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Abstract 

The restoration of paintings on elements in cultural heritage buildings (fundamentally, churches) involves 

two structural problems: capturing the geometry of the construction element and its development. In 

many cases, the geometries are regular (e.g., cylinders, spheres, elliptical domes). However, there are 

cases in which the elements cannot be adapted to any known geometry, much less one that can be 

mathematically developed. The development of surfaces becomes essential for the restoration of paintings 

over “flat elements” (over which work is performed on the ground) that are subsequently transferred to 

the real surface (ceilings). The mathematical transformations that allow regular geometries to be 

developed are widely known (cartographic projections). However, when the geometry is irregular, there is 

no development. This study presents a new methodology based on differential rectification and its 

application for the development of oculi in the Los Santos Juanes Church (Valencia), whose geometry is 

completely irregular both in shape and as a result of construction defects (and damage caused by fire). 

The present study focuses on the restoration of paintings damaged by fire. 
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1. Introduction 

For cultural heritage to endure for a long period of time and be preserved for future generations, it is vital 

to exhaustively analyse its current state. Churches are one of the most significant types of constructions 

from the perspective of heritage value. Within this field, numerous conservation studies have been 

conducted in recent decades and continue to be studied due to their enormous importance (Baraccani, S. 

et al., 2016; Sanchez, A. et al., 2016; Coronelli, D et al., 2015). As a result of the evolution of equipment 

related to different fields in the study of conservation and restoration, restoration jobs that were complex 

and laborious only a few years ago can now be performed precisely and quickly. There is also the 

additional advantage that many of these new technologies enable heritage sites to be analysed in a non-

invasive manner. 

In the specific case of the restoration and conservation of paintings (frescoes), churches hold artwork of 

incalculable value, and their conservation has been a subject of study for several decades (or even 

centuries). Among these studies, work has focused on the state of paintings (e.g., colours, properties) and 

their restoration (Sfarra, S., 2015; Rosado, T., 2014; Bianchin, S. et al., 2009). These studies require 

complementary studies that examine the exact geometry of the surface over which they were created. As a 

result, it is now common to perform measuring, 3D modelling, and mapping using laser scanner and 

photogrammetry techniques (Lezzerini, M. et al., 2016; Guarnieri, A. et al., 2013, [14, 15]). Over the past 

decade, these tools and techniques have been in mass use. In addition, there are interesting visualization 

options that may be of great help (Munoz, F. et al., 2014; Galiana, M., 2014). 

Geometry is a determining element given that its alteration affects aesthetic properties whose value 

cannot be challenged in addition to running the risk of seeming to affect the structure in terms of its 

dimensional and/or structural stability. Laser scanning is the optimal information-capturing instrument [5-

9] because it is capable of providing millions of points in seconds, generating a three-dimensional model 

with high precision [1-4].  

However, the use of lasers represents a problem. Although the ability to capture the greatest amount of 

geometrical information possible is its greatest virtue, excessive information of this type is a problem in 

terms of data processing [16]. The geometry on which restored paintings were created must be defined 

with the greatest possible precision and the minimum number of points. In other words, to develop in 2D 

the surface to be restored through a projection, it is necessary to model this surface with a number of 

points that allows for its development.  
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Therefore, it is first necessary to simplify the point cloud provided by the laser without altering its 

geometry (Measurement 3). Subsequently, it is necessary to develop the surface through a projection that 

conserves its properties. From this perspective, the known algorithms (based on cartographical 

projections) are only applicable to regular surfaces (e.g., spheres, cylinders) but are of no use when the 

surface is irregular. 

This study presents the development of several ceiling elements in the Los Santos Juanes Church in 

Valencia through a new methodology based on differential rectification. To confirm that this 

methodology works, it is applied to two surfaces that can be developed through conventional means to 

verify its worth. Subsequently, the methodology is applied to oculi from the church that were destroyed 

by fire and whose geometry is completely irregular. Finally, the paintings are developed for restoration 

following the methodology.   

2. Development of irregular surfaces (non-developable) in 2D 

To develop a surface, the angles, the distances, or the areas must be conserved, but conserving all of them 

simultaneously is impossible. Constant scale projections conserve distances, authalic projections conserve 

areas, autogonal projections reduce angular deformations to a minimum, aphylactic projections reduce 

linear deformations to a minimum, and perihallic projections produce minimal surface deformations. 

Because it is not possible to perform constant scale development in an irregular element, the solution 

must consist of a combination of an aphylactic projection and a conformal projection. 

 

For the development algorithm to conserve the distances between three-dimensional points, Dij, the 

distance projected dij between those two points in the development is given as follows: 

    ijijijij ryyxxd  22
,    (1) 

where 

 rij: the remainder of the distance in the development; 

 (xi, yi, 0): the coordinates of a point in space (X,Y,Z) on the projected plane; and 

      222
ijijijij ZZYYXXD  : the real distance between two points in 

space. 

 

Similarly, for the algorithm to conserve the angle between two vectors in space Ω (defined by three 

points: i, j, and k), the projected angle w is given by its scalar product as follows: 
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where 

 ri: the remainder of the development angle; and 
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angle formed by two vectors in space. 

 

Precision in the surface development, based on both conditions described above, depends on the number 

of points on the surface that provide the most exact knowledge of its geometry. Because we have a dense 

cloud resulting from the laser scan, we adjust a Delaunay triangulation, obtaining a continuous surface of 

triangles that adjusts to the real surface with great precision (with an error of one-tenth of the length of the 

sides used in the triangulation). 

The result of developing this triangulated surface is another triangulated surface with the same number of 

points, sides, and triangles. If the real surface were developable, then the developed surface would be 

formed by triangles of the same dimension as the original. Because it is not, the developed triangles can 

conserve the angles, distances, surfaces, or some combination of these based on the conditions that we 

impose on the adjustment of the network. The solution consists of a system of equations of conservation 

of angles and/or distances, minimizing the remainders between the real measurements and the projected 

measurements through a least quadratic adjustment. 

The conservation of angles is not possible except in cases in which the adjacent triangles surrounding a 

point add up to 400 g (for which all points must be in the same plane in space, in which case the real 

surface and the developed surface would be the same). In any other case, the sum of the angles of the 

triangles that converge on a point in space will not be 400 g, and their homologous values in the 

development must add up to that number. To solve this problem, it is possible to generate a tangent plane 

on each point or the direction of a normal line, projecting the real angles on it through the vectorial 

product of the sides that converge in one point: 

*

*ij

i j
P

i j

L L
V

L L
 ,     (3) 

where 

,i jL L : two vectors that start at the vertex and have the direction and orientation of the two sides 

that compose the angle on which a perpendicular line is obtained; and  

ijPV : the resulting unitary vector perpendicular to the triangle.  

Finally, accepting as the normal surface in one point the average of lines normal to the triangles that 

coincide on it, 

1

1
ij

n

P PV V
n

  ,     (4) 

where 

PV : the average vector of the n vectors that are perpendicular to the triangles given their 

common vertex. 

For each side of the triangle, we calculate a vector that is perpendicular to it and to the normal line 

previously obtained: 
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**

* *i j

P jP i
PP PP

P i P j
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  ,    (5) 

where 

,
i jPP PPV V : unitary vectors that are perpendicular to PV  and to iL  or jL . 

 

The angle between two sides of the triangle projected on the tangent plane is the same as that obtained 

through its perpendicular directions (5), which is why the angle is given by the cosine theorem. Through 

this procedure, the sum of the angles of the triangles contiguous on a vertex inside the surface add up to 

400 g, whereas the sum of the interior angles of the triangles do not add up to 200 g. 

The formulated system results in a free network with three restrictions: two position restrictions (X,Y) 

and one rotation restriction. Given that the equations that form the adjustment system involve angle and 

distance, it is necessary to apply weighting as a function of the solution to address the conservation of one 

or the other. The formulation of the angle and distance equations makes it possible to obtain a system of 

equations with one equation for each side of each triangle as an angle equation and another equation for 

the distance in space that we wish to conserve. After linearization of the equations, we obtain a system of 

equations as follows: 

       *A x K R  ,     (6) 

where 

[ ]A : the matrix of coefficients for unknowns; 

[ ]x : the vector that contains the displacements that must be applied to the coordinates of the 

points for the system of equations to be optimal;  

[ ]K : the vector of independent terms in the equations; and 

 [ ]R : the vector of the remainders of the angle and distance equations. 

 

Depending on whether the intent is to conserve angles or distances, a different weighting must be 

performed as follows: 

             * * * *P A x P K P R  ,    (7) 

where P is the weight matrix. 

The solution of the equation system that minimizes the sum of the squares of the results is the following: 

                  
1

* * * * * * *
t t t t

x A P P A A P P K


 .    (8) 

The remainder of each equation resulting from projecting the surface is the following: 
       
           

*

' * * *

R A x K

R P A x P K

 

 
.     (9) 

The value of sigma zero describes the mean tensile state of the surface and is obtained based on R’ as 
follows: 


0
2 

R' 
t
* R' 

n
0
 n

i

 ,     (10) 

where 
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 0 , in n : the number of equations and the number of unknowns of the system. 

 

3. Results 

The Royal Parrish of Los Santos Juanes (Fig. 1a), designated a National Artistic Historic Monument, is 

gothic in origin but was re-built in the 14th and 16th centuries because of fires. Antonio Palomino painted 

the presbytery and all of the domes of the church in the last years of the 17th century, and in 1861, Luis 

López restored the paintings that were in poor shape. However, in 1936, due to damage and fires 

experienced during the Civil War, the paintings became black and sooty, and they are currently in the 

process of being restored. The section of the paintings that covers the dome of the presbytery has not been 

restored (Fig. 1b).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: a) Façade of the Royal Parrish of Los Santos Juanes (Valencia). b) Partial view of the paintings 
on the dome that are being restored.  

 

3.1. Generating the 3D model 

The 3D geometry of the section studied here (Fig. 1b) was developed using a laser scanner (model Cyrax 

2500). As shown in Figure 2, there is a cylindrical section (regular geometry with known mathematical 

development) and four occuli whose irregular geometry must be mathematically developed.  
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Figure 2: a) Three-dimensional model of the cylindrical dome with the four oculi, formed by 1,944,892 points (exterior view). b) 
Partial three-dimensional model with false colour image (interior view). 

 

3.2. Development of the cylindrical dome in 2D (regular surface) 

The result of the measurement in the restoration area shows that the cylindrical section has an 

approximate radius of 7.2 m. The development of the cylindrical section is known based on the 

application of a projective linear transformation over a simplified point mesh (given the geometric 

regularity of the surface, calculating the transformation over all of the scanned points is unnecessary): 

     
     

     
     033032031

0230220211
f

033032031

013012011
f

ZZmYYmXXm

ZZmYYmXXm
fdyyy

ZZmYYmXXm

ZZmYYmXXm
fdxxx











,  (11) 

where 

  ff y,x : the coordinates of the points in the image (paintings); 

  Z,Y,X : the coordinates of the points in the terrain (dome); 

  dy,dx : off-centre from the principal point of the image; 

 f : the focal distance of the camera; and 

  000 Z,Y,X : the coordinates in the terrain of the point of image capture (the optical centre of 

the camera). 

 

The result of developing the cylindrical surface is found through generatrices, obtaining a set of 

rectangles that each cover 10 degrees over the generatrix (Fig. 3). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: a) Calculation of generatrices over the image through projective transformation. b) Partial development of the image 
resulting from the rectification of a quadrilateral over the rectangle. 

 

In this manner, using a mosaic of rectangles, we finally obtain the complete development (Fig. 4): 
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Figure 4: Mosaic of the 2D development. 

 

3.2. Development of one of the oculi in 2D (irregular surface) 

We select one of the oculi of the scanned cloud (Fig. 2b) by cutting away the three-dimensional work 

surface (Fig. 5a), which makes it possible to verify that it is completely irregular and not suitable for 2D 

development through known transformations (without producing unacceptable deformations for the 

purpose studied here). Similarly, we select the photograph corresponding to the noted oculi that is to be 

restored (Fig. 5b). 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 5: a) Three-dimensional model of the oculus formed by 86,511 points (lateral view). b) Original image of the oculus (not 

developed). 

 

To perform the development, it is necessary to first establish the triangulation mesh size. To analyse how 

the indicated algorithm works over the entirety of the element, an adjustment with a mesh size of 50 cm is 

made. However, four different adjustments (50 cm, 20 cm, 10 cm, and 5 cm) are provided, showing the 

evolution of the weighting parameters and their corresponding adjustment estimators. 
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 Conformal Case Non-conformal Case 
 Optimal 

adjustment 
distance 

Optimal 
adjustment 

angular 

Optimal adjustment 
distance 

Optimal adjustment 
angular 

 Initial Adjusted Initial Adjusted Initial Adjusted Initial Adjusted 
Angular 
weight 

20 20 0.1 6.4 20 20 0.1 3.53 

Weight in 
distance 

0.001 0.024 1 1 0.001 0.024 1 1 

σ 
Estimator 

24.16 1.12 64.04 1 24.15 1.04 35.03 0.99 

 
Table 50: Optimal values for the weights for distance (m) and angle (g); 50 cm mesh size.  

 
 Conformal Case Non-conformal Case 
 Optimal 

adjustment 
distance 

Optimal 
adjustment 

angular 

Optimal adjustment 
distance 

Optimal adjustment 
angular 

 Initial Adjusted Initial Adjusted Initial Adjusted Initial Adjusted 
Angular 
weight 

100 100 0.1 1.97 20 20 0.1 0.9 

Weight in 
distance 

0.001 0.002 1 1 0.001 0.002 1 1 

σ 
Estimator 

2.1 1.09 19.72 0.98 2.08 1.04 0.99 10.76 

 
Table 50: Optimal values for the weights for distance (m) and angle (g); 20 cm mesh size.  

 

  
 Conformal Case Non-conformal Case 
 Optimal 

adjustment 
distance 

Optimal 
adjustment 

angular 

Optimal adjustment 
distance 

Optimal adjustment 
angular 

 Initial Adjusted Initial Adjusted Initial Adjusted Initial Adjusted 
Angular 
weight 

200 200 0.1 2.23 20 20 0.1 1.5 

Weight in 
distance 

0.001 0.0007 1 1 0.001 0.00062 1 1 

σ 
Estimator 

0.67 0.96 22.37 0.96 0.62 1 14.9 0.99 

 
Table 50: Optimal values for the weights for distance (m) and angle (g); 10 cm mesh size.  

 

 Conformal Case Non-conformal Case 
 Optimal 

adjustment 
distance 

Optimal 
adjustment 

angular 

Optimal adjustment 
distance 

Optimal adjustment 
angular 

 Initial Adjusted Initial Adjusted Initial Adjusted Initial Adjusted 
Angular 
weight 

250 250 0.1 2.97 20 20 0.1 2.65 

Weight in 
distance 

0.001 0.0005 1 1 0.001 0.00047 1 1 

σ 
Estimator 

0.5 0.91 27.91 1.02 0.47 0.95 26.48 0.99 

 
Table 50: Optimal values for the weights for distance (m) and angle (g); 5 cm mesh size.  
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The adjustments for the 50 cm mesh, considering all possibilities (conformal and non-conformal, for both 

conserving angles and distances), are shown in Fig. X (adjustments with the 20 cm, 10 cm, 5 cm mesh 

sizes would be the same, with a much larger number of points). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure X: a) Development of the mesh with angular remainders. Conformal case. b) Development of the mesh with distance 

remainders. Conformal case. c) Development of the mesh with angular remainders. Non-conformal case. d) Development of the 

mesh with distance remainders. Non-conformal case. Legend of remainders. f) Points that define the mesh (106 sides – 48 triangles). 

 

a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

d) 
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The development of the paintings being restored is next shown through differential rectification of the 

original oculus photograph based on the four cases previously calculated (Fig. X). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure X: a) Conformal 2D development. Angle conservation. b) Conformal 2D development. Distance conservation. a) Non-

conformal 2D development. Angle conservation. b) Non-conformal 2D development. Distance conservation. 
 

4. Conclusions 

The algorithm developed consists of forming a system of calculations through MMCC with angle and 

distance equations. By assigning weights to one or the other parameter, we make an adjustment and 

obtain a different development in each case. The possible adjustments are ultimately conformal or non-

conformal. Within them, they are adjusted based on distances or angles. In this manner, from each 

surface, we obtain four different developments. Therefore, the algorithm generates different 2D 

developments for surfaces that are both developable and non-developable as a function of the parameter 

that is to be conserved.  
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There are different valid solutions based on what needs to be conserved in each case. Although 

conserving angles is the main objective for navigation, minimizing deformations seems to be the most 

reasonable solution in engineering, for example. In this manner, the developed algorithm allows the 

development of surfaces to be modified, which is why the optimal solution can be evaluated and modified 

at any time. All solutions are exact based on the parameter of conservation of interest in each case. This 

means that for a specific task, different results can be analysed by comparing the development of a single 

surface based on different parameters and then deciding which is the most adequate option for each case. 

 

In the case of the cylindrical development, the result does not vary when one or the other solution is used 

(the projective transformation or the developed algorithm) because it is a developable surface. In the case 

of the oculus, however, the differences in the developments are notable when conserving different 

parameters (differences of up to 12 cm between the case of angle and distance conservation have been 

observed). The result demonstrates that the algorithm will provide the development that is most 

advantageous for the restoration team, with the option of varying the conditions being applied based on 

the desired goals.   

 

Stretching-compressing a surface until it becomes flat is a structural problem (therefore, a study of 

tensions) in which distances are stretched and/or angles are opened. The weights defined in each case are 

actually elastic moduli (or resistance to deformation). The energy stored in the entire mechanical system 

minimizes the sum of the squares of the deformations when applying a specific elastic modulus.   
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