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Characterizations of k-commutative equalities for some outer

generalized inverses

D.E. Ferreyra®, F.E. Levis*, N. Thomef

Abstract

In this paper, we present necessary and sufficient conditions for the k-commutative equality
A*X = X A® where X is an outer generalized inverse of the square matrix A. Also, we give new
representations for core EP, DMP, and CMP inverses of square matrices as outer inverses with
prescribed null space and range. In addition, we characterize the core EP inverse as the solution

of a new system of matrix equations.
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1 Introduction

Let C™*™ be the set of m x n complex matrices. For A € C™*™_ the symbols A*, A7! 1k(A), N'(A),
and R(A) will denote the conjugate transpose, the inverse (m = n), the rank, the kernel, and the
range space of A, respectively. Moreover, I,, will refer to the n x n identity matrix.

Let A € C™*™. We recall that the unique matrix X € C™*™ satisfying

AXA=A4A, XAX =X, (AX)*=A4X, and (XA)*=XA
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is called the Moore-Penrose inverse of A and is denoted by Af. A matrix X € C™*™ that satisfies the
equality AXA = A is called an inner inverse or {1}-inverse of A, and a matrix X € C™*™ that satisfies
the equality X AX = X is called an outer inverse or {2}-inverse of A.

For a given complex square matrix A, the index of A, denoted by Ind(A), is the smallest nonnegative
integer k such that R(A*) = R(A**1). We observe that the index of a nonsingular matrix A is 0, and
by convention, the index of the null matrix is 1. We also recall that the Drazin inverse of A € C"*" is
the unique matrix X € C™"*" such that XAX = X, AX = XA, and A*' X = A¥ where k = Ind(A),
and is denoted by A If A € C"*" satisfies Ind(A) < 1, then the Drazin inverse of A is called the
group inverse of A and is denoted by A#.

The core inverse was introduced by Baksalary and Trenkler in [2]. For a given matrix A € C**™, its
core inverse is the unique matrix X € C"*™ defined by the conditions AX = P4 and R(X) C R(A4),
where P, is the orthogonal projector onto the range of A, i.e., P4 = AAT. In case that such a matrix X
exists, it is denoted by A®. Moreover, it was proved that A is core invertible if and only if Ind(A) < 1.

Two generalizations of the core inverse have been recently introduced for complex square matrices.

Recall, for a given matrix A € C"*" of index k, the unique matrix X € C"*™ such that
XAX =X and R(X)=R(X*)=R(4"), (1)

is called the core EP inverse of A and is denoted by A® [8]. The authors proved that the core EP of

a matrix A € C"*" is the unique solution of
XAMY = AF ) XAX =X, (AX)*=AX, and R(X)C R(A"), (2)

[8, Lemma 3.3]. Notice that equations in (2) are equivalent to a new set of equations containing
the same first three and changing the inclusion R(X) C R(A*) with the equality R(X) = R(A*).
Secondly, the concept of DMP inverse of A was introduced in [5]. In this case, the unique matrix
X € C™*™ satisfying

XAX = X, XA=A%, and A*X = AFAT, (3)

is called the DMP inverse of A and is denoted by A%T. Moreover, it was proved that A%t = A4AAT.
The authors introduced also another outer inverse associated to a square matrix, namely A4 = At 444
called dual DMP inverse of A.

Recently, a new generalized inverse was given in [7]. In this case, the matrix
AST .= QuAYP,, where Qu = ATA, (4)

is called the CMP inverse of A.



We recall that a matrix A € C™*" is EP if AAT = AYA. In [6] the authors introduced k-EP
matrices mimicking the idea of EP matrices, in this case for £ > 1. A matrix A € C"*" of index k is

called k-EP matrix if A¥ A" = AT A* that is,
Cht={AeCmm: AFAT = ATAF} .

Let A € C™*™. Throughout all the paper we will assume that Ind(A) = k& > 1. In this paper we

are going to study the class
Ch={XeC : A"X = XA" XAX = X}
and the stress will be put on a sort of inverse problems by considering the following classes of matrices:
ch® = {A € X, AR AD — A®Ak} ,
Crdt = {AeCm™: AFAST = ATAMY
Citd={AeC™™: AF AT = ATIAM}
Cht={AeCmm: APAST = A°T A}

which lead us to new generalizations for EP matrices. The matrices in these last classes will be called
k-core EP, k-DMP, dual k&-DMP and k-CMP matrices, respectively.

This paper is organized as follows. In Section 2, a necessary and sufficient condition characterizing
the class matrices A such that A¥X = X A* for X being an outer inverse of A, is given. Section 3
presents new representations of core EP inverse, DMP and dual DMP inverses, and CMP inverse of
a square matrix as an outer inverse with prescribed range and null space. For further investigations,
we also derive representations for the Drazin inverse, the Moore-Penrose inverse, the DMP inverse,
the dual DMP inverse, and the CMP inverse in terms of the core EP decomposition. In addition,
we state new characterizations of k-EP matrices by using the recent core EP decomposition given
by Wang in [10]. Similarly, we give characterizations of k-core EP matrices, k-DMP matrices, dual
kE-DMP matrices, and k-CMP matrices. As a consequence, we derive that the class k-EP is (properly)
included in both k-DMP and dual k-DMP classes. Finally, Section 4 provides characterizations of
core EP matrices by means of a new set of matrix equations. This new set reduces from four to three
the number of equations given by Prasad and Mohana in [8] showing that the first equation in (2) is

redundant.



2 The general class C*

Related to power of matrices commuting with generalized inverses, for a given A € C"*™ of index at

most 1, the problem of characterizing all matrices X € C™"*™ such that
AFXE AR = Ak and XFARXF = X forall k €N (5)
was studied in Rao and Mitra’s book [13, p. 77]. Using the canonical form for index 1 matrices,

cC 0 .
A=1L L
0 0
for C and L being nonsingular, the most general form of X’s satisfying both conditions in (5) is given
by
ct J L
X=1I L
F  FCJ

provided that F' and J fulfill JF' = 0. Notice that both conditions in (5) are true for y-inverses and
p-inverses [13, pp. 73 and 77].

Let A € C"*™ and assume that Ind(A4) = k > 1. According to Theorem 2.2 in [10], every matrix
A € C™*" with Ind(A) = k can be represented in the form

T S 0 O
A:A1 +A2, Al =U Uv*7 Ag =U []*7 (6)

0 0 0 N
where T is nonsingular with ¢ := rk(7) = rk(A¥), N is nilpotent of index k, and U is unitary. The
representation of A given in (6) satisfies Ind(A;) < 1, A5 =0, and AjA; = A3A; = 0 [10, Theorem
2.1]. Moreover, it is unique [10, Theorem 2.4] and is called the core EP decomposition of A. The

notation
k—1

T=> TISNt1=I (7)
7=0
will be used in the forthcoming results.
The symbol A{2} stands for the set of all {2}-inverses of A and A{5} denotes the set of all matrices

commuting with A. Next result completely describes the set CE.

Theorem 2.1. Let A € C"*™ written as in (6) and k > 1 be the index of A. Then X € CF if and

only if

X, T"X,T-TX
x—u | T )y
0 X,

where X1 € T{2} N T*{5} and X, € N{2}.



Proof. From
T S
A=U U-,
0 N

and using that A has index k and (7), it is clear that

A TF T
A¥=U U~.
0 0
We partition
X, X
x=u|"" 7 v,
X3 Xy

accordingly to the sizes of the blocks of A. From A*X = X A* we obtain

TFX, +TXs TFXy+TX, X, T X,T

0 0 XsTF  X5T

from where T*X; = X, T%, X3 =0, and Xy = T’k(le — ZN“X4).
Now, using that X AX = X we arrive at X,T7X; = X7, Xy NX, = X,.

We observe that the equation
THX\T —TXy) = X1T*T(X,T — TX4) + X15X4 + T F(X,T — TX4)NX,4

is always true due to T7%*X; = X;T~% and because if we focus on the powers of the expression of T,

it is easy to show that TN —TT = —T*S. The converse is evident. O
The rest of the paper is devoted to investigate all the square matrices A of index k > 1 satisfying
ARX = x AF for X e {AﬂACD’Ad,T’AT,d’AaT}_

In [15], Wang and Chen introduced the weak group inverse of a matrix A € C"*™ of index k as the
unique matrix X € C"*" satifying AX? = X and AX = ADPA and it was denoted by X = A®. The

authors shown that if A is written in the core EP decomposition (6) then

71 17728
A® =U U*. (8)
0 0

In spite of the weak group inverse A® is not an outer inverse of A, we can state the following result.

Lemma 2.2. Let A € C™™ with Ind(A) = k written as in (6). Then AFA® = A® A% if and only if
Sy TISNF=1=7 = .

Proof. 1t is a simple computation that follows from (6), (8), and using the nonsingularity of T'. O



3 Representations of core EP, DMP and dual DMP, and CMP

inverses

Let A € C™*™ a matrix of rank r. Let T be a subspace of C" of dimension s < r, and let S be a
subspace of C™ of dimension n — s. It is well known that A has a {2}-inverse X such that R(X) =T
and V(X) = S if and only if AT @& S = C", in which case X is unique and is denoted by AE,?)S 1,
Theorem 14, p. 72]. Moreover, if B € C™**™ satisfies R(B) =T, N(B) = S and A has an inverse Ag,?)s
then Ind(AB) < 1 and Ind(BA) < 1. Furthermore, we have A(TZ)S = (BA)#B and Ag?)s = B(AB)#
[16, Theorem 2.1].

Recall that the Moore-Penrose inverse, the Drazin inverse, and the group inverse are {2}-inverses

of A with prescribed range and null space satisfying

@ e a4
AT = ARy wasy AT = ARy vy and AT= AR %)

Also, it was proved in [11] that A® = A%EA) N (4~ holds. For similar results extended to weighted

inverses we refer the reader to [12, 14].

Remark 3.1. We observe that if X is an outer inverse of A, then N(AX) C N(XAX) = N(X) C
N(AX) and R(XA) C R(X) = R(XAX) C R(XA), ie.,, N(X) = N(AX) and R(X) = R(XA).
That is, the inverse A%EX),N(X) exists. Thus, C" = AR(X) ® N (X).

In the following result we give new representations of core EP inverses, DMP inverses and CMP
inverses. From now on, the symbol A, stands for the product AA?A, which represents the core part

of the core-nilpotent decomposition of the matrix A, that is A(©) := AA?A.
Theorem 3.2. Let A € C™*™ with Ind(A) = k. Then

C) )
(a) AD = AR (k) M((AF))

dt _ 22 .
(b) A%t = AR(A’C),N(AkAT)’

et — 2(2) .
(c) A T_AR(ATA’C),N(A’VAT)’

d _ A2)
(d) Al = AR(ATAk),N(Ak)'

Proof. We first notice that, by definition, each of AD, A%t Act and A4 are outer inverses of A.
(a) We recall that R(AD) = R(A*). From [4, Theorem 3.7] we know that N(AAD) = N((AF)*).
From Remark 3.1 we have N (AD) = N((A¥)*). Hence, by [1, Theorem 14, pp. 72] we obtain (a).
(b) From [5, Theorem 2.12] we know that R(A%TA) = R(AF) and N(AA%T) = N(AYAAT). Since



N(A4A) = N(AF) it is clear that N (ATAAT) = N(AFAT). Now, From Remark 3.1 we have R(A%T) =
R(AF) and N (A4T) = N(AFAT). In consequence, Remark 3.1 and [1, Theorem 14, p. 72] complete
the proof.

(¢) From Remark 3.1 and the definition of A%t we have N'(A%T) = N(AA%T) = N(A©) A%T). Since
Aot = ATA AT = ATAAYAAT then

N(A%T) = N(AA?AAT) = N(AAST) = N(A%T) = N (AR AT),

where the last equality follows from (b). On the other hand, by definition of A%t and Remark 3.1 we also
have R(A®T) = R(A®TA) = R(ATA)) = R(ATAA?A) = R(AT?A) = R(AD?), where the last equality
uses the fact that AT¢ is a {2}-inverse of A. Now, as R(A"9) = ATR(AA?) and R(AAY) = R(AF),
we obtain R(A%T) = R(ATA*). Finally, (c) follows from Remark 3.1 and [1, Theorem 14, pp. 72].

(d) As in the proof of (c) we have R(A"?) = R(ATA*). On the other hand, from Remark 3.1,
N(AT?) = N(AATY) = N(AATAAY) = N(AAY) = N(A¥). Therefore, we arrive at (d) by using
Remark 3.1 and [1, Theorem 14, p. 72]. O

Corollary 3.3. Let A € C™*™ with Ind(A) = k. Then the following statements hold:
(a) AST = AT if and only if N(AFAT) = N'(AF);
(b) A>T = ALY if and only if R(ATAF) = R(AF);
(c) AD = A%t if and only if N'(AFAT) = N((A*)*).
(d) AD = AN if and only if AF is EP and R(AF) is Af-invariant.
Theorem 3.4. Let A € C™*™ with Ind(A) = k. Then
AD = (P A)# Par = Pyn (AP, (10)
Proof. Since Pax = A¥(A*)T is an orthogonal projector on R(A¥), we have
R(AP) = R(A¥) = R(Par), (11)
From [10, Corollary 3.3] we obtain
N(Par) = N(AAD) C N(ADPAAD) = N(AD) C N(AAD) = N(Pys). (12)
Consequently, (10) follows from (11), (12), Theorem 3.2, and [16, Theorem 2.1] with B = Pys. O

Remark 3.5. When Ind(A) < 1, from the representation given in (10), it is easy to verify that
A® = A# P, [2, Theorem 1].



Remark 3.6. It is easily verified that AD = (ADA)#AD = AD(AAD)# by setting B = AD in the
definition of Ag?)s and by using Theorem 3.2 (a). Observe the similarity of formulae for AD and At

by noting that AT = (A*A)TA* = A*(AA*)T.

Wang [10, Theorem 13] also gave a representation for the core EP inverse. More precisely, for a

matrix A represented as in (6), its core EP inverse is given by

T-1 0
A® =y U
0 O
Now, we give a new representation for Drazin matrices by using the core EP decomposition.

Theorem 3.7. Let A € C™™™ be a matrixz of index k written as in (6). Then

T*l (Tk:Jrl)flT
0 0

At=U U*.
Proof. If we write A as in (6) and recall (7) then

AP =U U*.

As ARl = AF A = AA* a straightforward computation shows that

TH+ TES + TN TR TT
AR =T Ur=U U*.

0 0 0 0

Then,
TS+ TN =TT or equivalently (TF)~'T =T7'S + (T**1)~1TN.
Let
71 (Tk+1)—1f
X=U U*.
0 0

Now, we shall prove that the matrix X satisfies the system XAX = X, AX = XA, and AFt1X =

In fact,
Tk+1 T 71 (Tk+1)—1f Tk
0 0 0 0 0 0

ARt = U

From (16) we get

T S T (TFtYH)-iT I, (TH~'T
AX =U U*=U U*
0 N 0 0 0 0
[ I, TS 4 (TF)-ITN T-1 (Tk+1)-1T T S
Ul (T U* = (T U= XA
0 0 0 0 0 N

(13)

(14)

(16)

AF,



Finally,

T—l (Tk+l)—1T It (Tk)—lT T—l (Tk—i-l)—lT
XAX =U Ur=0U Ur=X.
0 0 0 0 0 0
Since the Drazin inverse is unique, we conclude that X = A¢ holds. O

Corollary 3.8. Let A € C™*" with Ind(A) = k. Then
AD = Adp,,. (17)

Proof. Let A € C"*™ be written as in (6). By [4, Lemma 2.5] we obtain

I 0
P = AF(ARY =U | U*. (18)
0 0
On the other hand, by [10, Theorem 3.2] we have that
T-' 0
A® U U*.
0 0
Hence, from Theorem 3.7 and (18) we obtain (17). O

In [3], the authors found the Moore-Penrose inverse of a linear operator for which its matrix block
representation is block (upper) triangular with some diagonal block being nonsingular. The following
result provides a representation for the Moore Penrose inverse by using the core EP decomposition for
a general matrix. The importance of this result lies in the fact that it is valid with no extra restrictions

to be assumed which highlight the power of the core EP decomposition.
Theorem 3.9. Let A € C"*™ be a matrix of index k written as in (6). Then

T*A ~T*ASNT
At =U U*, (19)
(In_s — NTN)S*A  NT — (I,_, — NTN)S*ASN'
where A = (TT* + S(I,,_, — NTN)S*)~1.
Proof. The proof follows immediately from [1, Ex. 25, p. 49] and [3, Lemma 6]. O

Define the matrix

R V T*A —T*ASNT 20)
W Z | | (In.— NTIN)S*A N —(I,_, — NIN)S*ASNT |
in order to consider the central block obtained in (19).

Next, we establish a new geometrical characterization for k-EP matrices by using the core EP

decomposition. We recall that A is k-EP if and only if A € CF:f.



Theorem 3.10. Let A € C"*™ be a matriz of inder k written as in (6). Then A € CET if and only

if the following conditions simultaneously hold:
(i) N(N) C N(S) (or equivalently S(I,,_ — NTN) =0),
(ii) N(N*) C N(T) (or equivalently T(I,—, — NNT) =0).

Proof. Let A € C"*™ be written as in (6) and consider the expression for AT given in (19). Assuming
that A is k-EP, from (15) and (20) we have

RT* RT TFR+TW THV +TZ

wT* WT 0 0
Since T is nonsigular, W = 0. Also, since A is nonsingular, we have (I,,_;—NTN)S* = 0 or equivalently
S(I,_+ — NTN) = 0 holds. Observe that this last equality holds if and only if N(N) = N(NTN) =
R(I,—+—NTN) C N(S). So, from Theorem 3.9, we obtain A = (T*)~'7~! and consequently R = T},
V = —T-1SNt, Z = Nt, and RT = T*V + TZ. Thus, T-'T = —T* 1SNt + TNt or equivalently
T = —T*SN' 4+ TTN'. According to (16) we have T = —T*SN' + (I'N + T*S)Nt = TNN', which
implies T(I,,_s — NNT) = 0. Equivalently, N'(N*) = N (N1) = N(NN1) = R(I,_, — NNT) C N(T).
Conversely, we suppose that S(I,,_;—NTN) = 0 and f(]n_t—NNT) = 0 hold. Since (I,,_;—NTN)S* =
0, from Theorem 3.9 we deduce that A = (T*)~!T~! and so

71 718Nt
At=U U*.
0 Nt

From (16), it follows that —T* 1SNt + TNt = —T-1TkSNT 4+ T-'TTNt = T-(T'T — T*S)N't =
T-ITNN't = T-1T. Therefore,

A T T || 177" ~T SNt Tkt —T*1SNT 4+ TNT
AFAT = U Us=U U*
0 0 0 Nt 0 0
TRt 7T Tt TSN || TR T .
=U Ur=u U = AtA*,
0 0 0 Nt 0 0
i.e., Ais a k-EP matrix. O

In order to obtain similar results for the sets C*@ and CF:¢ we need representations for A%t and
A"? given by means of core EP factorization of A.
Theorem 3.11. Let A € C"*™ be a matriz of index k written as in (6). Then
T-' (T*1)~'TNNt

AdT =U U* (21)
0 0

10



and
; T*A T*AT+T
At =1 _ | U, (22)
(In_; — NTN)S*A  (I,_y — NTN)S*AT—*T

where A is defined as in Theorem 8.9.

Proof. From (6), (19), and using the expression of A, we have

adt - U | [TT* + S(I,_ — NTN)S*]JA —TT*ASNT + S[NT — (I,,_; — NTN)S*ASNT]
N(I,_; — NTN)S*A NNt — N(I,,_; — NTN)S*ASNT
U [TT* + S(I,_¢ — NTN)S*]JA  —[TT* + S(I,_; — NTN)S*JASNT + SNT i
0 NNt

I, 0

= U U,
0 NNt

and
T*AT T*AS(I,_; — NTN)
ATA=U U*. (23)

(I,_t — NTN)S*AT NN+ (I,_; — NTN)S*AS(I,,_; — NTN)
Now, since A%T = ATAAT and AT4 = ATAA? we have that (21) and (22) follow by using (14) and

simple computations. L
As a consequence, we derive a representation for CMP inverses.
Corollary 3.12. Let A € C™*™ be a matriz of index k written as in (6). Then

T*A T*A(T*)'TNNT
(In_t — NTN)S*A  (I,_; — NIN)S*A(T*)"'T NNt

At =U

where A is defined as in Theorem 8.9.

Proof. We observe that A%T = ATAA%T. Now, (24) follows by a simple computation from (21) and
(23). O

The following result provides a necessary and sufficient condition for a matrix to be k-DMP by

using the core EP decomposition. As a consequence, it follows that the class CET is a subset of CE-4f.

Theorem 3.13. Let A € C"*™ be a matriz of index k written as in (6). Then A € CEIT if and only
if N(N*) C N(T).

Proof. We suppose that A € CF-?t. By using (15) and (21) it is easy to see that A%TAF = AR AdT if
and only if T(I,_, — NNT) = 0, which is equivalent to N'(N*) C N(T). O

11



Now, we establish another characterization for k.-DMP matrices.
Theorem 3.14. Let A € C"*" be a matriz of index k. Then the following statements are equivalent:
(a) A is a k-DMP matriz;
(b) AT = A1,
(c) Aet — Atd,
Proof. (a) <= (b) From (14) and (21) we have that A%" = A? if and only if T(I,_, — NNT) = 0,
which is equivalent to the fact that A is a k-DMP matrix by Theorem 3.13.
(b) = (c) Suppose that A%T = A? holds. Then A>T = ATA(ATAAT) = ATAADT = ATAAD = AT,
(¢) = (b) Assume that A>T = A9 is true. By Corollary 3.3 (a) we obtain N (A*AT) = N(AF).
According to Theorem 3.2 (b) and (9) we have A%t = A”(IQA’“),N(A’“) = A4, O

Remark 3.15. The class CET is a proper subset of CE:4T. For exzample, if we take

1 01 -1
01 1 -1
A= ,
000 1
000 O
we have that Ind(A) = 2,
2/3 —1/3 1/3 0 1010
-1/3  2/3 1/3 0 01 10
Al = / / / and A=

/3 1/3 2/3 0 0 0 0O
0 0 1 O 0 0 0O

It is easy to see that A2A%Y = AT A2 put A2AT £ AT A2
It can be derived from the following result that the class CF'T is a subset of Ck:19.

Theorem 3.16. Let A € C"*™ be a matriz of index k written as in (6). Then A € CE1 if and only
if N(N) CN(S).

Proof. Assume that A € CF:4 is satisfied. By using (15) and (22) it is easy to see that AT4 A% = AF AtT.d

if and only if the following conditions simultaneously hold:

(i) T*AT* = T*T*A 4+ T(I,,_, — NTN)S*A,

12



(ii) (In_¢ — NTN)S*ATF =0,
(iii) T*AT = T*T*AT*T + T(I,,_; — NTN)S*AT—FT,
(iv) (In_y — NTN)S*AT = 0.

Hence, (i) implies that S(I,,_; — NTN) = 0 since T and A are nonsingular. So, N'(N) C N(S).
Conversely, we have S(I,,_; — NTN) = 0. Now, it is easy to check that conditions (i)-(iv) are valid. O

Our next result establishes another characterization for dual k&~-DMP matrices.
Theorem 3.17. Let A € C"*" be a matriz of index k. Then the following statements are equivalent:
(a) A is a dual k-DMP matriz;
(b) ATd = Ad;
(¢) Aet = A,

Proof. (a) = (b) Assume that A is a dual &-DMP matrix. By Theorem 3.16, S(I,,_; — NTN) = 0.
Therefore,
T-1 —T-'SNT
0 Nt

At =U

by (19). Now, from (14) we obtain A4 = A9,
(b) = (a) Let AT € C™™™ be written as in (19). Since AT? = A?, from (14) and (22) we get
T*A T*AT—+T 7= (T+YH)-1T
U _|U=U U-.
(In_t — NTN)S*A  (I,_, — NTN)S*AT-*T 0 0
Hence (I,,_; — NTN)S* = 0, since A is nonsigular. Therefore S(I,,_; — NTN) = 0 and Theorem 3.16
completes the proof.
(b) = (c) Since ATd = A4 we get AT = (ATAAY)AAT = ATIAAT = A2AAT = AdT,
(¢) = (b) Assume that A>T = A%T holds. By Corollary 3.3 (b) we obtain R(ATA*) = R(AF).

According to Theorem 3.2 (d) and (9) we have AT4 = A%Ak) N(AF) = Ad, O

In [7, Theorems 3.3, 3.5, and 3.6], it was proved that A is k-EP if and only if A>T = A% if and only
if A%t = Atd. Moreover, if A is a k-EP matrix, by Theorems 3.10 to 3.17 we have that A is a dual

k-DMP matrix and, moreover, AH¢ = A% and AT = A%T. Thus, we have the following result.

Corollary 3.18. Let A € C™"™" be a matriz of index k. Then A is k-EP matriz if and only if
Aot = AdT = Atd = Ad,

13



Remark 3.19. The class CE1 is a proper subset of CET. For example, if we take

1 0 1 2
0 1 1 2
A= ,
0 0 2 4
0 0 -1 -2
we have that Ind(A) = 2,
10 -2/5 1/5 101 2
01 -2/5 1/5 01 1 2
At = / / , and A?=

0 0 2/25 —1/25 00 0 0
0 0 4/25 —2/25 000 0

It is easy to see that A2AH4 = ATIA2 put A2AT £ AT A2

The following interesting result is a characterization for k-EP matrices and it can be easily derived

from Theorems 3.10, 3.13, and 3.16.
Theorem 3.20. CkT = Ckdi 0 Ch1d,

Now, we give another characterization for k-EP matrices by using the CMP inverse.
Theorem 3.21. The classes of matrices k-EP and k-CMP are coincide.

Proof. Since A%t = Q4 A%P,, we observe that A*Q 4 = P4AF = AF. Then, A¥AST = A*Q AP, =
AFACAAY = ARTTADAT = AR AT, Also, we have ASTA*R = QAP AR = ATAATAR = ATAFT1 AT =
At AF. Therefore, AFAT = A%t AF if and only if AFAT = ATAF ie. Ckt = Chket. O

4 New characterizations for core EP inverses and extensions

According to [9], it is well known that X = A® is equivalent to AXA = A, AX? = X, and (AX)* =
AX. By exploiting the condition AX? = X, we shall obtain a new necessary and sufficient condition
for a matrix to be the core EP inverse. Moreover, motivated by [8, Lemma 3.3] we prove that the
core EP inverse of a square matrix can be characterized by two new sets of three equations each one.

Before that, we present two auxiliary lemmas.

Lemma 4.1. Let A, X € C™" with Ind(A) = k such that AX?> = X. Then R(X) C R(A¥)
(and, consequently, N'((A¥)*) C N(X*)). If, in addition, X A**1 = A* then R(X) = R(A*) (and,
consequently, N'(X*) = N ((A*)*) and X is a {2}-inverse of A.
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Proof. Since AX? = X, by induction it then follows that
X =AX? = AXX = A(AXHX = A2XX? = A2(AXHX? = ... = Ak(AX?) XE,

Thus, R(X) € R(AF) and then N'((A*)*) C N(X*).

Now, we assume that X A" = AF is also fulfilled. It is clear that now R(X) = R(A*) and then
N((A*)*) = N(X*). On the other hand, since R(X) C R(AF) can be equivalently expressed as
Py X = X, we conclude that XAX = X AP X = XA (ARNIX = P X = X, O

In the following lemma, we prove that the equation X A¥*1 = A* in (2) is redundant and then it

can be dropped out as we establish in Theorem 4.3.

Lemma 4.2. Let A € C"*™ with Ind(A) = k. Then the following statements are equivalent:
(a) XA = AF and R(X) C R(AF);

(b)) XAX = X and R(X) = R(AF).

Proof. (a) = (b) It is a direct consequence from the proof of Lemma 4.1.
(b) = (a) Notice that R(A¥) C R(X) can be equivalently expressed as Px A¥ = Ak. Postmultiplying
the equation X AX = X on the right-hand by XTA* leads to X APy A* = Px A*. So, XA+l = Ak, O

Theorem 4.3. Let A, X € C™*™ with Ind(A) = k. Then the following statements are equivalent:
(a) X is the core EP of A;

(b)) XAFL = AF AX2 = X, and (AX)* = AX;

(c) XAX = X, (AX)* = AX, and R(X) = R(AF).

Proof. (a) = (b) We suppose that X is the core EP of A. From [10, Theorem 2.2 and 3.2], it is not
hard to see that AX? = X. Therefore (b) holds from (2).

(b) = (a) We assume that (b) is true. By Lemma 4.1 we have X AX = X and R(X) = R(A¥). Thus,
(2) leads to (a).

(a) <= (c) The proof follows as a direct application of (2) and Lemma 4.2. O

We close this paper by providing some extensions valid for k-core EP matrices. In [2, Theorem 3]

the following equivalences were proved for at most index 1 matrices:
A is EP — AA® — AP 4 — AD = A*, (25)
We will give a generalization of this assertion for k-core EP matrices.
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Theorem 4.4. Let A € C**™ be a matriz of index k written as in (6). Then the following statements

are equivalent:

(a) A is a k-core EP matrix;

(b) T =0;

(c) AD = A4,

Moreover, in this case, A is a k-DMP matriz and A%t = AD = A4,

Proof. Let A € C™*" be written as in (6). By (13)-(15) it is obvious that A is a k-core EP matrix,
ie., ADAF = A AD if and only if T =0 if and only if AD = A4,

Now, item (b) implies T'(I,,_; — NN1) = 0. Next, Theorem 3.13 implies that A is a k-DMP matrix.
Finally, from (13), (14) and (21) we have A%T = AD® = A9, O

We observe that if Ind(A) < 1, then AD = A® and A? = A# and in consequence the above
theorem generalizes the result in (25). Moreover, Theorem 4.4 describes the inclusion of the class

CED into the class CE4t for k > 1.

Remark 4.5. Notice that the class (C’f;q) is a proper subset of CE-t. For example, if we take

1 -1 1 0
0 0 0 0
A:
0 1 0 0
0 01 0
we have that Ind(A) = 3,
1 01 -1 1 01 0 1 0 0 O
0 0 1 0 0 0 0O 0 0 00
At = . A= and AD =

0 0 O 1 0 0 0 O 00 0 O
0 0 0 0 0 0 0O 0 0 00

It is easy to see that ASA%T = AST A3 put ABAD £ AD A3,
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