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Abstract

In this paper we obtain some theoretical results about iterative methods with memory for
nonlinear equations. The main idea consists in using for the predictor step of each iteration
a quantity that has already been calculated in the previous iteration for the corrector step,
usually the quantity governing the slope from the previous corrector step. In this way we do not
introduce any extra computation, and more importantly we avoid new functional evaluations,
allowing us to obtain high iterative methods in a simple way. A speci�c class of methods of
this type is introduced, and we prove the convergence order is 2n + 2 n � 2 with n + 1 functional
evaluations. An exhaustive e�ciency study is performed to show the competitiveness of these
methods. Finally we test some speci�c examples and explore the e�ect that this predictor may
have on the convergence set by setting a dynamical study.

Key words: Iterative methods with memory; Convergence rate; E�ciency; Kung-Traub conjecture;
Dynamics.
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1. Introduction

Nonlinear equations appear in a natural way in many applications of science and
engineering. The solutions are typically approximated via iterative methods. Newton's
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method and other \simple" techniques are common, and historically have been su�-
cient. However, nowadays high-order methods are very important, as many scienti�c
applications need high precision in their computations. For example, in [1], high preci-
sion calculations are used to solve interpolation problems in astronomy, whereas in [2]
the authors describe the use of arbitrary precision computations to improve the results
obtained in climate simulations. The precision required would necessitate a large number
of iterations if one utilized a low-order method. The results of these numerical experi-
ments in [1,2] show that the high-order methods associated with multiprecision 
oating
point arithmetic are very useful, as they yield a clear reduction in iterations.

The convergence order of an iterative method is directly related with the e�ciency in
the sense of the conjecture of Kung-Traub, [7], which established the optimal relation
between these concepts for the case of iterative methods without memory. In short, the
conjecture states that a method without memory that usesn + 1 function evaluations
per iterate can have a convergence rate of at most 2n . It is important to note that this
conjecture does not hold for methods that incorporate memory.

This paper focuses on the consequences of memory reuse rather than just using the
historical points in new ways. It is well known that iterative methods with memory
can surpass the Kung-Traub conjecture, but often the computational cost of obtaining
high-order methods is very expensive. Therefore we concentrate in this work on de�n-
ing predictor-corrector iterative methods with memory in a simple way; that is, trying
to use memory to obtain a high-order of convergence, but without introducing extra
computation to the iterative expression.

Di�erent studies about iterative methods with memory have recently been published.
See among others, [9]-[16]. Here we deal with general schemes ofk-steps which allow us to
obtain di�erent convergence orders depending on the number of steps performed. In this
sense we recall paper [17], where an iterative method without memory is constructed,
which utilizes n + 1 function evaluations per iterate and has optimal convergence or-
der. Di�erent improvements have been published based on this scheme. One of these in
particular, [15], is a complete study where the authors construct a biparametric fam-
ily of iterative methods with memory where, by using memory to approximate one of
the parameters, the convergence order improves to 2n + 2 n � 1 and by approximating the
second parameter they reach 2n + 2 n � 1 + 2 n � 2. In both cases the number of functional
evaluations is maintained at n + 1.

Nevertheless, the computations made in order to reach these high convergence orders
has been costly. Our idea in this work is to simplify this cost by constructing high-order
methods in a way that the iterative expression remains as simple as possible. We use
the idea of using for the predictor step of each iteration a quantity that has already
been calculated in the previous iteration for the corrector step, usually the quantity
governing the slope from the previous corrector step. In this way we do not introduce
extra computation.

The predictor-corrector iterative methods constructed are an alternative that can be
competitive, because while high-order methods are important, the operational cost of
getting them must also be taken into account. For this reason an exhaustive e�ciency
study is performed to show the e�ectiveness of these methods.

In the next section we introduce the classes of the predictor-corrector algorithms with
memory that we will be studying. In section 3, convergence order results are obtained and
some initial results about e�ciency are derived. Section 4 is devoted to introducing the

2



new multistep iterative method with memory and the comparison with recently published
iterative methods with similar characteristics, including a subsection of numerical results.
Finally, in section 5, we explore the e�ect that this kind of construction for deriving
methods may have on the convergence set by setting a dynamical study.

2. Predictor-Corrector iterative methods

While Newton's Method is one of the most popular root-�nding algorithms due both
to its simplicity and its quadratic rate of convergence, many more powerful methods exist
with faster convergence rates. The methods of derivation for these powerful methods often
result in implicit equations. For example, if one integrates f 0(x) between the current

iterate and the (unknown) root,
Z �

x n

f 0(x)dx = � f (xn ) and apply the Midpoint Rule

to the integral, we get f 0( 1
2 [xn + � ])( � � xn ) � � f (xn ), which can be rearranged into

the implicit equation � � xn �
f (xn )

f 0( 1
2 [xn + � ])

. These equations are typically applied

algorithmically as a predictor-corrector set ([4]-[6]); for example,

yn = xn � f (xn )	( xn )

xn +1 = xn �
f (xn )

f 0( 1
2 [xn + yn ])

(1)

for some function 	. It is common to use Newton's Method for the predictor step,

yn = xn �
f (xn )
f 0(xn )

xn +1 = xn � f (xn )�( xn ; yn ): (2)

In this sense, one could view this type of algorithm as Newton's Method with a correc-
tive factor. However, if �( xn ; yn ) does not incorporate f 0(xn ), then this predictor has
increased the number of functional evaluations required per iterate. Rather than intro-
duce this extra computation, we would like to use for the predictor step a quantity that
has already been calculated, namely �(xn � 1; yn � 1), that is the quantity governing the
slope from the previous corrector step.

yn = xn � f (xn )�( xn � 1; yn � 1)
xn +1 = xn � f (xn )�( xn ; yn ): (3)

This type of method will be referred to as the Standard 2-step Predictor-Corrector algo-
rithm, denoted by SA:

However, sinceyn is already likely an improvement on xn , one could also incorporate
f (yn ) into the algorithm. This is commonly performed through Newton's Method, and
we denote this method byNP :

yn = xn �
f (xn )
f 0(xn )

xn +1 = yn � f (yn )�( xn ; yn ): (4)
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We again consider the e�ect of incorporating the previous slope into the predictor step

yn = xn � f (xn )�( xn � 1; yn � 1)
xn +1 = yn � f (yn )�( xn ; yn ): (5)

and refer to this as the Improved 2-step Predictor-Corrector algorithm, denoted by IA .
This can be further expanded into anImproved multi-step Predictor-Corrector algorithm,
denoted by IMS and given by:

y(0)
n = xn � f (xn )�( xn � 1; y(0)

n � 1; y(1)
n � 1; :::; y(k )

n � 1)

y( i )
n = y( i � 1)

n � f (y( i � 1)
n )� i (xn ; y(0)

n ; y(1)
n ; :::; y( i � 1)

n ); i = 1 ; 2; :::; k

xn +1 = y(k )
n � f (y(k )

n )�( xn ; y(0)
n ; y(1)

n ; :::; y(k )
n ); (6)

Notice that in the second and successive iterations, the �rst step is using the slope from
the last step giving a method with memory; that is both are using function �, while
intermediate steps use di�erent functions � i :

3. Convergence Analysis

We begin by establishing convergence results for the two-step predictor-corrector iter-
ative schemes previously de�ned to locate a zerox = � of f (x). De�ne the error terms
"n = xn � � and " �

n = yn � � for all n. The sequencef xn g1
n =0 is said to converge to

x = � with rate of convergence� if lim
n !1

j"n +1 j
j"n j �

= � for positive constants �; � . The

relationship between "n +1 and "n can therefore be written "n +1 = An " �
n + h:o:t: where

An ! � as n ! 1 and h.o.t. denoteshigher-order terms which satisfy lim
n !1

h:o:t:
" �

n
= 0.

This relationship will be denoted by "n +1 � " �
n . The speci�c terms in h.o.t. will not be

important in the subsequent analysis.

Theorem 1. Suppose that the error condition for the corrector step of the Standard
2-step Predictor-Corrector algorithm is given by "n +1 � "p

n (" �
n )q, with p and q real posi-

tive numbers, and that f is su�ciently di�erentiable. Then the convergence rate for the

algorithm is given by� =
p + q +

p
(p + q)2 + 4q
2

.

Proof. By hypothesis we have that equation (3) satis�es the condition "n +1 � "p
n (" �

n )q,
so that "n +1 = An "p

n (" �
n )q + h:o:t: Assuming f is su�ciently di�erentiable, then after

subtracting � from both sides of equation (3), one has:

"n +1 = "n � f (xn )�( xn ; yn ) (7)

= "n �
h ` � 1X

i =0

f ( i ) (� )
i !

" i
n +

f ( ` ) (� 1)
`!

" `
n

i
�( xn ; yn )

= "n

h
1 �

� ` � 1X

i =1

f ( i ) (� )
i !

" i � 1
n +

f ( ` ) (� 1)
`!

" ` � 1
n

�
�( xn ; yn )

i

for some� 1 2 (xn ; � ), and therefore,
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�( xn ; yn ) =
1 � An "p� 1

n (" �
n )q + h:o:t:

` � 1X

i =1

f ( i ) (� )
i !

" i � 1
n +

f ( ` ) (� 1)
`!

" ` � 1
n

:

Considering the next predictor step, after subtracting � from both sides there exists
� 2 2 (xn +1 ; � ) such that

" �
n +1 = "n +1 � f (xn +1 )�( xn ; yn )

= "n +1 � "n +1

h ` � 1X

i =1

f ( i ) (� )
i !

" i � 1
n +1 +

f ( ` ) (� 2)
`!

" ` � 1
n +1

i� 1 � An "p� 1
n (" �

n )q + h:o:t:
P ` � 1

i =1
f ( i ) ( � )

i ! " i � 1
n + f ( ` ) ( � 1 )

` ! " ` � 1
n

�

= "n +1

h
1 �

�
1 +

f 00(� )
2f 0(� )

("n +1 � "n ) + h:o:t:
�

(1 � An "p� 1
n (" �

n )q + h:o:t:)
i

= "n +1

h
An "p� 1

n (" �
n )q �

f 00(� )
2f 0(� )

("n +1 � "n ) + An
f 00(� )
2f 0(� )

"p� 1
n (" �

n )q("n +1 � "n ) + h:o:t:
i

= Bn "n +1 "n + h:o:t:

Therefore, " �
n � "n "n � 1 and "n +1 � "p

n (" �
n )q = "p+ q

n "q
n � 1. De�ning � n = ln( "n ) for all n,

the convergence rate is given by the characteristic equation:

� n +1 � (p + q)� n � q� n � 1 = 0

which has roots
p + q �

p
(p + q)2 + 4q
2

, and therefore the rate of convergence is given

by � =
p + q +

p
(p + q)2 + 4q
2

.

3.1. Applying theorem 1 to the Midpoint method with memory

We consider the Midpoint Method with memory, denoted by MP , derived at the
beginning of Section 2. It is given by:

yn = xn �
f (xn )

f 0( 1
2 [xn � 1 + yn � 1])

xn +1 = xn �
f (xn )

f 0( 1
2 [xn + yn ])

: (8)

This is a Standard 2-step Predictor-Corrector algorithm. The error relationship from the
corrector step is derived in [10] and shown to be"n +1 � "n " �

n , so that p = q = 1. There-

fore, according to Theorem 1, the rate of convergence is� =
1 + 1 +

p
(1 + 1) 2 + 4
2

=

1+
p

2 � 2:414. We note that since this algorithm utilizes two new functional evaluations
per iterate, the optimal method without memory could only achieve a convergence rate
of 2 according to the Kung-Traub conjecture.

Theorem 2. Suppose that the error condition for the corrector step of the Improved 2-
step Predictor-Corrector algorithm is given by "n +1 � "p

n (" �
n )q, with p and q real positive

numbers, andf is su�ciently di�erentiable. Then the convergence rate for the algorithm,

denoted byIA , is given by � =
(p + q + 1) +

p
(p + q + 1) 2 � 4p
2

.
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Proof. The proof is the same as Theorem 1, except that equation (7) will be:

"n +1 = " �
n � f (yn )�( xn ; yn );

resulting in

�( xn ; yn ) =
1 � An "p

n (" �
n )q� 1 + h:o:t:

` � 1X

i =1

f ( i ) (� )
i !

(" �
n ) i � 1 +

f ( ` ) (� 1)
`!

(" �
n )` � 1

;

and consequently," �
n � "n " �

n � 1. To determine the convergence rate, we must therefore
consider the system:

" �
n = "n " �

n � 1

"n +1 = "p
n (" �

n )q:

Setting � n = ln( "n ) and � n = ln( " �
n ) for all n,

� n = � n + � n � 1

� n +1 = p� n + q� n :

By noting that � n =
� n +1 � p� n

q
, the characteristic equation is found to be:

� n +1 � (p + q + 1) � n + p� n � 1 = 0 ;

which has solutions
(p + q + 1) �

p
(p + q + 1) 2 � 4p
2

, and therefore the rate of conver-

gence is given by� =
(p + q + 1) +

p
(p + q + 1) 2 � 4p
2

:

3.2. Applying theorem 1 and theorem 2 for di�erent values ofp and q

The convergence rates of algorithms of the standard and improved types have been
obtained for various combinations ofp and q and can be seen in Table 1, along with the
corresponding convergence rates for algorithms utilizing a Newton predictor as shown in
Systems (2) and (4). Notice that for the methods for which we use Newton's method as a
predictor we assume the error condition for the corrector step"n +1 � "p

n (" �
n )q, resulting

in "n +1 � "p
n ("2

n )q so that the order is 2q + p. We can see in the results of Table 1 that
this method is always reaching the higher convergence rate. However, the convergence
rate must be related to the e�ciency index as is done in the next section.

3.3. E�ciency Indices

The e�ciency index of an iterative algorithm as de�ned in [6] measures the balance
between the rate of convergence (� ) and the number of functional evaluations (m) re-
quired per iterate, and is de�ned by EI = � 1=m . Obviously methods are preferable when
they have a higher e�ciency index.

The algorithms stated in the previous section,SA and IA , have slower convergence
order than their Newton analogs,NP . However, one must also consider the computational
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Method qnp 1 2 3 4 5

N 3 4 5 6 7

SA 1 2.414 3.303 4.236 5.193 6.162

IA 2.618 3.414 4.303 5.236 6.193

NP 5 6 7 8 9

SA 2 3.562 4.449 5.372 6.317 7.275

IA 3.732 4.562 5.449 6.372 7.317

NP 7 8 9 10 11

SA 3 4.646 5.531 6.464 7.405 8.359

IA 4.791 5.646 6.541 7.464 8.405

NP 9 10 11 12 13

SA 4 5.702 6.606 7.531 8.472 9.424

IA 5.828 6.702 7.606 8.531 9.472

NP 11 12 13 14 15

SA 5 6.742 7.653 8.583 9.525 10.477

IA 6.854 7.742 8.653 9.583 10.525
Table 1
Convergence rates for values of p and q.

work required for calculating each iterate. While replacing the slope from the initial
predictor step with the slope from the previous corrector step often results in a slight
decrease in convergence, it may result in one fewer functional evaluation. This is very
important since it can therefore allow algorithms to surpass the optimal convergence
rate for nonmemory algorithms as stated by the Kung-Traub conjecture. The following
theorem addresses the e�ciency of the respective algorithms.
Theorem 3. Suppose one iterative scheme has convergence rate� 1, requiring m func-
tional evaluations per iterate, while a second iterative scheme has convergence rate� 2

with 1 < � 2 < � 1, requiring m � 1 functional evaluations per iterate. The e�ciency index

of the second scheme is greater than the �rst scheme form <
ln( � 1)

ln( � 1) � ln( � 2)
.

Proof. We would like to know the values of m for which � 1=m
1 < � 1=(m � 1)

2 . Taking the
natural log of both sides,

1
m

ln( � 1) <
1

m � 1
ln( � 2)

ln( � 1)
ln( � 2)

<
m

m � 1
= 1 +

1
m � 1

m � 1 <
1

ln( � 1 )
ln( � 2 ) � 1

=
ln( � 2)

ln( � 1) � ln( � 2)

which, if we add 1 to both sides, is equivalent to

m <
ln( � 1)

ln( � 1) � ln( � 2)
:
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According to this Theorem, the Standard 2-step Predictor-Corrector is more e�cient
than its Newton analog when:

m <
ln(p + 2q)

ln
�

2(p+2 q)

p+ q+
p

(p+ q)2 +4 q

�
;

while the Improved 2-step Predictor-Corrector is more e�cient than its Newton analog
when:

m <
ln(p + 2q)

ln
�

2(p+2 q)

p+ q+1
p

(p+ q+1) 2 � 4p

�
:

In Figure 1 we observe the number of functional evaluations (m) for which standard PC
(SA) is more e�cient than its Newton analog, provided the \slower" algorithm utilizes
one fewer function evaluation per iterate than the \faster" algorithm. The corresponding
values for the Improved PC (IA ) can be observed in Figure 2. In each case, the real value
for the improved PC was greater than the standard PC, although the 
oor value was the
same in many cases.

Figure 1. Values of m for which
EI (SA) > EI (NP ).

Figure 2. Values of m for which
EI (IA ) > EI (NP ).

Next we consider the convergence rate of the Improved multi-step Predictor-Corrector
(IMS ) de�ned by (6).
Theorem 4. Suppose that the error conditions for the predictor steps(1); :::; (k) of the
Improved k-step Predictor-Corrector algorithm are given by" ( ` )

n � " r `
n (" (0)

n )s` , that of the
corrector step is given by"n +1 � "p

n (" (0)
n ))q, and that f is su�ciently di�erentiable. Then

the convergence rate for the algorithm is given by:

� =
(p + q + sk ) �

p
(p + q + sk )2 � 4(psk � qrk )

2
:

Proof. This proof begins the same as Theorems 1 and 2, except that equation (7) will
be "n +1 = " (k )

n � f (y(k )
n )�( xn ; y(0)

n ; y(1)
n ; :::; y(k )

n ), resulting in
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