, and a set of workloads mixes has been
designed to study the effects of prefetching on performance and energy in two
main scenarios: under normal conditions and in more demanding conditions
that stress the main memory.

To evaluate the first scenario, four mixes were designed with benchmarks ran-
domly chosen from all the identified categories. To evaluate the second sce-
nario, the designed mixes only contain memory intensive applications from
MIPU and MIPF categories. The first type of mixes are referred as combined
and the second as memory-intensive. Table 4.2 details all the mixes. Mixes
from m0 to m3 are combined and mixes from m4 to m7 are memory-intensive.
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4.5 Evaluation

To evaluate the proposed prefetcher, ADP is compared to the same system
without prefetching and two other prefetchers: HPAC [19] and an aggressive
prefetcher. HPAC is an adaptive prefetcher that implements throttling up
and down policies to control the aggressiveness. The aggressive prefetcher is
always working at the maximum aggressiveness level (it brings 4 extra blocks of
data each time a strided access pattern is detected). The adaptive prefetchers
(HPAC and ADP) use 2-block and 4-block as middle and high aggressiveness
levels, respectively. The lowest aggressiveness is set to 1-block for HPAC
(HPAC does not deactivate any prefetchers), while it is 0 for ADP, since
it may completely deactivates some prefetchers. The ADP threshold values
used in the experiments for Algorithm 4.4 and Algorithm 4.5 are shown in
Table 4.1. In the case of HPAC, the configuration parameters where derived
from the original publication [19].

4.5.1 Performance and Unfairness Analysis

To ensure that the proposed approach does not interfere in the performance of
the applications when they run without co-runners, and to measure the effect
of prefetching without interference in the main memory, Figure 4.7 shows the
IPC of the applications of the SPEC CPU 2006 suite when they run alone in
the multicore. Labels No pref and Pref in the figure refer to no prefetching
and the aggressive prefetcher, respectively, while HPAC and ADP are the
adaptive prefetchers. As can be observed, aggressive prefetching (Pref ) brings
important performance benefits to most applications. Performance improves
on average by 12% over no prefetching and up to 30% in gromacs. Notice
that the adaptive prefetchers perform better than the aggressive prefetcher
in some applications like bwaves, in which ADP achieves 7% more IPC than
Pref. This means that aggressive prefetching may be suboptimal even when
an application is executed alone, so it may become a problem when executing
with co-runners. Therefore, adaptive prefetchers may be used in multicores to
sustain the performance.

After analyzing the applications in isolation, the rest of this section focuses on
multicore execution, evaluating the performance and unfairness of the proposal
with the metrics defined in Section 1.1.6. Figure 4.8 shows the STP achieved
by the studied approaches for each workload. The three last columns (gm 0–3,
gm 4–7 and gm) represent the geometrical mean for the combined workloads
(0 to 3), the memory intensive workloads (4 to 7), and all of them, respectively.
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Figure 4.7: Performance of prefetchers running benchmarks in isolation.

As can be observed, the aggressive prefetcher improves the performance com-
pared to no prefetching for combined mixes, but decreases the performance
in most of the memory intensive mixes. On the other hand, the adaptive ap-
proaches, which stress less the memory hierarchy, perform significantly better
than the aggressive prefetcher in both combined and memory intensive mixes.
The performance drop that the aggressive prefetcher experiences in memory
intensive workloads is mainly due to timeliness. That is, the prefetched data
comes too late from main memory because of the longer latencies experienced
in memory intensive mixes, so the data is not ready when needed [97]. This ex-
acerbates when all the cores prefetch aggressively, since inter-core interference
rises.

Compared to the other approaches, ADP achieves, on average, better perfor-
mance regardless of the type of mix. ADP increases STP by 6% on average
with respect to no prefetching considering both types of mixes while HPAC
only improves it by 4%. The aggressive prefetcher, on the other hand, has
more modest gains, improving STP by 1% on average. An important obser-
vation is that in memory intensive mixes, ADP is the only approach whose
performance is on par with or higher than no prefetching. However, in work-
load 0 HPAC is the best performing approach, but only by a slim margin.
The reason is that in this case ADP is too conservative, keeping the prefetcher
disabled for too much time. Despite that, it performs better than the baseline
prefetcher, and the difference with HPAC is smaller than 1%.

Since ADP reduces interference when accessing the main memory, this section
also quantifies its effect on the system unfairness, with Figure 4.9 comparing
the unfairness results of the evaluated approaches. As the figure shows, all the
prefetching mechanisms increase the unfairness with respect to no prefetching.
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Figure 4.8: STP normalized with respect to no prefetching.
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Figure 4.9: Unfairness of the different approaches.

While this is an interesting finding, it These results were expected, since main
memory contention increases due to prefetch requests. However, ADP clearly
has less unfairness than the other approaches, with only 0.07. In comparison,
HPAC has 0.12 and Pref 0.11. Notice that, in spite of HPAC having less main
memory accesses than Pref, it is more unfair. The reason is that it grants more
bandwidth to the applications that are already performing well, increasing the
differences between applications. As a consequence, unfairness rises. On the
other hand, ADP performance gains are better distributed between co-runners,
so it presents less unfairness.
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Figure 4.10: Main memory requests normalized with respect to no prefetching.

4.5.2 Prefetch Activity Reduction Analysis

This section shows how ADP saves memory traffic by reducing the amount of
prefetches with respect to HPAC and aggressive prefetching. Figure 4.10 shows
the number of main memory requests of the studied prefetchers normalized
to no prefetching. The aggressive prefetcher increases the amount of memory
requests compared to no prefetching by 53%. In contrast, HPAC and ADP
reduce this amount to 36% and 21%, respectively. Therefore, considering
these results jointly with the ones presented in the previous section, one can
conclude that ADP improves the performance by significantly reducing the
amount of useless prefetches, saving energy and bandwidth.

4.5.3 Main Memory Energy Analysis

This section compares the main memory energy consumption of the studied
schemes. Figure 4.11 presents the energy results of the DDR3 DRAM memory
subsystem. Unlike IPC and memory requests, which are gathered when a
benchmark commits 300M instructions (see Section 4.4), energy consumption
at the main memory is gathered at the end of the execution of the mix for
simplification purposes. Therefore, energy results also consider those memory
accesses issued after a benchmark executes 300M instructions (where IPC
and memory requests metrics measured) until the slowest benchmark of the
mix finishes its execution. This means that the presented energy results are
conservative and it is the reason why the differences in Figure 4.11 are not so
wide as in Figure 4.10.

Energy results are broken down in four components depending on the memory
activity that consumes the energy: i) activation and precharge, ii) background
energy, iii) data bursts, and iv) refresh. The first component accounts for
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Figure 4.11: Energy consumption of the prefetching mechanisms.

the energy consumed activating rows for reads and writes, plus the energy
consumed due to precharging the bitlines. The second component refers to the
energy consumed in background to keep memory devices powered on. Burst
energy is consumed when data are transferred on the memory bus write and
read operations. Finally, refresh energy is required to avoid capacitors loose
the stored value.

The studied prefetchers differ in the number of memory accesses they per-
form, so this section focuses on energy consumed by DRAM memory modules.
Nevertheless, the important reduction in the number of prefetches is also ex-
pected to save dynamic energy in the LLC and in the NoC, since there are
less accesses and traffic.

As expected, the prefetching schemes consume more activation and precharge
energy as well as burst energy than no prefetching. The reason is that more
main memory requests are served, as can be observed in Figure 4.10. On the
other hand, prefetching helps to reduce both background and refresh energy,
especially in combined workloads, because of the reduction in the execution
time.

The aggressive prefetcher increases the total energy consumed by the DRAM
by 20% over no prefetching, on average. This increase in energy consumption
may be unacceptable, especially taking into account that aggressive prefetch-
ing can damage the performance in memory intensive workloads. In summary,
ADP achieves the performance gains presented in Section 4.5.1 with a minimal
impact on the consumed main memory energy, a 3% increase. In comparison,
HPAC has a much large impact, with a 12% increase in energy consumption.
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Figure 4.12: Effect of changing the minimum aggressiveness of ADP from 0 (completely
disabled) to 1 in the number of prefetch requests.

4.5.4 Benefits of Deactivating the Prefetcher

To quantify which part of the benefits come from completely deactivating the
prefetcher, we increased the minimum aggressiveness of ADP from 0 (disabled)
to 1, keeping unchanged the remaining state machine (see Figure 4.3). In
other words, the only difference is that this approach transits to a minimum
aggressiveness level instead of turning off the prefetcher.

Figure 4.12 shows how the number of prefetches increases (in percentage) when
the minimum aggressiveness is set to 1 instead of completely turning off the
prefetcher. As observed, keeping activated the prefetcher even with minimum
aggressiveness increases the number of prefetches on average by 36% in com-
bined mixes and by 7% in memory intensive mixes. Moreover, this reduction
is achieved with minor performance differences (less than 1% on average, not
shown in the figures). If the total number of memory requests (prefetches and
on demand accesses) are taken into account, the overall amount of requests
increases by 6% and by 2% for combined mixes and memory intensive mixes,
respectively, when the prefetcher is not deactivated. These results show that
i) deactivating the prefetcher plays a key role in the reduction of memory ac-
cesses, and ii) the devised activation/deactivation policies work properly, as
performance is not damaged.
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Figure 4.13: Normalized STP for the studied mixes with an Intel-like PC-based stride
prefetcher.
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Figure 4.14: Relative increase in memory accesses, compared with no prefetching, using
an Intel-like PC-based stride prefetcher.

4.5.5 Analysis with a Different Underlying Prefetcher

The results presented in the previous sections have all been obtained using
a CZone-based stream prefetcher that detects strides in the load requests.
Nevertheless, both ADP and HPAC, and in general other techniques that
smartly adapt the prefetching aggressiveness, are orthogonal to the underlying
prefetcher. To back this claim, this section presents some results obtained with
a different prefetcher, inspired in one used by current Intel processors [1], that
detects strided patterns in load streams, classifying them using the Program
Counter (PC).

Figure 4.13 and Figure 4.14 show the results. Although we do not see the
performance increases 4.13 shown in previous sections, ADP’s performance is
only slightly lower than the aggressive prefetcher, with much less main memory
accesses, and it is better than HPAC. The reason for the lack of performance
gains is that the thresholds used to transition to the different states of the
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activation/deactivation mechanism were not tuned for this prefetcher, so they
need refinement, which is out of the scope of this work. The reduction in main
memory accesses, however, is similar to what was shown in Section 4.5.2.

4.6 Summary

This chapter has characterized the behavior of hardware prefetching for multi-
program workloads running on multicore processors in limited memory band-
width scenarios. The characterization study has shown that applications usu-
ally exhibit different execution phases from the prefetching perspective. In
some of these phases, the core prefetcher has a minimal impact on the appli-
cation performance, so it could be disabled making more bandwidth available
to the other co-running applications. This approach often improves their co-
runners’ performance and saves energy, especially in main memory modules.

In this regard, this chapter has proposed the ADP selective prefetcher, that
dynamically deactivates, activates and throttles individual core prefetchers.
A core prefetcher is deactivated when the co-runners need more bandwidth,
provided that the local prefetcher presents low accuracy and coverage. ADP
smartly reactivates the prefetcher based on activation conditions that estimate
if prefetches will improve the system performance, but only if the co-runners
do not need more memory bandwidth. ADP increases the system performance
without increasing the system unfairness, and since it reduces the amount of
requests sent to main memory, it significantly reduces the energy consump-
tion.
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Chapter 5

Improving Fairness with LLC
Partitioning

This chapter proposes Fair-Progress Cache Partitioning (FPCP), a low-over-
head hardware-based cache partitioning approach that addresses system fair-
ness. FPCP reduces the inter-application interference in the shared LLC by
allocating to each application a cache partition and adjusting the partition
sizes at runtime. To adjust partitions, our approach estimates during multi-
core execution the time each application would have taken in isolation, which
is challenging.

5.1 Introduction

Shared caches can be found in the vast majority of modern multicore and
many-core processors. The main reason is that cache sharing improves through-
put for a given silicon area. As a consequence, recent microprocessors incorpo-
rate shared caches in almost all, if not all, levels of the cache hierarchy. In this
regard, all cache levels (e.g. L1, L2 and L3) are shared in simultaneous mul-
tithreading (SMT) processors, e.g. the multicore IBM Power8 processor [82]
and the many-core Knights Landing Intel Xeon Phi [84]. The benefits of cache
sharing are also exploited in the embedded market, e.g., the L2 cache in the
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Figure 5.1: Progress and unfairness for 8 applications running concurrently during 120
seconds.

ARM Cortex-A53 processor [33]. Cache sharing, however, introduces inter-
ference when the co-running threads dynamically contend for cache resources.
Consequently, the performance of individual applications can be worse than
when executed alone, depending on how severe the contention is. This causes
an unfairness problem, which is a major concern in current multicores.

To illustrate the unfairness problem, Figure 5.1 shows the progress of eight
applications running concurrently. Each bar of the figure is labeled with the
application it belongs to, and the horizontal line represents the system unfair-
ness when executing this workload. It can be appreciated that astar is the
most progressing application, with a progress rate of 0.88 (i.e. 1.14 slowdown)
and xalancbmk is the least progressing application, with a progress rate of
0.20 (5.05 slowdown). The unfairness is, therefore, 0.46, which means that
progress differences in this workload are quite significant and that they may
be an issue.

To address unfairness in modern multicore processors, this chapter proposes
Fair-Progress Cache Partitioning (FPCP), a low-overhead hardware-based
cache partitioning approach that reduces cache interference by allocating a
cache partition to each application and adjusting its size dynamically at run-
time, since the cache requirements of each application vary during its execu-
tion. Thus, FPCP acts periodically, modifying the number of ways allocated
to each partition, giving more cache space to those applications suffering more
slowdown. Section 5.4 explains the proposal in detail.

A key characteristic of FPCP is that the number of cache ways assigned to
a given application can only vary in one-unit steps between two consecutive
intervals. This particularity makes the hardware simpler, the mechanism more

54



5.1 Introduction

resilient to deviations in the estimations and, as experimental results will show,
allows the system to achieve the best cache distribution. However, the slow-
down an application suffers is unknown at runtime, so a key challenge to deal
with fairness is the estimation of the execution time each application would
experience in isolation. To deal with this issue one needs a performance model
that, taking the performance of each application in concurrent execution with
other applications and the inter-application interference as inputs, provides
accurate performance estimations of isolated execution as output.

Two approaches have been recently proposed to estimate isolated execution
performance. The first one, Per-Thread Cycle Accounting (PTCA) [15], iden-
tifies at run-time the cache misses that would have not occurred in isolation
(i.e. inter-application misses). Then, the amount of cycles the reorder buffer
(ROB) is blocked due to these misses is subtracted from the total execution
time to obtain an estimation of the execution time the application would expe-
rience if executed without co-runners. The other, Application Slowdown Model
(ASM) [87], is conceptually similar. However, ASM uses the Cache Access Ra-
tio (CAR), cache accesses per time unit, as a proxy for performance. In this
work, both approaches have been implemented in order to check and evaluate
our proposal. Experimental results show that the ASM approach is slightly
more accurate than PTCA. Section 5.3 explains the differences between these
two approaches and compares them.

Finally, Section 5.6 compares FPCP with two state-of-the-art cache parti-
tioning mechanisms, Utility Cache Partitioning (UCP) [70], by Qureshi and
Patt, and ASM-Cache, a proposal by Subramanian et al. [87] that works on
top of the ASM performance model. While both help to reduce unfairness,
they present several drawbacks: i) since finding the optimal partitioning is
a NP-hard problem [71], both UCP and ASM-Cache employ a O(n2) greedy
algorithm, compromising scalability; ii) they strongly depend on the accuracy
of the estimation of the execution time in isolation, so errors in this estima-
tion can have a big impact on application progress and system unfairness, and
iii) both rely on the cache replacement policy obeying the stack property [59]
(as with LRU) and in being able to track the number of hits in each frame
of the replacement policy stack. In contrast, FPCP avoids these limitations
by featuring an incremental cache partitioning algorithm, which is both less
complex and more resilient to estimation errors.

This chapter makes the following contributions.

• We characterize the applications from SPEC CPU2006 and NAS bench-
mark suites according to their relationship between progress and shared
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(a) 2MB-16w LLC

(b) 4MB-32w LLC

Figure 5.2: Effect of the available number of ways on progress, sorted by 1-way progress,
for applications of the SPEC CPU 2006 and NAS benchmark suites.

cache interference, analyzing how unfairness may be affected depending
on both the co-running applications and the available cache resources.

• We implement and compare two different models to estimate isolated
execution performance, PTCA and ASM, concluding that ASM is slightly
more accurate.

• We propose FPCP, a simple, cost-effective and scalable cache partitioning
mechanism that improves system fairness regardless of the number of
contending applications.

• We show that FPCP achieves better fairness than two state-of-the-art
cache partitioning mechanisms, UCP and ASM-Cache, across a wide
range of workloads and system configurations.
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5.2 Analysis of the Inter-Application Cache Interference

The interference an application suffers when contending for the shared re-
sources with other applications has an unpredictable impact on its progress
(Equation 1.1), and thus in the unfairness of the system, measured as in Equa-
tion 1.3.

To help to understand the causes of unfairness, this section analyzes how
the progress of each individual application is affected when the amount of
assigned cache ways varies from 1 way to the total available, simulating other
applications competing for the same cache resources1.

Since results depend on the cache geometry, to focus the analysis we first con-
sider a 2MB-16w LLC cache. Figure 5.2a shows the progress rate (from 0%
to 100%) achieved by the different applications (sorted by ascending progress
with 1 cache way) when varying the number of assigned cache ways. For in-
stance, povray achieves a progress rate of around 39% with just 1 cache way
and requires 2 and 3 ways to increase its progress up to 82% and 100%, re-
spectively. These results have been obtained using the simulation environment
described in Section 5.6.

According to the number of ways required to achieve a significant progress
(e.g. 80%), three main categories of applications can be distinguished: cache-
insensitive, highly cache-sensitive and moderately cache-sensitive. The former
group contains those applications whose progress is barely affected by the
number of cache ways assigned to the application, that is, a single cache way
is enough to achieve significant progress. The second and third categories
group those applications whose progress is sensitive to the number of ways.
However, while applications in the second group require a high number of
cache ways (e.g. half the number of the total cache ways), applications in the
last group require a relatively low (e.g. from 2 to 4) number of ways to achieve
significant progress.

Next, we illustrate how this information can be used to provide an overview
analysis about system unfairness through two examples: one with low unfair-
ness and another one with a high level of unfairness.

Low-unfairness example. Assume that cactusADM and milc run together.
In this case, unfairness would not be a concern since both applications are

1The progress of a task when running in the cache with a reduced number of ways, say w, is
computed as the execution time of the task when it has the entire cache for itself (i.e. 16 ways and
no interference) divided by the execution time taken in the constrained cache.

57



Chapter 5. Improving Fairness with LLC Partitioning

classified as cache-insensitive progress, and the progresses of both applications
would be higher than 97% regardless of the cache way distribution.

High-unfairness example. Assume now that the applications running to-
gether are cactusADM and xalancbmk. The former is an application with
cache-insensitive progress while the latter is classified as highly cache-sensitive
progress. Thus, when executed together, cactusADM only requires one way to
achieve a notable progress, while xalancbmk requires significantly more cache
resources to have an adequate progress rate. However, due to its poor cache
locality under the typical LRU replacement algorithm, which is the reason its
progress is so cache insensitive, cactusADM uses around 10 out of 16 cache
ways, leaving to xalancbmk only the remaining 6. Consequently, the progress
of xalancbmk drops below 80%, which yields the system to an unfairness level
of around 18%.

An analogous characterization study has been performed for a 4MB-32w cache
(see Figure 5.2b). It can be noticed that, although using the same sorting
approach, the relative order of the workloads in Figure 5.2a and in Figure 5.2b
is slightly different. This can occur when the working set fits in the larger cache
or when the larger cache improves the hit ratio enough to significantly reduce
cache trashing.

5.3 Analysis of Progress Estimation Approaches

FPCP employs auxiliary circuitry to estimate the execution time each ap-
plication would have experienced if executed without co-runners, since this
information is required to estimate the progress of the application, see Equa-
tion 1.1. Then, the progress results are used to select cache partition sizes.
Therefore, if estimations are not accurate enough, it is likely that the cache
partitioning will perform poorly.

There are are two recent approaches to estimate performance without co-
runners: Per-Thread Cycle Accounting (PTCA) by Du Bois et al. [15] and
Application Slowdown Model (ASM) by Subramanian et al. [87].

To implement and evaluate FPCP, we first implemented and compared the
PTCA and ASM models to obtain progress estimations, based on the guide-
lines discussed in the original works. To make this chapter self contained,
some key guidelines are discussed below. Please, refer to the original work for
further details.
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Both approaches make use of an Auxiliary Tag Directory (ATD) per core,
which is a structure that keeps track of what the status of the shared cache
would have been if it were private to the core [70]. Note that if SMT is used
and one wants to distribute cache resources per-application instead of per-core,
then an ATD per thread is required and the mentioned models need to take into
account the interference between threads at the shared cache levels above the
LLC. The key challenge lies on obtaining accurate estimates of performance
in isolation by using information gathered during execution with co-runners.
This can be done by subtracting the cycles an application makes no progress
due to interference caused by co-runners from the concurrent execution time
(see Equation 5.1, where Ct,alone is the execution cycles when executed alone,
Ct,multicore the execution cycles when executed with co-runners, and It,multicore

represents the stall cycles due to interference).

Ct,alone = Ct,multicore − It,multicore (5.1)

Using the ATD, PTCA identifies at run-time the LLC cache misses that would
have not occurred in isolation (i.e. inter-application misses). Then, the amount
of cycles the Reorder Buffer (ROB) is blocked due to these misses is accounted
as interference cycles.

The approach followed by ASM is conceptually similar. However, ASM uses
the Cache Access Rate to the LLC (CAR, accesses per cycle) as a proxy
for performance. CARt,multicore is obtained during execution with co-runners
and it is defined as in Equation 5.2. On the other hand, CARt,alone is esti-
mated dividing the number of cache accesses to the LLC by the cycles elapsed
minus the cycles lost due interference (see Equation 5.3). Notice that the
fraction’s denominator of the latter equation matches Ct,alone when applying
Equation 5.1.

CARt,multicore =
#LLC Accesses

Ct,multicore

(5.2)

CARt,alone =
#LLC Accesses

Ct,multicore − It,multicore

=
#LLC Accesses

Ct,alone

(5.3)

Considering these metrics, progress is approximated in ASM as shown in Equa-
tion 5.4. Note that the original ASM paper estimates slowdown instead of
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Figure 5.3: Progress estimation error with ASM and PTCA.

progress but, since one is the inverse of the other, both can be used with the
same aim.

Progresst ≈
CARt,multicore

CARt,alone

=

#LLC Accesses
Ct,multicore

#LLC Accesses
Ct,alone

=
Ct,alone

Ct,multicore

(5.4)

ASM uses a different method than PTCA to compute the interference cycles.
Instead of tracking the time the ROB is stalled due to interference, they mul-
tiply the number of inter-application misses (obtained with the ATD) by the
average cache miss service time. Note that both ASM and PTCA provide
mechanisms to separate and identify interference coming from different parts
of the system so, while in this work we are only targeting LLC-originated
unfairness, additional sharing policies, orthogonal to our proposal, could be
implemented in other shared parts of the system, like the memory controller
or the NoC [61, 51, 93] to further reduce unfairness.

We compared the accuracy of both ASM and PTCA and we found that, in
our experimental setup, ASM was slightly more accurate than PTCA. Thus,
results will be presented only with the ASM model. Figure 5.3 shows the
average and the standard deviation of the estimation error across the studied
workloads varying the number of applications running concurrently.
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Figure 5.4: Logical tree structure used by FPCP.

5.4 FPCP Partitioning Approach

As mentioned above, a system is totally fair if all the co-running tasks progress
at the same pace with respect to isolated execution. The proposed partition-
ing approach pursues to minimize system unfairness by narrowing progress
differences among co-executing tasks. FPCP gathers interference data during
multicore execution at regular intervals, and then estimates progress at the
end of each interval according to Equation 5.4 and distributes cache ways.

We evaluated different interval lengths and found that the best results for
FPCP were obtained with intervals of 5K misses. The reason we use misses
to define the interval length instead of cycles is that this way responsiveness
is increased during execution phases with lots of cache accesses.

Next, we analyze the scalability of FPCP with the number of cores, we discuss
the reasons behind using binary trees as underlaying structure, and finally, we
estimate the proposal overhead.

5.4.1 Algorithm and Hardware Implementation

FPCP implements a hardware tree-based algorithm, which requires little extra
logic [3]. The set of n applications running in the processor is subdivided
recursively until the subsets have only two applications, and a binary tree with
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the n applications at the leafs is constructed. Figure 5.4 shows the resulting
tree for 8 applications sharing a cache in an 8-core CMP.

Each leaf node contains the number of ways assigned to the corresponding
application as well as the Modified Moving Average (MMA) [47] of its progress
(see Equation 5.5).

MMAi = MMAi−1 + f(Progressi−1 −MMAi−1)|f=0.1 (5.5)

The reason why we use the MMA is that it approximates a conventional mov-
ing average, but only requires the previous average and the progress from
the current interval to compute the average for the next. In addition, it re-
tains enough previous information to make solid partitioning decisions while
allowing a fast reaction time to changes in the workload behavior.

Each non-leaf node, on the other hand, stores i) the total number of ways
assigned to its children and ii) the minimum progress (MMA) between its
children. Note that, to ease the understanding of the example, in Figure 5.4
we use dashed lines to indicate which child node has the minimum progress.

Each Level i in the tree except Level 0 has an associated number of intervals
Ii, where i indicates the level depth. Every Ii intervals the algorithm listed in
Figure 5.5 is applied to the nodes in Level i (i ≥ 1). For each node in that
level, the minimum progress between its children is determined and stored in
the node by checking only the lower level. Then, there are three possible cases:
À The node has the same number of ways as its children combined. When this
occurs, the most progressing child relinquishes a way (provided it has more
than one) in favor of the least progressing child. Á The node has more ways
assigned than its children. In this case no child has its ways reduced, but
the least progressing node gains a way. Â The node has less ways assigned
than its children. If this happens, then no child receives a way, and a way is
subtracted from the most progressing child, if possible, or its brother, if not.

In Figure 5.4, node #8 is an example of case À. When the algorithm is applied
to this node, a way is transferred from node #1 to #0. On the other hand,
node #11 is an example of case Á. It has 11 assigned ways, but one of these
ways is not assigned either to node #6 or node #7. This can happen if node
#10 gave a way to node #11 in a previous application of the algorithm in the
upper level (node #13). So, when the algorithm is applied to #11, #7 gains a
way, and #6 is not affected. Finally, node #10 is an example of case Â, since
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foreach n ∈ Nlevel do
if n.left.progress < n.right.progress then

least← n.left
most← n.right
n.prog ← n.left.progress

else
least← n.right
most← n.left
n.prog ← n.right.progress

if n.ways == most.ways+ least.ways then
if most.ways > 1 then

most gives 1 way to least

else if n.ways > most.ways+ least.ways then
least gains 1 way

else
if most.ways > 1 then

most loses 1 way

else
least loses 1 way

Figure 5.5: FPCP algorithm.

it has less ways assigned than its combined children. Again, this situation can
occur due to a previous application of FPCP in an upper level.

From now on, we assume I1 = 1, I2 = 4, and I3 = 8, which are the values
we used to obtain the experimental results in Section 5.6. Therefore, way
transfer at Level 1 will occur every 1×5K misses; at Level 2 every 4×5K
misses, and at Level 3 every 8×5K misses. Additionally, progress is computed
every 1×5K misses. While we transfer ways one at a time, this value can be
increased, but there is a trade-off between responsiveness and a higher penalty
due estimation errors. In addition, a threshold could be used to only transfer
ways if the progress difference is considered significant.
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Item General cost Cost for a Cost for a

4-core CMP 8-core CMP

Core ID per tag Cache blocks × log2 cores 131072 bits 393216 bits

Alternate Tag Directory Sampled sets × associativ-
ity × (tag + replacement
bits) × cores

237568 bits 475136 bits

Per-core interference cycle
counter

32 bits × cores 128 bits 256 bits

Counters for the total num-
ber of accesses, sampled ac-
cesses and inter-application
misses

3 × 20 bits 60 bits 60 bits

Per-core counters for hit
and miss service times

16 bits × 2 × cores 128 bits 256 bits

FPCP tree cost (2 × cores - 1) × (32 bits +
log2 associativity)

259 bits 555 bits

Total 369215 bits 869479 bits

Percentage area overhead
w.r.t. shared cache

1.10% 1.30%

Table 5.1: Detailed FPCP hardware overhead.

5.4.2 Rationale for Using Binary Trees as the Underlying
Structure

FPCP’s goal is to ensure that applications progressing the most relinquish
cache resources, and that the freed cache resources are assigned to those ap-
plications progressing the least. A simple approach could be to only transfer
resources from the most progressing application to the least progressing appli-
cation, since finding the minimum and maximum elements in a set has a O(n)
cost, being n the size of the set. However, the benefits of this approach do not
scale as the number of applications increases, since we are considering only two
applications and ignoring the rest. The distribution of cache resources would
be, therefore, not responsive enough. Other approach could be to sort the
applications by progress and adjust all the partitions according to this infor-
mation. Although the idea seems appealing, the sorting cost is O(n∆log(n)),
which could make prohibitive the hardware implementation cost. Using a bi-
nary tree and making updates by levels maintains the benefits of potentially
exchanging ways between all the applications, while keeping complexity O(n).
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The reason for using different delays to update the levels of the tree is to leave
some time for the changes to settle in the lower levels, which lead to better
overall results. Arguably, other data structures could be used instead of bi-
nary trees, but binary trees have been used because both their simplicity and
straightforward scalability to greater numbers of applications.

5.4.3 Overhead Analysis

This section analyzes the FPCP overhead in terms of hardware and timing
complexity for 4- and 8-core systems.

The proposed approach assumes a thread-aware LRU replacement algorithm [42,
70, 88]. Therefore, each cache block is tagged with the associated thread it
belongs to (i.e. a 2-bit tag for a cache shared among four threads). As de-
picted in Table 5.1, this implies around 35% and 45% of the total overhead for
4 and 8 cores, respectively, which accounts for 1.10% and 1.30% of the area of
the entire shared cache (4/8 MB). Notice, however, that some processors al-
ready implement this capability; for instance, recent Intel Xeon processors [37,
32] feature cache utilization monitoring and cache partitioning, referred to as
Cache Monitoring Technologies (CMT) and Cache Allocation Technologies
(CAT), respectively, that can be used for this purpose. Although CAT could
be, in principle, used to this end, notice that CAT is designed to be controlled
by software, while our approach works at hardware level, with a granularity
orders of magnitude smaller (i.e. ns vs ms). Anyway, if the processor im-
plements these features, the total hardware overhead would drop to around
0.71% for both configurations, assuming that we still use the ATD to estimate
progress.

The ATD is the other key hardware structure incurring overhead. As men-
tioned above, this component is used, one per core, to track inter-application
interference. However, to reduce hardware costs we only monitor a subset of
64 cache sets, and the results are extrapolated with minimal impact on accu-
racy [15]. ATDs account for 64% and 54% of the total overhead, for 4 cores and
8 cores, respectively. The remaining components, included the tree structure
required by FPCP, incur in a minimal hardware overhead (less than 1%) and
the other values used by the proposal (e.g. CPI and number of cache misses)
that do not appear in the table can be gathered from performance counters
available in most multicores, so they do not incur in additional overhead.

Each I1×5K misses interval, the progress of all the applications is updated in
the leaf nodes. Additionally, each Ii intervals, the algorithm listed in Figure 5.5
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(which has a constant execution time) is applied to the Level i of the tree.
Therefore, the cost of FPCP is of O(n) since each interval a number of nodes
that depends linearly on the number of applications (n) must be traversed.
Further timing analysis are discussed in the next section.

5.4.4 Main Differences with the ASM-Cache Approach

FPCP differs from ASM-Cache both in the criteria applied to distribute cache
ways and in the hardware implementation complexity.

ASM-Cache distributes cache ways among applications in a greedy way, ac-
cording to the estimates of the execution time in isolation. Thus, the number
of assigned ways to a given application can highly vary between two succes-
sive intervals. For instance, an application could have assigned a few ways
(e.g. two out of sixteen) in a given interval and almost all the cache ways
(e.g. fourteen or fifteen) in the subsequent interval, or vice versa. As a con-
sequence, inaccurate estimations can severely impact on the system fairness.
Unlike this approach, what we propose is to distribute cache space in steps
of a single cache way between consecutive intervals. Notice that our proposal
is, in essence, based on relative estimates instead of absolute ones. This way
makes our approach more resilient to possible inaccuracies in the estimation
process.

Regarding complexity, ASM-Cache relies on the cache replacement policy
obeying the stack property [59] (as with LRU) and in being able to track
the number of hits in each frame of the replacement policy stack. Moreover,
since finding the optimal partitioning is a NP-hard problem [71], ASM-Cache
employs a O(m2) greedy algorithm (where m is the cache associativity) to
search for an adequate partitioning. All these reasons difficult the design of
a viable hardware implementation. Instead, as discussed above, the cost of
FPCP is only O(n) (with n being the core count).

We experimentally measured the time taken by both the FPCP and other
approaches, i.e. ASM-Cache, on a 2.2GHz Xeon, as an approximation of the
time taken by the hardware. Regarding FPCP, the algorithm takes between
100 – 800 cycles, depending on the depth of the specific level of the tree being
considered. The algorithm is triggered when a given number of cache misses
is reached, which translates to around 500K cycles on average, but it is highly
dependent on the workload. On the other hand, the time taken by ASM-
Cache is about 120K cycles, and the algorithm is triggered each 5M cycles.
This means that the overhead of FPCP falls in between 0.02% and 0.16%,
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while the overhead of ASM-Cache is at least one order of magnitude higher,
i.e. by 2.4%. This was expected, since ASM-Cache has quadratic complexity
while FPCP’s complexity is linear.
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Figure 5.6: Dynamic hmmer-mcf evolution.

5.5 Experimental Setup

We modeled all the studied approaches and performed a microarchitectural,
cycle-by-cycle simulation by extending the Multi2Sim simulation framework.
The proposal has been evaluated varying the number of applications (i.e. cores
in our system) sharing the cache. We have studied a cache shared by two, four,
and eight applications, which covers a representative range of shared caches
in current multicores (e.g. ARM processors).

Each processor core has private 32KB 8-way L1 caches, while the shared cache
has a capacity of 1MB per core in the system (e.g. 8MB for the 8-core multi-
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core). The shared cache for the 2-core processor has 16 ways, while the others
have 32 ways. Section 3.1.3 describes the main architectural parameters.

FPCP was evaluated and compared against a baseline shared cache using
the LRU replacement policy without partitioning (referred to as NoPart) and
against two state-of-the art approaches (i.e. UCP and ASM-Cache). In the
UCP scheme, each core has a small utility monitor based on dynamic set
sampling (UMON-DSS) with 64 sets. This monitor estimates how well each
core makes use of cache capacity, and distributes cache resources to minimize
the overall number of misses.

With respect to ASM-Cache, it employs a mechanism similar as the used by
UCP, but with a different aim. Instead of trying to minimize misses, the
mechanism estimates how the slowdown of a given application will be affected
according to the number of ways allocated to it, so the optimal partitioning is
the one that minimizes the per application slowdown.

Experiments were run with multiprogram workloads from both the SPEC
CPU 2006 and NAS benchmark suites. Three different sets of workloads were
considered, varying the number of applications sharing the cache. We used
100 2-application, 175 4-application and 50 8-application workloads to con-
sider a wide range of scenarios. All the workloads were randomly generated,
and results were collected simulating each workload for 2-billion cycles after
skipping the initial 500M instructions of each individual application.

5.6 Evaluation

This section analyzes the dynamic run-time interactions among applications,
considering used cache ways, system performance, progress and unfairness. To
help the understanding of these interactions and on how our proposal works,
we start with a simple 2-application example.

Figure 5.6 presents the results for two benchmarks, hmmer and mcf, running
concurrently. As we already observed in Figure 5.1, without cache partitioning
this workload exhibits significant unfairness during its execution. This can be
also appreciated in Figure 5.6d, which shows the unfairness evolution for both
the baseline approach (NoPart) and for FPCP.

It can be noticed in Figure 5.6a that the MPKI (Misses Per Kilo-Instruction)
at the shared cache of both applications is considerably different; while the
MPKI of mcf is over 20 for most of its execution, the MPKI of hmmer is only

68



5.6 Evaluation

1 2 3 4 5 6
Time (ps) 1e11

0

5

10

15

20

25

Us
ed

 W
ay

s

bzip2
gcc

mcf
sjeng

(a) NoPart

1 2 3 4 5 6
Time (ps) 1e11

0

5

10

15

20

25

Us
ed

 W
ay

s

bzip2
gcc

mcf
sjeng

(b) FPCP

Figure 5.7: Run-time way partitioning under NoPart and FPCP for the {bzip2, gcc, mcf,
sjeng} workload.

1 2 3 4 5 6
Time (ps) 1e11

0

5

10

15

20

25

30

35

40

Un
fa

irn
es

s

NoPart
FPCP

Figure 5.8: Unfairness for the {bzip2, gcc, mcf, sjeng} workload.

around 2. The reason for such a difference is that this fragment of the hmmer
execution is CPU-bound, and therefore very sensitive to cache misses. This
can be appreciated in Figure 5.6b, where the IPC of hmmer drops from above
2 to about 1.6 due to the interference of mcf. On the other hand, this phase
of mcf is memory bound and experiences a high amount of cache misses, so
this benchmark shows little sensitiveness to cache miss ratio variations and is
a cache hog.

Without any intervention in the shared cache (i.e. without partitioning), this
fact translates into noticeable differences in the progress rate experienced by
both applications. As shown in Figure 5.6c, NoPart assigns between 3 and
5 ways to hmmer and the remaining cache ways (13 to 11) to mcf. Notice
that, despite mcf holding around two thirds of the cache ways, its IPC is still
below 0.5. Moreover, this IPC is similar to what the application achieves
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in standalone execution. This means that mcf exhibits an excellent progress
when co-running with hmmer (see Figure 5.1). Therefore, the only way to
reduce unfairness is to accelerate the progress of hmmer (the least progressing
application).

FPCP correctly identifies these progress differences and borrows ways from
mcf, assigns them to hmmer, and improves its progress. As a result, unfairness
is reduced from 36% to 10%.

At a first glance, it could seem counterintuitive, since FPCP takes ways from
the application with the highest MPKI and assigns them to the one with the
lowest MPKI, thus widening even more the huge MPKI differences. However,
it makes sense when we realize how little the progress of mcf is affected by the
number of assigned ways (see Figure 5.2a). In fact, mcf only needs 2 ways to
achieve a progress rate of around 90%, while hmmer requires around 12 ways
to achieve the same progress. This brings two important findings: i) blindly
reducing cache misses does not necessarily address system fairness, and ii)
accurate progress estimations are critical to address fairness.

This analysis can be extrapolated regardless of the number of applications.
Lets see another simple working example for a 4-application workload. Fig-
ure 5.7 compares the distribution of ways per application between the non-
partitioned baseline approach and the proposal. According to the analysis
performed in Section 5.2, to achieve a progress rate of around 80%, bzip2
requires about 12 ways, gcc 2 ways, mcf 8 ways, and sjeng 2 ways. However,
without cache partitioning, Figure 5.7a shows that gcc occupies at run-time
similar or even more ways than bzip2, while mcf exceeds 16 ways for most of
the execution time. FPCP, in contrast, distributes ways much more accord-
ingly (compared to NoPart) to what the progress analysis suggested, giving
more ways to bzip2 and fewer ways to the remaining co-runners, as can be
seen in Figure 5.7b. As a result, FPCP significantly improves system fairness
for this workload (see Figure 5.8), reducing the final unfairness around one
third (from 33% with NoPart to 23%).
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Figure 5.9: System unfairness results over 100 2-application workloads.
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Figure 5.10: Average results normalized against NoPart for the 2-application workloads.

5.6.1 Comparison with the State-of-the-Art

FPCP has been evaluated against NoPart, UCP and ASM-Cache in terms of
system unfairness and performance, using the metrics defined in sections 1.1.5
and 1.1.6. Figure 5.9 presents the unfairness results for 100 pairs of bench-
marks sorted in increasing unfairness order (the highest, the worst). Since each
application only suffers interference from one co-runner, average system unfair-
ness for this case is relatively low, averaging 0.05% for the baseline (NoPart),
0.04% and 0.04% for UCP and ASM-Cache and 0.03% for FPCP. In spite of
this fact, UCP, ASM-Cache and FPCP significantly improve unfairness over
LRU for some of the workloads, as can be seen in the figure.

Regarding performance, Figure 5.10 shows average STP, ANTT and unfairness
normalized over NoPart. As can be seen, the reduction in unfairness does not
negatively impact the performance, as STP and ANTT are unaffected.

The interference grows with the number of applications running together. Fig-
ure 5.11 shows the results for 175 4-application workloads. Three major ob-
servations can be drawn. First, FPCP significantly improves unfairness over
NoPart and both state-of-the art approaches. On average, NoPart presents
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Figure 5.11: System unfairness results over 175 4-application workloads.
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Figure 5.12: Average results normalized against NoPart for the 4-application workloads.

an unfairness level of 0.107; UCP and ASM-Cache of 0.078 and 0.080, respec-
tively; and FPCP reduces it to only 0.056. Second, FPCP highly reduces the
maximum unfairness compared to the second best approach (i.e. 0.15 vs 0.21
of ASM-Cache). As with 2-application workloads, the reduction in unfairness
in 4-application workloads does not negatively impact STP and ANTT (see
Figure 5.12).

To cover a wider range of scenarios, we also evaluate the proposal with 8-
application workloads using a shared LLC with 8MB and 32 ways. Again, as
shown in Figure 5.13, FPCP is the approach that presents the lowest unfair-
ness, reducing it from the average 0.11 of NoPart to 0.08. UCP and ASM-
Cache, while reducing unfairness compared to NoPart in most cases, do not
achieve this goal in some specific workloads (as depicted in the right side of the
figure). This is because these approaches strongly depend on the accuracy of
the estimations, which degrades with the number of applications [87, 15] (see
Section 5.3). Our approach, however, only exchanges one way at a time, so
it is more forgiving with progress estimation inaccuracies. Figure 5.14 shows
normalized performance and unfairness results for the 4 different approaches.
It shows how UCP and ASM-Cache, on average, actually increase unfairness,
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Figure 5.13: System unfairness results over 50 8-application workloads.
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Figure 5.14: Average results normalized against NoPart for the 8-application workloads.

due to their behavior on the workloads on the rightmost part of Figure 5.13.
Additionally, UCP, ASM-Cache and FPCPslightly damage STP and ANTT,
but this effect is small, less than 3%.

There are multiple reasons why system unfairness rises with the number of
cores, even assuming a perfect progress estimation approach (i.e. perfect inter-
ference estimation). On the one hand, while the per core cache space remains
constant (1 MB), the number of ways does not, so the partitioning policy
presents comparatively less flexibility. Therefore, under certain circumstances,
it cannot provide the high number of cache ways some applications require to
have an adequate progress rate. On the other hand, as seen in Figure 5.2,
there are applications whose progress is not affected by the number of cache
ways allocated to them (e.g. CactusADM or is). Thus, when these applications
are combined with other applications that require a high number of ways (e.g.
mcf or lu), the system will show an inherently high unfairness level. The
reason is that, while the partitioning approaches can equalize the progresses
of moderately or highly cache-sensitive applications, the differences between
these progresses and the progresses of cache insensitive applications will be
important.
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5.6.2 Sensitivity to the Aggressiveness of Way Redistribution

In order to check the unfairness benefits coming from assigning cache ways
conservatively either in one-way steps or considering longer intervals, we per-
formed three additional experiments considering 4-application workloads. In
the first experiment, we slightly modified FPCP to allow redistributing 2 and
3 ways at a time instead of a single one to check its impact on unfairness.
In the other two experiments, we checked the impact of redistributing ways
conservatively in other existing approaches. First, we modified the original
ASM-Cache to redistribute only one way at a time, and finally, we compared
different versions of ASM-Cache by increasing the interval length, thus slowing
down way redistribution.

With respect to the first experiment, increasing the number of ways exchanged
in each operation, we found that either trading 2 or 3 ways increases unfairness
compared to trading only one cache way at a time. This increase is, on average,
of around 5%. In the second experiment, we found that limiting to a single
one the amount of ways traded each time ASM-Cache is triggered, helped to
reduce unfairness. The improvement was, on average, by 6% compared to
original ASM-Cache scheme. While this seems significant, note that FPCP
has 35% less unfairness, on average, than ASM-Cache. Regarding the third
experiment, we compared three versions of ASM-Cache, with 5M-cycle, 10M-
cycle and 50M-cycle interval lengths, respectively. While the longest interval
slightly reduced unfairness, differences are lower than 3%.

In short, two meaningful findings can be drawn from the aforementioned ex-
periments. First, care must be taken when basing decisions on estimations
that can be inaccurate or present transient errors, so slowly redistributing
cache ways tends to perform better. And second, conservatively distributing
cache ways is not a panacea, but the partitioning algorithm plays a key role,
since there are still important unfairness differences between FPCP and the
limited ASM-Cache version.

5.7 Summary

Cache sharing must be properly managed to avoid system unfairness in current
multicore processors. With this aim, this chapter has presented three main
contributions: i) an application characterization study from the LLC point
of view, ii) a comparison of two recent approaches to estimate performance
in isolation during multicore execution, and iii) a novel cache partitioning
approach that improves fairness over the state-of-the-art schemes.
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Regarding the characterization analysis, it studies the impact of the available
LLC space on the performance of the applications when executed without co-
runners, analyzing the relationship between progress and number of assigned
cache ways. This analysis can be used to estimate the progress that each
application would achieve when executed with co-runners had it a fixed number
of exclusive cache ways assigned. Thus, it provides insight about what would
be a reasonable fairness level to aim for when executing a set of applications
concurrently.

A major challenge to address system fairness is the estimation of what would
be the execution time of an application had it been executed without co-
runners. This chapter implements and evaluates the two most well accepted
approaches addressing this issue, concluding that, while both provide accurate
estimations, the Application Slowdown Model is the most precise one.

The key contribution of this chapter is FPCP, a simple and effective hardware
cache partitioning algorithm that balances the progress of the applications
running on a system. Compared to previous approaches, the algorithm com-
plexity is reduced from O(n2) to only O(m), where n is the cache associativity
and m the number of cores sharing the cache.
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Chapter 6

Improving Fairness with LLC
Partitioning using Intel CAT

This chapter proposes a family of clustering-based cache partitioning policies
to address fairness in systems featuring Intel’s CAT. The proposals act at two
levels: applications showing similar amount of core stalls due to LLC accesses
are grouped into clusters, and then, each cluster is given a number of ways
using a simple mathematical model.

6.1 Introduction

Recent multicore processors typically implement a huge LLC to hide the large
main memory access latencies. The size of these caches ranges from several
tens of MBs to hundreds of MBs in recent processors like the IBM Power8
or the Intel Xeon Phi Knights Landing. Because of their large storage ca-
pabilities, as well as their high associativity (e.g., more than 16 ways), these
caches are typically shared among all the cores in the processor. By default,
all the running applications compete among each other for LLC space, which
is governed by a single replacement policy. As a consequence, the applica-
tions replace blocks that belong to other applications, which can seriously
degrade their performance. Moreover, it is difficult to predict the effect of
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these inter-application interactions, since depending on their characteristics,
some applications are affected more than others. That is, while the perfor-
mance of some applications can be highly degraded, other applications may
be unaffected, creating a fairness problem in the system.

Much research has focused on cache sharing over the past decade. Some of
these works concentrate on performance [8, 43, 70, 75]; others target LLC
cache fairness [17]; and yet others focus on providing system fairness [92, 24,
98]. The latter works consider system components other than the LLC (e.g.,
the memory controller). The vast majority of these works, however, present
four main drawbacks that render their conclusions either invalid or inapplica-
ble to recent processor generations. First, most of these works consider the L2
cache as the LLC, mainly because their research is performed in simulators,
in which filling up a huge LLC of tens of MBs would require a prohibitive
amount of simulation time. That means that since neither the cache geom-
etry nor the data locality match, results cannot be easily extrapolated to
recent commercial machines. Second, most of these works do not take into
account the impact of hardware prefetchers or do not model the prefetchers
employed in commercial machines, often not well documented. Third, these
works either do not model the memory controller or model a simplified version.
Fourth, some of these approaches require the use of extra hardware to obtain
their inputs (e.g., the number of cache misses specifically caused by other co-
runners). Since any runtime approach that deals with fairness has to estimate
the slowdown the applications are suffering, most of previous research target-
ing fairness has this problem. Notable examples are the Per-Thread Cycle
Accounting Architecture [21, 15] and the Application Slowdown Model [87].
Both approaches require extra hardware that is not readily available in any
commercial processor.

The results of the discussed research regarding cache partitioning, however,
were so promising that some processor manufacturers have implemented cache
partitioning capabilities in their products. This is the case for recent Intel pro-
cessors that feature the Cache Allocation Technology (CAT), which provides
primitives to limit the amount of cache space a hardware thread can occupy
in the LLC.

More precisely, CAT allows for a given number of ways to be assigned to a
specific set of processes, a Class of Service or CLOS in Intel terminology. As
there can be much more processes than classes of service, processes must be
mapped to classes following a given policy. Therefore, a policy providing a lim-
ited number of cache ways to each application as done in previous works [70,
87] is unsuitable, since it would require a different CLOS for each application.
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While this problem could be solved by assigning multiple applications to the
same CLOS, we have characterized the slowdown each application experiences
over isolated execution varying the number of LLC ways, and the results of
this study show that assigning an exclusive subset of ways to each CLOS sig-
nificantly reduces both system throughput and fairness compared to allowing
different classes of service to share LLC ways.

This work proposes a family of clustering based cache partitioning policies that
leverage the capabilities of Intel’s Cache Allocation Technology to deal with
system fairness. Although the proposal has been evaluated on an Intel Xeon
E5 2658A v3, it is straightforward to port to any processor supporting CAT.
It works by applying clustering techniques to group applications suffering from
similar core stall cycles due to L2 misses into the same CLOS, and giving each
CLOS an adequate number of LLC ways.

In this chapter we make the following key contributions:

• We propose a family of cache partitioning policies based on application
clustering to improve system fairness on recent real machines.

• To the best of our knowledge, our proposal is the first to leverage state-
of-the-art cache partitioning technologies, i.e., Intel’s Cache Allocation
Technology (CAT), to improve system fairness.

• We comprehensively evaluate the devised policies against the original sys-
tem with no cache partitioning, and demonstrate improvements in system
fairness by up to 80% (39% on average) for 8-application workloads and
by up to 45% (25% on average) for 12-application workloads for a range
of multiprogram workloads on modern hardware. This is done without
significantly affecting the performance for 8-application workloads and
improving it for 12-application workloads.

6.2 Progress Characterization and Estimation

The main aim of the cache partitioning scheme proposed in this chapter is to
balance the progress among applications to improve system fairness. In con-
current execution, the cache interference caused by other applications reduces
the effective number of cache ways a given application can use. To explore
the sensitiveness of individual applications to the number of available cache
ways, we conduct several experiments in which we use CAT to adjust the
number of ways available to the application from 2 to 20 (i.e., the total cache
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Figure 6.1: Effect of the number of cache ways on progress.

space). Using CAT, we prevent the application under study from using non-
allocated ways. This approach allows modeling the reduction in the available
cache space for a given application due to the cache interference induced by
co-runners. This provides a reproducible way to study how progress is affected
by co-runners competing for cache space.

Figure 6.1 shows the progress results for different applications of the SPEC
CPU2006 benchmark suite. As observed, for a given number of assigned cache
ways, applications achieve different progress levels. That is, the progress
of each application exhibits a distinct sensitiveness to the available cache
space. There are highly cache sensitive applications, like xalancbmk, soplex
or omnetpp, whose progress is significantly harmed when the number of as-
signed ways drops below 6. In contrast, some applications are not affected
at all; that is, they achieve 100% progress with only 2 cache ways. The rest
of the applications fall somewhere in between, with different degrees of cache
space sensitiveness. Note that each way represents 1.5 MB of the total cache
space (i.e., 30 MB), so two ways are equivalent to 3 MB of LLC cache space,
which is already a considerable amount.

Another way to look at this issue is to analyze how the number of assigned
ways affects the slowdown. For this purpose, we plot the slowdown of each
application as a function of the number of assigned ways. Figure 6.2 illustrates
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Figure 6.2: Slowdown when varying the available ways with respect to a 20-way cache.

the results for some applications of the SPEC suite. Looking at highly cache
sensitive applications like xalancbmk, we find that the slowdown when varying
the cache space can be modeled using an exponential function a·e−x+b, where
a and b are constants that depend on the application and x is the cache space.
We also explored other approximations, including a linear, quadratic and cubic
function, however, we find the exponential function to yield the best fit. For
instance, soplex follows the equation 5.24 · e−x + 0.026.

The previous finding suggests that the slowdown grows exponentially as the
number of assigned cache ways is reduced. Or, inversely, for having a linear
reduction in slowdown we need an exponential increase in cache space. Note
that previous research has found a square root relationship between cache
space and hit ratio [11, 31].

Theoretically, we could use these equations to determine the assignment of
cache ways. However, the real slowdown that a given application is suffer-
ing at runtime cannot be directly calculated since the execution time of the
applications in isolation is unknown. Several previous works have focused on
estimating this execution time. However, most of them require additional
hardware [87, 21, 15, 17] to calculate the number of cycles the processor is
stalled due to interference in the shared resources, or need to modify the OS
scheduler [98, 24].

Our work targets unmodified commercial processors running a vanilla Linux
kernel, so since we could not use previous research, we looked into the avail-
able performance events related to processor stalls due to shared resources,
and studied the correlation between them and overall application slowdown.
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Figure 6.3: Correlation between L2 miss stall cycles and slowdown on the Intel Xeon E5
2658A v3.

We find that the STALLS L2 PENDING performance counter is the one
that best correlates with application slowdown. This counter gathers the
number of cycles during which the execution of an application is stalled due
to L2 cache misses. Figure 6.3 plots slowdown versus the number of stalls
(in trillions) gathered by the mentioned performance counter for several runs
of SPEC applications executed with different numbers of co-runners (3, 7
and 11 random co-runners). As observed, there is a strong positive cor-
relation (r=0.982, N=833, p=0.000) between the slowdown metric and the
STALLS L2 PENDING count.

This correlation can be explained with the following rationale. The afore-
mentioned L2 stalls counter is affected by the interference in all the shared
resources in our experimental platform, which are the LLC, the main mem-
ory, and the on-chip interconnects (two rings connecting the L3 slices and
the memory controllers), as depicted in Figure 3.2. This performance counter
does not differentiate between stall cycles caused by normal misses and inter-
ference misses, but as the number of concurrently running applications grows,
the stall cycles due to interference start to dominate (the ANTT for 8 and 12
concurrently running applications is, on average, over 3 and 4, respectively)
so this drawback becomes less important.

Another way to understand this correlation is to examine the following equa-
tion:

Slowdown =
ExecCycles

ExecCyclesalone
=
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=
CoreCycles+ STALLS L2 PENDING

ExecCyclesalone
, (6.1)

where CoreCycles represents the execution time minus the cycles stalled due
to L2 misses. For high enough slowdowns, the result of this equation is domi-
nated by STALLS L2 PENDING.

Finally, as observed in Figure 6.3, there are some points that deviate from the
main trend. These deviations are due to L3 block replacements that cause L2
invalidations to keep the inclusion principle (notice that the L2 cache is private
and the whole cache hierarchy is inclusive [36]). In turn, these invalidations
produce additional L2 misses that increase the number of CoreCycles. We
verified this hypothesis by analyzing the data used for Figure 6.1 in which we
varied the number of available ways for each application. As expected, we
find that the applications that present a deviant behavior in Figure 6.3 have a
sudden increase in L2 evictions when the cache space is reduced (2 or 3 ways
in the LLC). This only happens for the applications that exhibit such behavior
and not the rest.

This effect could be taken into account using a different performance event
that considers L2. For instance, there is a performance counter that gathers
the number of execution stalls due to L1 misses (STALLS L1D PENDING).
Unfortunately, this counter does not behave correctly in our experimental
platform (its value is always zero).

6.3 To Overlap or Not To Overlap Cache Ways

Most previous cache partitioning approaches work by assigning cache ways to
applications to be used exclusively. That is, a given cache way can be only
used by one application.

When using CAT capabilities, however, a wider design space opens. In addi-
tion to assigning ways exclusively to individual applications, cache ways can
be: (i) allocated to a single CLOS hosting a set of applications (i.e., limited
sharing), and (ii) allocated to multiple classes of service. To the best of our
knowledge, only the first design choice has been considered in previous re-
search [56, 103, 26]. Moreover, unlike this work which targets fairness, the
focus of these approaches is on Quality-of-Service, and CAT capabilities are
used to isolate latency-critical applications.
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Assigning all the ways as private to individual applications becomes quite
unrealistic on real hardware using CAT, mainly due to the high number of
potentially running applications, the limited number of supported classes of
service, and the limited number of cache ways. For instance, the Intel Xeon
E5 2600 v3 family has 20 ways in the LLC and supports 4 CLOS. Therefore,
no more than four applications could have exclusive ways assigned.

Even in the most recent Intel Broadwell EP machines that support up to
16 classes of service, the number of concurrently running applications can be
higher, and the number of ways in the LLC is still limited to 20. Thus, if a
workload with eight applications is executed, each application would have on
average 2.5 ways, which clearly is insufficient to reach reasonable performance
for most of them. Other partitioning schemes could be tried, giving more
ways to some applications and less to others, but since there are applications
that require a high number of ways to perform well (see xalancbmk, omnetpp
and similar applications in Figure 6.1) this approach does not scale well and
cannot be generalized.

Although grouping applications in classes of services that can access disjoint
sets of ways may seem like a viable solution, it has the same problems as the
previous approach, because while it partly solves the limitation in available
classes of service, the number of ways in a CLOS is still too small for some
applications to meet reasonable performance goals.

Two experiments were carried out to verify this claim. In one, the cache
is divided in partitions of the same size for each CLOS and we try differ-
ent clustering schemes to map 8 applications to 4 classes of service. In the
other, we try several partitioning schemes with each partition being of a dif-
ferent size. In each case we also try different approaches to group applications
(e.g., KMeans clustering, complementary cache requirements, similar cache re-
quirements, etc.). In both experiments, throughput is significantly degraded
without improving fairness with respect to no partitioning.

Consequently, all the partitioning approaches proposed in this work allow for
overlapping LLC cache ways (i.e., CBMs) among classes of service.
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6.4 Cluster-Based Partitioning Policies

As mentioned in Section 6.2, applications running on a multicore processor
suffer from slowdown due to interference that arises from resource sharing. The
interference varies during execution time depending on the run-time resource
requirements of the applications and, since not all the applications have the
same requirements and are not affected equally, unfairness arises. Our goal is
to smartly partition cache resources to counteract the slowdown inequalities,
which leads to a fairer system.

A cache partitioning mechanism can be characterized by three main design
aspects [35]: target, evaluation metric and policy metric. Our proposal targets
fairness, and the evaluation metric we use is the one defined in Section 1.1.5,
the CoV of the slowdowns. This metric cannot be computed online, because
the execution time alone cannot be measured at run-time, so using the insights
presented in Section 6.2, we use the CoV of the STALLS L2 PENDING as
the metric that guides our policies. Specifically, the goal is the minimize the
CoV of the STALLS L2 PENDING counter.

Additionally, when using CAT for partitioning the cache three main design
decisions must be taken: (i) the number of partitions in the LLC, (ii) which
applications are assigned to each partition, and (iii) the amount of resources
assigned to each partition.

Each design decision can, in turn, be either statically established or dynami-
cally adjusted at run-time. These three axes open a new design space, sum-
marized in Table 6.1, which greatly affects the performance and fairness that
a policy provides. In this work we explore it and present the most relevant
results. Although policies for each type that made sense have been devised
and evaluated, for the sake of clarity only results for the best performing ones
are presented in this chapter.

Taking all of this into account, we propose a family of application cluster-
ing algorithms, based on the STALLS L2 PENDING event. They target
fairness and cover the key issues of the design space. The family consists of
three main policies, namely SFn-mK, mK, and Dunn, where n and m are
parameters of the policies, whose meaning is described below. The differences
between policies mainly arise due to two aspects: the number of clusters the
policy builds at run-time, and the form in which cache ways are assigned to
clusters (i.e., fixed or dynamic).
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Num. Clusters Cluster sizes Ways per cluster Policies

S S S
S S D
S D S SFn-mK
S D D mK
D S S
D S D
D D S
D D D Dunn

Table 6.1: Design space and evaluated policies. Legend: S = static and D = dynamic.

All the proposed policies group applications in clusters using the KMeans al-
gorithm [30] according to the number of core stalls due to L2 misses. Given n
one-dimensional data points (only one variable — core stalls — is being consid-
ered per application), this algorithm distributes them into k clusters, assigning
each application to its closest cluster, where the closeness is calculated as the
Euclidean distance between the data point and the cluster centroid. A major
advantage of using one-dimensional data (as in this case) is that an optimized
version of KMeans can be used, with O(k ·n · log n) complexity. Once the clus-
ters have been obtained, all the applications in a given cluster are assigned to
the same CLOS. The number of LLC ways assigned to each CLOS and the
number of clusters used depend on the specific policy.

SFn-mK Policies. In these policies, applications are grouped in m clusters
using the KMeans algorithm. After the clustering process is done, the m
clusters are sorted according to their centroid values in descending order and
mapped to different classes of service. The cluster whose applications are
suffering the highest slowdown (i.e., the most critical one) is given the highest
priority and it is allowed write access to all the cache ways (i.e., its CBM is
set to 0xFFFFF). The following clusters receive a decreasing number of ways
in steps of n according to their criticality. For example, for n = 3 and m = 4,
the four clusters, sorted in critical order, receive 20, 17, 14 and 11 cache ways,
respectively. Different values of n and m, ranging from 2 to 4, have been
evaluated. In this work, we only show results for the policies of the form
SFn-4K, which were the best performing.

mK Policies. These policies also group applications using the same criterion
as the previous group of policies, but the number of ways assigned to each
partition is not static but computed using a simple exponential function. We
chose an exponential function because looking at Figure 6.2, to have a lin-
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ear reduction in slowdown an exponential increase in cache space is required.
Other functions were explored, such as linear and quadratic functions, but the
exponential approach was the one providing the best results. The input to the
exponential function is the normalized stalls of each cluster with respect to
the most critical one, a value in the interval [0..1]. The output of the function
is the number of assigned cache ways for the cluster, a value in the interval
[2..20]. Figure 6.4 depicts the behavior of this policy for m clusters. In the
example of the figure, cluster m− 1 is the most critical one, and the number
of assigned ways is 20, 10, 4, and 2, for the clusters m − 1, m − 2, 1, and 0,
respectively.

Dunn Policy. This policy follows the same approach as the mK policy re-
garding clustering and the assignment of cache ways to classes of service. The
number of classes of service to use is, unlike previous policies that consider
a fixed number of clusters, dynamically determined at runtime to adapt to
the different phases of the workload execution. To this end, two indices to
evaluate clustering validity and determine the optimal number of clusters (Sil-
houette [73] and Dunn [16]) have been evaluated. In this chapter, results are
only shown for the policy using the Dunn index, since it yielded slightly better
results on our experimental platform, thus we refer to this approach as the
Dunn policy.

The Dunn index is defined as follows. Assuming k denotes the number of
clusters, dmin the minimal distance between points of different clusters, and
dmax the largest within-cluster distance; the Dunn index for k clusters is then
computed as

Dunnk =
dmin

dmax

.

The larger the Dunn index, the better the clustering. As a result, the k value
that maximizes the Dunn index is selected.

6.5 Experimental Setup

All the experiments have been performed on the Intel Xeon E5 2658 v3 proces-
sor described in Section 3.2, one of the first Intel processors to support Cache
Allocation Technology.

The proposal focuses on the LLC, where the space is distributed according
to the different devised policies using CAT. In order to make the experi-
ments repeatable, important system details are provided next. The processor
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Figure 6.4: Policy with clustering and a model for the ways.

frequency was fixed to 2.20 GHz with the Linux performance governor. The
main memory of the system has a maximum theoretical bandwidth of 68GB/s
across 4 channels. We experimentally measured memory latencies of 75 ns for
an idle machine and 570 ns for a saturated machine. The machine has 4 types
of hardware prefetchers: 2 prefetchers associated with the L1-data cache and
2 prefetchers associated with the L2 cache. All of them were kept enabled
during the experiments.

All the devised schemes, explained in Section 6.4, have been evaluated and
compared against a baseline that performs no partitioning (referred as NoPart).

The experiments have been conducted with two sets of 45 multiprogram mixes
from the SPEC CPU 2006 benchmark suite using the reference input set.
The first set contains 8-application workloads and the second 12-application
workloads. To compose the application mixes, we first classify the applications
in the SPEC benchmark suite into two categories, cache sensitive and cache
insensitive, based on the offline evaluation performed in Section 6.2. Then,
we create workloads varying the ratio of sensitive to insensitive applications.
All the workloads are randomly generated, and results are collected executing
each workload until all the applications have completed the same number of
instructions they execute when running alone on the machine for 60 seconds.
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Our experimental environment consists of a manager program that reads a
configuration file with a list of workloads and the partitioning policy that will
be used. The manager then forks and execs as many times as necessary to
launch the applications in the workload. At regular intervals of 500 ms the
manager reads the required performance counters and uses this information
to properly size the partitions and assign applications to classes of service. We
tried other two different intervals for adjusting the partitioning: 100 ms and
1000 ms. In the first case there was no significant difference in the results, but
the overhead was higher, since the manager was active more frequently. In the
second case the results were worse compared to the same configuration with
a smaller interval.

When an application executes as many instructions as it would run in isolation
during 60 seconds, the manager restarts it. However, only the results from
the first run of each application are taken into account. Note that due to
limitations in the libraries employed for performance monitoring [40] and cache
partitioning [41], applications need to be pinned to cores1.

Each experiment has been repeated a minimum of 10 times, until the margin
of error was less than 1%, with a confidence of 95%. This applies to all the
plots and data shown in this chapter, so no confidence intervals are drawn on
the figures.

6.6 Evaluation

This section is aimed at providing insights and quantify the benefits of the
devised policies. To this end, the evaluation focuses on three main design
concerns: (i) Can a simple static policy provide significant fairness? (ii) Should
the number of clusters match the maximum number of CLOSes supported by
the machine all the time? (iii) Would dynamically adapting the number of
classes of service to the optimal number of clusters further improve the results?
The three devised policies and the experiments discussed below were designed
to answer these three questions.

1Starting from version 4.10, the Linux kernel has native support for CAT, and it does not have
this limitation. Unfortunately, it was not available when the experiments were performed.
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Figure 6.5: Normalized unfairness across the 45 8-application workloads with the SF2-4K,
SF3-4K and SF4-4K policies.

6.6.1 Exploring Unfairness Enhancements with a Simple Policy

To explore the potential of CAT to help facing unfairness, we evaluate the
simple SFn-4K policy across the studied 45 8-application workloads. Remem-
ber that this policy assumes four clusters, and the number of ways assigned
to each cluster is decreased from 20 (assigned to the highest priority cluster)
in steps of n. In this experiment, we vary the value of n from 2 to 4.

Figure 6.5 shows the results. To plot the curves, we first have sorted the
45 workloads in ascending order depending on the normalized unfairness they
present using the SF2-4K policy. Then, SF2-4K and SF3-4K have been plotted
following the same order. As observed, this policy, by merely assigning a
static number of ways to each CLOS and using 4 classes of service improves
unfairness significantly, by 12%, 16% and 21% on average for SF2-4K, SF3-4K
and SF4-4K, respectively. Also note that not all the mixes obtain the best
results with the same value of n. Although SF4-4K presents the best results,
in around 10% of the workloads, another value of n yields better results.

Important conclusions can be drawn from this experiment. First, the amount
of stalls caused by missing in the L2 acts as a good criterion to group appli-
cations in clusters. Second, regardless of the value of n, unfairness is signif-
icantly improved over the non-partitioning approach. Third, CAT presents
high potential to improve system fairness even with a simple policy based on
clustering.
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Figure 6.6: Ways assigned to each CLOS during the execution of the 4th 8-application
workload.

6.6.2 Determining the Number of Cache Ways Assigned to Each
Cluster Dynamically

Section 6.6.1, using a simple policy and exploring only three values of n, has
shown that there is not a number of ways that can be assigned statically to
clusters to provide the best results for every workload. In other words, there
is not a single optimal n value for all the workloads. Additionally, although
not measured in the previous experiment, cache space requirements of the
applications in a workload can change during the execution so being able to
adapt to these changes can provide further unfairness improvements.

To deal with the shortcomings of a static way allocation, the mK policy was
devised, which dynamically assigns the number of ways that best fits the
cache space requirements for each of the application clusters. This policy
allows greater flexibility, since the number of ways assigned to each cluster
is adjusted dynamically at runtime. Figure 6.6 illustrates how the number
of ways assigned to each CLOS varies during the execution of the 4th 8-
application workload running under the 4K policy (i.e., grouping applications
into 4 clusters). As observed, unlike the previous policies (the SFn-mK group
of policies), the number of cache ways assigned to each cluster varies at run-
time, which allows this policy to bring important benefits over the SFn-4K,
as our results will show.

The mK policy has been evaluated while setting the value of m to 2, 3 and
4 clusters, see Figure 6.7. The 45 8-application workloads have been sorted
in increasing unfairness order, according to the results of the 4K policy. The
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Figure 6.7: Normalized unfairness across the 45 8-application workloads with the 2K, 3K
and 4K policies.

2K and 3K policies have been plotted following the same order. Counter-
intuitively, not always the maximum number of clusters (i.e., 4) shows the
best results; even more, on average, the policy with two clusters (2K) yields
slightly better results than the one with 4 clusters (4K). The reason is that
changing the clustering (i.e., the number of clusters and the applications in
them) displaces the centroids and thus can have a significant impact on the
number of assigned cache ways to each cluster. Moreover, less clusters of-
tentimes means more ways per CLOS, which improves the performance of
applications with high cache space requirements.

Taking into account these results and comparing them with the ones presented
in Figure 6.5, two important conclusions can be drawn. First, the major
fairness benefits come from the fact that cache ways are dynamically assigned
to clusters at run-time, rather than the number of clusters itself. Notice that in
Figure 6.7, the normalized unfairness starts from below 0.25 while in Figure 6.5
it starts from around 0.5. Second, additional benefits could be brought by
dynamically selecting the proper number of clusters.

Note that some workloads experience an increase in unfairness (see rightmost
data points in Figure 6.7). This is the case for workloads composed mostly
of applications that are not cache-sensitive, so the absolute (non-normalized)
unfairness is low. Their absolute unfairness is around 0.07, which is signifi-
cantly less than the global average around 0.23. So, while in some corner cases
we see a small increase in unfairness in absolute terms, this is compensated
for by large reductions in unfairness (both in absolute and relative terms) in
the general case. The explanation for this behavior is that in low unfairness
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Figure 6.8: Normalized unfairness results with respect to NoPart for the 45 8-application
workloads with the different partitioning policies.

scenarios, and for some specific applications, our metric slightly overestimates
the cache space required. This could be addressed by employing an unfairness
threshold to enable or disable the policy, but since the increase in unfairness
is so small, we decided to keep the policy as simple as possible.

6.6.3 Putting It All Together: the Dunn Policy

The previous discussion indicates that a dynamic policy selecting the optimal
number of clusters for each workload, and the optimal number of ways for
each cluster would be the best approach. This claim led us to design the Dunn
partitioning policy, which is the one that provides the best results overall.

Figure 6.8 shows normalized unfairness over no partitioning for each of the
studied 8-application workloads and compares the Dunn policy with the 2K
and SF3-4K policies, since both policies achieve a significant reduction in un-
fairness, with performance results within the same range as Dunn. The work-
loads are sorted in ascending unfairness order according to the Dunn policy
results, and the 2K and SF3-4K results have been plotted following the same
order. Clearly, the 2K and Dunn policies are the ones that reduce unfairness
the most over no partitioning, by on average 36% and 39%, respectively, and
by up to 80%. The other policy, SF3-4K, has less effect on unfairness, reducing
it by 16% on average.

Figure 6.9 presents the average results for different metrics (see Section 1.1.5
and Section 1.1.6) across all the 8-application workloads achieved by the Dunn
policy. The results have been normalized against the NoPart baseline. Note
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Figure 6.9: Average Dunn results normalized against NoPart for the 8-application work-
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Figure 6.10: Number of clusters used during the execution of the 12th 8-application work-
load.

that there is a clear inverse correlation between LLC hit ratio and unfairness.
The reason is that most of the time unfairness is caused by the slowest applica-
tions, which frequently access the cache but miss due to lack of enough cache
space. As a consequence, these applications stall for long periods. As the
Dunn policy gives more cache ways to the slowest applications, their accesses
start to hit the cache, which reduces the number of stalls and improves system
fairness. This behavior also improves per-application performance (ANTT),
although the STP metric is slightly reduced because the fastest applications
are given fewer resources.

As explained above, the Dunn policy dynamically chooses the optimal number
of clusters. To analyze if the improvements that Dunn provides over the mK
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Figure 6.11: Average Dunn results normalized against NoPart for the 12-application work-
loads.

policies come, in fact, from choosing the correct number of clusters, Figure 6.10
plots the number of clusters used during the execution time of a workload
(workload number 12 in Figure 6.8 and number 11 in Figure 6.72). According
to Figure 6.7, it seems clear that two clusters does not work well for this
workload, and that three and four clusters perform similarly. Figure 6.8 shows
that for this workload, Dunn performs significantly better than 2K, so it must
be picking three and four clusters as the optimal number of clusters. As
expected, Figure 6.10 corroborates this.

In summary, a dynamic policy to adapt the number of clusters and the number
of ways per cluster can, in fact, provide meaningful fairness improvements
compared to static policies. Another insight is that the potential of CAT
seems to be limited more by the number of available ways in the LLC than by
the number of classes of service.

6.6.4 Results with 12 Cores

To evaluate the scalability potential of the Dunn policy we now consider 12-
application workloads created following the approach described in Section 6.5.
Figures 6.11 and 6.12 provide insight regarding how the Dunn policy affects
system performance, unfairness and LLC hit ratio.

Looking at Figure 6.11 it is clear that the important unfairness reduction
achieved for the 8-application workloads is also accomplished for the 12-applica-

2While the workloads in both figures are the same, they have been sorted following a different
criterion.
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Figure 6.12: Dunn results normalized against NoPart for the 45 12-application workloads.

tion workloads, where unfairness is reduced by 25% on average. This unfair-
ness reduction does not affect STP, which on average remains the same, but
comes accompanied by a significant improvement in ANTT, which decreases by
12% on average. As with 8-application workloads, the unfairness and perfor-
mance (ANTT) improvements are because the Dunn policy greatly increases
the LLC hit ratio, which in turn reduces the number of cycles that cores are
stalled (by 15%, on average).

Figure 6.12 shows detailed results for each one of the workloads. Unfairness
is reduced for all the workloads by at least 12%, and up to 45%. ANTT also
improves for all the workloads. Finally, depending on the workload, the Dunn
policy presents an STP that deviates from NoPart by less than 10%.

6.7 Summary

This chapter has presented a family of cache partitioning policies to address
system fairness on commercial Intel processors using Intel CAT. This chapter
has proven that STALL L2 PENDING event counter behaves as a good
proxy for per-application slowdown. Therefore, all the devised policies employ
this counter to cluster applications into classes of service. Once the number
and composition of the classes of service have been established, each class is
given a number of ways according to a simple mathematical function. The
proposed partitioning policies drastically reduce the system unfairness for 8-
and 12-application workloads, without damaging the performance.
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Regarding the number of classes of service and the number of cache ways
assigned to each of them two main conclusions can be drawn. First, in most
of the evaluated workloads, using only two classes of service during the whole
execution time allows achieving outstanding system fairness results. In other
words, counterintuitively, using additional classes of service does not always
result in further system fairness enhancements. Notice that this observation
contrasts with the current Intel trend, which has increased the number of
supported classes of service from 4 to 16 in the latest Intel microprocessor
generation. Second, instead of using a large number of classes of service, the
key issue to deal with system fairness lies on the function employed to assign
cache ways to classes of service. We find that an exponential distribution of
cache ways is the one that best improves system fairness.
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Chapter 7

Conclusions

This dissertation addressed the issues with resource sharing in multicore pro-
cessors from the performance and fairness perspective, focusing on two major
shared resources: the main memory bandwidth and the LLC. It proposed
techniques to reduce the main memory bandwidth usage of the core prefetch-
ers, and devised LLC partitioning schemes that improve system fairness.

In this chapter the main contributions of these proposals are summarized,
followed by a discussion about future work and an enumeration of the scientific
publications related with this dissertation.

7.1 Contributions

Multicore processors emerged as a solution to continue increasing performance
while facing the power consumption wall of complex and monolithic single-
threaded processors. To improve resource utilization and the performance per
area, current designs share important off-core resources among the processor
cores, the most significant of them being the main memory bandwidth and
the LLC, which may be L2 or L3, depending on the system.

Regarding main memory bandwidth, Chapter 4 of this thesis focused on the
impact of prefetching on this limited resource. The reason for the interest
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in this topic is that, while current prefetchers work well to improve per-core
performance, they do not take into account the shared nature of main memory
bandwidth, potentially damaging the performance of applications running on
other cores if the prefetches consume a large amount of bandwidth.

To deal with this problem, a characterization study of the effect of prefetch-
ing on memory bandwidth consumption and performance was conducted. It
showed that the applications experience different phases of execution, that
can be classified in four categories: memory intensive and prefetch unfriendly,
memory intensive and prefetch friendly, non memory intensive and prefetch
unfriendly, and finally, non memory intensive and prefetch friendly. From this
study it was concluded that, during prefetch unfriendly phases, a prefetcher
can be disabled or its aggressiveness reduced with little or no impact on per-
formance. Moreover, it also showed that it may be worthy to throttle down
individual prefetchers during memory intensive phases if other cores require
more bandwidth, to improve overall system performance.

Building on these findings, this dissertation proposed ADP, a selective prefetcher
that dynamically throttles or disables the core prefetcher, taking into account
both its performance and the bandwidth requirements of other cores. Results
showed that ADP increases STP on average by 6% over no prefetching, consid-
ering both memory intensive and combined workloads, while HPAC (a state-of-
the-art prefetcher) improves this metric by 4%. Moreover, these performance
gains are achieved improving unfairness over the other two approaches. Com-
pared to no prefetching, the aggressive baseline prefetcher and HPAC increased
the amount of memory requests by 53% and 36%, respectively, while ADP in-
creased them by 21%. This reduction and the faster execution time resulted
in important main memory energy savings. On average, energy consumption
increased by 12% and 20% in HPAC and the aggressive baseline prefetcher,
respectively, over no prefetching. In contrast, with ADP energy just increased
by 3%. To prove its independence with respect to the underlaying prefetcher,
ADP was also evaluated with a different prefetching mechanism, one that
tracks the sequence of accesses of individual load instructions to determine
whether to prefetch additional lines, and the results were promising.

With respect to cache partitioning, this dissertation presented the results of
two different approaches, both targeting unfairness reduction. One was de-
veloped in a simulated system and the other in a real machine. Both are
conceptually similar: they determine which applications are suffering more
slowdown and try to compensate it by providing them with more cache space.
However, in a real machine one is limited to what the hardware allows, so
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the slowdown estimation and the partition scheme used need to be adapted to
these hardware constraints.

The first approach, presented in Chapter 5 estimates an application slowdown
by identifying at run-time the cache misses that would have not occurred had
the application been executed alone (i.e. without co-runners). This is done
by using an Alternate Tag Directory or ATD, a per core private structure
that keeps track of what the status of a shared cache would be if it were
not shared with other cores. To keep its size small, it only stores tags and
replacement bits, not data, and only for a subset of the cache sets. In this
approach the Cache Access Ratio, estimated using the ATD, is used to estimate
the slowdown per application. This slowdown estimation is then used by
FPCP to distribute cache ways. This approach proposes adding additional
hardware structures not present in commercial processors, it was tested in a
simulated system, varying the number of applications running concurrently.
Experimental results showed that, compared to a system with no partitioning,
FPCP reduced unfairness by 48% in four-application workloads and by 28%
in eight-application workloads, without harming the performance.

Building on the experience gained developing the work presented in Chapter 5,
in Chapter 6 we proposed a family of cache partitioning algorithms targeting
commercial machines. They all target unfairness reduction and cover the key
issues of the design space. The differences between policies mainly arise due
to two main aspects: the number of clusters the policy builds at run-time, and
the form (i.e. fixed or dynamic) in which cache ways are assigned to clusters.

All the proposed policies group applications in clusters using the KMeans
algorithm according to the number of core stalls due to L2 misses. Given n
one-dimensional data points (only one variable, core stalls, is being considered
per application), this algorithm distributes them into k clusters, assigning
each application to its closest cluster, where the closeness is calculated as the
Euclidean distance between the data point and the cluster centroid. A major
advantage of using one-dimensional data (as in this case) is that an optimized
version of KMeans can be used, with O(k · n · log n) complexity. Once the
clusters have been obtained, all the applications in a given cluster are assigned
to the same CLOS. The number of LLC ways assigned to each CLOS and the
number of clusters used depend on the specific policy. Experimental results
showed that for 8-application workloads, our best performing policy reduced
system unfairness by up to 80% (39% on average) for 8-application workloads
and by up to 45% (25% on average) for 12-application workloads compared
to a non-partitioning approach without harming overall system performance
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(STP) and even significantly improving per-application performance (ANTT)
for 12-application workloads.

7.2 Future Directions

New Intel processors allow to partition the memory bandwidth analogously as
how the LLC can be partitioned in those systems. As future work, we plan
to develop a partitioning scheme for bandwidth, targeting both fairness and
performance.

We also plan to adapt our selective prefetcher ideas to a real machine, and
combine all our proposals in a unified scheme: an approach that dynamically
adjusts core prefetchers, LLC space, and main memory bandwidth to meet
fairness, performance or other targets.

In addition, we are developing custom scheduling algorithms that make use
of the proposed partitioning and prefetching policies to further enhance both
performance and fairness.

7.3 Publications

Below we list in reverse chronological order the publications related with this
thesis, broken down in international conferences, international journals, and
domestic conferences.

7.3.1 International Conferences

• Vicent Selfa, Julio Sahuquillo, Lieven Eeckhout, Salvador Petit and Maŕıa
Engracia Gómez. “Application Clustering Policies to Address System
Fairness with Intel’s Cache Allocation Technology”. In Proceedings of
the 26th International Conference on Parallel Architectures and Compi-
lation Techniques (PACT), Portland, OR, USA. 2017, pp. 194–205.

• Vicent Selfa, Julio Sahuquillo, Salvador Petit and Maŕıa Engracia Gómez.
“Student Research Poster: A Low Complexity Cache Sharing Mecha-
nism to Address System Fairness”. In Proceedings of the 25th Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT), Haifa, Israel. 2016, p. 455.
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• Vicent Selfa, Crisṕın Gómez, Maŕıa Engracia Gómez and Julio Sahuquillo.
“A Simple Activation/Deactivation Prefetching Scheme for Chip Multi-
processors”. In Proceedings of the 24th Euromicro International Con-
ference on Parallel, Distributed, and Network-Based Processing (PDP),
Heraklion, Crete, Greece. 2016, pp. 143–150.

• Vicent Selfa, Julio Sahuquillo, Crisṕın Gómez and Maŕıa Engracia Gómez.
“Methodologies and Performance Metrics to Evaluate Multiprogram Work-
loads”. In Proceedings of the 23rd Euromicro International Conference
on Parallel, Distributed, and Network-Based Processing (PDP), Turku,
Finland. 2015, pp. 150–154.

7.3.2 International Journals

• Vicent Selfa, Julio Sahuquillo, Salvador Petit and Maŕıa Engracia Gómez.
“A Hardware Approach to Fairly Balance the Inter-Thread Interference
in Shared Caches”. In IEEE Transactions on Parallel and Distributed
Systems 28(11) (2017), pp. 3021–3032

• Vicent Selfa, Julio Sahuquillo, Maŕıa Engracia Gómez, Crisṕın Gómez.
“Efficient Selective Multicore Prefetching under Limited Memory Band-
width”. In Journal of Parallel and Distributed Computing, DOI: 10.1016/
j.jpdc.2018.05.002.

7.3.3 Domestic Conferences

• Vicent Selfa, Julio Sahuquillo, Lieven Eeckhout, Salvador Petit and Maŕıa
Engracia Gómez. “Particionado de cache mediante Intel Cache Alloca-
tion Technology para mejorar la equidad del sistema”. In Actas de las
XXVIII Jornadas de Paralelismo. Málaga, Spain. 2017, pp. 231–240.

• Vicent Selfa, Julio Sahuquillo, Maŕıa Engracia Gómez and Salvador Pe-
tit. “Particionado dinámico de cachés compartidas para maximizar la
equidad entre tareas”. In Actas de las XXVII Jornadas de Paralelismo.
Salamanca, Spain. 2016, pp. 455–460.

• Vicent Selfa, Julio Sahuquillo, Maria Engracia Gomez and Crisṕın Gómez.
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Julio Sahuquillo. “Diseño de mecanismos de prebúsqueda adaptativa
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de los Procesadores Multinúcleo”. In Actas de las XXVI Jornadas de
Paralelismo. Córdoba, Spain. 2015, pp. 324–330.
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