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Abstract

Statistical machine translation is a well studied field of computational linguistics.
Phrase-based machine translation is one of the most successful approaches to this prob-
lem. Nevertheless, the results obtained for complex corpus are still much worse than
human translation. Some language phenomena cannot be modelled using the lexical-
ized phrase-based models, such as syntactic reorderings or long term concordances. In
such cases it is necessary the use of syntactic machine translation techniques. Syntax-
based machine translation use synchronous grammars and other formalisms to include
syntactic information in the translation process.

Our aim in this master thesis is the definition of a hybrid translation model that
uses the main strenghts of both approaches: phrase-based and syntax-based. We do
not want to incorporate syntactic information in a classical phrase-based system, but
to integrate phrase-based techniques and syntax-based techniques in a new search
decoder. Because of its simplicity and its expressivity, we have used stochastic phrasal
inversion transduction grammars as translation model.

Once, the framework is well defined, we implement a machine translation system
within the framework. The decoder can be divided in two parts: a parser that obtains
the syntactic tree of the input sentence, and a tree-to-string method that find the most
likely target-language sentence, according to the model, given the tree.

In addition, we explore the learning of some parameters needed for the new hybrid
model, such as stochastic inversion transduction grammar or the learning of the phrase
table. Finally, we present some experiments over two different corpora Spanish-English
and German-English.
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Resum

La traduccié automatica estadistica és un camp de la lingiifstica computacional
molt ben estudiat. D’entre totes les aproximacions a aquest problema en destaca la
traduccié basada en segments, que darrerament ha ofert els millors resultats. Tan-
mateix, les traduccions obtingudes per a textos complexos encara estan molt lluny
dels resultats humans. Hi ha fenomens del llenguatge que queden fora de I’enfocament
purament lexicalitzat dels sistemes basats en segments: reordenaments sintactics, con-
cordances a llarg termini... En aquest punt és on ha d’intervindre la traduccié basada
en sintaxi, que utilitza gramatiques sincrones i altres formalismes per tal d’incloure
informacié sintactica en la traduccié.

L’objectiu d’aquesta tesi de master és la definicié d’un model de traduccié hibrid
que incorpore els avantatges de les dues aproximacions: la basada en segments i la
basada en sintaxi. La intencié no és incorporar informacié sintactica a un sistema de
traduccié basat en segments, sin integrar tecniques de traduccié basada en sintaxi i
tecniques de traduccié basada en segments en un mateix sistema de cerca. La seua
simplicitat i al mateix temps el seu gran poder expressiu han fet que escollim com a
model de sintaxi el formalisme conegut de les gramatiques d’inversié i transduccié de
segments estocastiques.

Amb el model hibrid ja ben definit, podem implementar un sistema de traduccié
que l'utilitze. Aquest sistema es pot dividir en dues parts: un analitzador sintactic
que obté 'arbre d’analisi de 'oracié d’entrada, i un traductor arbre-cadena que cerca
Poraci6 en llengua desti més probable, segons el model, donat I’arbre d’analisi.

A més a més, s’investiga 'aprenentatge dels diferents parametres necessaris per a
I'aproximaci6 hibrida, com sén la inferéncia de gramatiques estocastiques d’inversié i
transducci6 o ’aprenentatge de les taules de segments. Finalment es presenten exper-
iments sobre dos corpus diferents castella-anglés i alemany-anglés.
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CHAPTER 1

Introduction

“A journey of a thousand miles starts with a single step.”
Mao

This chapter is an introduction to the issues the master thesis deals with. First of
all, we explain general concepts about machine translation, some common problems of
machine translation systems and the motivations of the work. Then we make a revision
of the state-of-the-art in machine translation, focusing on the two approaches that
we have combined in this work: Phrase-based Machine Translation and Syntactical
Machine Translation. We describe also some previous approaches to the problem
using hybrid systems. Finally, we give a brief overview of the full thesis.

1.1 Motivation

Machine Translation (MT) is a well-established sub-field of Computational Linguis-
tics. MT investigates how to automatically translate text from one natural language to
another. There have been important advances in MT, specially since the publication
in 1993 of the work of [Brown et al., 1993]. However, current systems cannot produce
output of the same quality as a human translator for open domain problems. In order
to improve the results obtained by MT systems, maybe it would be a good choice
trying to approach to the human-like translation process. Hence, the first question
that must be answered is how does human translators work. It is commonly accepted
that there are two main steps in the human translation process:

1. Decoding the meaning of the source sentence: The first thing that a translator
must do is understand correctly the meaning of the sentence. This step includes
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complex actions such as disambiguating the correct meaning of the sentence
using other sentences of the text, or other easier tasks as identifying the main
action in the sentence.

2. Re-encoding this meaning in target-language: As a second step, the translator
must build a correct target-language sentence from the meaning obtained in the
previous one.

The first step is related to several other fields of computational linguistics, such as
semantics, word sense disambiguation, syntactical parsing, part-of-speech tagging...
Usually, this kind of information is ignored in the translation process and current
systems are focused in the second step.

Statistical Machine Translation (SMT) is a field within MT that tries to trans-
late texts using statistical models with parameters obtained from bilingual corpora.
Nowadays, the most promising results of MT are those obtained using the so called
phrase-based models.

Every system or model of Statistical Machine Translation must deal with three
major subproblems:

Modeling Problem: This problem is related to how can be modeled the process of
translating a sentence. First of all, a formal model must be defined for the
process of translation and this model must provide a framework to calculate the
translation probability Pr(t|s).

Learning Problem: Also called Inference Problem or Training Problem. Given the
statistical model chosen, how can be its parameters estimated from a bilingual
corpus of parallel sentences? The system must provide methods and algorithms
in order to infer the parameters of the translation and language models. These
methods must be robust and efficient.

Decoding Problem: Once we have fully specified (framework and parameters) the
translation model, it is necessary to provide a method to obtain the most prob-
able target -language sentence given a source-language sentence.

Phrase-based MT approach has been demonstrated to be the best approach in
translation of similar structured language pairs (Spanish-English, French-Ttalian...)
[Callison-Burch et al., 2007]. Phrase-based decoders divide the input sentence into
segments of words, called phrases, translate them into target-language phrases and
reorder such resulting phrases to get a final translated sentence. The main advan-
tages of phrases-based systems are that the phrase pairs can be extracted easily from
a word alignment and the process of decoding is, usually, easy and fast. In addition,
phrase models have a high sentence coverage. However, this approach does not use
the linguistic information mentioned above and reorderings cannot take into account
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the syntax of the sentence. One of the weaknesses of the phrase-based models is their
inability to incorporate syntactic information in the translation. For instance, most
English sentences contain a subject and a verb, but there is no way of including this
information in a traditional phrase-based system. Syntactic motivated reorderings are
also very difficult to include in phrase-based systems.

Another common approach within the field of SMT is the so called syntax-based
MT. This approach is characterized by the use of syntactic information in the process
of MT. For pairs of languages with a high number of reorderings (Spanish-German,
Chinese-English...) syntax-based MT seems to be the best solution. The strength
of syntax-based models is that outputs tend to be syntactically well formed and the
reordering can be influenced by syntactic context [DeNeefe et al., 2007] . In order to
decode the meaning of the source text, one first step must be the syntactic analysis
(parsing), of the sentence. However, the estimation of parameters for the syntax-based
models is complex. Besides, most of them ignore the lexical context when translating
a word 1.

Most of the current phrase-based systems ignore syntactic information in the search
of the most probable translation. However, syntactic information has been proved
to be useful [Galley et al., 2004][Chiang, 2005][Wang et al., 2007]. It is important to
know how can syntax contribute to phrase-based translation. We show it using an
example. Figure 1.1 shows the parse tree of a German sentence, and two possible
translations.

In a), a parse tree for the sentence is presented. The dashed lines indicate that
the translation of the subtree must be inverted. The non-terminals of the parse tree
represent some common syntactic constituents of the sentence, such as OB for the
object, V for the verb, P for the predicate... b) and c¢) are two translations of the
sentence. The first one is the correct translation of the sentence and the second one
is a possible output from a phrase-based decoder. The reordering model of phrase-
based systems does not take into account syntax and usually, only the n-gram language
model can help to choose the correct order. When this language model is limited, or
in the cases of long term reordering, the output tends to be out of order. On the
contrary, probably, a syntax-based decoder would have put the verb before the object
in an English sentence.

Hence, both approaches, syntax-based and phrase-based MT, have strengths and
weaknesses. There have been some previous attempts in order to add syntactic in-
formation to the input of a phrase-based decoder. Our aim in this work is, not to
incorporate syntactic information to a phrase-based decoder, but to create a hybrid
approach. Thus, we present a Phrase-Based Syntactic Decoder as an attempt to unify
both approaches and take the best from each one.

IThe translation unit is usually the word, instead of the phrase.
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a) ROOT
/\
S PS
/\
SB P
/\
Wir VP O
kénnen es uns OB \%

nicht leisten , ‘ ‘

Geld zu verlieren

b) We cannot afford to lose money .
c) We cannot afford money to lose .

Figure 1.1: a)Parsing of a German sentence. b)Correct translation of the sentence.
c¢)Translation obtained with a phrase-base decoder.

1.2 Previous Approaches

Machine Translation is a well studied field. From the precursors and pioneers of the
first half of the 20th century, until now, lot of work have been done. Recently, im-
portant advances have been achieved, specially since the re-introduction of Statistical
Machine Translation in 1993 by the researchers at IBM’s Thomas J. Watson Research
Center [Brown et al., 1993] , but there is still room for improvement.

There are a lot of different MT approaches: Rule-Based Systems, Interlingual MT,
Example-Based Systems, Statistical Machine Translation... , but we focus this work
on Statistical Machine Translation.

SMT is an approach within MT that tries to obtain a statistical model for the
translation and then use that model to get the target sentence t* from the source
sentence § that maximize the probability:

t* = argmax Pr ¢(]3) (1.1)
t

where 6 is the set of parameters of the model and are obtained from bilingual corpora?.

Using Bayes rule in (1.1) and given that Pr(3) is constant for all the terms in the

maximization, we obtain:

2From now on, we will assume that @ is implicit in the model.
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t* = argmax Pr(5|t) Pr(t) (1.2)
t

where Pr(5|t) is the probability of the translation from the target string to the source
string and is called inverse translation model. Pr(%) is the probability of seeing the
target string ¢ in the target-language, and is commonly called, language model. Thus,
Pr(5|t) models the translation between the sentences and Pr(f) models the correctness
of the target-language sentence.

First systems of SMT followed the model based in Equation (1.2), that is known as
noisy channel model. The process of decoding of the systems that follow such model
is illustrated in Figure 1.2. The source-language sentence is preprocessed®. Then, the
decoder finds the target-language sentence that maximize the probability of translation
expressed in Equation (1.2). Finally, the translated sentence is postprocessed?.

Source Language Text

l

Preprocessing

JL

Decoding |~~~ |argmax, Pr(s|t) Pr(t) ‘

JL

Postprocessing

ﬂ

Target Language Text

Figure 1.2: Noisy channel modelling for statistical machine translation.

Nowadays, SMT has offered very promising results. Within this approach we can
find many different models: phrase-based models [Koehn, 2004], finite-state models
[Picé et al., 2004], neural networks [Koncar and Guthrie, 1994], syntax-based models

3The preprocess usually includes tasks such as tokenization, lowercasing, named entities recognition...
4Some common postprocesses are re-casing, detokenization...
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[Yamada and Knight, 2001] among others. The two most studied models within this
field are Phrase-Based MT and Syntax-Based MT. For that reason we will explain
those approaches in the following subsections.

1.2.1 Phrase Based Machine Translation and Log-Linear Models

The origin of the phrase-based model is the word-to-word model [Brown et al., 1993].
The basic assumption of this original model is that each source word is generated by
only one target word. This assumption does not correspond to natural language,
because, in most of the cases, it is necessary to know the context in order to find the
correct translation of a word.

Phase-based models can be traced back to Och’s alignment template model
[Och et al., 1999] but they were formally proposed later [Tomés and Casacuberta, 2001]
[Koehn et al., 2003]. Using these models, a sequence of source words is aligned with a
sequence of target words, commonly named phrases. Hence, the statistical dictionaries
of single word pairs are substituted by statistical dictionaries of bilingual phrases that
usually take the form of a phrase table.

During the decoding, the source sentence 5 is segmented into a sequence of I phrases
51. Bach of these phrases 5; is translated into a target phrase ¢;. This translation
process is modeled by a probability distribution Pr(s;|¢;). It must be noted that this
approach uses the inverse translation probability following the noisy channel model,
Equation (1.2). The obtained output phrases can be reordered. This reordering is

modeled by a probability distribution 4.

The language model use to be a n-gram language model and sometimes, is introduced
a factor w to calibrate the output length. In summary, the Equation (1.2) becomes:

t* = argmax Pr(5|t) Pr(f)w'" (1.3)
t

where Pr(5|t) is decomposed into
I
p(s1|#) = [[ Pr(sili)s (1.4)
i=1

In [Och et al., 1999] the authors observed that the inverse translation model
(Pr(5]t;)) could be replaced by the directed translation model (Pr(%;|5;)) without
a significant loss in translation quality. This fact is hard to justify within the noisy
channel translation framework. For that reason, in [Och and Ney, 2002] is presented
a new approach (1.5) that can take into account the inverse translation model, the
direct translation model and many other. Following a Maximum Entropy approach,
the translation can be viewed as a log-linear combination of models:
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_ A\ihi(t, 5
t* = argmax exp[2; Aihl f)] = argmax

D S P>, M (7, 5) max ) Aihi(f,) (1.5)

Each of the models, h;(t, 5), called feature is adjusted by a weight, )\;, computed in
the learning phase. It can be seen that the Equation (1.2) is a special case of the log-
linear equation with two feature functions (h), the inverse translation model (Pr(5]?))
and the language model (Pr(?)).

The introduction of such models, usually called log-linear models, opened a new
stage full of possibilities. This allows the introduction of new models. The most
commonly used models in the literature are:

e Inverse translation model: Pr(s|t) Probability of the source phrase, given the
target phrase.

e Direct translation model: Pr(¢|5) Probability of the target phrase given the
source phrase.

e Language model: Pr(¢) Probability of the resulting target-language sentence.

e Lexical models: Translation probability using a word-to-word model, usually
IBM1.

e Phrase penalty: A constant p equal for all the phrases. This constant penalizes
the translations composed by a higher number of phrases.

e Word penalty factor: |f| This feature penalizes short or long® sentences.

1.2.2 Syntactic Machine Translation

Syntactical MT systems, or commonly syntax-based MT systems, follow several dif-
ferent methodologies. It is for that reason that we cannot present an unified framework.
Thus, we only present an informal description of some of those systems.

Some of these approaches use a parse tree as input, apply transformations to it
and get the resulting string from the transformed tree [Yamada and Knight, 2001]
[Liu and Gildea, 2008][Nguyen et al., 2003]. For example, Yamada and Knight pre-
sented in 2001 a system that transforms a source-language parse tree into a target-
language string. This kind of systems are usually called tree-to-string decoders. The
input sentence is preprocessed by a syntactic parser. The decoder performs some
operations over each of the nodes of the tree:

e Reordering of the child nodes.
e Inserting extra words at each nodes.

e Translating leaf words.

5Depending on the sign of its weight .
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Finally it gets the sentence that yields the transformed tree. We can see an example
of the decoding process in Figure 1.3[Yamada and Knight, 2001].

Parse Tree(E)

=] VB
FRF VB2 VBl
/I"IB\?\\ Reorder f\\
'_L n:lcll' S0 —p e TO 'l.i'E ndores
EE
TB }/ \I /\\‘ Estering
s lening vl TO
| | music o
Insar
_,.,-o-'B '@

__,.,--"'"'FF —\._ _'_'_,.--"""'-#-F—.I "---__\___\_\___
B va= T fat FRE V2 B
M~ /‘-:@H. el - .

he ha VB ga kare h.1 'I'CI VB gl
I\ adores  desu |\ daisuki desu
TCI
n'u.uu: 1:| Eienng no wo kiku

nngnl:u
Takea Laave/

Sentence{l) Kare ha ongaku wo kiky no ga daisuki desu

Figure 1.3: Example of Yamada and Knight tree-to-string decoding.

Other approaches obtain a Syntax Directed Transduction Scheme (SDTS)
[Aho and Ullman, 1972] , also called Synchronous Grammar, from the training cor-
pora. A SDTS is a grammar that yields simultaneously strings of 2 languages. Then,
in order to produce the translation of a sentence, parse the input string and obtain
the output string at the same time. In [Galley et al., 2004], the authors present an
algorithm to obtain the minimal set of syntactically motivated transformation rules
(synchronous grammar rules) from parallel corpora. Using the parse tree of the out-
put and the alignments input-output of the training set, they obtain a derivation of
a Synchronous Grammar. Finally they extract the rules from the derivation and test
their system proving that it can explain the transformation of any parse tree of the
source into a string of the target-language.

Finally, in [Chiang, 2005] is presented a work that uses a synchronous context-free
grammar obtained from an aligned corpus following a two-step method:

1. Identify the initial phrase pairs using common phrase extraction techniques
[Och and Ney, 2004].
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2. Then, obtain the rules from the phrases looking for phrases that contain other
phrases and replacing the subphrases with non-terminal symbols.

The result of this algorithm is a very large set of rules, hence, it must be filtered
following some constraints and in order to smooth the system other rules are inserted.
Rules are scored using a log-linear model. Finally, it is used, as a decoder, a CKY
parser with beam search together with a postprocessor to map the input derivations
into target sentences. It must be noted that the rules use only one non-terminal symbol
and it has no linguistic motivation. An extension to this work using more non-terminal
symbols with a linguistic motivation is presented in [Zollmann and Venugopal, 2006].

1.2.3 Combined Approaches

We say that a MT system is a combined approach between syntax and phrase-based
when it uses techniques and information of both approaches in order to improve the
translation. In most of the cases, such systems use a standard phrase based decoder
with some kind of syntactic information or use syntax modelling as a pre or postprocess.

The approach presented in [Wang et al., 2007] uses syntactic reordering as a prepro-
cess for a phrase-based system (training and decoding) for a Chinese-English transla-
tion. A similar approach is used in [Collins et al., 2005] and [Nieflen and Ney, 2004].

Another kind of combined approaches are those that attach syntactic information
to the input source-language sentence (for instance the chunks of the sentence or the
shallow parsing) and then use a phrase based decoder [Hassan et al., 2007].

The decoder presented in this master thesis differs from all these previous approaches
in an important aspect. The system presented here uses syntax-directed decoding to-
gether with phrase-based techniques (phrase tables, log-linear models, beam search...).
In addition, the decoder uses syntax based reordering models during the decoding be-
sides a n-gram language model. Therefore, we take advantage from the benefits of
both, syntactic and phrase-based machine translation systems.

1.3 Overview

The rest of the contents of this Master Thesis are structured following the three
subproblems explained in Section 1.1.

Chapter 2 deals with the modeling problem. All the formalisms used in the thesis are
explained in that chapter. First, Stochastic Inversion Transduction Grammars (SITG)
are presented together with a bilingual parse algorithm. Then, we explain a modified
version of SITG which translation unit is the phrase instead of the word: Stochastic
Phrasal Inversion Transduction Grammars (SPhITG). We also specify the theoretical
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model beyond the decoder and the features used in the loglinear combination used to
score the translations.

Chapters 3 and 4 are related with the learning problem and the estimation of the
parameters for the models. In the former, three methods to obtain SITG are presented,
and in the later we describe two algorithms that provide phrase tables from a bilingual
parallel corpus.

The decoding problem is dealt in Chapter 5. In order to use the syntax for transla-
tion, we obtain, first, the most probable syntax tree from the input sentence. Then, we
translate this tree into a target-language sentence. We consider the parsing process as
a step of the translation process so, in this chapter, is explained also the fast parsing
algorithm used. After that, is presented the recursive tree-to-string algorithm, and
some acceleration techniques implemented such as hypothesis recombination of beam
pruning.

In Chapter 6 we present some experiments performed using the decoder. These
experiments have been carried out over the EuTrans and Europarl corpora. In that
chapter we describe the main features of the corpora, the experiments carried out and
a short discussion of the results obtained.

Finally, the conclusions of the thesis and some future work suggestions are presented
in Chapter 7.

10



CHAPTER 2

Translation Model
Description

“There is nothing more practical than a good theory.”

Leonid Ilich Brezhnev

This chapter deals with the problem of modeling, the explanation of the transla-
tion model. A statistical translation model is a mathematical model in which the
process of human translation is statistically modeled. As have been stated in the in-
troduction, syntactic information is important in order to obtain good translations.
Hence, we propose a model that use syntax formalisms. Synchronous Grammars
[Aho and Ullman, 1972], also called Syntax Directed Transduction Schemes (SDTS),
are a well-studied formalism to syntactically modelate translation processes. A ma-
jor problem of such grammars is the high cost of their parsing algorithms. Inversion
Transduction Grammars are a binary category of Synchronous Grammars. In this
work, we have chosen the use of ITG because of the reduced complexity of their al-
gorithms. Hence, we first explain the formalisms and methods that are needed in the
development of the translation model: Stochastic Inversion Transduction Grammars,
its phrasal phrasal extension and bilingual parsing algorithms. Finally, we explain the
translation model with an informal explanation of the decoding algorithm.

11



2 Translation Model Description

2.1 Inversion Transduction Grammars

Synchronous grammars provide a generative process to produce a sentence and its
translation simultaneously. Due to the exponential complexity of their parsing algo-
rithms, its use is restricted for short sentences when using a big grammar. Inversion
Transduction Grammars (ITG) [Wu, 1997] are a special kind of Synchronous Gram-
mar whose parse algorithms have polynomial complexity. This fact leads us to the use
of ITG as main model for the translation process. An ITG is a tuple (N, X, A, S, R)
where A is the set of non-terminals, S € N is the root non-terminal, 3 is the input
alphabet, A is the output alphabet, and R is a set of rules. Rules can be divided in
two sets!:

e Syntactic Rules: These rules have the form: A — [BC| or A — (BC) , where A,
B and C are non-terminals and the brackets enclosing the right part of the rule
mean that the two non-terminals are expanded in the same order in the input
and output languages, whereas the rules with pointed bracketing expand the left
symbol into the right symbols in the straight order in the input language and in
reverse order in the output language.

e Lexical Rules: A — z/y where x € {¥ Ue€} and y € {A Ue}. Tt must be noted
that = or y can be the empty string, denoted by €, but not both in the same
production.

For any bilingual strings u = (u®/u'), v = (v*/v?), where u®,v® € (N UX)* are the
source part, and u',v € (N U A)* are the target part, we say that u directly yields
v, written as u = v if exists a rule (« — (3%/4%) in R such that u = (ufau$/uaub)
and v = (v %05 /v B1h). We write uw =" v, when the application of the rule r = a —
3% /3" produces v from u.

In order to get an unifyed framework we substiute always the most left non-terminal.
For any u,v, u =* v, and we say that u yields v, if exist uy,uo,...ur such that
U = ru; =2 uy =" .. =" gy, ="+1 . BEach of the ordered sets of rules
{r1,r2,... 741} used to produce v from w is called derivation. If u yields v following
the derivation d, we express it as u =% v. Commonly, we say that a non-terminal A
yields a bitext x/y when A =* 2/y. The bilingual language generated by the ITG is
the set of bilingual sentences x/y such that S =* z/y.

2.1.1 Stochastic ITG

A Stochastic ITG (SITG) is the natural stochastic extension of an ITG where each
one of the rules has been augmented with a probability. For each non-terminal A, the
production probabilities are subject to the constraint:

I'We limit the explanation to the Normal Form presented in[Wu, 1997].

12



2.1 Inversion Transduction Grammars

> (Pr(A— [BC)) +Pr(A— (BC) + Y Pr(A—a/y)=1 (2.1)

B,CeN zEX,yEA

We define the probability of a derivation d from the non-terminal A to the bitext
x/y as the product of the probabilities of each of its rules:

Pr(d) =Pr(A4 =4 x/y) =Pr(r1) - Pr(rg) - --- - Pr(rg) when d = r1,r9,...1  (2.2)

and

Pr(A="x2/y)=> Pr(A="z/y) (2.3)
d

Hence, the probability of a bilingual string (z,y) given a SITG is the sum of the
probabilities of all derivations that yield the string from the initial symbol.

Pr(s,t) = Y Pr(d), de S =" s/t (2.4)
d

However, in some cases, it can be assumed that the probability of a bilingual string
is similar to the probability of its most likely derivation.

Pr(s,t) ~ mszPr(d) ,deS="s/t (2.5)
2.1.2 Stochastic Billingual Parsing with ITG

Inside Algorithm

Once we have described the formalism, we must propose an algorithm to com-
pute the probability of a bilingual string (z,y). This algorithm is similar to the
Viterbi SITG parsing algorithm proposed in [Wu, 1997]. This probability is computed
using a dynamic programming algorithm similar to the inside algorithm for CFG
[Hopcroft and Ullman, 1979]. For simplicity, we denote Pr(A =* z/yl) as 6; j k1.4
and the lengths of 2 and y are defined as |z| := T and |y| := V. Then, the probability
of the bilingual string (z,y), Pr(z,y), is denoted by do,70,v,s. Figure 2.1 shows the
inside algorithm for SITG.

Viterbi Algorithm

A similar algorithm can be used to compute the most likely derivation and its
probability instead of the total probability. The resulting algorithm is the same that
the one in Figure 2.1 but using maximizations instead of sums in expressions (2.6),
(2.7) and (2.8). Such algorithm is described in [Wu, 1997] together with a method

13



2 Translation Model Description

1. Initialization
St—1tw—104=Pr(A—ax/y,) for 1<t <Tand1<v<V

Si—1,t,004a =Pr(A—mx/e) for 1<t<Tand0<v<V

Sttv—104=Pr(A—e/y,) for0<t<Tand1<v<V

2. Recursion
AeN

For all A, s,t,u,v such that { 3;5;22@

t—s4+v—u>2
65,157’“,11714 = 6E,t,u,v,A + 6§?t,u,U,A (26)

where

o on = 3 Pr(A — [BC]) Ssywar s Os twwc  (2.7)

’

o

nQw
m m
A 22

s t
u < w! <w
() =)t = s+
F —w) (v —u') £0

PI'(A — <BC>) . 5575’711/7'0,3 . 55',t,u,u/,c (28)

(]

s,t,u, v, A T

o~ ﬁ\"’\(ﬁm
LIAINZ 2

£ o
o INIA QW

(s" =) )+

! —w (v —u')#0

t
v
S

Figure 2.1: Inside algorithm for SITG.

to obtain the most likely derivation, also called Viterbi derivation, from the dynamic
probramming chart. The probability of the Viterbi derivation is a good approximation
of the total probability when

Pr(A="a/y) ~ max Pr(A =% z/y) (2.9)

Outside Algorithm

Another possible algorithm in order to compute probabilities of strings is the out-
side algorithm. Whereas inside algorithm follows a bottom-up algorithm, outside
algorithm uses a top-down approach. Thus, we define the probability 3; ;1. 4, called
outside probability, as the probability of the derivation S = ngzlfl / y{fAyllyl. Then,
the probability of the complete bilingual string (x/y) is Biikk 4. Figure 2.2 show
the outside algorithm for SITG. Again, we take T" and V as the lenghts of x and y
respectively, and § correspond to the estimations of the inside described above.
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1. Initialization

2. Recursion

For all A, s,t,u,v such that {

6s,t,u,7j,A = 6

where

ﬂgl,u,v,A = Z

6§,1t>,u,7j,A - Z

Bé?t>,u,v,A = Z

Figure 2.

2.1 Inversion Transduction Grammars

Bo,r0v,s =1
Borov,a=0 VA#S

(2)

1 2
L,l]f,u,v,A + 6£,t,u,U,A + ﬂs,t,u,’u,A + ﬂé,t>,u,v,A (210)

Pr(B — [AC]) - 0t,s' v, * Bs,s' uu’,B (2.11)

PI‘(B - [CA]) . 68/,s,u/,u,C . ﬁs’,t,u/,v,B (212)

PI‘(B - <AC>) : 5t,s’,u’,u,C : ﬂs,s’,u’,v,B (213)

PI‘(B - <CA>) . 65’,s,v,u’,C . ﬁs’,t,u,u/,B (214)

2: Outside algorithm for SITG.
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2 Translation Model Description
Complexity

The dynamic programming algorithm works in the three estimations described above
by analyzing each span only once and storing its value in a chart for a future use. But
there is a set of O(|s|?|t|?|N|) spans to be solved and the cost of the analysis of each
of them is O(|s||t||G]), being |s| and |¢| the lengths of the source and target sentence
respectively, |N| the number of non-terminal symbols of the ITG and |G| the size of
the grammar. Assuming the length of input and output proportional ( 7 ), the number
of problems is O(n* - |G|) and the cost of each one, O(n? - |G|). Hence, the total time
of computing it is O(n® - |G|).

Viterbi Algorithm with Bracketing Information

Thus, the cost of those algorithms is, thought polynomial, still very high. It is too
slow when using large data sets with large sentences. However, in [Sdnchez and Benedi, 2006]
the authors suggest a new algorithm to compute the probability of the Viterbi when
both parts of the bilingual string are bracketed. A string is bracketed if it is annotated
with parenthesis that mark constituent frontiers. We represent a bracketed bilingual
string with the tuple (z, By, y, B,) where = and y are the strings, B, is the bracketing
of x and B, is the bracketing of y. A derivation of x/y is compatible with B, and B,
when all the spans defined by it are compatible with B, and B,. This compatibility
is defined by the function:

1 when (¢, 7) does not overlap any b € B, and
c(i,j, k1) = (k,l) does not overlap any b € B, (2.15)
0 otherwise

This function prunes all the derivations whose parsing is not compatible with the
bracketing of the input string.

The dynamic programing algorithm can be modified in order to explore only those
spans compatible with the bracketing. Thus, complexity of this algorithm is O(n?-|G|)
when both sentences are fully bracketed. This allows us to work with real tasks with
longer strings.

2.1.3 Phrasal ITG

There are two major problems in the use of ITG:

1. As stated by Wu, ITGs cannot represent all possible permutations of words that
may occur during translation. However, in [Cherry and Lin, 2006], the authors
state that only a small percentage of human translations cannot be represented
by an ITG transduction .
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2.1 Inversion Transduction Grammars

1. Initialization
St—1tw—104=Pr(A—ax/y,) for 1 <t<Tand1<v<V

Si—1t,004 =Pr(A—mx/e) for 1<t<Tand0<v<V

Sttv—1,04=Pr(A—e/y,) for0<t<Tand1<ov<V

2. Recursion
AeN

For all A, s,t,u,v such that { 3;5;22@

t—s+v—u>2

OstuwA =c(s+1,t,u+1,v) max(é&nu’v’m 6§?t7u,U7A) (2.16)
where
St = max Pr(A — [BO)) - 055w, - st w0 (2.17)
cCenN
s<s' <t
u<u <w
(s —s)(t = sy
! =) —u') #0

0, won = ma: Pr(A — (BC)) - 6ssr 0.8 s tmur.c (2.18)

s

u < u
(s! =)t —s")+

+(u —u)(v—u') #£0

Figure 2.3: Viterbi algorithm for SITG with bracketing.

2. This kind of grammars does not take into account direct multi-word (or phrasal)
transduction. An ITG gets the transduction of a segment of words only by the
combination of the transduction of its constituents.

In order to overcome, at least partially, such problems, we present a phrasal extension
of ITG: the so called Phrasal ITG (PhITG). PhITG has been already used in the
literature [Cherry and Lin, 2007]|[Zhang et al., 2008] but, as far as we know, does not
exist a formal definition.

PhITG are very similar to ITG, the only difference is that the lexical rules can
produce directly strings instead of a single word in each of the languages. This changes
the definition of lexical rules. A lexical rule have now the form A — x/y with z € (X)*
and y € (A)*. Figure 2.1.3 shows two different PhITG-parsings for a given pair of
sentences in English and Spanish. In the part b) the non-terminal NP produce a
phrase translation.

17



2 Translation Model Description

a) S b) S
/\ /\
ART NF ART NP
The | La A]SJ/ \ I\I The | La  green house | casa verde
green | verde house | casa

Figure 2.4: Two different Phrasal ITG parsings for a pair of sentences English-Spanish.

Analogously to the definition of SITG, we can define the Stochastic PhITG formal-
ism. The constraint for the assignation of probabilities is the same that for SITG,
showed in Equation (2.1). The inside algorithm for SITG can be adapted for SPhITG
by changing Equation (2.6) for

Jsstuwnd = 00 400, o4 Pr(A — 2t ty) (2.19)

s, tu,v, A

In the case of the Viterbi algorithm with bracketing information, we change Equation
(2.16) for the equation:

Sst v, A = max( s¥ Pr(A — 2! /1)) (2.20)

s, t,u,v, A Vs, tau,v, A0

Note that the complexity of both algorithms is the same we explained in Subsection
2.1.2: O(n - |G]) for the inside/viterbi algorithm and O(n? - |G|) for the algorithm
that uses bracketing when the bilingual string is fully bracketed.

2.1.4 Collapse of a SITG into a SCFG

The parsing algorithms described above find the probability (or the optimal deriva-
tion) of a bilingual string given a SITG or SPhITG. The problem that appear when
we want to define the translation model is that we don’t have the bilingual string,
but only its source-language part and our aim is to find the target-language part that
maximizes the parsing probability.

The decoder explained in Chapter 5 uses a SCFG collapsed from a SITG in order
to parse the input source-language sentence and then transform (see next section) the
SCFG trees into SITG derivations.
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2.1 Inversion Transduction Grammars

Therefore, we must define a method to get a SCFG from a SITG. Using this CFG
we will parse the input source-language string. We say that a SITG {N,X, A, S, R}
collapse into a SCFG {N, X, S, R’} when V7' € R':

Pr(A — [BC]) + Pr(A — (BC)) ifr' =A— BC and
Pr() = A — [BC],A— (BC)eR

Pr(A — z/y ifrr=A—zand A—z/yeR
yeA

It can be easily proved that the grammar resulting from the collapse of a SITG is a
CFG. The same problem can be done with a SPhITG but the probabilities of the rules
of the resulting grammar must be renormalized after the collapse. Figure 2.5 shows
the SCFG resulting from the collapse of a SPhITG.

Pr(A — [BA]) =04

Pr(A — [CD]) = 0.3

Pr(A — (CD)) =0.1 Pr(A— BA) =05

Pr(A — big dog/perro grande) = 0.1 Pr(A — CD) =05
Pr(A — big dog/gran perro) = 0.1 collapses in ¢ Pr(B — a) =

Pr(B — a/un) =1 Pr(C — big) = 1

Pr(C — big/grande) = 0.7 Pr(D — dog) =1

Pr(C' — big/gran) = 0.3

Pr(D — dog/perro) = 1

Figure 2.5: Collapse of a SPhITG into a SCFG.

2.1.5 Transformation of a SCFG derivation into a SITG derivation

In the translation model, once we have collapsed a SITG into a SCFG, we can
get the monolingual parsing of the input source language sentence. However, several
diferent translations can be applied over a input parse tree. We define the concept of
transformation in order to formalize that multiple choice concept.

Being d’ a SCFG derivation resulting from the collapse of an SITG G = {N, %, A, S, R},
we say that d, derivation of G, is a transformation of d’, when each of the ordered
rules 7} of d’ is substituted in d by r; such that:

A — [BC]
ri = or when r; = A — BC and
A — (BC)

A — [BC]

A (o) €R (2.21)
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2 Translation Model Description

A—az/y!
or A—z/yt
T = when 7, = A — z and eER (2.22)
or A—x/yX
A—xfyX

being y'..y% € {AU€}.

A similar procedure can be carried out with SPhITG instead of SITG but Equation
(2.21) becomes then:

A — [BC]
or

A — (BC) A — [BC]
or A — (BC)

=4 A= zij/¥' Y when r; = A — BC and A—wi/yt er (2.23)
or .
A—z/yK

or

A— x/yf

being y!...y% € (A)* and the rule r} covers the segment x; ; in d'.

It must be noted that one CFG derivation d’ can produce several transformations d;
that can yield different bitexts. Figure 2.6 shows all the transformations of a derivation
d' using the SCFG and the SPhITG of Figure 2.5.

We say that two transformations d; and dy (derivations of a SITG) are equivalent
when both yields the same bitext. For instance, in Figure 2.6, d; and d5 are equivalent
because both yields the bitext (a big dog / un perro grande),i.e.

A =% a big dog / un perro grande = A =% a big dog / un perro grande

For simplicity, from now on, we will write 7(d’) to refer to the set of all the trans-
formations of d'.

2.2 Translation Model

Once all the formalism have been presented, we can define the translation model.
Then, given a SPhITG and given an input source-language sentence s, we want to find
the target-language sentence t* such that maximizes the joint probability:
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2.2 Translation Model

t* = argmax Pr(s, t) (2.24)
t

The parsing algorithms for SPhITG need both parts, source-language and target
language, of the bilingual string. For some very small tasks we could explore all the
possibilities over ¢, get their probabilities and find the most likely ¢. However, in real
tasks, the search space over t is too large and such exhaustive search is not possible.
In such cases, we only can do an approximate search by collapsing the SPhITG into a
SCFG and parsing the input source-language string.

t* = argmax Pr(s, t) = argmax Pr(¢|s) Pr(s) = argmax Pr(¢|s) (2.25)
t t t

Now we marginalize over all the derivations ¢ of the collapsed SCFG that yields the
input source-language sentence (S =217 s):

t" = argma Pr(t,d|s) = argma Pr(t]d, s) Pr(o 2.26
s 3 Pr(t ) = angmax 3 Pt ) (o)) (2.26)

Now, instead of taking the sum over all the possible derivations, we only pick the
most likely derivation 6* and divide the search in two steps: obtaining the most proba-
ble derivation from the source-language sentence (parsing), and obtaining a translation
from 0* and s :

6" = argmax Pr(d]s) ,Vd|S = s (2.27)
s
t* = argmax Pr(t|6”, s) (2.28)
t
Parsing is a well-studied problem, so we can focus on the translation or tree-to-string

part. Now we marginalize over all the possible transformations , Section 2.1.5, of ¢*
(7(6*)) to the original SPhITG:

Pr(t|o*,s) = Z Pr(d, t|delta™, s) (2.29)
deT(6*)

In this point we can continue in two different directions: we can take the sum just as
it is or we can assume that it is similar to the probability of the most likely derivation:

= Eder(é*) Pr(da t|5*7 S)
Pr(t|0*, s) (2.30)
A maXe.(5+) Pr(d, 0%, s)

This decision makes no difference for the later development and we have used both

approaches in the experimentation. From now on we use the first equation in (2.30)
but a similar development could be done using the second one.
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2 Translation Model Description

Hence, we must give a model for the probability of a target sentence and a derivation
given a parse tree. We have merged several models using a log-linear combination as
it is made in [Och and Ney, 2002].

exp[zi )\Jl%(t, d, 5*, S)]
Zd,,t/ exp[>_; Aihi(t', d', 0%, s)]

Pr(d, t|6%, s) = (2.31)

Summing up, we have:

exp[d>_; Aihi(t,d, 6%, s)] y
t* = argmax o = argmax Aihi(t, d, 6", s)
deTZ(é* Dorar €Xp2; Aihi(t, d', 6%, )] dETZ(&* ;

(2.32)

That means that we must find the target language sentence t* that maximizes the
sum over all the equivalent transformations of 6* that yields the bitext s/t. If we take
the second option in Equation (2.30), we arrive to the expression:

exp[d_; Aihi(t, d, 67, 5)] .
t* = = Aihi(t,d, 6™,
arg?laxdgagi) D €Xpo; Aihi(t, d' 0%, s)] argmaxdg%ﬁ) - ¢ s)

(2.33)

On the contrary, if we choose the second option, we must maximize instead of
summing over all the transformations.

In both cases, we have a loglinear combination of models, also named features,
h;(t,d,6*,s). Such kind of combinations has been widely used in phrase-based MT.
As we said in Section 1.2.1 there are some models that has been already used in the
literature. However, our approach allows us to use, besides the usual models, other
models derived from the syntactic information of * and d. Next, we show some of the
features we have used in this work:

Direct Translation Probability: Probability of the target sentence given the source
sentence: hy = Pr(t|s)

Inverse Translation Probability: Probability of the source sentence given the target
sentence: hy = Pr(s|t)

Lexical Direct Probability: Probability of the source sentence given the target sen-
tence using an IBM1 translation model: hs = Prp(t|s)

Inverse Direct Probability: Probability of the source sentence given the target sen-
tence using an IBM1 translation model: hy = Prp(s|t)

N-gram Language Model: Probability of the source sentence given the target sen-
tence: hs = Prpa(t)
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2.2 Translation Model

Syntactic Probability: Probability of the rules of the derivation: hg = Pr(d). This
feature models the use of inverse and direct productions and with that, the order
of the target sentence.

Word Penalty Factor: This feature is used to model the length of the output: hry =
exp(|t]), being |t| the number of words of the target sentence.

Phrase Penalty Factor: This feature is used to control the number of phrases used in
the translation.

Besides all the models described above, we plan to use in the future some other
such as syntactical probabilities described in [Sanchis-Trilles and Sénchez, 2008] or
complex reordering probabilities based on maximum entropy models or support vector
machines.
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2 Translation Model Description

A A
/\ /\
B A B A
/\ /\
alun C D a| un C D
big|gran dog|perro big | grande dog | perro

B A B A
‘ /\ d3=> ‘ - -7 T~ ~
a C D a| un C D
big dog big | gran dog | perro
\d

| T ; A
|

a| un big dog | gran perro

a| un C

— g/

big | grande dog | perro

Figure 2.6: Transformations for a CFG derivation.

24



CHAPTER 3

Inference of Stochastic
Inversion Transduction
Grammars

“ Grammar is a piano I play by ear.
All I know about grammar is its power.”
Joan Didion

Grammar inference is the process of inducing a formal grammar from a text. That
is obtaining a model that accounts the characteristics of the text. In the case of
stochastic grammars, the inference have two main parts: learning which rules need the
grammar (inference of the structure) and the estimation of the probabilities (stochastic
estimation).

We use, in our approach, Stochastic Inversion Transduction Grammars, so we must
infer the SITG (structure and probabilities) from a bilingual corpus. In this chapter,
we explain three different methods to learn the structure (and initial probabilities)
of a SITG. Two of such methods use, besides the alignments of the bilingual corpus,
a monolingual parse in order to give a linguistic motivation to the grammar. The
grammars obtained by the use of these methods will be the initial models for the
estimation of probabilities. In addition, we explain two different algorithms for the
stochastic estimation: Viterbi-like and Inside-Outside estimations.
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3 Inference of Stochastic Inversion Transduction Grammars

3.1 Inference of the Structure of SITG

We propose, in this section two methods in order to infer the structure for SITG.
Such methods estimate, also, initial probabilities for the rules inferred. Thus, the
resulting grammars can be used as a initial model in the stochastic estimation of the
probabilities described in Section 3.2. The first method was proposed in the article
[Sénchez and Benedi, 2006] and gets a non linguistically motivated SITG using the
alignments of the bilingual corpus. The other algorithm incorporate linguistic syntactic
information by the use of the monolingual linguistic parse tree of the input.

In both cases, SITG obtained are restricted only to the words and alignments seen
in the training corpus. For that reason, the sentences that contain out of vocabulary
words or alignments that have not been seen in the training corpus cannot be parsed.
In order to smooth the grammars and get a full coverage of all possible sentences, we
have added two new sets of rules: A — s | e and A — ¢ | t that have not been inferred
from the alignment, with a low probability; the problem with the out of vocabulary
words is solved by the incorporation of three new lexical rules (A — UNK/UNK ,
A — UNK/e and A — ¢/UNK). During the parse of a sentence, if we find an out-of-
vocabulary word we substitute it by the word UNK and one of these productions is
used.

3.1.1 Ergodic SITG

This method divide the inference of the rules in two parts: inference of lexical rules
and inference of syntactic rules.

The probability of a lexical rule is computed using the alignments. From these
alignments we obtain the probability Pr(a|b) where a € {X U {e}} and b € {A U {e}}.
Hence, we can use Pr(a|b) to compose the rule A — a/b, being A € N with Pr(4 —
a/b) = Pr(alb). In order to get a less complex model, and following [Wu, 1997], only
one non-terminal symbol is used to produce all the lexical rules.

In order to obtain the probabilities of the syntactic rules we add the rules to obtain
an ergodic grammar, i.e. all the possible syntactic rules (direct and inverse) that
can be formed using all the non-terminals of the grammar. Then a similar random
probability is assigned to each syntactic rule.

Finally we smooth the grammar, as have been proposed above, and normalize the
probabilities of all the rules to fulfil constraint (2.1).

3.1.2 Adding Linguistic Information to a SITG

Adding non-terminals to the grammar, increases its complexity and hence, its expres-
sive power. However an increasing number of non-terminals increase also the temporal
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3.2 Stochastic estimation for SITG

cost of the parsing algorithm. With the ergodic model, with N non-terminals, the
number of syntactic rules is 2N3. Therefore, with a high number of non-terminals the
number of resulting syntactic rules slow highly the parsing algorithms. In addition, the
ergodic SITG does not take benefit of the usual linguistically motivated reorderings.
We can add syntactic motivation to the SITG by using the linguistically motivated
monolingual parse trees of the source language part of the corpus’.

Figure 3.1 shows an example of this first method for a given bilingual sentence
and the algorithm is also illustrated in the pseudo code of the Algorithm 1. First,
we get the monolingual parsing of the source language part of a sentence (a). The
non-terminals of this tree represent some linguistic constituents of the sentence; for
instance P (Predicate), AT (Attribute)...

Then, we extract the bracketing information of the monolingual parse tree and
use it in order to get a bilingual parse tree (b) using a SITG with the algorithm
described in Figure 2.3. Since we have used the bracketing given by the monolingual
tree, for each node of the monolingual tree exists a node in the bilingual tree that
covers exactly the same part of the sentence. Note that this relation is not symmetric,
because there can be nodes in the bilingual tree that do not have an equivalent in
the monolingual tree, the syntactic monolingual tree is not necessarily a binary tree.
For instance, in the figure, the node with the non-terminal NT2 that yields the string
“simple/simple example/ejemplo* has not an equivalent in the monolingual tree. In
order to obtain a complete equivalence between both trees we binarize the parse tree
using the information of the SITG tree.

Now, we can associate the reordering information of each SITG tree node with its
equivalent in the parse tree (line 7 in Algorithm 1). We do the same with the lexical
productions of the SITG tree. Thus, we have a SITG tree with linguistic syntactic
information. This process is repeated for all the bilingual sentences of the corpus.
Finally the probabilities of the rules are computed by counting over all the resulting
trees and normalizing.

3.2 Stochastic estimation for SITG

Once the structure of the grammar and the initial probabilities of its rules is inferred
by means of one of the methods proposed in previous section, we must re-estimate the
probabilities given a bilingual corpus. The basic assumption is that a good grammar
is one that makes the sentences in the training corpus likely to occur. This process
consist then, in finding the probabilities of the rules that maximizes likelihood of the
corpus.

1From now on, monolingual parse trees
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3 Inference of Stochastic Inversion Transduction Grammars

ROOT
/\
S PS
/\
PR P ‘
/\
this A% AT
T
is ART ADJ NN
a simple  example
Rules obtained:
ROOT — [S PS] S—[PR P]

ADJ_NN — ( ADJ NN ) PR — this / esto

ADJ — simple / simple

NN — ezample / ejemplo

b) NT1
/\
NT2 NT4
/\
NT4 NT3 /
/\
this / esto NT4 NT2
/\
is /es NT4 N/’l\‘2
a / un N'1:4/ \N\T4

simple / simple example / ejemplo

PRD — [V AT] AT — [ ART ADJ_NN]

V —is /es ART — a /un

PS—. /.

Figure 3.1: Adding linguistic information to a SITG.
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3.2 Stochastic estimation for SITG

Algorithm 1 InferenceOfLinguisticSITG(bCorpus,ITG,CFG)

newITG « {)

for all bSentence € bCorpus do
synTree <+ monolingualParse(CFG,bSentence.input)
bracketedSent «— obtainBracketing(synTree)
itgTree « bilingualParse(ITG,bracketedSent)
binarize(synTree)
combTree < combineTrees(parseTree,itgTree)
addRules(newITG,combTree)

end for

countAndNormalize(newITG)

: return newlITG

— =
= O

In this section, we propose two SITG re-estimation methods similar to the classical
Viterbi and Inside-Outside for SCFG.

3.2.1 Viterbi-like Estimation

To determine the probabilities of the rules we compute:

Pr(A — a) :% (A—a),(A—~7)€R, (3.1)

where C(+) is the number of times that a rule is used.

When we have parsed corpora available, this estimation can be done directly. In
this case we only have the bilingual corpus, not its parse trees, but we can use the
Viterbi parsing algorithm described in Chapter 2 to parse the corpus.

The iterative algorithm of Viterbi re-estimation is presented in Algorithm 2. Each
sentence of the corpus is parsed and the probabilities of the SITG rules are updated
by counting and normalize over the number of occurrences in the parse trees. This
process is repeated until the differences in the SITG of two iterations are small.

Algorithm 2 ViterbiReestimation(SITG,bCorpus)
1: repeat

RuleSet« ()

for all bSentence € bCorpus do
SITGparse «— ViterbiParse(bSentence,SITG)
addRules(RuleSet,SITGparse)

end forSITG+«countAndNormalize(RuleSet)

7: until Convergence

8: return SITG

AN
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3 Inference of Stochastic Inversion Transduction Grammars

The complexity of this algorithm is the same as the Viterbi parsing algorithm:
O(n® - |G|). However, if we have a fully bracketed corpus, we can use the version that
uses bracketing information in order to decrease the complexity until O(n? - |G|).

3.2.2 Inside-Outside Estimation

In the Inside-Outside method, we try to determine the probabilities of the rules but
we only see directly the probability of the whole sentence (using Inside, ¢, and Outside
.3, estimations, Section 2.1.2).

For brevity, we do not explain deeply the algorithm that is similar to the Inside-
Outside algorithm for SCFG [Baker, 1979] but we give the re-estimation expressions
for each bilingual sentence x/y such that || =T and |y| = V:

> et oy Osm st Pr(@s = a) Pr(yy = b)Betsu—1,u.4

/
Pr(A — a/b) = 7 = % v
Zs:o Zt:s Zu:O ZU:u 55,t,u,v,A65,t,u,v,A

(3.2)

Pr'(A — [BO)) =

S S S S S S St A PH(A = [BC))Bs st BBttt .0
ZZ;O Zfzs ZZ:O Z'L‘//:u 5s,t,u,v,Aﬂs,t,u,v,A

(3.3)
Pr'(A — (BC)) =

252_01 Zz:s Z‘u/:_()l ZL/:u Zi’:s ZZ’:u 637751“7’1),14 PI‘(A - <BC>)ﬁSaS’7’“’7’11,368’7751%”’70
ZZ:O Zf:s ZZ:O Z'L‘//:u 5s,t,u,v,Aﬂs,t,u,v,A

(3.4)

Even when we precompute the Inside and Outside estimation charts and store them
for a direct access, the complexity of this algorithm is still O(n% - |G|). Such cost is
excessive for real tasks.
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CHAPTER 4

Obtaining Phrase Tables

“Learning is finding out what you already know.
Doing is demonstrating that you know it.
Teaching is reminding others that they know just as well as you.”

Richard Bach

In the previous chapter some methods for inferring the stochastic inversion trans-
duction grammars have been presented. In our model described in Chapter 2, the
grammar drives the segmentation of the input sentence and the reordering of the
translated phrases'. Hence, besides the grammar, it must be inferred a new struc-
ture in order to model the translation between source language phrases and target
language phrases. Such structure usually takes the form of a probabilistic bilingual
phrase dictionary called phrase table.

Most recent methods on extracting a phrase table from a bilingual corpus start
with a word alignment. In this chapter, we explain the most commonly used of
such methods, the one proposed in [Och and Ney, 2003]. However, there are other
methods that infer the phrase tables using syntactic approaches. Due to its strong
relation to the issues dealt in this thesis, we explain also the approach presented in
[Sénchez and Benedi, 2006] that uses SITG in the construction of the phrase table.

ISuch reordering is also driven by the n-gram language model.
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4 Obtaining Phrase Tables

4.1 Obtaining Word Phrases with SITG

This mthod was proposed in [Sdnchez and Benedi, 2006]. The structured space of a
stochastic synchronous grammar is a natural fit to phrase pair probability estimation.
Due to the large search space, the estimation of such probabilities must be limited to
a binary stochastic synchronous grammar, a SITG. In the paper, authors addressed
the problem of obtaining translation tables from bilingual corpora by means of SITG.
First, a SITG is obtained from the corpus using one of the methods described in
Chapter 3. Then, each bilingual sentence is parsed using the SITG obtaining the most
probable SITG tree.

Each of the nodes of the parse tree yields a bilingual phrase. All such bilingual
phrases are introduced in the phrase table. Figure 4.1 shows an example of this kind
of phrase extraction. The probabilities for the inverse and direct translation models
are computed for each segment pair (s,t) according to the formulae:

Pr(s|t) = % Pr(t]s) = % (4.1)

being C(s,t) the number of times segments s and t were extracted together.
The probabilities for the lexical models can be computed using the IBM1 model over
the extracted phrases. It must be noted that using this phrase extraction, we can com-

pute also syntax based translation models like it is proposed in
[Sanchis-Trilles and Sanchez, 2008].

4.2 Obtaining Word Phrases from Bilingual Alignments
From all the methods that use bilingual alignments in order to obtain phrase tables,
we explain the one proposed in [Och and Ney, 2003] because nowadays is the most used
in phrase-based systems. In such article, the authors propose to use the intersection
of the alignments in both directions as a initial point. To such alignment points, some
other are added from the union of the initial alignments depending on a number of

criteria:

e From which aligned has been extracted the new alignment post (Source-Target
or Target-Source).

e Wether the new point has neighbours in the intersection or not.
e Wether the target word of the new point is unaligned so far or not.

e The lexical alignment probability for the potential point.
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4.2 Obtaining Word Phrases from Bilingual Alignments

Bilingual Sentence:

can you give me a towel , please ? ||| por favor , me puede dar una toalla ?

ITG Parse Tree:

NT1

/\
/N/T\l\ NT4
NT/?,/ . o \N\T3 2/?

/\ -7 R -
N/T\Q N’T‘l\ NT4 /N’TQ
N'i?)/ \N\T4 NT4 NT4 ./ NT4 NT4

/\
NT2 NT4  me/me  a/una towel/toalla e/por please/favor

T

NT4 NT4  give/dar

can/puede  you/e

Phrases Obtained:

(can you give me a towel , please / por favor , me puede dar una toalla) ,
(can you give me a towel , please ? / por favor , me puede dar una toalla ?)
( can you give me a towel / me puede dar una toalla ) , (, please / por favor , ) ,
(please / por favor) , (can / puede) , (you / €) , (give / dar) , (me / me) , (a / una)
(towel / toalla) , (e / por) , (please / favor) , (a towel / una toalla) , (can you / puede) ,
(can you give / puede dar) , (, /,), (? / ?7) , (can you give me / me puede dar)

Figure 4.1: Example of SITG phrase extraction.
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4 Obtaining Phrase Tables

Using the resulting alignment, all the consistent phrases are collected. We say that
a bilingual phrase is consistent with an alignment when the words of the source part
of the phrase are only aligned to words of the target part and vice versa. Figure 5.3
shows an example of the bilingual phrases extracted from a bilingual alignment.

The probabilities of the translation models are computed as have been explained
in the previous section. In the limited example showed in Figures 4.1 and 4.2, the
phrases obtained are almost the same. But usually, the number of phrases obtained
with this method is higher.
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4.2 Obtaining Word Phrases from Bilingual Alignments

- g . <
S & . 28 2 85 § o
can
you
give
me
a
towel
please
?

Phrases Obtained:

(can you give me a towel , please ? | me puede dar una toalla , por favor ?) |
(can you give me | me puede dar ) , (can you give me a | me puede dar una ) ,
(can you give me a towel | me puede dar una toalla ) , (a towel | una toalla)
(can you give me a towel , please | me puede dar una toalla , por favor) , (me
me) , (a | una) , (towel | toalla) (, | ,) , (can you | puede) , (please | por favor) , (,
please | please ,) , (7 | 7)

)

Figure 4.2: Consistent phrases given a bilingual alignment.
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CHAPTER 5

Decoding Process

The best structure will not guarantee the results nor yield.
But the wrong structure is a failure guarantee.
Peter Drucker

As have been stated in Chapter 2, our model divides the decoding process in two
parts. The first one is the process of parsing the input sentence in order to obtain the
most likely analysis tree given a formal grammar. The second part is a tree-to-string
decoding that obtain the most likely target language sentence given the features of the
translation model. The structure of the decoder is illustrated in Figure 5.1.

This separation allows us to use a monolingual parser integrated with the decoder or
obtain the parse tree with an external parser. In this chapter, we present, first a new
fast A* parsing algorithm that can be use as a first step for the decoder. After that, we
explain the core algorithm of the tree-to-string decoder giving some implementation
and optimization details.

Stochastic parsing is the process of obtaining a parse tree for a given input sentence.
This parse tree has been widely used in Machine Translation [Yamada and Knight, 2002,
Charniak et al., 2003]. One of the formalisms that have been widely used for stochastic
syntactic parsing are the Stochastic Context Free-Grammars (SCFGs) [Stolcke, 1995,
Roark, 2001, Collins, 2003].  Most of the current syntactic parsing algorithms
[Collins, 2003] that parse a sentence given a SCFG are based on the classical Cocke-
Younger-Kasami [Hopcroft and Ullman, 1979] (CYK) and Earley [Earley, 1970] algo-
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5 Decoding Process

Source Language Text

l

Preprocessing

M

Parsing <

’ Formal grammar ‘

I
L

Y

Decoding W’ argmax; 4> _; \ihi(t,d, ")

Postprocessing

M

Target Language Text

Figure 5.1: Architecture of our syntactical translation approach.

rithms. An important problem that is related to those algorithms is their cubic time
complexity.

In [Gascé and Sanchez, 2007], an A* algorithm is presented to compute the exact,
most probable parse tree (also known as Viterbi tree) of a string in the case of grammars
with large vocabularies. This is the case of machine translation tasks. Several bounds
are considered for the A* search and very good results are reported. Hence, we have
used this parser to obtain the parse tree of the input sentence. In this section, we
explain briefly the A* parsing algorithm presented in [Gascé and Sdnchez, 2007] and
its incorporation to the decoder.

5.1 Fast A* Parsing

The goal of stochastic syntactic parsing is to obtain a parse tree for a given input
sentence. For this purpose, a stochastic grammatical model is used together with
a parsing algorithm. SCFGs are grammatical models that are commonly used for
stochastic parsing.

Some of the current syntactic parsing algorithms are based on the classical CYK
and Earley algorithms. Both are dynamic programming algorithms. The cubic time
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5.1 Fast A* Parsing

complexity of these algorithms restricts their use when dealing with wide-coverage
grammars and long sentences. Therefore, a method for accelerating parse selection
must be considered.

One of these methods consists of using a beam-search strategy together with a
greedy algorithm [Roark, 2001]. However, the nature of these algorithms sometimes
implies the loss of the most probable parse tree because the global optimum is not
necessarily optimal at an intermediate stage. Therefore, the optimum at this stage
could be pruned from the list of hypotheses.

Another possible method to accelerate parse selection consists of using a chart to-
gether with an agenda. The agenda is used to store the items to be processed. The
items are chosen from the agenda according to some figure of merit. If the figure of
merit is appropriately chosen, the number of items that are processed before obtaining
a possible parse tree is notably lower than the maximum number of items that should
be processed in an exhaustive search.

In [Klein and Manning, 2003al, an A* algorithm is presented to compute the exact
most probable parsing of a string. In this parser, the search is driven by a function
that guarantees that the best parse string is not lost. In that work, several bounds
are proposed for the A* search, and experimental results are reported for delexicalized
strings of the Penn treebank corpus. The space complexity is very large for some the
bounds proposed in [Klein and Manning, 2003a], which hampers their application in
tasks with large vocabularies.

Given the large space complexity associated to some of the bounds proposed in
[Klein and Manning, 2003a], we propose new bounds for real tasks with large vocab-
ularies. We studied experimentally which of them can be used in a real scenario. In
addition, we propose using some bounds that can decrease the number of processed
edges notably even though they do not guarantee the optimality of the solution.

5.1.1 Lexicalized Bounds for A* Parsing

An A* search is a guided search across the problem solution space which is a special
case of Best-first search. This solution space is composed by edges. An edge represents
a non-terminal symbol of the grammar over a span. The search procedure uses a
function f(e) in every edge e of the solution space in order to decide if it will be the next
edge to be explored. The f(e) function is the combination of two functions: g(e) and
h(e). Function g(e) is the probability of the edge e, that is, the probability of the most
probable parse tree that starts from the non-terminal symbol of the edge. The function
h(e) is an estimation of the future probability of obtaining a goal edge (a solution of
the problem) from e. The function h(e) is based on the outside part of the span of
e, i.e., on its outside context. The closer that g(e) is to the real cost (probability),
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5 Decoding Process

the more edges will be pruned. If the h(e) function does not overestimate the cost to
reach the goal, the search will be complete and optimal [Russell and Norvig, 2003].

This search method can be applied to the problem of finding the best parsing for a
sentence, given a stochastic context-free grammar. The most promising edge at each
moment is the one that is chosen edge to be expanded. Thus, an agenda with all the
hypotheses (edges) ordered by their estimated cost (probability) is needed. From now
on, we will assume that the probability of an edge is represented by its logarithm, so
the product of probabilities is, in fact, the addition of their logarithms. The edge with
the highest probability in the agenda is the most promising one.

In [Klein and Manning, 2003a], some context summary estimates are proposed with
good results. A summary of the context of an edge in a sentence is taken (for example,
we only take into account the word on the left of e as its context). There are probably
many sentences that fits the same context, so, we take the maximum probability of all
the edges ¢’ that fit that context, i.e., the minimum cost. Hence, the real cost of getting
a goal from e is always lower or equal to this estimate. Context summary estimates are
always admissible functions since they never overestimate the cost to reach the goal.
Their value is the maximum probability over all the derivations that fit the context
and the real probability cannot be larger. If the summary function is carefully chosen
and the number of contexts is not excessively large, we can precompute them and
access to each one in constant time per edge in parse time.

Some of these summary estimates are described below. The simplest of all is the
NULL context estimate: all the possible contexts have the same probability. The SX
context estimate takes into account the number of terminals on the left and on the
right of the edge. SXL also takes into account the terminal that is on the left of the
edge. Other more complex context summary estimates have been considered in that
work. Finally, the non-practical context estimate is the real cost of the outside part
of the edge, i.e., the TRUF estimate.

Most of the context summary estimates proposed cannot be computed when dealing
with a big SCFG. For example, the space complexity for the SXL estimate (one of the
simplest estimates) is ©(I? - N - T') where [ is the maximum length of the sentences
parsed, N is the number of non-terminal symbols, and T is the number of terminal
symbols. For a 70-length sentence using a grammar with 97 non-terminal symbols and
more than 40,000 terminal symbols, there are more than 1.9 - 10'° possible contexts.
Hence, assuming a space cost of 4B per context, more than 70GB is needed to store
them.

Therefore, of the context summary estimates proposed in [Klein and Manning, 2003a],
the most informative one that can be used with grammars of this kind, is SX.This con-
text estimate ignores the lexical context of the edge. For grammars with many of lexical
rules, SX is too optimistic and prunes very few edges. To solve this problem, a new
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5.1 Fast A* Parsing

estimate SXLez (a lexicalization of the SX estimate) can be used. This estimate uses
more contextual information in order to improve the parsing process. SXLex can be
divided into two parts. The first part is similar to the SX context summary estimate
but does not take into account the probability of generating terminals from pretermi-
nal symbols, that is, the maximum probability of all the derivation trees that produce
L preterminals symbols to the left of the edge symbol and R to the right. As with
SX, this part can be precomputed. The second part of the SXLex estimate, the lexical
part, must be computed one time for each sentence. The lexical part of a sentence
S, Lex(S, L, R), taking into account L symbols to the left and R to the right, is the
maximum probability over all the derivations from preterminal symbols to vocabulary
words. That is:

R [S|
Lex(S,L,R) = ij@xP(N =8+ > max P(N — )
=1 1=|S|-R
Estimate a) SX b) SXlex c) SXlex2 d) TRUE
S S s S
% T
SN
DT , NP WBDADVP NP
1 T e
fm ? ?? 74’: Black? ?
N —  —
EER A R T O
Context 2 2 2 2 7 Back ? No , it was nt Black Monday No . it was nt Monday No , it was nt Black Monda
Score -27.33 -32.83 -41.75 -49.16
Edges 679 346 85 -

Figure 5.2: Estimates for a given sentence: Context information needed, score obtained
for each of the bounds and number of edges needed to finish the parsing.

The SXLex estimate of an edge is the sum the two parts described above. The
optimality of SXLex can be easily proved. The lexical part is the probability of an
optimistic derivation from preterminals to the terminals of the string being parsed.
The SX part is a context summary estimate for the preterminals before and after the
edge. The sum of the parts is always greater or equal to the real future cost.

In order to reduce the number of edges to be processed even more, a new bound
closer to the true cost is proposed. This bound, SXLex2, is a combination of SX
and the lexical part of the SXLex estimate. The main difference between SXLex and
SXLex2 is that SXLez uses the SX estimate from the initial symbol of the grammar to
the preterminals and SXLex2 uses the complete SX estimate from the initial symbol
to the terminals (vocabulary words). It should be noted that this bound is not always
optimistic. Hence, the most probable parsing is not guaranteed and is a 'non-optimal’
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5 Decoding Process

bound. However, in spite of this fact, the derivation tree obtained is the optimal one
in most of the cases.

Figure 5.2 shows an example of the value of the different estimates for a given edge
in the parsing process of a sentence from Penn Treebank. If no bound is used (NULL
estimate), the number of edges processed is 1732. The SX estimate only takes into
account the non-terminal of the edge (NNP) and the number of terminals before and
after it. As can be observed, SX is too optimistic, so the number of processed edges to
parse the sentence is still large. Taking into account lexical information, SXLez, the
number of edges decreases to 346. Finally, with the SzLex2 bound, the value obtained
is closer to the true value, and is still optimistic. The savings produced with this
bound are considerable: only 85 edges are needed.

5.1.2 Results and impact

Lexicalized bounds for A* parsing have been explored in this section. These new
bounds consider lexical information in order to get a more realistic estimation of the
future cost of the parsing. The use of lexical information has been proved to be
useful in the search for the optimal solution. Other bounds that do not guarantee the
optimality of the solution have also been proposed because they can be practical under
the following conditions: if they produce more savings than the ’optimal’ bounds and
prune the most probable parsing in only few cases. These new proposed bounds are
very useful for parsing with large vocabularies.

5.2 Tree-to-String Decoder

The second part of the translation system is the tree-to-string decoder. The decoder
should find the most likely target-language string from the parse tree of a source
language sentence. Formally, and as have been stated in Chapter 2 (see expression
(2.28)) :

t* = argmax Pr(¢|6", s)
t

The probability of the translation is modelled using a log-linear model that uses
several different probabilities that have been explained in Section 2.2. Following the
phrase-based MT approach, we use phrases as the basic translation unit. However,
we only allow those segmentations that are consistent with the input parse tree. A
segmentation is consistent when each of the phrases that form it yield exactly from
a node in the parse tree. In Figure 5.3 we show the consistent segmentations of a
sentence given its parse tree. We call this constraint over the possible segmentations,
consistency constraint.
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5.2 Tree-to-String Decoder

ROOT
S PS
/\ ‘ Consistent Segmentations
NP VP - (john) (hit) (the) (ball) (.)

| T~ (john) (hit) (the ball) (.)

(john) (hit the ball) (.)

Johm—— ¥ v (john it the ball) (.)
| T T (john hit the ball .)

hit Det N

the ball

Figure 5.3: Parse tree and its consistent phrases.

5.2.1 Core Algorithm

The decoder implements a beam search over the parse tree. Thus, the basic al-
gorithm uses a recursive tree-traversal in order to generate partial translations and
combine them until it gets a complete translation. Each of such partial translations
is called hypothesis. The hypotheses obtained in each node of the tree are stored in
an agenda. An agenda is a set of hypotheses ordered by their probabilities. Given a
segmentation consistent with the input parse tree, many phrase translations can be
applied, i. e. we can find several phrases in the phrase table, whose source part is equal
to some of the segments . We call each of these translations a direct hypothesis. Such
direct hypotheses correspond to the phrasal productions of the SPhSITG described in
Chapter 2.

Each hypothesis that covers the whole sentence is a possible translation of the input
sentence. However, usually do not exists a phrase that covers the whole input sentence,
so direct hypotheses must be merged in order to get combined hypotheses. FEvery
hypothesis A must be stored with its corresponding target language phrase (target
phrase) and its translation probability (score). Fore each node of the input parse tree
an agenda is created in order to store the translation hypotheses corresponding to the
node. Note that we do not need to store the source language words covered by the
hypothesis because this information is implicit in the node of the tree.

Thus, the target language translation is generated following a bottom-up traversal
of the tree. This process is illustrated in the pseudo code algorithm in Algorithm 3.
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5 Decoding Process

Algorithm 3 treeToString(tree)

1: phrases < obtainPhrases(tree.input)

2: addHypothesis(agenda,phrases)

3: if isNotLeaf(tree) then

leftAgenda « treeToString(tree.leftSon)

5. rightAgenda «treeToString(tree.rightSon)
6: for all hl € leftAgenda do

7 for all h2 € rightAgenda do
8
9

>

addHypothesis(agenda,combine(h1,h2))
addHypothesis(agenda,combine(h2,h1))

10: end for
11:  end for
12: end if

13: return agenda

First, we store in the agenda all the direct hypotheses correspondent to part of the
input sentence direct that yields the node of the tree (lines 1 and 2). When such part
can be divided, i. e. the node of the tree has sons, it is not a leaf, we make a recursive
call to the algorithm in order to get the agendas of each of the sons (lines 4 and 5).
Then, we get the combined hypotheses from the direct (line 8) and inverse (line 9)
merge of the agendas of both sons and finally, we return the resulting agenda(line 13).
At the end of the tree-to-string process, we get an agenda that contains an ordered set
of complete translation hypotheses.

Figure 5.4 shows the generation of the 2 kinds of hypotheses: direct and combined.
Direct hypotheses are extracted from the phrase table, whereas combined hypotheses
are the result of combining 2 hypotheses from the sons’ agendas.

New S5 =
= =

Agenda

Figure 5.4: Two different kinds of hypothesis: direct (new phrase) and combined.
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5.2 Tree-to-String Decoder

Now we describe in detail the process of combining two hypotheses h; and hs to
get two new hypotheses hg and h;. Let N be the non-terminal symbol of the node
of the tree where hy and h; must be generated and N7, N2 the nodes of hy and hs
respectively. The target phrase of hy is the concatenation of the target phrase of hy
and ho in direct order, and the target phrase of h; is the concatenation of hy and ho
in inverse order. The score of hy and h; is the result of combining the scores of hy and
ho and the probability of the rule N' — [ MiN2 ] and NV — ( N1N3 ) respectively.
It must be noted that the n-gram language model must be recomputed for the new
target phrase of hy and h;. This process is illustrated with an example in Figure 5.5.

verde bruja verde bruja
bruja verde

SN SN

ADJ NN ADJ NN
verde bruja verde bruja

SN -->[ ADJNN ] SN --> < ADJ NN >

Figure 5.5: Direct and inverse combination.

All the hypotheses of each node of the tree are stored in the an agenda ordered by
their probability. When the decoder comes back to the root node of the tree, the hy-
potheses of the agenda are complete translations. Among these complete translations,
the one with highest probability (score) is selected as best translation.

5.2.2 Implementation details

During the search it is possible that two hypothesis with the same target phrase
appear in the an agenda. Recombining those hypothesis is a risk-free way to reduce
the search space. Following what we said in Section 2.2, the probability of a target
sentence given a parse tree can be computed as is or assuming that is equal to the
most likely of all its possible transformations (See Expression (2.30) of Section 2.2).

= ZdET((s*) Pr(d, t|5*, S)
Pr(t|0", s)
A maxge,(s+) Pr(d, t|0*, s)
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5 Decoding Process

If we take the first option, when the decoder recombine two hypotheses, merge them
in a new hypothesis with a score that is the sum of their scores. We call to this
recombination option sum. If we choose the second option, the decoder only keeps
the most likely (the one with a greater score). This recombination strategy is called
unicity.

In the implementation of the decoder, we give to the user the election of the re-
combination method. Another option could be not to recombine hypotheses (none) in
order to get a faster search when the number of hypothesis in each agenda is limited
(as is explained next)®.

Even though the tree consistency constraint prunes the possible segmentations of
the input sentence, and with that, also reduces the number of hypotheses, the number
of possibilities is still exponential [Knight, 1999]. Although the algorithm described so
far can search through all possible translations, the time that it would take is excessive.

In order to prevent the exponential explosion in the number of hypotheses, the
decoder uses a beam search algorithm. In each agenda (that means in each node of
the tree) we keep only a limited set of the most likely hypotheses. Since each agenda
stores hypotheses that cover the same set of source language words, the search is not
biased towards the hypotheses that cover the easier part of the sentence, i.e. the
words with a higher translation probaility, like happen in the decoder presented in
[Koehn, 2004]. Thus, it is no necessary to use a future cost estimation to prevent that
biasing.

The pruning of the beam search can be directed using two different strategies: his-
togram pruning or threshold pruning. Histogram pruning uses a fixed size n for the
agenda, so we only keep the n best hypotheses. On the contrary, threshold pruning
fixes a threshold o and prunes out all the hypothesis with a score lower than a factor
of a the score of the best hypothesis in the agenda.

Pruning out the less likely hypotheses could delete a hypothesis that would have
been part of the best translation. Thus, we say that this kind of pruning is not risk
free.

Usually the main interest of the translation decoders is to get the best translation
hypothesis given an input source language sentence. However, for some applications
it is necessary to get, not only the best translation, but also the second, the third and
SO on.

11t is no necessary to check the unicity of the hypotheses in the agendas.
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The decoder described in this work can obtain the n-best translation hypothe-
ses. It must only get the n-best hypotheses of the root node agenda. A common
method used in speech recognition, that has also appeared in machine translation
[Koehn and Knight, 2003][Och et al., 2003] is to get the n-best translations and then
rescore them using additional features (new complex language models, new translation
models... ). For instance, we propose as a further work the use of a phrasal SITG to
rescore the n-best translations obtained using the decoder.

As a future work we plan to obtain the word graph [Ueffing et al., 2002] instead
of the n-best translations. It is possible to obtain the n-best list from the word
graph, but word graphs are also commonly used in computed assisted translation
tools [Och and Ney, 2003][Sanchis-Trilles et al., 2008].
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CHAPTER 6

Experimental Results

“There is no such thing as a failed experiment,
only experiments with unexpected outcomes”
Richard Buckminster

In this Chapter we present the experiments carried out in order to test the perfor-
mance of the decoder. We evaluate the decoder using two different corpus: EuTrans-I
corpus [Amengual et al., 2000] (Spanish-English) and Europarl V2 corpus [Koehn, 2005
(German-English).

As a preprocess for the corpus, all the pairs of languages were lowercased and tok-
enized. The results were measured also using the lowerized and tokenized version of the
test. The quality of the translation was measured using Bleu [Papineni et al., 2001].

We carried out experiments to test the SITG inference methods explained in Chapter
3. In order to increase the speed of the SITG inference algorithms, we have used the
Viterbi algorithm that takes benefit of the bracketing information. The bracketed
corpus and the linguistic parse tree was obtained using the freely available parser
described in [Klein and Manning, 2003b]. The alignments of the bilingual corpus were
computed using the toolkit GIZA++ [Och and Ney, 2003].

The phrase tables were computed using the methods presented in Chapter 4. The
baseline system was the phrase-base system Moses [Koehn et al., 2007]. The base-
line system and the hybrid decoder used in each experiment the same phrase table.
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6 Experimental Results

The language model used in all the experiments was a 5-gram computed using the
toolkit SRILM [Stolcke, 2002]. And in order to adjust weights \; of the log-linear
model we used the Downhill Simplex Algorithm, also called Nelder-Mead method
[Nelder and Mead, 1965], over a tuning set.

6.1 EuTrans-1 Corpus.
EuTrans-I corpus [Amengual et al., 2000] is an aligned bilingual corpus Spanish-

English about typical dialogues in the desk of a hotel. Table 6.1 shows the statistics
of the corpus.

Spanish | English
Sentences 10,000
Training | Words 97,131 99,292
Vocabulary Size 686 513
Sentences 2,996
Test Words 35,023 | 35,590
Out of Vocabulary Words 0 0

Table 6.1: Eutrans-I corpus statistics.

This corpus, that has been semiautomatic generated, is considered as an easy trans-
lation task. That is why we have used this corpus only to check the correctness of the
implementation and to tune some of the decoder’s parameters.

6.1.1 Experiments

The experiments carried out over this corpus consist in the translation Spanish-
English using the decoder and the phrases obtained with the use of SITG, Section 4.1.
We used an ergodic SITG with one iteration of the Viterbi stochastic estimation. The
three recombination methods explained in Section 5.2.2 were tested: none, unicity and
sum. Table 6.2 shows the results such experiments.

Experiment | BLEU
Baseline 90.5

None 90.2
Unicity 90.2
Sum 90.3

Table 6.2: Results with the EuTrans-I corpus.
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6.2 Corpus Europarl V2.

The results obtained are very similar to the baseline and the sum recombination
strategy seems to be slightly better than the other strategies. Experiments over
EuTrans-I are not conclusive because the corpus is too much simple. Sentences are
short and the reorderings can be modelled in most of the cases, by the n-gram language
model. In addition, the languages of the corpus, Spanish and English, have a similar
structure and the number of reorderings is low.

6.2 Corpus Europarl V2.

The Europarl corpus [Koehn, 2005] has been extracted from the proceedings of the
European Parliament and has versions in 11 European languages. We have used in
this work only the German-English section of the corpus. The main statistics of this
section of the corpus is shown in Table 6.3.

German | English
Sentences 751,088
Training | Words 15,256,793 | 16,052,269
Vocabulary Size 195,291 65,889
Sentences 2,000
Test Words 55,533 59,307
Out of Vocabulary Words 141 387

Table 6.3: Europarl corpus statistics.

It can be seen that this is a real and complex corpus. Actually, it has been used as
the main task in several current MT competitions [Callison-Burch et al., 2007]. This
pair of languages is specially difficult due to the difference between the vocabulary
sizes and the high number of reorderings.

6.2.1 Experiments

We have carried out several experiments over this corpus changing the different
parameters and options of the decoder: SITG used, bracketing information in the
input, phrase table...

Ergodic Grammar

The first experiment consisted on testing the influence of the estimation procedures
over the SITG. Therefore, we used in this experiment an ergodic grammar with 4 non-
terminals and we varied the number of iterations of the Viterbi estimation algorithm.
The phrase table used was the same SITG extraction phrase table for baseline and
hybrid decoders. Again, we tested the three hypothesis recombination techniques.
Table 6.4 shows the results of the experiments.
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6 Experimental Results

BLEU
No Estimation | 1 Iteration | 2 Tterations
Baseline 22.53
None 16.32 17.10 17.29
Unicity 16.56 17.44 17.45
Sum 16.63 17.41 17.33

Table 6.4: Test results for the Europarl corpus with an ergodic grammar.

It can be seen, that the results, thought being still far from the baseline, improve
with the use of the estimation algorithm. The choice of the SITG has a real influence
in the results of the decoder because besides of modelling the reorderings, it also define
the segmentation of the input sentences.

Ergodic Grammar with Bracketing Information

In the previous experiments we can see the importance of a good segmentation of the
sentences. One of the features of the decoder is the possibility of annotating the input
sentences with bracketing information. The decoder must respect the segmentation
given by the bracketing. In order to do that, we parsed the input sentences with a
monolingual linguistic parser, then, the bracketing information was extracted from the
parsed sentences. It must be noted that this bracketing is not necessarily complete
since the parse tree is not always binary. In addition, the parsing can introduce errors
given the high complexity of the Europarl corpus.

The rest of the parameters and the decoding options are the same as in the previous
experiment. Results are shown in Table 6.5

BLEU
No Estimation | 1 Iteration | 2 Iterations
Baseline 22.53
None 17.11 17.93 18.08
Unicity 17.83 18.45 18.42
Sum 17.62 18.59 18.56

Table 6.5: Test results for the Europarl corpus with an ergodic grammar and brack-
eting information.

The results obtained are significantly better than in the previous experiment. That
means that the segmentation done by the ergodic SITG were improved by the use of
the bracketing information.
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6.2 Corpus Europarl V2.

Linguistically Motivated Grammar

Hence, the syntactic model has a big influence on the translation results. The next
step is then, to increase the complexity of the model. We used, for this experiment, a
linguistically motivated SITG obtained by the use of the method explained in Section
3.1.2. The probabilities of such SITG have not been re-estimated. The results for this
experiment are shown in Table 6.6.

Experiment | BLEU
Baseline 23.53

None 21.77
Unicity 22.12
Sum 22.16

Table 6.6: Test results for the Europarl corpus using a linguistically motivated SITG.

Results show a significative improvement, thought still being under the baseline.
With a better SITG, maybe re-estimating the probabilities by the use of Viterbi or
Inside-Outside re-estimation algorithms or using another structure inference algorithm,
probably will improve the results. We will carry out those experiments in the future.

Phrase Tables from Bilingual alignments

Finally, we carried out an experiment in order to test the influence of the phrase
table over the decoder’s performance. In order to do that, we used the phrase table
obtained using Moses training tools [Koehn et al., 2007], the outlines of this method
are explained in Section 4.2. We used the same phrase table for the baseline decoder.
Table 6.7 shows the results for this experiment.

Experiment | BLEU
Baseline 25.21

None 22.67
Unicity 23.13
Sum 23.02

Table 6.7: Test results over Europarl using Moses’ phrase table.

The results show that the use of this phrase table improve the results of both, the
developed system and the baseline. However, it must be noted that the phrase tables
obtained by the Moses tools are considerably larger than SITG phrase tables, and the
decoding process is slower.
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6 Experimental Results

Thought not being very far, the results obtained in the experiments proposed worse
than the baseline results. As have been said in previous chapters, the parse tree of
the input not only determines the reorderings, but also the segmentation of the source
language sentence. When the parse of the input is not correct, the decoder cannot
find the most appropriate phrases and such phrases cannot be reordered correctly. The
sentences of the Europarl corpus are complex and the embedded parser introduce a
high number of errors in the decoding process. In order to solve such problem, we are
currently working in two different directions:

1. Obtain better SITG by increasing the number of non-terminals and hence, its
complexity and expressivity of the grammars, or getting a better estimation of
the probabilities.

2. Study the use of external parsers and the influence in the translation results.
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CHAPTER 7

Final Remarks

In this Chapter we present the conclusions of the Master Thesis, describe coarsely
the work that is currently being produced and suggest some future work proposals.

7.1 Conclusions

In this master thesis we have presented an hybrid MT model that uses uses for-
malisms and algorithms from syntax-based and phrase-based approaches. This new
model allows us to introduce many different translation models in the log-linear combi-
nation, such as syntactic reordering, phrase translation probability models or n-gram
language models.

In addition, we have created a decoder that use the presented translation model.
The decoder has two main steps: first it parses the input sentence and then it trans-
lates the tree into a target-language sentence. Thus, the segmentation of the input
language is determined by the source language parse tree and we can use its syntactic
information in the search of the best translation. However, this restriction over the
possible segmentations is a conditioning factor when translating a sentence. A bad
parse tree gives a bad segmentation and this, usually produces a bad translation.

The results obtained show that linguistically motivated grammars produce a better
performance than simple ergodic grammars and the re-estimation of the probabilities
of the grammars are also important. Nevertheless, results are still under the baseline
proposed so, maybe the reseach on the acquisition of more complex grammars is still
necessary.

7.2 Future Work

The translation model and the decoder presented can be used as a tool in the
research of multiple aspects of syntax-based and syntax-based machine translation.
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7 Final Remarks

Hence, the work developed for this master thesis gives us the possibility to explore in
several different directions:

New methods for the inference of SITG: The experiments showed that the syntax
formalism (the SPhITG) is a very important factor in the global performance of
the decoder. Therefore, we must explore the possibility of learning

Use of linguistically motivated SITG in phrase extraction: The phrases used in the
experiments have been extracted using an ergodic SITG. It would be interest-
ing to test the phrase extraction algorithm of Section 4.1 with a linguistically
motivated SITG.

Use of new phrase translation models: The phrase extraction method of Section 4.1
allows the use of new syntactic phrase probability models such as the one de-
scribed in [Sanchis-Trilles and Sénchez, 2008]. The use of such or other new
models is also a proposal for future work.

Exploration of syntax based reordering models: Currently we are working in the ac-
quisition and use of new reordering complex models that combine lexical and
syntactic information in a maximum entropy models and its use in the imple-
mented decoder. Such models can be also modelled using neural networks or
support vector machines.

Syntax based rescoring: Rescoring is a common strategy that consist in the genera-
tion of the n-best list of hypotheses, rescore them using a new model and then
get the best one. We plan to test a strategy based in the use of a SITG as a new
model for the rescoring.

Experimentation over different corpora: Syntax based translation obtain better re-
sults when translating between language pairs with a different structure, for ex-
ample English-Chinese, or Spanish-Arabic. We propose, then, to use the decoder
over corpora with such pairs of languages.
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