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Abstract. Ecohydrological models provide a tool to investigate the mutual relationships between vegetation and the 

hydrological cycle. Ecohydrological modelling studies in developing countries, such as sub-saharan Africa often face the 

problem of extensive parametrical requirements and limited available data. Satellite remote sensing data may be able to fill 15 

this gap, but require novel methodologies to exploit its spatio-temporal information that could potentially be incorporated in 

ecohydrological model calibration and validation. 

The present study aims to implement a distributed ecohydrological daily model in a data scarce environment with the support 

of remote sensing data. An automatic calibration procedure, based on Empirical Orthogonal Functions techniques, is proposed 

and applied in the Upper Ewaso river basin in Kenya. The model is calibrated only using NDVI (Normalized Difference 20 

Vegetation Index) data derived from MODIS. The obtained results demonstrate that: (1) satellite data of vegetation dynamics 

contains an extraordinary amount of information that can be used to implement ecohydrological models in scarce data dry 

regions; (2) the model calibrated only using satellite data is able to reproduce both the spatio-temporal vegetation dynamics 

and the observed discharge at the outlet point; and (3) the proposed semi-automatic calibration methodology works 

satisfactorily and it allows to incorporate spatio-temporal data in the model parametrization. 25 

1 Introduction 

Drylands cover 30% of the Earth’s land surface and 50% of Africa (Franz et al., 2010). Projections of the IPCC 

(Intergovernmental Panel on Climate Change, 2007) indicate that the extent of these regions will likely increase in the coming 

decades. Dryland expansion would have a considerable additional impact on water resources, which should be taken into 

account by water management plans (Franz et al., 2010).  30 
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In water-controlled ecosystems, the vegetation assumes a critical role influencing all components of the hydrological cycle 

(Rodriguez-Iturbe et al., 2001; Manfreda and Caylor, 2013). For instance, actual evapotranspiration (aET) may account for 

more than 90% of the annual precipitation in water-controlled areas (Zhang et al., 2016; Jasechko et al., 2013).  Montaldo et 

al. (2005) affirmed that the use of constant LAI (Leaf Area Index) values, commonly used in hydrological applications, 

produces large errors in land surface flux predictions. Therefore, reliable estimates of spatio-temporal variations of vegetation 5 

patterns are vital to obtain trustworthy predictions of available water resources, given the strong control exerted on aET by the 

vegetation (Andersen, 2008). In this sense, ecohydrological modeling becomes essential in order to include the vegetation 

dynamics as an additional state variable (Rodriguez-Iturbe et al., 2001). 

Particularly, evidence of aET being prevalent in hydrological records of streamflow and water-table depth, i.e. available water 

resources, has been observed in many studies (e.g. Gribovszki et al., 2008). Recently, Tsang et al. (2014) showed that adding 10 

a better evapotranspiration scheme in a widely used runoff model improves streamflow predictions. Conradt et al. (2013), who 

compared three different strategies for deriving sub-basin aET, affirmed that incorporating spatial variation of aET in a semi-

distributed model increases its robustness. Contrarily, Stisen et al. (2011) and others stressed that those improvements are not 

necessarily seen in the outlet hydrograph. However, it could also be interpreted in the inverse sense; good performances in 

terms of the outlet hydrograph do not necessarily mean more reliable estimates of aET. 15 

Actually, the stream flow record is traditionally the only observation used for the calibration of hydrological models, because 

it represents an integrated catchment response, and hence provides some inherent insight into the lumped behavior of the 

catchment (Stisen et al., 2011; Koch et al., 2016a; Michaud and Sorooshian, 1994; Reed et al., 2004 or Smith et al., 2013). 

Nevertheless, several studies demonstrate that distributed hydrological models, which accurately simulate discharges at the 

basin outlet, produce poor results at interior points. In that sense, Conradt et al. (2013) provided several examples for larger 20 

simulation errors within the model domain and they mentioned, among others, the outcomes given by Feyen et al. (2008), 

Merz et al. (2009) and Smith et al. (2012). Wi et al. (2015) pointed out that caution is needed when using an outlet calibration 

approach for streamflow predictions under future climate conditions. At this point, the idea of using spatial state variables with 

which to implement the new era of distributed (temporal and spatially) models emerged in order to balance the conceptual 

distributed nature of this kind of models (Stisen et al., 2011). 25 

 Remote sensing data are well suited to this purpose because while traditional observations generally consist of point data with 

little spatial support, remote sensing retrievals offer the capacity to provide detailed spatial coverage and pattern information 

(Franssen et al., 2008, McCabe et al., 2008 and Stisen et al., 2011). Additionally, satellite data has the great advantage to be 

available everywhere. In this sense, among the wide range of possibilities in data scarce areas, the use of remotely sensed data 

represents an excellent source that provides information with a fairly good spatial/temporal resolution (Yang et al., 2012). In 30 

modeling, remote sensing data has been basically utilized in three different ways: (1) as forcing data (Xiao et al., 2004; Yuan 

et al., 2010; Samaniego et al., 2011; and Stisen et al., 2011), (2) as priori information of a particular parameter (Winsemnius 

et al., 2008; Stisen et al., 2011) and (3) for model’s calibration and validation (see next section for an in-depth discussion of 

this point).  
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Since satellite imagery includes not only temporal information but also spatial patterns, a proper spatial model evaluation is 

required. As mentioned by Koch et al. (2015), spatial model evaluation is an active field of research not only in Hydrology 

but also in other disciplines besides it, as for example, Atmospheric Sciences (Brown et al., 2011; Gilleland et al., 2010). 

However, up to now, there exists no formal guideline on how to assess the goodness of fit of the spatial explicit model 

predictions and little information can be found about how to handle with spatio-temporal data. That’s why some authors such 5 

as Conradt et al., (2013), Graf et al., (2014) and Koch et al., (2015 and 2016b) focused their efforts in order to develop and 

test metrics to be employed when spatio-temporal data is involved. For example, Koch et al. (2015) compared Kappa statistics, 

Fuzzy theory, and EOF-analysis in an attempt towards a true spatial model evaluation of distributed models. But, besides these 

efforts, there are only a limited number of spatial validation studies that fully embrace the availability of satellite remote 

sensing data by means of true spatial performance metrics (Koch et al., 2016b).  10 

In this research, we applied the Empirical Orthogonal Functions (EOF) analysis to identify predominant spatial or temporal 

patterns in observed data (Graf et al., 2014) by means of decomposition. Consequently, the EOF analysis is a useful 

methodology to investigate the spatio-temporal patterns of fluxes and states in the soil-vegetation-atmosphere continuum (Fang 

et al., 2015). In particular, as mentioned previously, Koch et al. (2015) carried out a validation of a distributed model using 

satellite based land surface temperature data by means of an EOF analysis. With other statistical purposes, the EOF analysis 15 

was used by Graf et al. (2014), Kim and Barros (2002) and Liu (2003). A fine scaled study was carried out by Drewry and 

Albertson (2006) who used the EOF analysis to associate spatial pattern in the errors of a canopy-atmosphere model with 

errors in the parameters. But, to our knowledge, the EOF analysis has not been applied in model calibration yet. In this research, 

we incorporated the EOF analysis in the calibration of a distributed model and proposed an automatized calibration procedure. 

Having identified the importance of aET in the water cycle of drylands and, the potential of satellite data that is still largely 20 

unexploited (i.e. taking advantage simultaneously of both: spatial and temporal information). For this reason, this research 

wants to ‘properly’ apply satellite data in an ecohydrological model’s calibration and validation and to develop a mathematical 

methodology to incorporate this particular kind of data and its spatio-temporal nature in model’s automatic calibration. 

2 Satellite data and model calibration/validation 

As said previously, the applicability of remote sensing to calibrate and/or validate a model still remains a challenging task that 25 

may help to exploit information on spatial patterns contained in satellite imagery. To provide in-depth vision of this issue, a 

bibliographic survey of the ISI Web of Knowledge Science Citation Index database was undertaken using the following words 

combinations in the topic search: (1) satellite calibration, (2) satellite implementation, (3) satellite ecohydrological modelling, 

and (4) remote sensing ecohydrology. This search looked for each term in the title, abstract and keywords list in the publication 

database (i.e. articles, letters and book reviews) of ISI-rated journals and conference proceedings since 2006 (we analyzed the 30 

last decade). From the total number of publications obtained by this search, only those that incorporated satellite data to 
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specifically models calibration were selected. We must acknowledge that the adopted searching method may have some 

limitations but it was complete enough for our purposes. 

Ruiz-Pérez et al. (2016) discussed the applicability of satellite data during the calibration process comparing the results 

obtained by a parsimonious model calibrated only using satellite data against the results obtained by a complex model 

calibrated using field measurements at pixel scale. Also, Quevedo and Francés (2008) and Pasquato et al. (2015) calibrated 5 

and validated a parsimonious ecohydrological model at pixel scale using satellite information. 

At catchment scale, Immerzeel and Droogers (2008) used satellite-based evapotranspiration in combination with observed 

streamflow to calibrate the semi-distributed SWAT. Zhang et al. (2009) concluded that multi-objective calibration of SymHyd 

model with streamflow and satellite-based aET produced better daily and monthly runoff compared to calibration with 

streamflow alone. More recently, Rientjes et al. (2013) calibrated a semi-distributed hydrological model using streamflow data 10 

and satellite-based aET. Regarding to other satellite products, GRACE (the US-German satellite mission) data have been used 

to calibrate both global and regional-scale surface hydrology models, in combination with stream discharge data (e.g. Lo et 

al., 2010). Zhang et al. (2011) calibrated the AWRA-L model with streamflow, NOAA-AVHRR LAI and TRMM-MI 

(Tropical Rainfall Measuring Mission- Microwave Imager) soil moisture using multiobjective criteria. Only in few studies, 

the calibration was carried out exclusively with remote sensing data. For instance, Gutmann et al. (2010) calibrated landscapes 15 

hydraulic properties in the Noah land surface model using only MODIS surface temperatures from 14 different sites and using 

observed flux data for model verification. Also, Velpuri et al. (2012) modelled Lake Turkana water level only using satellite 

information. All these studies reach the same conclusion: including remote sensing data into the model calibration/validation 

improves the overall performance. 

In general, from the total of reviewed publications, calibration only using satellite data was performed in the 47% of cases 20 

while a combination of satellite data and field measurements (specially, streamflow at the outlet) was used in the remaining 

contributions. Similar results were obtained regarding to the validation: 35.3% of publications adopts only field measurements 

(specially, historical streamflow) employing satellite data exclusively for the model calibration, 47%  using a combination of 

field measurements and satellite data, 11.8% using only satellite data and one publication without any specification. But, more 

interesting is how the different calibrations were carried out. In most of the cited examples, a sort of multi-objective calibration 25 

was used adopting only some points/pixels to calibrate the entire catchment. Those points were selected randomly or by 

considering the knowledge about each study site. In other cases, lumped or semi-distributed models were implemented instead 

of fully distributed ones, considering aggregated values of the satellite data. In other words, the spatial heterogeneity of the 

basin is neglected and the full potential of satellite imagery, namely the information on spatial patterns, is not fully exploited. 

Therefore, a method able to make use of the potential of the spatio-temporal information contained in remote sensed data is 30 

highly desirable as well as a calibration scheme which relies solely on remote sensing data will be greatly beneficial in 

modelling at data scarce catchments (Kunnath-Poovakka et al., 2016). And these are the main objectives of this paper. 
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3 Study area and data 

The Upper Ewaso Ngiro Basin is located in the Laikipia region of Kenya (Figure1). The basin is part of the Laikipia Plateau 

which lies between Mount Kenya (South East) and the Aberdare Mountains (South West). The basin has a drainage area of 

15,200 km2, with the largest river being the Ewaso Ngiro.  This region is characterized by distinct rainy and dry seasons. The 

first rainy season occurs from March to May, while the second rainy season occurs from October to December. Both air 5 

temperature and precipitation patterns are heavily influenced by elevation. A full description of the precipitation patterns in 

the region can be found in Franz (2007).  

Soil texture ranges from sandy clay to clay soils (according to the 1980 UNESCO Soil Map). Although the most characteristic 

landscape is savanna, higher elevations are dominated by forests and a large piece of land has been converted to cropland 

(Franz, 2007). The remainder of the study region is classified as grassland, shrubland, and wooded grassland (savanna 10 

ecosystems).  

For the modelling application, we used weather stations of the Natural Resource Monitoring, Modeling and Management 

Project (NRM3) of Nanyuki, Kenya illustrated in Figure 1. Daily precipitation and temperature from 1959 to 2003 were 

validated by Franz et al. (2010). Considering the available hydrological information, we selected a sub-basin with an area of 

about 4,600 km2 for the present study (Figure 1). The selected catchment is equipped with a streamflow gauge at the outlet 15 

operating from 1980 to 2002.  

The reference evapotranspiration (ET0) was calculated using the Penman Monteith equation with the simplifications proposed 

by Allen et al. (2006). This approach is extremely useful to describe the spatial distribution of solar radiation and to derive the 

ET0 maps during any phase of the year (Manfreda et al., 2013). 

Regarding the satellite data, we incorporated the Normalized Difference Vegetation Index (NDVI) included in the MOD13Q1 20 

and MYD13Q1 products provided by NASA (NASA Land Processes Distributed Active Archive Center (LP DAAC)). This 

satellite product is available from 2000 to present. For the coverage of the study site, the h21v08 and h21v09 tiles are required, 

where h and v denote the horizontal and vertical tile number, respectively. The MOD13Q1 and MYD13Q1 data are provided 

every 16 days at 250-meter spatial resolution. The used NDVI products (MOD13Q1 and MYD13Q1) are in level 3 that means 

they don’t contain raw satellite data. Actually, the NDVI indices are retrieved from daily, atmosphere-corrected, bidirectional 25 

surface reflectance. Specifically, these products use a MODIS-specific compositing method based on product quality assurance 

metrics to remove low quality pixels. From the remaining good quality NDVI values, a constrained view angle approach then 

selects a pixel to represent the compositing period (from the two highest NDVI values it selects the pixel that is closest-to-

nadir). That’s why assimilation approaches (such as Kalman filters) were not considered in this research. 

At last, based on previous experience (Ruiz-Pérez et al., 2016 and Pasquato et al. 2015) in a similar climatic conditions, we 30 

declined to use other products such as LAI or ET derived from MODIS because this kind of products are produced by models. 

And, for example, Ruiz-Pérez et al. (2016) found large discrepancies between the LAI provided by satellite and the LAI 

measured in field. At this point, we had no information to determine the accuracy of these particular models and the spatial 
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information used to implement them. In contrast, NDVI values are calculated by direct differences of spectrum bands, i.e. no 

models are involved and that’s why we decided to use this latter product instead of satellite LAI and/or ET. 

4 Model description:TETIS-VEG 

The proposed model, called TETIS-VEG, is based on a distributed hydrological model called TETIS (Francés et al., 2007) 

coupled with a dynamic vegetation model. Both models have simplicity in model structure in common. The used equations 5 

are as simple as possible in order to reduce the number of parameters and the number of parameters of each sub-model is 

specified in Table I. The sub-models are connected because the transpiration calculated in the hydrological sub-model depends 

on the leaf area index (LAI) simulated by the dynamic vegetation model. At the same time, the simulated LAI depends on the 

water stress which is calculated using the hydrological sub-model. A more detailed description of this link can be found in 

Pasquato et al. (2015) and Ruiz-Pérez et al. (2016). The hydrological sub-model can be used at different time scales (from 10 

minutal to daily timesteps) while the vegetation dynamic sub-model has to be applied at daily scale. Hence, the TETIS-VEG 

model must be used at daily scale. 

4.1 The hydrological sub-model: TETIS 

TETIS’s conceptual scheme consists of a series of connected reservoirs or tanks, each one representing different water storages 

in the soil column: vegetation interception, first static soil layer (retained water by upper soil capillary forces, i.e., below field 15 

capacity plus water detention in surface puddles; evaporation and transpiration can occur), second static soil layer (retained 

water in deeper soil by capillary forces; only transpiration can occur), surface (for overland runoff), gravitational soil layer 

(upper soil water content above field capacity for  interflow) and aquifer (for river baseflow). Vertical connections between 

reservoirs describe the precipitation, evapotranspiration, infiltration and percolation processes. The horizontal flows describe 

the three different hydrological responses that give the discharge at the catchment outlet: overland runoff, interflow and 20 

baseflow. A more detailed description of the TETIS model can be found in Francés et al. (2007) and GIMHA (2014). 

The TETIS model uses a split-structure for the effective parameter value at each cell (Francés and Benito, 1995; Francés et 

al., 2007). The effective parameter is calculated using a correction factor multiplied by the estimated value of the parameter 

in each cell using all the available information (land cover map, soil type map, DEM, depth of roots and soil layer, etc.) and 

expert’s knowledge. Hence, we can distinguish between two parts: (1) the common correction factor for each type of parameter 25 

that takes into account the model and input errors and the temporal and spatial scale effects; and (2) the estimated parameter 

value at each cell. With the split-parameter structure, only nine correction factors are calibrated. Each one related to one of 

these estimated parameter maps: maximum static storage, reference evapotranspiration, infiltration capacity, hillslope velocity, 

percolation capacity, horizontal saturated conductivity for interflow, horizontal saturated conductivity for aquifer and river 

channel velocity. 30 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-573, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 8 November 2016
c© Author(s) 2016. CC-BY 3.0 License.



7 
 

4.2 The dynamic vegetation sub-model: LUE-model 

The proposed dynamic vegetation sub-model is based on the concept of Light Use Efficiency (LUE) (Medlyn, 1998). The LUE 

is based on the proportionality between plant biomass production by terrestrial vegetation and absorbed photosyntetically 

active radiation (APAR) in optimal conditions. However, the LUE can be strongly affected by stress conditions. The key 

factors contributing to the variation of this efficiency are: soil moisture content, air temperature (Landsberg and Waring, 1997; 5 

Sims et al., 2006), and nutrient levels (Gamon et al., 1997; Ollinger et al., 2008). Since this model is designed to be used in 

water-controlled areas, the nutrient levels are not considered. 

In the LUE-model, the water stress factor depends on the amount of water contained in the two static reservoirs and it is 

calculated according to Porporato et al. (2001). Basically, the stress factor is equal to 1 (maximum stress) if the water storage 

is less than the water storage at wilting point; it is equal to 0 (minimum stress) if the water storage is higher than the water 10 

storage at critical point (plants start the stomatal closure); and, it varies from 0 to 1 using a potential function which depends 

on the wilting point, the critical point and an exponent set equal 2. Then, this stress multiplies the LUE index, reducing the 

efficiency when its value is lower than 1 (non-optimal conditions). 

The LAI is simulated through the product between the leaf biomass, the specific leaf area (SLA) and the vegetation fractional 

cover. Later, the LAI is used to calculate the transpiration in the hydrological sub-model according to the Eq. (1).  15 

𝑇𝑇𝑖𝑖 = (𝐸𝐸𝐸𝐸0 − 𝐸𝐸𝐸𝐸) ∗ min(1, 𝐿𝐿𝐿𝐿𝐿𝐿) ∗ 𝜁𝜁 ∗ 𝑍𝑍𝑖𝑖 ∗ 𝑓𝑓𝑓𝑓                                                                                                                                            (1) 

where Ti is the transpiration from the i soil layer, ET0 is the reference evapotranspiration, EI is the evaporation of the 

intercepted water, LAI is simulated by the model, Zi is the percentage of roots in the i soil layer and fc is the coverage factor. 

Therefore, the LUE-model has eight parameters to be calibrated: (1) Specific leaf storage (the maximum interception storage 

is calculated as the product between the specific leaf storage and the LAI simulated by the model), (2) the LUE index (explained 20 

above), (3) the coverage factor, (4) the distribution of roots between the first and the second static storage layers, (5) the 

maximum LAI sustainable by the system (the simulated LAI is limited by a maximum), (6) the light extinction coefficient,k 

(this parameter is used to calculate the fPAR according to the Eq. (2), (7) the SLA and, (8) the optimal temperature (the stress 

factor also depends on the temperature). 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.95 ∗ (1 − 𝑒𝑒−𝑘𝑘∗𝐿𝐿𝐿𝐿𝐿𝐿)                                                                                                                                                                      (2) 25 

A complete description of the LUE-Model can be found in Pasquato et al. (2015). 

5 Methodology 

One of the main objectives of this research was to explore the potential of the satellite remotely sensed data for model 

calibration. Hence, the TETIS-VEG model was calibrated purely against MODIS NDVI. Therefore, modelling elaborations 
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were carried out into three different steps: (1) a manual calibration in order to obtain a first approximation of model parameters, 

(2) an automatic calibration based on the combined use of EOFs and a genetic algorithm in order to refine model 

parametrization and (3) a model validation carried out with both remote sensed data and traditional data (such as streamflow 

measurements). Considering that hydrological observations (precipitation and temperature) were available from 1960 to 2003 

while the MODIS NDVI was available from 2000 to present, we decided to use the year 2003 as the calibration period and the 5 

period from 2000 to 2002 for validation. In order to avoid the effect of the initial conditions, we used one year as warming up 

period (the year 2002 and 1999 for model calibration and validation respectively). 

For these purposes, we adopted the NDVI as a descriptor of the state of the vegetation assuming that LAI and NDVI are 

intimately related. Studies on various vegetation types, e.g., agroecosystems (Cohen et al., 2003), grasslands (Friedl et al., 

1994), shrublands (Law and Waring, 1994), conifer forests (Chen and Cihlar, 1996), and broadleaf forests (Frassnacht et al., 10 

1997) have led to the general conclusion that the spectral vegetation indices such as NDVI have considerable sensitivities to 

LAI. Hence the relationship between NDVI and LAI has been documented by several authors (e.g., Gigante et al., 2009). The 

relationship between LAI and NDVI can be considered linear for low values, while it becomes nonlinear for the higher values 

of the NDVI due to the greenness saturation (e.g., Turner et al., 1999). In this case study, the maximum LAI values are around 

2.0 – 2.5, according to Franz (2007), that are lower than the greenness saturation threshold. Therefore, the relationship between 15 

the observed NDVI and the simulated LAI is expected to be linear. 

5.1 Empirical Orthogonal Function method (EOF) 

The EOF method is used to analyze the spatio-temporal variability of a single variable but, comparison between different 

variables can also be performed using coupled EOF techniques (Björnssson and Venegas, 1997). The method decomposes a 

dataset in a time series and spatial patterns. The method allows also to estimate a measure of the “importance” of each spatial 20 

pattern. We refer to the spatial patterns as the EOFs (in literature, they are also called as principal components), and to the time 

variation as loadings (in literature, there are several terms: expansion coefficient time series, expansion coefficients, EOF time 

series, principal components time series, etc.). 

The EOF method is essentially a linear algebra methodology based on matrix transformation. The first step is the conversion 

of the spatio-temporal data to be analyzed into a matrix. Basically, we construct a matrix (F) in which each column is the 25 

temporal variation of the data in a particular cell while each row represents the cells values during a particular time step. 

Usually, the second step is to compute the anomalies of the analyzed data which was not needed in this study because we used 

normalized data (for reasons that will be explained below). 

The next step of the applied EOF method consists on the calculation of the spatial F’s covariance matrix (R) according to Eq. 

(3). Then, the eigenvalue problem is solved Eq. (4). 30 

𝑅𝑅 = 𝐹𝐹𝑇𝑇 ∗ 𝐹𝐹                                                                                                                                                                                             (3) 

𝑅𝑅 ∗ 𝐶𝐶 = 𝐶𝐶 ∗ Λ                                                                                                                                                                                        (4) 
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Λ is a diagonal matrix containing the eigenvalues λi of R. The ci column vectors of C are the eigenvectors of R corresponding 

to the i-respective eigenvalues. Each of these eigenvectors can be regarded as a map which denote the EOFs (or principal 

spatial patterns). In what follows, we always assume that the eigenvectors are ordered according to the value of the eigenvalues. 

Thus, EOF1 is the eigenvector associated with the biggest eigenvalue. The fraction of the total variance in R explained by 

EOFi is found by dividing the λi by the sum of all the other eigenvalues. The time evolution of an EOFj ( 𝑎𝑎𝚥𝚥���⃗ )  is calculated 5 

according to Eq. (5). The components of this time vectors are referred to as loadings in this paper. 

𝑎𝑎𝚥𝚥���⃗ = 𝐹𝐹 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝑗𝑗                                                                                                                                                                                         (5) 

Using the spatial covariance calculated according to the Eq. (3), the EOF technique provides three different results: the main 

patterns or EOFs, their time evolution whose components are called loadings and the portion of spatial variance explained by 

each EOF which is calculated dividing each λ by the trace of Λ. 10 

5.2 Manual calibration 

The manual calibration was done with a dual purpose. First, we wanted to test the applicability of the proposed TETIS-VEG 

model in the study basin. Second, we wanted to obtain a first approximation for the parameters and, at the same time, constrain 

the automatic calibration. Basically, this manual calibration consisted on the usual ad hoc method (manual adjustment of 

parameter values) considering the Pearson correlation coefficient between the simulated LAI and the observed NDVI in a total 15 

of 32 different points inside the basin. These points were selected within homogeneous areas defined according to the main 

spatial patterns of the observed NDVI (EOFs) and the available maps of land cover, soil texture, DEM, slope and soil depth.  

In this case, the EOF analysis was used to identify the main spatial patterns of the observed NDVI. Once the main spatial 

patterns were identified, we combined our own human perception with the confusion matrices between the main spatial patterns 

and the spatial maps of model parameterization. Confusion matrices are widely applied for map comparison in distributed 20 

modelling comparing actual to predicted values for each specific category defined previously (García-Arias et al., 2016; 

Bennett et al., 2013; Van Vliet et al., 2013 among many others). Generally, the rows in the matrix represent the values predicted 

by the model, whereas the columns represent the actual values. By its nature, the confusion matrix is an overall measure for 

similarity between two categorized maps. However, the comparison of numerical maps is feasible if they are categorized 

previously. In this research, we compared categorized map (land cover map, soil type maps, etc.) and the main patterns obtained 25 

by using the EOF methodology. That’s why the main pattern of the observed NDVI (which is a continuous variable) was 

discretized according to the number of river basin features (such as land cover map, soil type map, etc.) and based on the 

similitude between the corresponding histograms. Once the discretization was done, by a cell-by-cell comparison of the 

discretized NDVI main pattern maps obtained after the EOF analysis and the available spatial maps, the confusion matrices 

were built.  30 
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These confusion matrices allowed the calculation of the weighted kappa (k) coefficient (Cohen, 1968). This coefficient, whose 

maximum value is 1, representing a perfect agreement, was employed to identify which spatial maps (land cover map, soil 

type map, DEM, etc) were linked with the main patterns of the observed NDVI. Then, they were used in order to select the 

most appropriate points for the manual calibration. 

5.3 Automatic calibration 5 

The most innovative aspect of this automatic calibration was the incorporation of the EOF analysis as an objective function. 

As proposed by Koch et al. (2015), we decided to build one integral matrix concatenating both the observed and predicted 

data: the matrix contained the normalized values of the NDVI provided by MODIS and the normalized values of the LAI 

simulated by the model. In this way, the upper part of this matrix contained the temporal variation of the normalized observed 

NDVI in all cells as columns while the lower part contained the temporal variation of the normalized simulated LAI in all cells 10 

as columns. We decided to use the normalized values of the NDVI and LAI because, although they are correlated, they differ 

in range.  

However, normalization implies that some spatial information is lost. In order to avoid these losses, we added two rows in the 

matrix F: the first containing the difference between the temporal mean of the observed NDVI at a particular cell and the 

general mean using the complete NDVI dataset; and the second with the same content referred to the simulated LAI. In this 15 

way, we included the spatial gradient of the observed NDVI and the spatial gradient of the simulated LAI. These two rows 

represents two additional maps included in the evaluation of the model performance. If they were similar, it would mean that 

the spatial gradient remains and is properly reproduced.  

The number of pixels was 1,034,706. For the calibration period (year 2003), there were 44 NDVI maps (one each 8 days more 

or less). Hence, the built integral matrix’s size was 90 rows (44 + 44 + 2 additional rows) X 1,034,706 columns. After the 20 

construction of this matrix, the EOF analysis was applied obtaining: the EOF maps for the matrix containing both NDVI and 

LAI, the portion of variance explained by each EOF map and the loadings of each EOF map. The combined EOF analysis 

yielded orthogonal EOF maps that explained the combined intervariability and intravariability of both data sets. For each time 

step, the loadings express how much the respective LAI and NDVI map contribute to the direction of the corresponding EOF. 

Hence, if the observed NDVI and the simulated LAI were completely correlated, the temporal evolution of the EOF maps for 25 

both, NDVI and LAI, would be essentially equal. 

Basically, model calibration was carried out forcing the loadings of simulated and observed data to be close. The used objective 

function was based on that idea and it also took into account the portion of variance explained by each EOF in order to consider 

that the variance contribution decreases consecutively for the EOFs. The adopted error measure is described in following 

equation: 30 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = �𝑤𝑤𝑖𝑖 ∗��𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖,𝑗𝑗 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖,𝑗𝑗�
𝑡𝑡

𝑖𝑖=1

𝑘𝑘

𝑖𝑖=1

                                                                                                                      (6) 
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where Error is the objective function to minimize, wi is the portion of variance explained by the EOFi, load_simi,j is the loading 

of the EOFi at time step j for the simulated data (in this particular case, the normalized LAI) and load_obsi,j is the loading of 

the EOFi at time step j for the observed data (in this particular case, the observed NDVI).  

The calibration was performed using a genetic algorithm called Pyevolve. This algorithm needs a seed (initial values of the 5 

parameters) and a searching boundary of the parameters to be calibrated. We used the results obtained after the manual 

calibration explained above as seed and made sure that the searching boundaries were wide enough (Table1). 

After the automatic calibration process, in order to explore the outcomes of the proposed procedure, we calculated both the 

temporal Pearson correlation coefficient between the NDVI provided by MODIS and the LAI simulated by the TETIS-VEG 

model in each cell and the spatial Pearson correlation at each time step. For the spatial and temporal correlation coefficients, 10 

we used the original values of both datasets (NDVI and LAI), not the normalized values as used by the EOF analysis. It is 

important to mention that the Pearson correlation coefficient between two datasets X and Y is positive if X and Y tend to be 

simultaneously greater than, or simultaneously less than, their respective means. Hence, the mean should be representative. 

For this reason, in the case of the spatial correlation coefficient, we decided to distinguish between the main land covers whose 

means can be significantly different: tree, shrubs and grass. 15 

5.4 Validation 

The period selected for the model validation was of three years from 2000 to 2002. As during the calibration period (year 

2003), there were data of precipitation, temperature and, also, NDVI provided by MODIS. To validate the model, we used the 

same performances indexes applied during the automatic calibration process. Keeping the parameter values obtained by the 

automatic calibration, we built the matrix concatenating the normalized value of the observed NDVI and the normalized value 20 

of the simulated LAI with two additional rows used to incorporate the spatial gradient of both datasets as explained above. We 

also plotted these two maps and compared them as we did during the model calibration. Using the EOF techniques, we obtained 

the coupled EOF maps and their associated loadings and portion of variance explained by them. As during the calibration, we 

compared the deviation of the loadings for each EOF map and we calculated the Error function defined in Eq. (6). 

We calculated the temporal and the spatial Pearson correlation coefficient as we did during the calibration period.  25 

In addition to this, we also explore the reliability of the calibrated model in reproducing streamflow. In fact, during the 

validation period, the observed discharge at the outlet point was available unlike during the calibration period. Such condition 

was defined on purpose in order to avoid the use of any information regarding streamflow data during the calibration phase. 

This validation allowed exploring the reliability of the hydrological sub-model in reproducing the streamflow. This was an 

extremely challenging task considering that the entire modelling structure had been calibrated only using vegetation data from 30 

remote sensing along with physical information about the basin. 

With this aim, we calculated the Nash and Sutcliffe efficiency index (NS-Nash and Sutcliffe, 1970) and the bias (or volume) 

error (E) value between the observed and simulated discharges at the basin outlet. We also decided to strengthen our discharge 
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analysis by using the concept of flow duration curves (FDCs). FDCs are simple and powerful tools, commonly used in 

hydrology to describe the runoff regime in a river basin that can be representative of the model ability in reproducing the 

different components of the streamflow (e.g., Manfreda et al., 2005). In fact, FDCs represent the relationship between 

magnitude and frequency of streamflows, providing thus an important synthesis of the relevant hydrological processes 

occurring at the basin scale (Pumo et al., 2013). Actually, the shape of a flow-duration curve in its upper and lower regions is 5 

particularly significant in evaluating the stream and basin characteristics (Coopersmith et al., 2012).  The shape of the curve 

in the high-flow region indicates the type of flood regime the basin is likely to have, whereas, the shape of the low-flow region 

characterizes the ability of the basin to sustain low flows during dry seasons (Cheng et al., 2012). Hence, the flow duration 

curve represents the full spectrum of variability in terms of their magnitudes (Wagener et al., 2013). 

6 Results 10 

6.1 Manual calibration 

As explained before, the main objective of this a priori manual calibration was the identification of the most appropriate points 

where the model could be tested. To do that, we identified the spatial main patterns of the observed NDVI and, then, we 

compared the EOFs with the spatial features of the river basin (such as: land cover map, DEM, soil type map, etc). 

Using our own perception, we identified a certain relationship between the EOF1 (which explained the 61.5% of the observed 15 

NDVI’s spatial variance) and the land-use map. This potential relationship was supported by the K coefficient (described in 

the methodology section) that assumed a value of 0.34. This is not really high value but it showed the existence of a relationship 

between the two maps. I.e., there is a connection between the EOF1 and the land-use map. Regarding to the EOF2 (which 

explained the 10.5% of the observed NDVI’s spatial variance), no connections with the basin physical characteristics were 

found. It might contain a mix of several drivers and, therefore, it can’t be directly linked to a single one. Contrarily, the EOF3 20 

showed a good agreement with the soil texture map (the K coefficient was 0.32). Therefore, we can state that the observed 

patterns of NDVI are strongly influenced by the spatial distribution of land cover and soil texture. In the following, we 

combined these two maps, extracted all possible combinations and selected randomly two points of each of these combinations 

obtaining 32 points covering all the catchment area.  

When the manual calibration was stopped, the Pearson correlation coefficient between the observed NDVI and the simulated 25 

LAI was positive in 25 points of the 32 considered points. Hence, there were only seven points with negative correlation 

coefficient. All of them had in common the fact that they were located near to de Mount Kenya or Aberdare mountains (Figure 

2). 

Finally, Table I shows the obtained set of parameters. This set was used as seed during the automatic calibration. It must be 

underlined that all parameters had values consistent with the reviewed literature (references embedded in Table I). 30 
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6.2 Automatic calibration 

The proposed automatic calibration is based on the assumption that the closer the loadings of the simulated values are to the 

loadings of the observed values, the higher the similarity is. Calibration was carried out using a Pyevolve genetic algorithm 

using the objective function given in Eq. (6). 

Calibration produced a good agreement between the observed and simulated loadings of the EOF1 (upper part of the Figure 3, 5 

first graphic) while small deviation between the observed and simulated loadings related to the EOF2 and the EOF3. The 

loadings of the remaining EOFs were completely scattered mainly due to their corresponding low contribution (low weight) 

in the objective function of the automatic calibration process (Eq. 6). In this context, it is useful to remark that the EOF1 

explained more than 60% of the dataset spatial variance while the EOF2 and the EOF3 explained around 10% each. The 

remaining EOFs explained less than 3% each, but in any case they were considered during the calibration process (weighted 10 

by the portion of variance explained by each one). 

On the other hand, as mentioned in the methodology section, we also used three additional metrics to evaluate the model 

performance: (1) the temporal Pearson correlation coefficient evaluated in each cell, (2) the spatial Pearson correlation 

distinguishing between trees, shrubs and grasses computed at any time and (3) comparison of the called spatial gradient maps. 

First, the temporal Pearson correlation coefficient between the observed NDVI and the simulated LAI was higher than 0.4 (left 15 

panel of Figure 4) in most of the catchment. The weakest correlations were obtained in the two higher areas of the basin near 

to the Mount Kenya and Aberdare Mountains with zero to negative values.  

The spatial Pearson correlation coefficients were calculated excluding the regions with negative temporal Pearson correlation 

coefficient. Although slightly worse than the results in terms of temporal correlation, the mean spatial correlations were higher 

than 0.45 for all main land covers: trees (mean=0.58), shrubs (mean=0.49) and grasses (mean=0.55) (Figure 5, upper panel). 20 

The best scores were obtained in cells classified as trees. In fact, the median was almost 0.60 and the variance was not high 

(standard deviation= 0.16). Contrarily, the cells classified as grasses obtained the worst results with the lowest median and the 

highest variance (standard deviation= 0.18).  

Figure 6 (upper panels) shows the comparison between the maps which represent, in each cell, the difference between the 

temporal mean and the general mean of the observed NDVI and the simulated LAI respectively. No great differences were 25 

found by comparing both maps indicating the good spatial performance of the ecohydrological model, at least from the 

vegetation point of view. 

6.3 Validation 

Similarly to the calibration process, the EOF1 explained in validation more than 60% of the spatial variance while the EOF2 

and the EOF3 explained around 10%. The remaining EOF maps are not presented because any of them explained more than 30 

3%. The simulated and observed loadings of the EOF1 were almost equals while the obtained results in relation to the EOF2 

and the EOF3 were slightly worse (lower part of the Figure 3). However, it is important to stress both showed the same clear 
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temporal dynamics. Anyway, the resulted Error for the validation period was 4.03, just slightly worse than the Error for the 

calibration period. It must be considered that the Error value was calculated considering all EOFs (Eq. 6). 

The temporal Pearson correlation map between simulated LAI and NDVI showed the same pattern observed in the calibration 

period: the two areas located near to the Mount Kenya and the Aberdare Mountains had a temporal correlation coefficient 

equal to zero or negative. However, in more than 80% of the catchment, this coefficient was between 0.3 and 0.9 (right panel 5 

of Figure 4).  

Regarding to the spatial Pearson correlation coefficient between simulated LAI and NDVI in the three main land cover, the 

results were not as good as the results obtained in terms of temporal correlation. Nevertheless, there were no negative spatial 

correlation coefficients at any time step. In the case of shrubs and grasses, the mean and median were almost 0.4 while the 

corresponding ones for the trees were around 0.35 (Figure 5, lower panel). The variance obtained during the validation period 10 

was narrower than the obtained during the calibration period for the three land covers: trees, shrubs and grasses. Furthermore, 

the spatial pattern of LAI was, as for the calibration period, well captured by the model (see the lower panels in Figure 6). The 

cells with high differences between their own temporal mean and the general mean were consistent in both maps. 

Finally, since there was observed discharge at the basin outlet during the years 2000, 2001 and 2002, it was possible to compare 

the discharge simulated by the model against the observations. The volume error (E) was equal to -0.40 while the NS index 15 

was equal to 0.32. E is strongly affected by the results obtained at the beginning of the validation period, probably due to the 

absence of information regarding the initial conditions. Although we used a year as warming-up period, the simulations 

improved only from 2001. In fact, having calculated the performances indexes in each year, the E decreased from -0.88 in 

2000 to only -0.17 during the year 2002 (Figure 7). Regarding to the NS index, the worst result was also obtained for the first 

year and it improved from a negative value in 2000 to 0.35 during the year 2002, as one should expect considering the visual 20 

comparison in Figure 7. This trend is emphasized in the plot of the FDCs (Figure 8) where the underestimation in the first two 

years is clearly highlighted. The first panel compares the FDC of observations and simulations within the whole period while 

the following three panels compared the corresponding FDCs within the 2000, 2001 and 2002. In these plots, the simulation 

seems to interpret closely hydrological response in the year 2002. 

7 Discussion 25 

From the a priori manual calibration step up to model validation, it was possible to identify a behavioral pattern which would 

be also observed during the following automatic calibration and validation steps: the EOF1 explains more than 60% of the 

spatial variance, the EOF2 around 10%, the EOF3 around 5% while the remaining EOFs could be considered negligible. The 

fact that the EOF1 and EOF3 of the observed NDVI was related to the land cover and soil type maps respectively was consistent 

with what one can expect as long as the NDVI is an indicator of vegetation dynamics. 30 

After the automatic calibration, the model fitted the loadings of the EOF1 and its accuracy is slightly worse regarding the 

second and third EOFs. Thus EOF1 captured the predominant pattern that was found in both, the observed NDVI and the 
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simulated LAI data. Furthermore, on one hand, the temporal variation of the EOF1’s loadings seemed to be related to the two 

typical growing seasons in the catchment: the first one during March-May and the second one during October-December 

(Franz et al., 2010) (Figure 3). On the other hand, the loadings of EOF2 and EOF3 were not strongly connected with any feature. 

The loadings of the remaining EOFs were scattered which implies that mainly measurement and model noise were covered by 

these EOFs. Nevertheless, the accuracy between the observed and the simulated loadings could be considered satisfactory. 5 

The weakness of the proposed calibration methodology is that, although the associated weights to the loading deviation in Eq. 

(6) are needed, they are also misleading some spatial information. New ways to weigh the loading deviations must emerge in 

future researches as proposed by Koch et al. (2015). In fact, due to the portion of variance explained by the EOF1, this first 

main pattern controlled the calibration process. In future applications, the proposed error index could be improved if we didn’t 

want the EOF1 to dominate the calibration process or we wanted to emphasize a particular EOF map. A popular method for 10 

deciding which EOF to keep and which to discard is to use ‘selection rules’. Basically, there are three classes of selection rules 

depending on whether they focus on the amount of variance explained by each EOF, the loadings or the EOF maps 

(Preisendorfer, 1988). Other option could be to rotate the EOFs as proposed by Bonaccorso et al. (2003). Basically, as each 

rotated EOF will not explain the same variance of the unrotated one, this approach would be an option to use different 

combinations of EOFs which explain different amount of variance in order to reduce the influence of the EOF1. However, the 15 

real fact is that the variability captured in EOF1 is predominant and explains more than 60% of the total variance and should 

thus be weighted more. 

Actually, the automatic calibration process works satisfactorily as shown by the additional metrics: temporal Pearson 

correlation coefficient, spatial Pearson correlation coefficient in the main land covers and the comparison between the gradient 

maps. In terms of spatial Pearson correlation coefficient, the weakest values were obtained in the higher portion of the basin 20 

near to the Mount Kenya and Aberdare Mountains, while the remaining cells within the study area showed a good agreement 

between observed NDVI and simulated LAI. This same behavior was also observed when calibrating manually.  

Two reasons could explain such results. First, the observed NDVI in some cells of those areas had a really bad quality testified 

by the unrealistic oscillations of the NDVI from 0.8 to 0.1 (even zero) in just one week. These unrealistic oscillations could be 

produced by the presence of clouds over the area near to the mountains. The second reason is related to the conceptual limitation 25 

of the proposed model. The TETIS-VEG was designed to be used only in water-controlled areas. Franz (2007) combined the 

fractional woody cover and the mean annual precipitation (MAP) in order to provide some insights as to the limiting resources 

in the basin. Two different behaviors could be observed indicating the point in which water had a smaller influence. The 

transition point occurred approximately around 800mm/year. Physically, the transition point is believed to be a good 

approximation of the transition from a water-controlled ecosystem to a nutrient-controlled ecosystem. Franz (2007) affirmed 30 

that the high-latitudes (where Mount Kenya and Aberdare Mountains are included) were nitrogen limited ecosystems. 

With the exemption of these two areas, it is clear that there exists a strong correlation between NDVI and LAI, i.e the model 

can capture the temporal dynamic of LAI but it does not necessarily mean the magnitude of LAI is reasonable. This last point 
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was proven by calculating the spatial Pearson correlation and the comparison between the gradient maps. No differences and 

good agreements were observed along the main land covers: trees, shrubs and grasses. 

Finally, for the automatic calibration, there were four parameters which changed substantially (in relative terms) in comparison 

to the values obtained during the manual calibration: the correction factor of the maximum static storage, the correction factor 

of the reference evapotranspiration, the factor related to the distribution of roots between the first and second static storage 5 

layers and the maximum LAI sustainable by the system (Table I). These parameters affect directly on the transpiration process 

and on the amount of available water to be consumed by the plants. In any case, all obtained values were consistent with the 

reviewed literature (embedded in Table I). All of them are completely included in the searching boundary used during the 

automatic calibration and there were not reasons to think we should use wider ranges.  

Similar results were obtained regarding to the EOF analysis and the additional metrics computed within the validation period. 10 

In fact, the validation process confirmed: (1) the model was able to capture completely the EOF1 while the model performance 

worsened in the following two EOFs, (2) the simulated LAI and the observed NDVI were temporally correlated in most of the 

catchment and (3) the spatial distribution of LAI was consistent as shown by the comparison between the gradient maps and 

the value of the spatial Pearson correlation coefficient at any time. 

An additional interesting outcome provided by the validation was the comparison between simulated and observed hydrograph 15 

at the outlet point. Stream flow simulations presented were promising, but not completely convincing. It is obvious since the 

model parameters were calibrated on NDVI data, i.e. the model was calibrated on vegetation dynamics. That’s why the direct 

comparison between hydrographs could be too exigent when considering nothing was known about the parameters involved 

in hydrological processes not linked with vegetation, as the river flow routing or aquifer discharge.  

 Therefore, we strengthened our discharge analysis by using the concept of FDCs. By graphical comparison (Figure 8), it could 20 

be observed that the model is able to reproduce the shape of the observed FDC, while some discrepancies were found in terms 

of magnitude. However, its performance improved considerably year over year. Since the FDC shape is an important synthesis 

of the relevant hydrological processes occurring at the basin scale, this result pointed out the capability of the proposed model 

calibration methodology to reproduce the main hydrological behavior of the study basin. 

8 Conclusions 25 

The main two objectives of this research were: (1) to explore if it is possible to calibrate and validate an ecohydrological model 

only using satellite information, and (2) to incorporate spatio-temporal data about a model state variable into an automatic 

calibration process. In order to tackle these questions, a parsimonious distributed ecohydrological model was calibrated using 

exclusively NDVI data provided by MODIS. A methodology based on the EOF analysis was proposed to carry out the model 

manual and automatic calibration. Finally, the results were validated using satellite data referring to different periods and, also, 30 

the observed discharge at the basin outlet which was not used for calibration. 
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In general, the proposed model is able to reproduce properly the vegetation dynamics and the observed streamflow. Regarding 

to the first objective of this work, the results highlighted the enormous usefulness of satellite data. It was possible to completely 

implement the hydrological and the vegetation components of TETIS-VEG daily model only using NDVI data and the model 

validation can be considered satisfactory. This fact is a promising conclusion particularly for ungauged basins because it means 

that satellite data could be used in order to obtain river discharges at certain conditions. At the same time, this result also shows 5 

the key role played by vegetation in water-controlled areas such as the upper Ewaso river basin in Kenya. Of course, the time 

step also was a relevant factor in the transfer of information from satellite NDVI to hydrological parameters: at daily time step 

the runoff propagation was not relevant in this case study and the model was able to reproduce the flow duration curve with 

no information about the parameters involved in the river flow routing process. 

The proposed automatic calibration was completely designed in order to incorporate spatio-temporal data in order to take the 10 

maximum advantage of the available satellite data. After calibrating, the simulated vegetation patterns display good agreement 

with measured NDVI in most of the basin except for some portions at higher altitudes. This non-satisfactory result may be due 

to the bad quality of the NDVI data and/or the limitation of the vegetation sub-model (that was specifically designed for 

semiarid regions). 

Nowadays, there is a grand availability of remote sensing information (not only satellite) concerning spatial state variables and 15 

more information will be available in the future. Many efforts are being done to improve the quality and quantity of remote 

sensing data (drones, better devices, etc.). And, the scientific community must also be ready to work with different kinds of 

information (temporal, spatial and spatio-temporal) simultaneously. If we want to be efficient, we have to identify the best 

way to use all of this new available information, not only for data assimilation, but also and more important from our point of 

view, for model calibration and validation. 20 
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Table I. Summary of the initial values, the search range and the final value of the parameters or correction factors of both sub-models (hydrological and 
dynamic vegetation sub-models) as well as the units and the reviewed references.  

Model Correction factor or parameter* Units  Initial Value Search Range Final Value References 

H
Y

D
R

O
LO

G
IC

A
L 

SU
B

-M
O

D
EL

  

FC1-Maximum Static Storage [-]  1.00 [0.5,2.5] 1.80 [1] 

FC2-Evapotranspiration [-]  0.70 [0.7,1.2] 1.05 [1] 

FC3-Infiltration [-]  0.20 [0.01,2] 0.12 [1] 

FC4-Slope velocity [-]  1.00 [0.1,1.2] 1.00 [1] 

FC5-Percolation [-]  0.08 [0.001,2] 0.05 [1] 

FC6-Interflow [-]  140.00 [0.001,100000] 150.12 [1] 

FC7-Deep percolation [-]  0.06 [0.001,2] 0.04 [1] 

FC8-Connected aquifer [-]  20.00 [0.001,100000] 16.82 [1] 

FC9-Flow velocity [-]  1.00 [0.2,1.2] 1.00 [1] 

V
EG

ET
A

TI
O

N
 

SU
B

-M
O

D
EL

 

Specific Leaf Storages  mm Tree 0.50 [0.5,3] 0.43 [2],[3],[4] 

  Srhub 2.00 [0.5,3] 2.00  

  Grass 2.00 [0.5,3] 2.00  

LUE kg/m2 

MJ 

Tree 1.50 [1.2,2.5] 1.14 [5],[6] 

  Srhub 1.50 [1.2,2.5] 1.14  

  Grass 1.50 [1.2,2.5] 1.71  

Coverage factor [-] (**) 0.80 [0.1,1.0] 0.90 [3],[4] 

Distribution of roots [-] Tree 0.30 [0.0,1.0] 0.10 [3],[4],[7] 

  Srhub 0.5 [0.0,1.0] 0.20  

  Grass 0.7 [0.0,1.0] 0.34  

Maximum LAI m2/m2 Tree 2.50 [0.5,3.5] 3.10 [5],[8],[9],[10] 

  Srhub 2.00 [0.5,3.5] 2.00  

  Grass 1.00 [0.5,3.5] 1.50  
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Light extinction coefficient [-] All 0.50 [0.4,0.6] 0.52 [11] 

SLA m2/kg Tree 4.00 [2.0,5.0] 4.00  

  Srhub 6.00 [4.0,20.0] 10.00 [5],[12] 

  Grass 6.00 [6.0,50.0] 30.00  

Optimal temperature ºC All 16 [10,30] 18 [11] 

(*) Regarding to the hydrological sub-model, the table shows the value of the correction factors while regarding to the vegetation sub-model, the 

table shows the parameter values 

(**) The coverage factor depends on the location. The value in the table is the mean value. We used the reported information by [3] and [4]. 

[1] GIMHA Team, 2014 

[2] Van Dijk et al., 2011 5 

[3] Franz et al., 2007 

[4] Caylor et al., 2006 

[5] TRY Database (www.try-db.org) 

[6] Yuan et al., 2007 

[7] Le Roux et al., 1995 10 

[8] Pasquato et al., 2015 

[9] Ceballos and Ruiz de la Torre, 1979 

[10] López-Serrano et al., 2000 

[11] Ruiz-Pérez et al., 2016 

[12] Castro de Costa et al., 2014 15 
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Figure 1. General map location of the Ngiro river basin within the boundaries of the Sub-saharan Africa. The study sub-catchment (in blue) was selected 
because the density of the rainfall stations (points in dark blue). 
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 5 

Figure 2. Location of the points where the manual calibration was carried out. The value of the Pearson 6 
correlation coefficient between the satellite NDVI and the simulated LAI appears together to the point used to 7 
the manual calibration of the model 8 
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Figure 3. The three first EOFs during the calibration (upper part) and during the validation (lower part) are represented. The y-axes reflect the unitless 
loadings of each EOF. The x-axes reflect the time step. 
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Figure 4. Temporal Pearson correlation coefficient between the NDVI provided by MODIS and the LAI simulated by the model during the calibration 
and validation period. The two areas with negative values correspond to the Mount Kenya and Aberdare Mountains. 
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Figure 5. Spatial Pearson correlation coefficient during the calibration (upper panel) and during the validation (lower panel) 
distinguishing between the main land covers: tree, shrubs and grass. The whiskers were calculated according to the 98% percentile 
and the outliers were plotted as x. The median is the line inside boxplot and the mean is the quadrangle. 
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Figure 6. Comparison between the maps where each pixel contains the difference between the temporal mean calculated in this 
particular pixel and the general mean calculated using the all dataset of the simulated LAI (left) and observed NDVI (right) in both 
periods: calibration (upper panels) and validation (lower panels). This difference is a measure of spatial gradient of both variables 
(LAI and NDVI). 5 
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Figure 7. Time series of rainfall and observed and simulated daily discharge (m3/s) during the validation period (2000,2001 and 2002) 

 

 

  5 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-573, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 8 November 2016
c© Author(s) 2016. CC-BY 3.0 License.



33 
 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

Figure 8. Observed (in black) and simulated (in red) flow duration curves for the whole validation period (upper 26 
panel) and for the corresponding three years in isolation (lower three panels): 2000, 2001 and 2002 respectively 27 
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