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ABSTRACT	

The	relevance	of	plant-based	food	alternatives	to	dairy	products,	such	as	vegetable	milks,	has	been	

growing	in	recent	decades,	and	the	development	of	systems	capable	of	classifying	and	predicting	

the	sensorial	profile	of	such	products	is	interesting.	In	this	context,	a	methodology	to	perform	the	

sensorial	analysis	of	vegetable	milks	(oat,	soya,	rice,	almond	and	tiger	nut),	based	on	12	parameters,	

was	 validated.	 An	 electronic	 tongue	 based	 on	 the	 combination	 of	 eight	 metals	 with	 pulse	

voltammetry	was	also	 tested.	The	current	 intensity	profiles	are	characteristic	 for	each	non-dairy	

milk	type.	Data	were	processed	with	qualitative	(PCA,	dendrogram)	and	quantitative	(PLS)	tools.	The	

PCA	statistical	analysis	showed	that	when	using	three	 first	principal	components,	which	covered	

77%	of	variance,	the	eight	samples	can	be	differentiated,	and	the	preparation	method	(artisanal	

milks	or	commercial)	is	one	of	the	main	differentiation	factors,	together	with	raw	material	type.	The	
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PLS	 statistical	 analysis	 allowed	models	 to	be	 created	 to	predict	all	 12	 sensorial	parameters.	 The	

goodness	of	the	predictions	depends	on	the	parameter	being	particularly	accurate	for	the	body,	the	

granularity	in	the	wall	of	glass	and	homogeneity	of	colour.	The	results	strongly	suggest	the	potential	

feasibility	of	using	electronic	tongues	as	systems	for	easy,	rapid	and	effective	sensorial	assessments	

of	vegetable	milks.	

	

Keywords:	vegetable	milk,	tiger	nut,	electronic	tongue,	sensorial	analysis	

	

1.-	INTRODUCTION		

The	relevance	of	plant-based	food	alternatives	for	dairy	products,	such	as	vegetable	milks	based	on	

soya,	 almond,	 rice	 or	 oats,	 has	 been	 growing	 in	 recent	 decades.	 Compared	with	milk,	 they	 are	

perceived	by	consumers	as	healthier	food	products	that	allow	the	intake	of	calcium	and	proteins	

with	no	exposure	 to	 lactose	 (to	which	 some	people	are	 intolerant)	or	animal	 fat	 (that	 increases	

cholesterol	 levels	 and	 the	 risk	 of	 cardiovascular	 diseases)	 (Bernat	 et	 al.,	 2014).	 They	 are	 also	

excellent	substrates	to	develop	dairy	products	or	ice	creams	with	probiotics	(Aboulfazli	et	al.,	2014;	

Aboulfazli	et	al.,	2016).	Finally	compared	with	animal	milk,	vegetable	milks	are	advantageous	from	

an	environmentally	point	of	view	as	the	carbon	footprint	of	growing	vegetables	is	lower	than	that	

of	cattle	(Mikkola	et	al.,	2014).	These	advantages	have	the	drawback	that	such	materials,	i.e.	soya	

or	almonds,	are	qualified	as	allergens.	Therefore,	the	control	of	food	fraud	is	most	relevant	from	

both	the	economic	and	food	safety	viewpoints.	Together	with	conventional	raw	materials,	such	as	

soya,	almond,	oat	or	rice,	vegetable	milks	can	also	be	prepared	with	other	highly	relevant	materials,	

like	tiger	nuts.		

The	properties	of	non-dairy	milk	products,	and	therefore	their	sensorial	characteristics,	depend	on	

both	the	raw	material	and	the	processing	procedure.	For	example,	industrial	and	artisanal	milks	can	
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seem	diverse,	even	if	they	are	made	with	the	same	kind	of		vegetables.	The	origin	of	the	raw	material	

can	affect	the	taste	of	drink	and	its	nutritional	characteristics	(Kaneko	et	al.	2011).	

One	of	the	most	innovative	and	potent	techniques	to	analyse	or	classify	foods	is	to	use	electronic	

tongues	and	noses	(Tahara	and	Toko,	2013;	Loutfi	et	al.,	2015;	Peris	and	Escuder,	2016).	Electronic	

tongues	 attempt	 to	mimic	 chemical	 senses.	 The	main	 goal	 is	 to	 sense	 complex	media,	 in	which	

thousands	 of	 chemical	 compounds	 interact,	 and	 to	 determine	 certain	 parameters	 of	 interest.	

Gardner	and	Bartlett	(1994)	defined	the	electronic	nose	as	an	instrument	that	comprises	an	array	

of	 electronic	 chemical	 sensors	 with	 partial	 specificity,	 with	 an	 appropriate	 pattern	 recognition	

system	capable	of	 recognising	simple	or	complex	odours.	Electronic	 tongues	are	similar	 systems	

used	to	recognise	liquids	(Legin	et	al.,	2002).	

Sensing	 strategies	 in	 electronic	 tongues	 and/or	 noses	 include	 potentiometric	 and	 voltammetric	

electrodes,	metal	oxide	semiconductors	(MOS),	the	quartz	crystal	microbalance	(QMB),	conducting	

polymers	(CP)	and	surface	acoustic	wave	sensors	(SAW).	Voltammetric	sensors	are	advantageous	

devices	 for	multicomponent	measurements	 thanks	 to	 their	 high	 selectivity	 and	 sensitivity,	 high	

signal-to-noise	ratio,	low	limits	of	detection,	and	their	various	measurement	modes	(square	wave,	

large	 pulse	 voltammetry,	 cyclic	 voltammetry,	 etc.).	 Electronic	 tongues	 are	 based	 on	 combining	

diverse	sensors	and,	for	voltammetric	electronic	tongues,	each	sensor	collects	dozens	to	hundreds	

of	current	samples.	This	generates	vast	amounts	of	data	that	must	be	processed	by	multivariate	

analysis	tools.	Principal	components	analysis,	neural	networks,	partial	least	squares,	clustering	and	

dendrograms	 are	 among	 the	 most	 widely	 used	 pattern	 recognition	 methods	 (Ciosek	 and	

Wroblewski,	2007).		

E-tongues	are	devoted	mainly	to	the	automatic	analysis	of	complicated	composition	samples,	 to	

recognise	their	characteristic	properties	and	to	do	fast	qualitative	analyses.	A	device	is	named	‘a	

taste	sensor’	when	it	is	used	to	classify	basic	taste	sensations,	and	the	results	are	compared	with	a	

human	panel.	
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Among	the	reported	uses	of	e-tongues	in	the	food	industry,	we	find	examples	in	almost	any	liquid	

food.	E-tongues	have	been	used	for	quality	controls	during	production	and	storage	(mineral	waters,	

wine,	 coffee,	milk,	 juices),	 for	 the	 optimisation	 of	 bioreactors,	 ageing	 process	 controls	 (cheese,	

whiskey)	 and	 automatic	 controls	 of	 taste	 (wine,	 juices,	 water,	 milk,	 honey,	 etc.)	 (Ciosek	 and	

Wroblewski,	2007;	Tahara	and	Toko,	2013;	Loutfi	et	al.,	2015;	Peris	and	Escuder,	2016).	In	particular	

they	have	been	applied	for	recognition,	categorization	as	well	as	identification	purposes	of	milk	and	

dairy	products	(Ciosek,	2016)	in	areas	such	as	process	control,	analysis	of	flavour,	microbial	growth	

monitoring,	quality	control	studies,	classification	of	milk	samples	(Ciosek	et	al.,	2006;	Bougrini	et	al.,	

2014),	freshness	evaluation	(Winquist	et	al.,	1998)	and	detection	of	adulteration	or	residues	(Dias	

et	al.,	2009;	Wei	and	Wang,	2011;	Hilding-Ohlsson	et	al.,	2012).	However,	as	far	as	we	are	aware,	e-

tongues	have	not	been	explored	as	taste	sensors	to	predict	sensorial	analyses	in	vegetable	milks.	

	 	 	 	

Based	on	these	concepts,	we	report	herein	the	validation	of	a	sensorial	methodology	based	on	12	

attributes	to	perform	the	sensorial	analysis	of	vegetable	milks	(oat,	soya,	rice,	almond	and	tiger	nut).	

An	electronic	tongue	based	on	the	combination	of	eight	metals	with	pulse	voltammetry	was	also	

tested.		

	

2.-	MATERIALS	AND	METHODS	

2.1.-	Materials	

Commercial	vegetable	milks	(soya,	oat,	rice	almond	and	two	kind	of	tiger	nut)	were	acquired	from	

a	 local	 retailer.	 They	 were	 UHT,	 conserved	 at	 room	 temperature	 and	 used	 immediately	 after	

opening.			

2.2.-	Preparation	of	artisanal	tiger	nut	milk	

To	prepare	the	artisanal	tiger	nut	milk,	1	kg	of	dry	tiger	nuts	from	Valencia	(Spain)	or	Burkina	Faso	

were	immersed	in	a	15%	NaCl	solution	in	water	for	3	h,	and	water	was	changed	every	45	minutes.	
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Then	 the	hydrated	 tiger	nuts	were	 filtered	and	 immersed	 in	a	hypochlorite	 solution	 (2%)	 for	30	

minutes	 to	 ensure	 the	 food	 safety	 of	 the	 final	 product.	 The	 resulting	material	was	 filtered	 and	

washed	repeatedly	with	water	to	eliminate	any	hypochlorite	remains.	Tiger	nuts	were	ground,	2-3	

litres	of	water	were	added	and	the	resulting	suspension	was	filtered	by	collecting	a	white	liquid.	To	

the	remaining	solid,	2-3	litres	of	water	were	added.	After	filtering	the	liquid	was	collected	together	

with	the	first	extraction.	Next	825	g	of	sucrose	and	water	were	added	to	acquire	6	litres	to	obtain	

the	tiger	nut	milk,	which	was	bottled	and	stored	under	freeze	conditions	until	measured.	

2.3.-	Acquiring	the	sensorial	profile	

The	characterisation	of	organoleptic	properties	was	based	on	12	attributes	 (see	Table	2).	 These	

parameters	were	defined	for	tiger	nut	milk	by	Altarriba	(1994),	following	the	recommendations	of	

Directive	 ISO/TC	 34/SC	 12	 N254	 (currently	 ISO	 13299:2016	 Sensory	 analysis	 --	 Methodology	 --	

General	Guidance	 for	Establishing	a	Sensory	Profile).	Drinks	were	 tested	 in	duplicate	by	a	panel	

formed	by	45-57	semitrained	panellists,	who	had	to	score	each	drink	for	all	12	attributes	on	a	non-

structured	1-10	scale	with	 the	extremes	coded	by	 the	topics	defined	 in	Table	2;	e.g.,	 for	colour,	

extremes	were	light	beige	and	dark	beige.	With	major	or	minor	frequency,	all	the	members	of	the	

panel	used	 to	consume	tiger	nut	milk,	a	very	known	 local	drink.	 In	addition,	 they	 took	part	 in	a	

previous	training	session,	during	which	the	12	attributes	were	described,	and	panellists	valued	them	

tasting	3	tiger	nut	milks,	2	commercial	(different	brands)	and	1	artisanal.	

2.4.	Electronic	Tongue	Based	on	Pulse	Voltammetry		

The	electronic	tongue	device	used	in	this	work	consisted	of	an	eight	working	electrodes	array	(Au,	

Pt,	Rh,	Ir,	Cu,	Co,	Ag	and	Ni)	with	99.9%	purity	and	a	1-mm	diameter,	from	Sigma-Aldrich	housed	

inside	a	stainless-steel	cylinder	used	at	the	same	time	as	both	the	electronic	tongue	system	body	

and	 the	 counter-electrode.	 The	 different	wire	 electrodes	were	 fixed	 inside	 the	 cylinder	with	 an	

epoxy	RS	199-1468	polymer	(Campos	et	al.,	2013).	A	combination	of	noble	(i.e.,	Au,	Pt	Rh	and	Ir)	

and	non-noble	electrodes	(Cu,	Co,	Ag	and	Ni)	was	selected	to	combine	the	response	that	derived	
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from	the	redox	reactions,	adsorption	of	 the	chemical	species	on	the	electrodes’	surface	and	the	

potential	chemical	reactions	between	species	in	both	the	solution	and	oxidised	metal.		

A	Saturated	Calomel	Electrode	(SCE)	was	used	as	a	reference	electrode.	Before	use,	the	electrode	

surface	was	prepared	by	polishing	as	indicated	in	reported	procedures	(Campos	et	al.,	2013).		

The	electronic	tongue	was	controlled	with	a	home-made	software	application	that	runs	on	a	PC	and	

home-made	 electronic	 equipment,	 developed	 at	 the	 Instituto	 de	 Reconocimiento	 Molecular	 y	

Desarrollo	Tecnológico	(IDM)	of	the	Universidad	Politécnica	de	Valencia	(UPV	-	Spain)	(Bataller	et	

al.,	2013).	This	equipment	is	able	to	generate	a	sequence	of	up	to	50	pulses	with	an	amplitude	and	

width	that	fell	within	the	range	of	[-2V	to	+2V]	and	[1	ms	to	800	ms],	respectively.	A	different	pulse	

pattern	can	be	configured	for	each	working	electrode.		

This	study	employed	a	Large	Amplitude	Pulse	Voltammetry	(LAPV)	wave	form	(Winquist	et	al.,	1999;	

Gutés	et	al.,	2006).	Figure	1	shows	the	applied	pulse	pattern,	which	consisted	of	41	pulses	of	50	ms	

in	 a	 similar	 configuration	 to	 a	 staircase	 voltammetry,	 but	 the	 potential	was	 set	 at	 0	 after	 each	

increment.	The	pulse	sequence	ranged	from	-1000	to	1000	mV	for	the	noble	metals	and	from	-500	

to	500	mV	for	the	non-noble	metals,	with	increments	of	200	or	100	mV,	respectively.		Maximum	

and	minimum	potentials	were	chosen	to	avoid	water	electrolysis	phenomena.	Figure	1	illustrates	

the	 intensity/time	diagram	for	the	commercial	 tiger	nut	milk	TNA,	where	silver	was	the	working	

electrode,	which	overlapped	the	applied	potential.	All	the	measurements	were	carried	out	the	same	

day.	First,	8	samples	corresponding	to	each	one	of	the	milks	were	measured	in	random	order;	then	

the	same	process	was	repeated	two	more	times,	so	that	3	replicates	were	obtained	for	each	milk	

type.	 The	 software	 application	 was	 configured	 to	 perform	 five	 consecutive	 iterations	 for	 each	

sample;	i.e.,		the	pulse	pattern	was	applied	to	the	eight	working	electrodes	and	the	test	was	run	5	

times	before	the	sealed	measuring	environment	had	to	be	opened	to	discard	the	sample	and	to	

prepare	a	new	one.	The	resulting	data	contained	984	current	values	for	each	applied	pulse	array	(24	

points	per	pulse	×	41	pulses)	and	39,360	currents	(984	current	values×	8	electrodes	x	5	iterations)	
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were	 recorded	 per	 sample.	 Thus	 the	 electronic	 tongue	 dataset	 for	 the	 discriminant	 and	

quantification	studies	contained	944,640	points	(8	samples	x	3	replicates	×	39,360	current	values).		

2.5.	Data	analysis	

The	 raw	 data	 of	 the	 sensory	 analysis	 were	 pre-processed	 to	 detect	 outliers	 using	 statistical	

descriptive	analysis	(boxplots).	If	any	of	the	12	scores	granted	by	a	judge	to	a	drink	was	identified	as	

an	outlier,	the	whole	set	of	scores	was	eliminated.	As	a	result,	10	of	the	411	sensorial	measurements	

were	discarded	(8	corresponding	to	the	soybean	drink	and	2	to	the	Burkina	Faso	tiger	nuts	milk).	An	

ANOVA	applied	 to	 the	sensorial	data	detected	some	significant	nonnormality	 in	 the	data,	which	

violates	the	assumption	that	the	data	come	from	normal	distributions,	so	the	Kruskal-Wallis	test	

was	performed	to	compare	the	medians	 instead	of	the	means.	To	determine	which	medians	are	

significantly	different	from	which	others,	the	median	notch	option	of	the	Box-and-Whisker	Plot	was	

selected	from	the	list	of	Graphical	Options.	These	analyses	were	performed	using	the	Statgraphics	

software.	Compromise	scores	were	calculated	following	the	STATIS	methodology	(Meyners	et	al.,	

2000;	Meyners,	2003)	

Multivariate	data	analysis	(MVDA)	tools	were	used	to	process	both	sensorial	and	electronic	tongue	

data	using	Solo	software	(Eigenvector	Research	Inc.,	Wenatchee,	WA,	USA).	A	principal	component	

analysis	(PCA)	is	an	example	of	such	an	MVDA	that	uses	variance	in	experimental	data	to	produce	a	

score	plot	that	identifies	differences	between	observations	or	experiments,	which	can	be	used	to	

classify	 or	 group	 observations.	 PCA	 decomposes	 the	 primary	 data	 matrix	 into	 a	 new	 set	 of	

orthogonal	variables	called	principal	components	(PCs)	which	are	linear	combination	of	the	original	

variables.	 The	 first	 principal	 component	 (PC1)	 is	 the	 dimension	 along	 which	 observations	 are	

maximally	separated	or	spread	out.	The	second	principal	component	(PC2)	is	the	linear	combination	

with	maximal	variance	in	a	direction	that	is	orthogonal	to	the	first	principal	component,	and	so	on.	

Scores	are	 the	coordinates	of	 the	samples	 in	 the	new	principal	component	space	while	 loadings	

correspond	to	the	coordinates	of	the	principal	components	in	the	old	variable	space.	In	this	study,	
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PCA	was	applied	to	sensorial	and	electronic	 tongue	data.	 	 In	 the	case	of	electronic	 tongue	data,	

diversity	among	samples	was	also	assessed	by	an	unsupervised	hierarchical	cluster	analysis	(HCA)	

with	the	input	data,	and	Ward’s	method	as	it	minimises	the	total	within	cluster	variance.		

Partial	 Least	 Squares	 Regression	 (PLSR)	 is	 a	 type	 of	 MVDA	 employed	 for	 the	 generation	 of	

quantitative	 prediction	 models.	 PLSR	 is	 a	 multivariate	 projection	 method	 used	 to	 find	 the	

components	 of	 the	matrix	 of	 input	 X	 that	 describe	 relevant	 variations	 in	 input	 variables,	 while	

achieving	 the	 highest	 correlation	 with	 the	 objectives	 (Y)	 and	 providing	 the	 lowest	 weight	 to	

variations	that	are	irrelevant	or	related	to	noise	at	the	same	time.	Prediction	models	are	obtained	

by	applying	a	multiple	 linear	 regression	 to	 these	 components,	 called	 latent	 variables.	Prediction	

models	are	built	using	a	calibration	set	of	samples	and	validated	on	a	different	group	of	samples	

(validation	set).	PLSR	was	applied	to	electronic	tongue	data	to	generate	prediction	models	for	every	

sensorial	parameter.	

Before	applying	PCA,	HCA	and	PLSR	the	dimension	of	the	electronic	tongue	data	matrix	was	reduced	

by	averaging	 the	5	 iterations	of	each	measurement.	Therefore,	 the	size	of	 the	data	matrix	prior	

multivariate	data	analysis	was	188,928	points	(8	samples	x	3	replicates	×	8	electrodes	x	984	current	

values).		

Data	were	pre-processed	by	autoscaling	(mean	centre	and	unit	standard	deviation)	before	MVDA.	

For	 PLSR	 studies,	 two	 replicates	 for	 each	milk	 type	were	 selected	 randomly	 to	 build	 the	model	

(calibration	set)	and	the	third	replicate	was	used	for	validation.	The	number	of	latent	variables	used	

for	each	PLSR	model	was	established	after	the	corresponding	cross-validation	study	using	a	venetian	

blinds	method.	

	

3.-	RESULTS	AND	DICUSSION	

3.1.-	Sensorial	studies	
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ISO	13299:2016	provides	 guidelines	 about	 the	overall	 process	 for	 establishing	a	 sensory	profile.	

Sensory	profiles	can	be	established	for	all	products	or	samples,	which	can	be	evaluated	by	these	

senses:	sight,	smell,	taste,	touch,	hearing	(e.g.	food,	beverage,	tobacco	product,	cosmetic,	textile,	

paper,	packaging,	air	sample,	water,	etc.).	Some	sensory	profiling	applications	are	used	to	compare	

a	product	with	other	similar	products	or	to	map	a	product's	perceived	attributes	to	relate	them	to	

factors	that	can	be	instrumental,	chemical	or	physical	properties,	and/or	to	consumer	acceptability.	

We	used	a	sensory	profiling	methodology	for	the	vegetable	milks	based	on	12	relevant	sensorial	

parameters,	which	are	found	in	Table	2	(Altarriba,	1994).	

Means	and	standard	deviations	of	 the	sensory	panel	data	 for	 the	eight	 samples	 (soya,	oat,	 rice,	

almond	and	four	tiger	nut	drinks)	are	shown	in	Table	3a.	As	an	ANOVA	detected	some	significant	

nonnormality	in	the	data,	the	Kruskal-Wallis	test	was	performed	to	compare	the	medians,	and	the	

median	 notch	 option	 of	 the	 Box-and-Whisker	 Plot	 was	 used	 to	 determine	 which	 medians	 are	

significantly	 different	 from	 which	 others	 (P-value	 <	 0.05).	 Results	 are	 shown	 in	 Table	 3b.	

Furthermore,	compromise	scores	were	calculated	using	the	STATIS	methodology	(see	table	S1	in	

the	 electronic	 supplementary	 material)	 with	 values	 similar	 to	 those	 collected	 in	 table	 3a.	 As	

expected,	the	main	scores	for	the	aroma	of	tiger	nut	(AROMA)	and	for	the	typical	flavour	of	tiger	

nut	 (TYPFLAV)	 were	 obtained	 by	 the	 four	 tiger	 nut	 milks,	 though	 TNB	 and	 OAT	 do	 not	 differ	

significantly	with	respect	to	AROMA	(TNA,	VLC	and	BFA	reached	the	highest	values),	and	BFA	and	

ALMOND	do	not	differ	significantly	with	respect	to	TYPFLAV	(VLC,	TNA	and	TNB	were	better	valued).		

For	these	parameters,	soya	and	rice	drinks	obtained	lower	scores.	We	must	consider	that	sweetness	

is	a	highly	relevant	parameter	and	soya	milks	are	generally	salty,	and	thus	obtain	lower	values	for	

the	SWEET	parameter.	BODY,	FILMWG,	GRANWG	are	generally	higher	for	the	tiger	nut	milks.	It	was	

difficult	to	draw	any	conclusions	for	all	the	other	parameters,	although	the	vegetable	milk	prepared	

with	the	tiger	nuts	from	Burkina	Faso	obtained	the	highest	scores	for	OLDFLAV,	RESFLAV,	ROUGH	

and	STRANGE.	This	indicates	that	the	origin	of	raw	material	seems	an	important	factor.	
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A	correlation	study	for	the	attributes	was	performed	and	correlation	coefficients	higher	than	0.85	

were	 obtained	 for	 the	 following	 pairs:	 BODY-FILMWG,	 BODY-GRANWG,	 FILMWG-GRANWG	 and	

OLDFLAV-STRANGE.	Also	the	pair	AROMA-HOMCOL	showed	a	high	negative	correlation	coefficient	

(-0.88).	

In	order	to	obtain	broader	knowledge	of	the	similarities	among	the	diverse	vegetable	milks,	a	PCA	

was	run	with	the	sensory	panel	data	offered	in	Table	3a.	PCA	was	used	here	as	a	simple	method	to	

project	 data	 on	 a	 three-dimensional	 plane	 (Figure	 2-A).	 The	 three	 first	 principal	 components	

explained	89.1%	of	variance,	and	five	PCs	were	needed	to	explain	at	least	95%	of	variance	(97.8%).		

As	shown	in	Figure	2-A	from	the	first	three	PCs,	samples	are	well	distributed	in	space,	which	confirms	

the	feasibility	of	the	selected	sensorial	parameters	and	the	scales	used	to	differentiate	the	diverse	

vegetable	milks.	As	expected,	three	of	the	tiger	nut	milks	(TNA,	TNB	and	VLC)	come	close	to	one	

another	 and	 can	 be	 grouped	 together.	 Conversely,	 despite	 BFA	 being	 prepared	 from	 the	 same	

vegetable	product,	it	is	sited	far	from	the	others	and	consistently	with	the	higher	scores	found	for	

some	parameters.		

Figure	2-B	shows	the	loadings	plot	of	the	sensorial	data	PCA.	As	expected,	attributes	identified	as	

highly	 positively	 correlated	 in	 the	 correlation	 study	 (BODY-FILMWG-GRANWG	 and	 OLDFLAV-

STRANGE)	are	located	close	to	each	other.	Those	sensorial	parameters	could	be	considered	related	

to	the	textural	properties	of	the	drinks.	Differences	in	the	complexity	of	the	carbohydrates	of	the	

raw	materials	could	explain	in	a	certain	degree	the	differences	in	textural	properties	perceived	by	

the	 panellists	 (Prachayawarakorn	 et	 al.,	 2016).	 AROMA	 and	 HOMCOL,	 with	 a	 high	 negative	

correlation	coefficient,	are	located	in	opposite	sides	of	the	loadings	plot.	

3.2.-	The	PCA	statistical	analysis	of	the	data	collected	with	the	electronic	tongue	

The	intensity	data	collected	with	the	electronic	tongue	in	the	different	vegetable	milk	samples	were	

analysed	by	PCA	(Figure	3).	The	PCA	study	of	the	full	set	of	data	revealed	a	high	degree	of	dispersion	

among	 the	 independent	 dimensions,	 created	 by	 the	 linear	 combinations	 of	 the	 electrochemical	
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responses	of	the	eight	employed	electrodes.	The	first	principal	component	explained	only	35.48%	

of	variance	of	the	data.	The	first	two	components	represented	65.06%	of	total	variance.	The	first	

five	PCs	explained	77.14	%	of	variance,	but	nine	PCs	were	needed	to	account	for	95%	of	variance.	

This	high	dimensionality	helped	to	discriminate	among	highly	related	samples	(e.g.,	different	kinds	

of	milk,	forms	of	preparation	or	origin	of	raw	materials).	Although	many	dimensions	are	required	to	

explain	total	variance,	the	PCA	captured	77.14%	of	the	variance	observed	in	the	experiment	in	the	

first	 three	PCs,	which	are	plotted	on	 the	X-,	Y-	and	Z-axes,	and	 represent	 the	 largest	 fraction	of	

overall	 variability	 in	 the	 samples.	 Figure	3	 shows	 the	 resulting	PCA	 for	 the	eight	 samples	 (three	

replicates)	using	all	the	electrodes	and	the	collected	data.	It	was	possible	to	discriminate	among	the	

diverse	vegetable	milks,	and	replicates	remained	together.		

Initially,	three	groups	were	created:	we	can	see	that	the	artisanal	VLC	and	BFA	are	clearly	closer	

from	 the	 e-tongue	 perspective	 (low	 values	 for	 PC1	 and	 PC2),	 and	more	 than	 initially	 expected	

bearing	in	mind	the	results	noted	above	with	the	sensorial	analysis.	SOY	is	placed	in	the	sector	with	

high	values	for	PC1	and	with	low	values	for	PC2.	The	other	commercial	samples	are	sited	round	the	

zone	with	high	PC2	values,	but	it	is	possible	to	discriminate	among	them,	mainly	due	to	PC3,	as	they	

are	 placed	 along	 the	 vertical	 axis	 (Figure	 3).	 This	 is	 a	 promising	 result	 and	 suggests	 that	 the	

voltammetric	electronic	tongue	presented	herein	can	be	a	suitable	tool	to	classify	vegetables	milks.	

Similar	 results	 were	 obtained	 with	 the	 HCA	 (Figure	 4),	 which	 give	 a	 perfect	 clustering	 of	 the	

replicates	of	each	sample,	and	the	main	differences	are	found	between	artisanal	and	commercial	

milks.	Soya	milk	presents	the	biggest	difference.	Of	all	the	other	vegetable	milks,	those	based	on	

tiger	nuts	are	clustered	closer	than	the	rest.	

3.4.-	PLS	studies		

The	 PCA	 study	 and	 the	 dendrogram	 show	 that	 the	 data	 obtained	 with	 the	 electronic	 tongue	

clustered	according	 to	 kind	of	 vegetable	milk	help	 to	obtain	 a	 good	 classification	model.	 In	 this	

section,	we	were	also	interested	in	analysing	whether	the	data	from	the	electronic	tongue	could	be	
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used	to	predict	sensorial	parameters	 in	vegetable	milks.	 In	order	to	achieve	this	goal,	the	partial	

least	square	regression	technique	was	used.	

A	PLS	prediction	model	for	each	sensorial	parameter	was	created	with	the	intensity	data	obtained	

from	the	electronic	tongue.	Statistical	models	were	validated	for	all	the	sensorial	parameters	(Table	

4).	By	way	of	example,	Figure	5	shows	the	PLS	graph	in	which	the	measured	vs.	the	predicted	values	

of	BODY	(Fig.	5a),	HOMCOL	(Fig.	5b)	and	GRANWG	(Fig.	5c)	are	plotted.	Hence	the	measured	values	

represent	the	real	sensory	score,	while	the	predicted	values	are	the	values	calculated	according	to	

the	PLS	algorithm	using	the	electronic	tongue	data.	Both	the	measured	and	predicted	values	are	

plotted	 together	 to	 evaluate	 the	 accuracy	 and	 precision	 of	 the	 created	 prediction	 models.	 A	

preliminary	evaluation	can	be	made	by	visually	 inspecting	the	difference	between	the	measured	

and	predicted	values.	Ideally,	the	predicted	values	should	lie	along	the	diagonal	line	to	indicate	that	

the	 predicted	 and	 actual	 values	 are	 the	 same.	 A	more	 rigorous	 analysis	 can	 be	 done	 from	 the	

adjusting	parameters.	 Table	 4	 offers	 the	 adjusting	parameters	 for	 all	 the	PLS	prediction	models	

which	includes	the	number	of	latent	variables	used	in	the	model,	the	coefficient	of	determination	

(R2),	the	root	mean	squared	error	of	prediction	(RMSEP),	the	slope	and	intercept	of	the	regression	

line	(a	and	b)	and	the	range	of	the	predicted	parameter.	As	we	can	see,	all	the	sensory	parameters	

can	be	predicted,	but	the	quality	of	models	strongly	depends	on	the	parameter.	Although	samples	

were	complex	and	it	was	difficult	to	determine	the	factors	that	influenced	the	quality	of	predictions,	

some	 conclusions	were	 reached.	 For	 example,	 BODY,	HOMCOL	 and	GRANWG	with	 R2	 values	 of	

0.957,	0.940	and	0.975,	respectively,	which	were	all	relative	to	milks’	physical	characteristics,	were	

especially	 well	 predicted	 by	 the	 electronic	 tongue-multivariate	 analysis	 combination.	 On	 the	

contrary	STRANGE,	OLDFLAV	and	TYPFLAV	(R2	values	of	0.463,	0.549	and	0.710,	respectively),	which	

are	 highly	 subjective	 parameters	 related	 with	 aroma,	 showed	 a	 poor	 correlation.	 Surprisingly,	

SWEET	was	not	found	in	any	of	the	best	predicted	parameters,	which	agrees	with	the	concept	that	

the	sweetness	perceived	 in	a	drink	depends	not	only	on	the	amount	of	sugar,	but	also	on	other	
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vegetable	milk	characteristics.	In	fact	BFA	and	VLC	were	prepared	by	adding	the	same	amount	of	

sugar,	but	perceived	sweetness	(see	Table	3)	was	completely	different.		

PLSR	 results	were	 consistent	with	 the	 conclusions	 of	 the	 correlation	 study.	 BODY,	 FILMWG	and	

GRANWG	presented	a	high	correlation	and	show	prediction	models	with	similar	quality.	The	same	

applies	 to	 AROMA	 and	HOMCOL	 that	 are	 highly	 negatively	 correlated.	 Finally,	 other	 two	 highly	

correlated	 attributes	 as	 OLDFLAV	 and	 STRANGE	 present	 poor	 results	 in	 the	 validation	 of	 their	

respective	PLSR	models.		

Also,	 PLSR	 models	 using	 the	 compromise	 scores	 were	 calculated	 for	 each	 sensorial	 parameter	

(electronic	supplementary	material,	tables	S2a	and	S2b).	In	general,	the	adjusting	parameters	are	

close	to	those	calculated	using	the	mean	values,	as	expected	from	the	fact	that	both	values	were	

similar.	It	offers	only	minor	improvements	in	the	training	set,	none	of	them	offered	an	increase	of	

R2	higher	than	0.015,	and	in	most	cases	the	accuracy	of	the	fit	is	reduced.	However,	in	the	validation	

set	diverse	sensorial	parameters	showed	an	increase	of	R2	higher	than	0.05	(STRANGE,	TYPFLAV	and	

OLDFLAV).	Thus,	it	ciould	be	a	valid	approach	for	some	sensorial	parameters.		

Bearing	in	mind	the	prediction	results	in	the	studied	sensorial	parameters	and	their	relevance	to	

establish	 the	 organoleptic	 profile,	 the	 obtained	 PLS	 studies	 results	 confirmed	 the	 potential	

usefulness	of	electronic	tongues	to	assess	the	sensorial	profile	of	vegetable	milks.	

	

4.-	CONCLUSIONS	

The	 sensorial	 test	 based	 on	 12	 parameters	 proved	 useful	 for	 the	 characterisation	 of	 diverse	

vegetable	milks.	A	simple	electronic	tongue	based	on	metallic	electrodes	and	pulse	voltammetry	

was	used	to	classify	vegetable	milks	and	to	predict	sensorial	parameters.	The	system	was	based	on	

the	combination	of	eight	metals	with	41	pulses	of	potential.	It	was	able	to	differentiate	among	the	

vegetable	milks	prepared	with	five	raw	materials	(rice,	almond,	oat,	soya	and	tiger	nuts)	by	distinct	

procedures	(artisanal	or	industrial)	and	of	diverse	origins	(tiger	nuts	from	Spain	and	Burkina	Faso).	
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The	dendrogram	results	validated	our	approach	as	differences	among	samples	were	bigger	 than	

among	replicates.	The	main	differences	appeared	between	the	artisanal	and	industrial	vegetable	

milks	 and	 tiger	 nut	 milks	 were	 more	 similar	 to	 one	 another	 than	 the	 other	 vegetable	 milks.	

Electrochemical	measurements	were	 also	 taken	 to	 create	 PLS	models	 in	 order	 to	 predict	 all	 12	

sensorial	parameters.	The	goodness	of	the	predictions	depends	on	the	parameter,	and	is	particularly	

accurate	for	the	body,	the	granularity	in	the	wall	of	glass	and	homogeneity	of	colour.	The	results	

strongly	suggest	the	potential	feasibility	of	using	electronic	tongues	as	systems	for	the	easy,	rapid	

and	effective	sensorial	assessment	of	vegetable	milks.	
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TABLE	CAPTIONS	

Table	1:	List	of	the	vegetable	milks	tested	during	the	study	and	their	abbreviations.	

Table	2:	List	of	sensorial	attributes	(ordered	alphabetically)	and	their	abbreviations.	

Table	3.	3a:	Mean	values	and	standard	deviations	obtained	in	the	sensorial	tests	for	each	parameter	

and	sample	on	a	scale	of	1-10.	3b:	Medians	of	the	sensorial	tests.	The	values	with	the	same	letter	in	

superscript	indicate	homogeneous	groups	for	a	certain	attribute	

Table	4:	Adjusting	parameters	(R2	and	RMSEP)	from	the	PLS	prediction	models	for	the	sensorial	

scores	of	vegetable	milks.	4a:	training	set.	4b:	validation	set	
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FIGURE	CAPTIONS			

Figure	1:	The	applied	potentials	 (solid	 line)	and	 the	current	 response	 (dashed	 line)	of	waveform	

applied	to	the	TNA	sample	when	a	silver	electrode	was	used.	

Figure	2:	Principal	component	analysis	(PCA)	of	the	marks	obtained	from	the	sensorial	analysis;	A)	

Scores	plot,	B)	Loading	plot	

Figure	3:	Principal	 component	analysis	 (PCA)	 score	plot	of	 the	marks	obtained	 from	 the	 current	

measured	with	the	electronic	tongue.	

Figure	4:	Hierarchical	cluster	analysis	of	the	eight	samples	and	three	replicates	per	sample	using	

Ward’s	method.	

Figure	5:	Experimental	versus	predicted	values	using	a	PLS	statistical	model	(dashed	lines).	The	solid	

line	represents	ideal	behaviour;	A)	BODY,	B)	HOMCOL	and	C)	GRANWG.	
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Table	1	

Raw	material	 Origin	 Abbreviation	 Number	of	sensorial	

measurements	

Soya	 Commercial	 SOYA	 48	

Oat	 Commercial	 OAT	 56	

Rice	 Commercial	 RICE	 55	

Almond	 Commercial	 ALMOND	 57	

Tiger	nut	 Commercial	 TNA	 50	

Tiger	nut	 Commercial	 TNB	 47	

Tiger	nut	 Artisanal-Valencia	 VLC	 45	

Tiger	nut	 Artisanal-Burkina	Faso	 BFA	 43	
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Table	2	
	
Sensorial	attribute	 Range	 Abbreviation	

Aroma	of	tiger	nut	 Slightly	appreciable	/	most	
appreciable	

AROMA	

Body	 Light-bodied	/	full-bodied	 BODY	

Colour	 Light	beige	/	Dark	or	deep	beige	 COLOUR	

Film	in	the	wall	of	glass	 Slightly	appreciable	/	most	
appreciable	

FILMWG	

Granularity	in	the	wall	of	glass	 Slightly	grainy	/	very	grainy	 GRANWG	

Homogeneity	of	colour	 Slightly	 homogeneous	 /	 very	
homogeneous	

HOMCOL	

Rancid	flavour	/	taste	of	old	 Slightly	appreciable	/	most	
appreciable	

OLDFLAV	

Residual	flavour	 Slightly	appreciable	/	most	
appreciable	

RESFLAV	

Roughness	in	mouth	 Slightly	rough	/	very	rough	 ROUGH	

Strange	aromas	 Slightly	appreciable	/	most	
appreciable	

STRANGE	

Sweetness	 Slightly	sweet	/	very	sweet	 SWEET	

Typical	flavour	of	tiger	nut	milk	 Slightly	appreciable	/	most	
appreciable	

TYPFLAV	
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Table	3	

	
Table	3a	

Sensorial	
attribute	

SOYA	 OAT	 RICE	 ALMOND	 TNA	 TNB	 VLC	 BFA	

AROMA	 2.4±0.9	 4.6±1.7	 2.6±1.5	 3.1±1.5	 5.5±1.7	 4.5±1.8	 5.4±1.9	 5.4±1.7	

BODY	 3.7±1.5	 2.6±1.4	 2.1±1.1	 4.0±1.1	 4.9±2.0	 3.7±1.6	 5.2±1.9	 6.0±1.9	

COLOUR	 7.8±1.2	 7.9±1.1	 1.2±0.8	 1.3±1.1	 4.8±1.5	 3.3±1.6	 3.9±1.8	 6.5±1.7	

FILMWG	 4.7±1.3	 3.5±1.7	 4.2±1.7	 5.0±1.4	 4.9±1.9	 5.5±1.5	 6.5±1.8	 7.3±1.4	

GRANWG	 3.3±1.3	 3.3±1.7	 1.8±0.8	 4.6±1.5	 4.7±1.9	 4.3±1.8	 4.6±1.6	 7.2±1.4	

HOMCOL	 7.9±1.0	 7.2±1.4	 8.8±0.5	 8.3±0.7	 6.8±1.3	 6.8±1.2	 6.9±1.6	 5.9±1.7	

OLDFLAV	 3.2±1.2	 3.5±1.7	 3.8±1.7	 2.4±1.1	 1.9±1.3	 1.1±0.5	 2.5±1.6	 7.0±1.9	

RESFLAV	 5.4±1.6	 5.4±1.5	 4.1±1.3	 3.8±0.8	 5.2±1.7	 3.8±1.5	 5.2±1.9	 6.8±1.9	

ROUGH	 4.5±1.6	 2.5±0.8	 3.1±1.3	 4.1±1.3	 3.2±1.8	 2.7±1.3	 4.0±2.0	 5.8±1.8	

STRANGE	 3.3±1.5	 5.5±0.6	 5.0±1.3	 4.5±1.4	 1.4±0.8	 1.6±0.7	 3.0±2.0	 7.1±1.6	

SWEET	 1.3±0.9	 3.4±1.6	 3.2±1.5	 7.7±0.9	 6.1±1.7	 5.4±1.6	 6.4±1.7	 3.3±1.7	

TYPFLAV	 1.6±1.1	 2.3±1.5	 2.9±1.9	 4.1±1.4	 5.6±2.0	 5.6±1.3	 7.3±1.6	 4.3±1.9	

	
	

Table	3b	

Sensorial	
attribute	

SOYA	 OAT	 RICE	 ALMOND	 TNA	 TNB	 VLC	 BFA	

AROMA	 2.4b	 4.4c	 2.1b	 3.1a	 5.8d	 4.5cd	 5.7d	 5.5d	

BODY	 3.5ace	 2.8c	 1.8b	 3.9a	 5.0ef	 3.9ae	 5.5df	 6.2d	

COLOUR	 7.9b	 8.1b	 1.2a	 0.7a	 4.7e	 3.2d	 3.8de	 6.8c	

FILMWG	 4.9a	 3.6b	 4.6ab	 5.1a	 5.3a	 5.6a	 6.6c	 7.5c	

GRANWG	 3.4ce	 3.3c	 2.0b	 4.5a	 5.2a	 4.3ae	 4.6a	 7.4d	

HOMCOL	 8.1a	 6.9cd	 8.9b	 8.5a	 7.0d	 6.8cd	 7.1d	 5.9c	

OLDFLAV	 3.3b	 3.8b	 3.9b	 2.3a	 1.9a	 1.1a	 2.4a	 7.2c	

RESFLAV	 5.5b	 5.2b	 4.2a	 3.7a	 5.2b	 3.7a	 5.6b	 7.0c	

ROUGH	 4.4a	 2.4b	 3.0bc	 4.0a	 3.1bc	 2.5b	 3.8ac	 5.6d	

STRANGE	 2.8e	 5.5b	 5.1ab	 4.5a	 1.3d	 1.5d	 2.7e	 7.0c	

SWEET	 1.4e	 3.7b	 3.1b	 7.9a	 6.4d	 5.4c	 6.6d	 3.4b	

TYPFLAV	 1.6b	 2.0b	 2.3b	 4.3a	 5.7cd	 5.7d	 7.7e	 4.5ac	
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Table	4	
	
Table	4a.	Training	Set	
	

	
Table	4b.	Validation	Set	
	

	

Sensorial	attribute	 LV	
model	

R2	 RMSE	 a	 b	 Value	
range	

Aroma	of	tiger	nut	 5	 0.979	 0.4268	 0.9791	 0.0884	 1-10	

Body	 5	 0.982	 0.0966	 0.9824	 0.0711	 1-10	

Colour	 5	 0.973	 0.6375	 0.9729	 0.1228	 1-10	

Film	in	the	wall	of	glass	 4	 0.976	 0.1146	 0.9756	 0.1259	 1-10	

Granularity	in	the	wall	of	glass	 6	 0.985	 0.1073	 0.9853	 0.0619	 1-10	

Homogeneity	of	colour	 5	 0.984	 0.0452	 0.9841	 0.1129	 1-10	

Rancid	flavour	/	taste	of	old	 5	 0.977	 0.2180	 0.9771	 0.0744	 1-10	

Residual	flavour	 5	 0.966	 0.1126	 0.9662	 0.1690	 1-10	

Roughness	in	mouth	 5	 0.975	 0.0976	 0.9746	 0.960	 1-10	

Strange	aromas	 5	 0.973	 0.3057	 0.9727	 0.1049	 1-10	

Sweetness	 5	 0.976	 0.3462	 0.9758	 0.1108	 1-10	

Typical	flavour	of	tiger	nut	milk	 5	 0.989	 0.1375	 0.9890	 0.0462	 1-10	

Sensorial	attribute	 LV	
model	

R2	 RMSE	 a	 b	 Value	
range	

Aroma	of	tiger	nut	 5	 0.860	 0.1029	 0.8822	 0.4041	 1-10	

Body	 5	 0.957	 0.2852	 0.8838	 0.5877	 1-10	

Colour	 5	 0.806	 1.1455	 0.7567	 0.7129	 1-10	

Film	in	the	wall	of	glass	 4	 0.841	 0.4435	 0.9123	 0.5042	 1-10	

Granularity	in	the	wall	of	glass	 6	 0.940	 0.3980	 1.0793	 -0.2336	 1-10	

Homogeneity	of	colour	 5	 0.975	 0.1635	 1.0306	 -0.1375	 1-10	

Rancid	flavour	/	taste	of	old	 5	 0.549	 1.2580	 0.8860	 0.4965	 1-10	

Residual	flavour	 5	 0.781	 0.4424	 0.8939	 0.5338	 1-10	

Roughness	in	mouth	 5	 0.853	 0.4409	 1.0473	 -0.0746	 1-10	

Strange	aromas	 5	 0.463	 1.3132	 0.6548	 1.3826	 1-10	

Sweetness	 5	 0.607	 1.1915	 0.5677	 2.0427	 1-10	

Typical	flavour	of	tiger	nut	milk	 5	 0.710	 1.0907	 0.4563	 2.3014	 1-10	
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Figure	1	
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Figure	2		
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Figure	3			
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Figure	4		
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Figure	5	

	

	

	


