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Optical vortex trapping and annihilation by means of nonlinear Bessel beams in
nonlinearly absorbing media
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Grupo de Sistemas Complejos, ETSIME, Universidad Politécnica de Madrid, Rios Rosas 21, 28003 Madrid, Spain

Francisco Ramos
Nanophotonics Technology Center, Universitat Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain

In nonlinear Kerr media at intensities such that multiphoton absorption is significant, a vortex of
topological charge m in the center of a high-order nonlinear Bessel beam (NBB) can be stable and
subsist endlessly. We show that the m-charged NBB is not only stable but is formed spontaneously
from any other n-charged NBB and N “foreign” vortices of total charge s randomly nested in the
beam cross section if n + s = m. All nested vortices merge in the center of the original NBB,
which undergoes a mode conversion to the NBB that preserves the topological charge and the
inward-directed power current that sustains the diffraction-free and attenuation-free propagation in
the medium with nonlinear absorption. We foresee different applications such as the creation of
stable, multiply charged vortices without tight alignment requirements but by spontaneous vortex
combination, mixing waves or particles that the vortices can guide, fast annihilation of vortex dipoles,
and cleaning of speckled beams by massive annihilation of vortices.

I. INTRODUCTION

The dynamics of optical vortices in optical fields has
been a matter of interest in the last decades, during which
the fundamental laws that govern this dynamics have
been established and applied to steer the motion of vor-
tices and vortex arrays embedded in different background
fields in diverse media [1-9]. Stabilizing the vortices and
controlling their motion is of utmost importance in di-
verse applications such as waveguide writing, wave mix-
ing and particle trapping . In other situations, the
presence of vortices in a light beam is highly undesirable,
such as the vortices appearing spontaneously in speck-
led fields during propagation in a turbulent atmosphere,
since they strongly deteriorate the optical performance
of the light beam [14 [17]. Considerable effort has been
paid to reduce the speckle of scintillated beams using dif-
ferent techniques such as diffractive optical elements HE]
or adaptive optics [17].

Recently we have proposed nesting optical vortices in
the diffraction-free, nonlinear Bessel beams (NBBs) sup-
ported by transparent self-defocusing media as a way to
prolong the distance at which the vortices survive stably,
at the same time that their motion mimics the simple mo-
tion of vortices in an uniform, plane wave background,
and is therefore easily predictable ﬂg] The only short-
coming of this proposal is the small, but intrinsic insta-
bility of NBB background in transparent self-defocusing
media. The development of the instability triggered by
noise or any small imperfection leads to the destruction
of the NBB-vortex system, although at distances one or-
der of magnitude larger than typical distances of vortex
decay in standard Gaussian-like backgrounds.

In this paper we describe the dynamics and applica-
tions of vortices embedded in the diffraction-free NBBs
supported by self-defocusing or self-focusing media at in-
tensities at which nonlinear absorption due to multipho-

ton absorption is a relevant mechanism of energy dissi-
pation. The existence of diffraction-free and attenuation-
free, fundamental (vortex-free) NBBs in Kerr media with
multiphoton absorption is known about one decade ago
ﬂﬁ] These fundamental NBBs have been shown to play
a prominent role in light filaments excited by Bessel
beams @], in which case multiphoton absorption pro-
duces ionization. High-order NBBs carrying a vortex of
arbitrary topological charge in their center have also been
described recently m, @], and have subsequently been
realized experimentally to induce tubular filamentation
for material processing [22].

In contrast to NBBs in transparent media ﬂg, ], the
fundamental and high-order NBBs in media with multi-
photon absorption can be completely stable against per-
turbations ﬂﬂ] In relation to “foreign” vortices embed-
ded in a fundamental or high-order NBB, we have found
that their dynamics is extremely simple and predictable:
If the NBB background is robust enough to survive the
perturbation produced by the nested vortices, all them,
regardless of their initial positions in the NBB cross sec-
tion are directed towards the NBB center, where they
combine at the same time that the NBB experiences a
conversion to the NBB that preserves the total topologi-
cal charge. The NBB center is therefore a stable equilib-
rium point for vortices, where they remain at rest end-
lessly once they have been trapped. We explain analyt-
ically the vortex attraction property of NBBs in media
with multiphoton absorption based on their particular
feature of being propagation-invariant with permanently
converging wave fronts [1&], and on the well-known laws

overning the dynamics of vortices in a phase gradient
fﬂ, 3.

This dynamics is in sharp contrast with the dynam-
ics of vortices in standard, Gaussian-like, or super-
Gaussian backgrounds, where the vortices usually spiral
out and decay in the divergent wave fronts upon diffrac-
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tion ﬂ, 6, B] This opposite dynamics suggests quite dif-
ferent applications. We demonstrate numerically vortex
trapping that allows to create vortex beams of arbitrary
topological charge without any alignment requirements
HE], but just by inserting a vortex anywhere in the fun-
damental Bessel beam. Also, inserting a set of vortices at
different positions results in the spontaneous formation
of a high-order NBB of the total topological charge, a
property that can be used to create a N to 1 combiner of
particles |13] or of the vortex-guided waves for wave mix-
ing ]. In particular, the two vortices of a vortex
dipole seldom annihilate, but move along straight par-
allel trajectories in an infinite plane wave ﬂ], and may
annihilate or not in a Gaussian beam ﬂﬂ] In a NBB they
annihilate spontaneously at a short propagation distance.
Based on this property, we demonstrate multiple annihi-
lation of many singly-charged, positive and negative vor-
tices contained by speckled beams by simply passing the
beam though an axicon and a nonlinear absorbing, self-
focusing or self-defocusing medium occupying the Bessel
zone after the axicon.

II. NONLINEAR BESSEL BEAMS IN KERR
MEDIA WITH MULTIPHOTON ABSORPTION

In this section we recall the properties of the funda-
mental [1§] and high-order NBBs [2(, [21], stressing those
that explain their vortex attractor property. Nonlinear
Bessel beams are well-known in self-focusing Kerr media;
here we extend the description to self-defocusing media.
Indeed, their existence does not critically depend on the
dispersive nonlinearities, so the inclusion of other non-
linearities such as Kerr saturation does not substantially
alter the NBB properties @] Nonlinear absorption is
also optional [23] for the existence of NBBs, but it is cru-
cial for their stability M] Nonlinear absorption due to
multiphoton absorption of different orders arises in al-
most any transparent optical media at sufficiently high
intensity; in air, for example, the orders range from 3
to 8 in the wavelength range of 248800 nm. Nonlinear
Bessel beams play a prominent role in the filaments ex-
cited by Bessel beams, in which case multiphoton absorp-
tion produces ionization, but the weak plasma does not
substantially alter the NBB structure ﬂE, 21, @]

With Kerr nonlinearity and multiphoton absorp-
tion, the propagation of the complex envelope A of a
monochromatic light beam (or long enough pulse) E =
Aexp(—iwt + ikz) of angular frequency w and of propa-
gation constant k = nw/c, can be described by the non-
linear Schrodinger equation (NLSE)
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where A = 92/0r? + (1/r)0/0r + (1/12)0?/9¢? is the
transverse Laplacian in polar coordinates (r, ¢), n and nq
are the linear and nonlinear refractive indexes, 5%) > 0

is the nonlinear absorption coefficient, and K the multi-
photon absorption order in the medium at the selected
frequency. Nonlinear Bessel beams feature, as their linear
counterparts, a conical structure characterized by a half
apex-angle, or cone angle 6, and an associated shorten-
ing § < 0 of the axial projection of the wave vector, given
by 6 = —k6?/2 in the paraxial approximation. Studying
the dynamics of NBBs, the number of free parameters
is minimized by introducing the normalized axial coordi-
nate ¢ = ||z, radial coordinate p = \/k|0|r and envelope

u = y/k[nz|/n|d|A. The normalized NLSE in Eq. (I

then reads
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specifies the strength of the nonlinear absorption relative
to the Kerr nonlinearity, and the + sign in Eq. (@) is
the sign of ng. In the figures we will also use normalized
Cartesian coordinates (£,n) = (\/k|d|z, \/k|d| v).
Nonlinear Bessel beams are propagation-
invariant solutions to Eq. @) of the form
U = b(p) explid(p)] exp(imig) exp(—iC), where exp(—i)
describes the axial wave vector shortening in these vari-
ables, the integer m is the topological charge of the
vortex at the beam center, and b(p) > 0 and ¢(p) are
the real amplitude and phase radial profiles determined
by the solutions of the ordinary differential equations

b 1db 2 do\ >
n b—<—¢> b+2b+£205 =0, (4)
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with boundary conditions b ~ C‘m|p|m‘ as p — 0 for a
vortex of charge m, b(p) — 0 as p — oo as the condi-
tion of beam localization, ¢(0) = 0 (an arbitrary phase)
and d¢/dp|,—0 = 0. These solutions exist both in self-
focusing and self-defocusing media up to a maximum
value Cjp|max Of Cjypy| that depends on m, K and 7.
A few relevant examples are shown in Fig. [ for self-
defocusing media and in Fig. [l for self-focusing media.
For low enough C),,,| the solutions approximate the lin-
ear Bessel beams. With increasing C),,| the amplitude
profile becomes wider in self-defocusing media and nar-
rower in self-focusing media, at the same time that the
Bessel-like rings gradually lose their contrast, disappear-
ing completely in the limit C,,,| = Cjp| max [Figs. D(a,b)
and [2(a,b)]. The feature that explains the vortex attrac-
tor property is the radial variation of the phase [Figs.
M(c,d) and Bc,d)]. For linear Bessel beams, the varia-
tion is stairs-like with steps at each zero of the Bessel
function. With nonlinear absorption the gradient of the
phase radial profile is always negative, meaning that the
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FIG. 1. Nonlinear Bessel beams in self-defocusing media with
v=0.2 and K = 4. (a) Radial profiles of amplitude, b(p), for
m = 0 with Co = 0.991607,0.99 and 0.5, the last one being
indistinguishable from the linear Bessel beam with m = 0
(gray curve). (b) Radial profiles of amplitude for m = 1 with
Ch = 0.821785,0.821 and 0.3535, or linear Bessel beam with
m = 1. (c) and (d) Respective radial profiles of phase, ¢(p).

phase front is permanently converging, with smooth steps
at large radius. In the limit C),,) — Cj;;| max the steps
disappear completely and the phase profile decreases lin-
early at large radius.

Integration of Eq. (@) in p yields

P
F, = —27rpb2@ = 47y / vXpdp=N,,  (6)
dp 0
a relation that explains the mechanism of stationarity in
a medium with nonlinear absorption. The power-loss rate
in any circle or radius p, N, equals to an equal inward-
directed power-gain flowing through the circle circumfer-
ence and coming from an intrinsic power reservoir in the
Bessel-like tails. At large radius p, a NBB behaves in fact
as the “unbalanced” Bessel beam

wn 2=} [bouc S (V) + bin Y (V)] emee=i€ (7)

i. e., as a superposition of two Hankel beams carrying en-
ergy radially outwards and radially inwards of different
amplitudes boyt and biy. In absence of nonlinear absorp-
tion |bout| = |bin|, and in absence of all nonlinearities
bout = bin, in which case the right hand side of Eq. ()
represents a linear Bessel beam. Use of Eq. (@) in Eq.
[@) for p — oo yields the relation

|bin|2 - |b0ut|2 = Noo 5 (8)
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FIG. 2. Nonlinear Bessel beams in self-focusing media with
v =2, K =4. (a) Radial profiles of amplitude, b(p), for m = 0
with Cp = 1.16, 1 and 0.5, the last one being indistinguishable
from the linear Bessel beam with m = 0 (gray curve). (b)
Radial profiles of amplitude for m = 1 with C7 = 1.39936, 1.25
and 0.3535, or linear Bessel beam with m = 1. (c) and (d)
Respective radial profiles of phase, ¢(p).

where Ny = 4my [ b*X pdp is the total power-loss rate
in the transversal plane. Also, use of Eq. (@) to evaluate
asymptotically the intensity yields an expression of the
form

277/’|“m/|2 ~ % {|bin|2+|bout|2+2|bin‘|bout| COS[Q(\@p + (I))”} (9)

where ® is a constant phase, and which shows that
27p|um|* consists asymptotically at large radius of har-
monic oscillations about a certain positive average value,
the contrast of the oscillations being
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Thus evaluation of Ny, and C' from the numerically ob-
tained intensity profiles, allows us to obtain the inward
and outward Hénkel amplitudes as

1
Vicez ™!

As examples, Fig. Bl shows the values of |bi,| and |boyt|
as functions of C),, for different topological charges in
self-defocusing media with v = 0.2 and K = 4 and in
self-focusing media with v =2 and K = 4.

While NBBs in transparent media (y = 0) suffer from
instability in both self-focusing M] and self-defocusing

N,
|bin,0ut|2 =

5 (11)




media E], a sufficient amount of nonlinear absorption sta-
bilizes them against small perturbations. In self-focusing
media the threshold for stability is of the order of v ~ 1
M], the exact value depending on the particular value of
Cim|; m and K. In self-defocusing media this threshold
is found to be lower and given by v ~ 0.1.

Regarding the practical generation of NBBs, they are
excited by linear Bessel beams introduced in the non-
linear medium [19-22, 25-27]. The linear Bessel beam
u=bpdny (ﬁp) exp(ime) reshapes into the NBB char-
acterized by the same cone angle, topological charge m
and with inward Hankel beam amplitude |b;,| equal to bp
[2d, [28]. Since for the linear Bessel beam |bin| = |bout| =
bp, the NBB that tends to be formed is that preserving
the amplitude of the inward Héankel beam component.
Thus the specific NBB (the value of C),,,|) can be deter-
mined from Fig. Blas that whose value of |bi,| is bp.

In actual experiments, finite-power Bessel beams gen-
erated by axicons or spatial light modulators are used ﬂE,
22]. Starting with a Gaussian beam u = bg exp (—p?/p?)
[or A = Bgexp(—r?/r3) with physical variables] and
a small or punctual vortex exp(imep) at its center,
and after passage through the axicon imprinting the
conical phase exp(—iv/2p) [or exp(—ikrf) with phys-
ical variables], a finite-power or apodized version of
the linear Bessel u = bp.J,,(v/2p) exp(imyp) exp(—i¢) [or
A = BpJy(kOr) exp(imy) exp(idz)] of amplitude b% =
bimpoy/2/e [or B% = B&mkOry/+/e] would be formed in
free space about the center po/2v/2 [ro/26] of the Bessel
zone of length (g = po/v2 [zp = r0/0] after the axi-
con ﬂﬁ] In a nonlinear medium placed immediately
after the axicon, instead, the NBB with |by,| = bp [or
|Bin| = |bin|\/n|0]/k|n2| = Bp]| is formed in the Bessel
zone, i. e., the NBB preserving again the inward Hankel

beam amplitude [24, 28].
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FIG. 3. Values of |bin| and |bous| of NBBs of charges m = 0 and
|m| =1 (a) in self-defocusing media with nonlinear absorption
strength v = 0.2 and order K = 4, and (b) in self-focusing
media with v = 2 and order K = 4, as functions of the
parameter C|,, that characterizes the NBBs, up to the limit
Cm|,max of existence (vertical dashed lines).

IIT. NONLINEAR BESSEL BEAMS AS
OPTICAL VORTEX ATTRACTORS AND THEIR
APPLICATIONS

In this section we consider the dynamics of vortices em-
bedded in a NBB, in either self-defocusing or self-focusing
media. Since a NBB may contain a vortex at its center,
we must make the distinction between the “intrinsic” vor-
tex of the NBB and the “foreign” vortices.

First, the existence of stable NBBs with an intrinsic
vortex of rather arbitrary charge in its center means that
the vortex will remain there when the NBB is subjected
to small perturbations M] This is in contrast to a vortex
nested in the center of a Gaussian-like or super-Gaussian-
like beam, where any perturbation and diffraction make
the vortex to move radially outwards, decay and broaden
[1]. Also in sharp contrast to the complex vortex dy-
namics of foreign vortices in Gaussian or super-Gaussian
beams ﬂ—@], this dynamics in NBBs is quite simple. Pro-
vided that the strength of nonlinear absorption v makes
the n-vortex NBB robust enough against the disturbance
of N vortices of total charge s placed arbitrarily, the IV
vortices end in the beam center, combining with the in-
trinsic vortex of the n-vortex NBB, at the same time that
the NBB transforms into a m-vortex NBB preserving the
topological charge, i. e., with m = n + s. The specific
m-vortex NBB is that preserving also the value of |bjy|.
Additional weak perturbations in the NBB do not alter
this vortex attraction property.

FIG. 4. Instability of the NBB background without nonlinear
absorption. Transversal intensity profiles at the indicated dis-
tances of the fundamental NBB (n = 0) with Cy = 0.99999999
in a self-defocusing transparent medium (v = 0) with a single-
charged, punctual vortex (black cross) placed at (£,17) = (5,0)
at ¢ = 0. Random noise of 10% the peak amplitude is in-
troduced to recreate more realistic conditions. The vortex
remains at rest at its original location but instability of the
NBB causes the destruction of the NBB-vortex system. Dis-
tance between ticks is 10.



If for simplicity we ignore the mutual influence of the
foreign vortices, the attraction property of each vortex
can be understood from the well-known laws of the vor-
tex dynamics in a background field E, E] A vortex placed
at a distance p in a background field of amplitude b and
phase ¢ acquires a radial velocity equal to the radial
gradient of the phase, i. e., v (% = dp/d{ = 0¢/0p
(note the opposite sign in Ref. ﬁ, | due to the opposite
sign of the complex representation of harmonic fields).
Since the radial gradient of NBBs is negative at any dis-
tances, the vortex at any position acquires and inward-
directed radial velocity. At large radius Eq. (@) yields
0¢/0p =~ —Nuo/2mpb?, and from Eqgs. (@) and () we
obtain the radial velocity

o VI=C?
velp) = ap \/51 + Ccos2(vV2p+ )] (12)

We can also estimate the distance that the vortex placed
at ( = 0 at the radial distance py takes to reach the
beam central part of the NBB (p ~ 0). Integrating

Eq. ([2), we obtain p + (C/2v/2)sin [2 (vV2p + ®)] |2V =

—v/2V/1 = C2%¢, and neglecting the term with the sinu-
soidal term in comparison to the large py,

N 4%
¢= 2(1—-C2) (13)

This distance is minimum, ¢ ~ p,/v/2, with C' approach-
ing zero, i. e., with NBBs with C),, = €, max, or higher
possible intensity. With physical variables, this minimum
distance is z = 1, /6, i. e., the vortex follows in this case
the conical flow of power in conical beams of the cone
angle 6. Of course, once the vortex approaches the non-
linear center, where the asymptotic expressions are not
valid, it continues to approach the center since the phase
gradient is also negative in this region, but the velocity
can only be evaluated numerically.

Thus nonlinear absorption plays a two-fold role: It sta-
bilizes the NBB, and bends the phase fronts for the vor-
tices to be pushed towards the beam center. In absence of
nonlinear absorption, Eq. ([[3) with C' = 1 yields ( — oo,
in agreement with the fact that nested vortices do not ap-

reciably acquire a radial velocity in linear Bessel beams
E] Also, as recently shown in ﬂé], and as illustrated in
Fig. @ a foreign vortex in a NBB of the fully transpar-
ent, self-defocusing medium remains at rest, surviving for
longer distances compared to Gaussian or super-Gaussian
backgrounds, but instability of the NBB leads to the
destruction of the NBB-vortex system. In a transpar-
ent self-focusing medium the situation is more dramatic,
since the self-focusing instability of NBBs is severe. The
presence of noise or introducing any foreign vortex trig-
gers the instability that quickly destroys the system.

As we envisage quite different applications of the vor-
tex attractive property in nonlinearly absorbing media,
we demonstrate it numerically with the different values
of n of the initial NBB and of the N foreign vortices

of total charge s that are relevant to these applications.
To ensure stability of the NBBs we take v well-above
0.1 and 1 in the respective cases of self-defocusing and
self-focusing media. Also, in order to speed up the vor-
tex motion towards the NBB center we will use NBBs
with CJ,| close to the limit C),| max of existence, i. e.,
of low radial contrast. In all simulations we addition-
ally introduce random noise in the complex amplitude
to recreate realistic conditions. In the first examples we
consider NBBs with their intrinsic infinite-power reser-
voir for simplicity. In order to show that the attractive
vortex property and their applications hold with physi-
cally realizable, finite-power (apodized) NBBs, in the last
example we consider the massive annihilation of the vor-
tices carried by a speckled Gaussian beam that is trans-
formed by an axicon and by propagation in the nonlinear
medium into a physically realizable NBB.

A. Vortex trapping with mode conversion

FiguresBf(a) and Bi(b) illustrate the trapping of an off-
axis vortex with s = 1 by NBBs in self-defocusing and
self-focusing media with nonlinear absorption. The NBB
backgrounds resist the large deformation produced by the
penetration of the vortex in the NBB center, and propa-
gate stably once the vortex has been placed at the cen-
ter. The nature of the final stable state is clear from
Figs. [Bla) and [B(b). For respective self-defocusing and
self-focusing media, the dashed curves represent the ra-
dial intensity profiles of the input NBBs with n = 0 and
the punctual vortex placed at a certain distance from the
center (vertical line), and the open circles represent the
radial intensity profiles of the final stable states. The
later are indistinguishable from the black curves, repre-
senting the radial intensity profiles of NBBs with m = 1
with the same strengths of nonlinear absorption v and
with C such that |b;,| is the same as for the input NBBs
with n = 0, as obtained from Fig. In other words,
the NBBs with n = 0 and with the nested vortices have
experienced a conversion to NBBs with m = 1 preserv-
ing the topological charge and the amplitudes of the in-
ward Héankel beam components. Similar vortex trapping
and mode conversion are numerically observed with a
multiply-charged vortex (N = 1, |s| > 1) placed any-
where in NBBs of any order n: The final state is the
NBB of order m = n + s with the same |bi,| as the NBB
of the original charge n.

Thus, in order to generate a high-order NBB for ap-
plications such as tubular filamentation in m], pre-
cise alignment of the phase masks imprinting the phase
dislocations is not necessary. Also, once the final m-
vortex NBB exits from the nonlinear medium and propa-
gates in free space, it will transform into the m-vortex
lineal Bessel beam that preserves, as above, the am-
plitude of the inward Hénkel component, i. e., into
|bin| Jm (V2p)ei™Pe =%, Thus, starting with the funda-
mental NBB (generated, for instance, by an axicon),



FIG. 5. Vortex trapping and stability with nonlinear absorp-
tion: Transversal intensity profiles at the indicated distances
of (a) NBB with n = 0 and C = 0.991607 (|bin| = 6.82671) in
a self-defocusing, nonlinearly absorbing medium with v = 0.2
and K = 4, and of (b) NBB with n = 0 and Cy = 1.16 (|bin| =
3.469) in a self-focusing, nonlinearly absorbing medium with
v =2 and K = 4. In the two cases a punctual single-charged
vortex (crosses) is placed at (§,7) = (5,0) at ¢ = 0, and
random noise of maximum value 10% the peak amplitude is
introduced. Distance between ticks is 10. In the two cases,
the vortices are trapped in the NBB center, where they prop-
agate stably.

nesting randomly a vortex of charge s, and making the
whole to propagate a certain distance in a nonlinearly ab-
sorbing medium, would be an alternative method to the
one developed in @], with a monolithic, careful aligned
axicon and spiral phase, for the generation of high-order
Bessel beams.
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FIG. 6. Mode conversion: Red dashed curves: Radial inten-
sity profiles of input NBBs with (a) n = 0 and Cp = 0.991607
(|bin] = 6.82671) in a self-defocusing, nonlinearly absorbing
medium with v = 0.2 and K = 4 in self-defocusing medium,
(b) n = 0 and Co = 1.16 (|bin|] = 3.469) in a self-focusing,
nonlinearly absorbing medium with v = 2 and K = 4. The
position (£,n) = (5,0) of the punctual vortex is indicated by
vertical red dashed lines. Open circles: corresponding final,
stable states at sufficiently long propagation distance. Black
curves: Radial intensity profiles of NBBs with (a) m = 1 and
Cy = 0.82178 such that |bin| = 6.82671 is conserved in the
self-defocusing medium and with (b) m =1 and C7 = 1.3197
such that |bin| = 3.469 is also conserved in the self-focusing
medium. Fitting of the final states to these NBBs demon-
strates mode conversion that preserves the topological charge
and |bin].

B. Vortex combination

Two equal vortex solitons separated a certain distance
in an infinite plane wave background in a self-defocusing
medium rotate indefinitely [2], while vortices in a Gaus-
sian or super-Gaussian background spiral out, broaden
and decay @, , B] The opposite is true when nested in
a NBBs in media with nonlinear absorption. As seen
in Fig. [M(a) and (b) for the respective cases of self-
defocusing and self-focusing media, the two equal vor-
tices (N = 2) of charges s; = s3 = 1 (s = 2) in the NBB
with n = 0 combine in the center, forming the NBB with
m = 2 that also preserves the amplitude of the inward
Hiikel beam component. Similar dynamics is observed
with other couples of foreign vortices of equal or unequal
charges in NBBs of different orders n.

C. Vortex dipole annihilation

Of particular relevance is a vortex dipole, or two vor-
tices of opposite charges. The vortices of the dipole move
along parallel trajectories when placed in a infinite plane
wave background ﬂj] In a Gaussian beam the dipole dy-
namics is extremely complex; they may annihilate or not
depending on the particular positions, annihilation being
desirable for most of applications [14]. In the NBB with
n = 0 the two vortices of the dipole always merge, irre-
spective of their initial positions, in the NBB center and
annihilate, the final state being the initial NBB with-



FIG. 7. Vorter combination: Transversal intensity profiles at
the indicated propagation distances of (a) NBB with n = 0
and Cp = 0.991607 in a self-defocusing, nonlinearly absorb-
ing medium with v = 0.2 and K = 4, and (b) NBB with
n = 0 and C; = 1.16 in a self-focusing, nonlinearly absorb-
ing medium with v = 2 and K = 4. In the two cases two
equal point vortices (black/white crosses) with s1 = so =1
are placed at (§,7) = (5,0) and at (§,n7) = (—5,0) at ¢ =0,
and random noise of maximum value 10% the peak amplitude
is introduced. Distance between ticks is 10. In the two cases,
the vortices combine in the NBB centers, forming NBBs with
m = 2 in the corresponding media that preserve the ampli-
tudes of the inward Héankel beam components.

out the nested vortices, that have been removed from
the background beam with this procedure. This is illus-
trated in Fig. [ (a) and (b) for the respective cases of
self-defocusing and self-focusing and for a vortex dipole
(N =2) with s = —s3 = 1 (s = 0) in the fundamental
NBB.

=20

FIG. 8. Vortex dipole annihilation: Transversal intensity pro-
files at the indicated propagation distances of (a) NBB with
n =0 and Cp = 0.991607 in a self-defocusing, nonlinearly ab-
sorbing medium with v = 0.2 and K = 4, and (b) NBB with
n =0 and C; = 1.16 in a self-focusing, nonlinearly absorbing
medium with v = 2 and K = 4. In the two cases two vortices
of opposite charges s1 = —s2 = 1 are nested at ( = 0 at
the indicated transversal positions (black/white crosses), and
random noise of maximum value 10% the peak amplitude is
introduced. Distance between ticks is 10. In the two cases,
the vortex dipole annihilate, and the final state is equal to
the initial state without the dipole and without noise.

D. Light beam cleaning

Vortex dipole annihilation in the NBB of the non-
linearly absorbing medium can be used massively to
force the annihilation of many vortices of unit opposite
charges acquired by speckled or scintillated light beams
after propagation through random media such as a rough
transparent plate or turbulent gaseous media ] Con-
siderable effort has been paid to reduce the speckle of



scintillated beams using different techniques HE] A re-
cent technique, somehow connected to the present work,
is the use of adaptive optics to introduce a phase back-
ground that forces dipole annihilation ﬂﬂ, ﬂ] Here, the
appropriate phase background is the permanently con-
verging wave front of the NBBs in the nonlinearly ab-
sorbing medium. We propose to transform the deterio-
rated beam into a conical beam by means of an axicon,
or equivalent device, and let the conical beam propagate
through a nonlinear absorbing medium placed immedi-
ately after the axicon, where the vortices will annihilate
by pairs.

As explained at the end of Sec. [[I with a clean Gaus-
sian beam u = bg exp (—p?/p?) illuminating the axicon,
a physically realizable, fundamental NBB (n = 0) with
finite power, of the cone angle imprinted by the axicon
and with Cy such that |bin|? = b% = bimpor/2/e will
be formed about the middle of the Bessel zone of length
(B = po/V/2. With the deteriorated Gaussian beam with
large number of randomly nested vortices of charges +1
and —1 and of total charge s = 0 illuminating the axi-
con, the same NBB is expected to be formed, at the same
time that vortices are pushed towards the NBB center
and annhilate.

The top panels in Figs. [(a) and [(b) show central
portions of the intensity pattern of such deteriorated
Gaussian beams. They have been obtained by nesting
the punctual vortices randomly in a broad, collimated
Gaussian beam and letting the Gaussian beam with the
vortices propagate in free space (linearly) a sufficiently
long distance. If these deteriorated Gaussian beams il-
luminate an axicon, and self-defocusing [Fig. [@a)] or
self-focusing [Fig. Bb)] media with significant nonlinear
absorption are placed immediately after the axicon, in-
tensity patterns at selected propagation distances within
the Bessel zone are represented in the lower panels. Since
the line-focus that will form the NBB in the Bessel zone
is much more intense and narrower than the Gaussian
beam, the color scale is changed and only the portions
within the dashed rectangles of the top panels are shown.
As expected, all vortices are heading towards the beam
center, where they annihilate. The bottom panels in Figs.
[Ba) and @(b) about the end of the Bessel zone evidence
that the results is a clean, vortex-less beam.

Figure supports that the massive vortex annihila-
tion is due to the vortex attraction property of the finite-
power NBB that tends to be formed, though constantly
and severely perturbed, in the Bessel zone. The intensity
patterns in the bottom panels of Figs. @la) and BIb) at
distances about the end of the Bessel zone closely resem-
ble the intensity patterns in Figs. [[0(a) and [[0(b) at the
same distances when a clean Gaussian beam illuminates
the axicon. The residual deformation is due to the late
annihilation of the vortices near the end of the Bessel
zone, where the conical power flux from the axicon starts
to be inefficient to maintain the NBB. Also, Figs. [I0(c)
and [I0(d) show similar behaviors of the axial variation
of the peak intensity when the axicon is illuminated by

a clean Gaussian beam (dashed curves) and with the de-
teriorated Gaussian beam (solid curves). Deviations are
more important with the NBB in self-focusing media be-
cause the collisions of the vortices constantly destroy the
quite narrow central spike of the NBB, which neverthe-
less emerges when all vortices are washed out.

IV. CONCLUSIONS

We have studied the dynamics of optical vortices
nested in the diffraction-free, fundamental or high-order,
nonlinear Bessel beams supported by self-focusing or
self-defocusing media at intensities at which nonlinear
absorption is significant. The behaviour of vortices
contrasts strongly with the behavior in standard
Gaussian-like beams. In addition to the robustness of
the vortex of arbitrary charge in the center of high-order
nonlinear Bessel beams, the most relevant phenomenon
that comes out from our analysis is the vortex attraction
property introduced by the effect of the nonlinear
absorption.  Stationary propagation in media with
nonlinear absorption requires permanently converging
wave fronts, which according to well-established rules of
vortex dynamics in a background beam, push any vortex
placed anywhere towards the beam center. This property
provides an efficient tool for optical vortex trapping,
vortex combination and vortex dipole annihilation.

This mechanism is distinctive of nonlinear Bessel
beams in nonlinearly absorbing media, and should be
distinguished from the well-known self-healing property
of linear or nonlinear Bessel beams. A linear Bessel
beam, for example, self-heals after obstacles, but does
not attract vortices. Also, vortex trapping in nonlinearly
absorbing media is accompanied by a mode conversion
and therefore by a permanent modification of the
nonlinear Bessel beam.

We have explored the combination of two vortices into
a single vortex, but the same mechanism can provide
a N to 1 vortex combiner, which in turn can combine
or mix the waves or the particles that the vortices can
guide. Also, the vortex annihilation capability could
be relevant for cleaning speckled or scintillated beams,
a topic that has been extensively discussed ﬂﬂﬂ],
and where complex solutions requiring substantial
engineering have been described. We have proposed a
simple setup able to remove undesired vortices without
complicated step-by-step procedures or tight alignment
requirements.

The author acknowledges support from Projects of the
Spanish Ministerio de Economia y Competitividad No.
MTM2015-63914-P and No. FIS2017-87360-P.



FIG. 9. Beam cleaning. Top panels: Intensity of central por-
tions of Gaussian beams of width po = 400, and (a) amplitude
bg = 0.3 with N = 50 randomly placed vortices of charges
+1 and —1, (b) amplitude bg = 0.15 with N = 24 randomly
placed vortices, illuminating an axicon. Lower panels: Inten-
sity at the indicated distances in (a) self-defocusing medium
with K = 4, v = 0.2, (b) self-focusing medium with K = 4,
v = 2, placed after the axicon. All vortices are washed out
about the end of the Bessel zone of length po/\/i = 281.
Distance between ticks is 40.
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FIG. 10. (a) and (b) The same as in the lower panels in Figs.
Bla) and @(b) but when the axicon is illuminated with clean
Gaussian beams. (c) and (d) Solid curves: Peak intensity
versus propagation distance for the numerical simulations in
Fig. Bla) and Fig. [(b). Dashed curves: Peak intensity
without nested vortices.
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