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Abstract

This paper shows the influence of different sample storage protocols, on the
chemiluminescence signal of some metal ions. The storage protocols studied were: acid
addition (HCI or HNO3) and no reagent addition to filtered and refrigerated (T_/4 8C) samples.
Light emission was produced for the chemiluminescence reaction between luminol and
hydrogen peroxide in buffer carbonate conditions (pH 10.8) catalysed by Cr(lll), Co(ll) and
Cu(ll). Batch and/or flow modes in different conditions were tested. Fe(Il), Fe(lll), Ni(ll) and
Mn(Il) did not give chemiluminescence in the studied conditions. A parallel study of sensitivity
and selectivity was performed. Then the presence or absence of the masking agent EDTA,
added to samples or used in the carrier stream, is assayed. If the samples are acidified with

HNOS, a previous neutralisation is needed using batch mode. The determination of Cr(lll) is
independent of storage protocol by flow injection (FI) method; however, the determination of
Co(ll) or Cu(ll) or total determination of three metals requires the conditioning of standards.
Detection limits achieved are ranged between 0.5 and 2 mg |_1. For batch mode, detection
limits are better for unacidified samples and worse for carbonate-neutralised samples. The
influence of storage protocols was validated using standard metal mixtures and calibration
solutions. The use of standard reference material (SRM# 1640) (Trace elements in natural
water) corroborates the previous statements and validates the accuracy of the different
approaches underlined. This paper demonstrates that it is possible to determine Cr(lll)
selectively in natural waters.

Keywords: Chemiluminescence; Metal determination; Storage protocols; Luminol_/hydrogen
peroxide reaction

1. Introduction

The preservation of samples is an interesting analytical problem because complete stability for
every constituent can never be achieved. After sample collection, preservation procedures only
retard chemical and biological changes [1]. Adsorption on the walls of the vessels will take place
for samples stored unacidified and unfrozen. Samples may be stored unacidified but frozen in
order to preserve the original distribution of the species [2]. Independent of storage
temperature, most authors recommend acidification immediately after sampling if metal ions
want to be assayed. Immediate analysis is always recommended for metal determination in
water samples. Short storage of filtered sample at low temperature (4 8C) is also used. In these
cases, the measurement is realised without further sample conditioning step. The analysis of
bottled water is also performed without this step. The most common storage method for metal
determination in water samples is to add an acid as HCI up to pH around 2_ 3. The previously
filtered samples are stored in plastic acid washed containers at 4 8C. The maximum storage
recommended and regulated is 6 months. The procedure employed for long-term storage uses
the addition of HNOS3 acid. The samples are filtered, acidified and stored at 4 8C. Polyethylene
bottles can be sealed in aluminised plastic bags. The storage period can last even 2_ 3 years.
Standard reference materials are prepared according to this protocol.

Determination of trace elements in environmental water samples requires analytical techniques
with high sensitivity and selectivity. Unielemental techniques like atomic absorption



spectrometry (AAS) (flame or electrothermal) or multielemental techniques like atomic emission
spectrometry (ICP) alone or coupled with mass spectrometry (ICP_ MS) have been used for the
determination of metal ions.

Chemiluminescence from reactions that usually produces transient emissions is also an
attractive and alternative method for determining some trace metal ions. Chemiluminescence
provides sensitivity and selectivity and coupled to flow injection (FI) fast and reproducible
sample injection and mixing of the reagents. These factors, together with low cost compared
with AAS and ICP techniques, simplicity and the possibility to realise easily in situ analysis
make a chemiluminescence determination or its combination with FI extremely attractive.

Table 1 shows a selection of flow injection_ chemiluminescence determinations of metal ions in
aqueous samples described in the literature [3_ 23]. The reaction more often used is the
oxidation of luminol by hydrogen peroxide in alkaline solution catalysed by some metal ions,
producing chemiluminescence emission at |_ 425 nm. A preconcentration step is necessary for
quantifying Fe(ll), Fe(lll), Mn(Il) and Cu(ll). The most common method is ion exchange
chromatography. It is important to emphasise the critical effect of the eluent and pH. The
majority of methods determine Cr(lll) without preconcentration. Several reagents have been
used for masking interferences, e.g. for Mn(ll), Co(ll) and Cr(lll), 8-quinolinol, sodium citrate and
EDTA have been used, respectively. Moreover in some procedures, standards and samples are
conditioned with H3PO4 to mask the interfering ions. As it can be seen in Table 1, the
experimental conditions influence the figures of merit of the procedures. The aim of this paper
was to study the direct chemiluminescence signal for Cr(lIl), Co(ll), Fe(ll), Fe(lll), Ni(ll) and
Mn(Il) as function of sample storage procedure. The chemiluminescence emission is produced
by luminol_ H202 reaction catalysed by metal ions. In the literature considerations about the
influence of the sample storage conditions on chemiluminescence signal are not reported.
According to previous considerations, no acidified samples and acidified samples with
hydrochloric or nitric acids were tested in this paper. The alternatives for determining samples
stored in acidic conditions were tested in batch and FI modes. Also, the employment of a
masking agent in reagent composition or as sample treatment step has been compared in order
to improve the selectivity for chromium determination. Finally, the standard reference material
(SRM# 1640) was used for testing accuracy and establishing conclusions.

2. Experimental
2.1. Apparatus and reagents

Hitachi F4500 (Tokyo, Japan) and Jasco FP- 750 (Tokyo, Japan) fluorescence
spectrophotometers were used for measuring. The light emission was monitored at 425 nm.
The following analytical grade reagents were used: chromium(lll) potassium sulphate 12-
hydrate (Merk, Germany), cobalt(ll) nitrate 6-hydrate (Panreac, Spain), copper(ll) sulphate 5-
hydrate (Merk), ammonium iron(ll) sulphate 6- hydrate (Panreac), ammonium iron(lll) sulphate
12-hydrate (Panreac), nickel(ll) nitrate 6-hydrate (Merk) and manganese sulphate hydrate
(Panreac). Other reagents were hydrogen peroxide (Panreac), EDTA (Probus, Spain), luminol
(Fluka, Switzerland), sodium carbonate (Merk), potassium hydroxide (Probus), hydrochloric acid
36% (Merk) and nitric acid (Merk). The solutions were prepared in water (nanopure, Sybron,
Barnstead, Spain). For Fl assembly, a Gilson Miniplus peristaltic pump was used to drive the
reagent_ sample mixture through the flow cell. The loop employed has a 200 ml internal
volume. Tygon tubing (i.d._ 0.8 mm) was used with the peristaltic pump. The flow cell was a
spiral cell, consisted of laboratorymade coiled transparent poly(tetrafluoroethylene) tubes
measuring 50 cm in length and with i.d._ 0.8 mm. The dimensions of the cell were 1 cm of
internal diameter and 3 cm of external diameter.

2.2. Procedures

A cleaning procedure was applied to glassware, containers and other glass or plastic materials.
The first step was rinsing with nanopure water, later 10% HCI bath overnight and rinsing with
nanopure water again. The concentration of Cr(lll), Co(ll), Cu(ll), Fe(ll), Fe(lll), Ni(ll) and Mn(ll)
standard solutions was 1000 mg |_1.Working solutions of metal ions were prepared daily. The
measurement assemblies are described in Ref. [23].



2.2.1. Batch procedure

The reagent stock solutions were 1.2 10 _3 mol |_1 luminol in 0.3 mol |_1 CO3 2_/HCO3 _ (pH
10.8), 0.1 mol|_1 H202, 0.01 moll_1 EDTAin 0.02mol|_1 KOHorin 0.3 moll_1C032 /
HCO3 _ (pH 10.8). Different reaction solutions were prepared directly into a quartz cell. The
injection of the sample (200 ml) was carried out with a Hamilton digital syringe throughout a
septum and mixed with a magnetic agitator. The FP-750 Jasco spectrophotometer was used for
monitoring.

2.2.2. Fl procedure

Luminol solution of 1.2 10 3moll 1in 0.3 moll_1 C0O32 /HCO3 _(pH 10.8) and 0.1 mol |_1
H202 were first mixed in the flow system and then mixed with the sample carrier. Different
carrier compositions were studied: 0.3 moll_1 CO3 2 /HCO3 _ (pH 10.8),1_10 2 and

5 10 3moll_1EDTAiIn0.02moll 1 KOH,1 10 2and5_ 10 3moll_1EDTAiIn0.3moll_1
CO3 2_/HCO3 _ (pH 10.8). In all cases, the injection volume was 200 ml. The Hitachi F4500
spectrophotometer was used for measuring. Different conditioning procedures were studied:
without conditioning, addition of 5_ 10_3 mol I_1 HCI and addition of 0.5 mol |_1 HNO3. In some
cases, a masking agentwas added 1_ 10 2moll_1or5_ 10 3 moll_1 EDTA.

2.2.3. Validation procedure

Standard mixtures of different metal ions were prepared. The bicomponent and tricomponent
solutions are described in Table 2. Additionally, calibration standard solutions were prepared in
different conditions (see Table 3). A standard material reference was also analysed. SRM#
1640 (NIST, USA) is composed of natural fresh water collected from Cleark Creek, CO, which
had been filtrated and stabilised with nitric acid.

3. Results and discussion
3.1. Chemiluminescence signal of unacidified samples

The chemiluminescence signal of standards prepared in ultrapure water was studied first.
Specific laws fix upper levels of these metals in water of 200 mg |_1 for Fe, 20 mg |_1 for Ni, 2
mg |_1 for Cu and 50 mg |_1 for Cr (European directive 98/83/ EC). The trace elements
composition of fresh water can be described by the SRM# 1640 contents (Table 4).
Chemiluminescence coupled to FI was previously studied. Ni(ll) and Mn(ll) signals were similar
to blank signal. The chemiluminescence emission of Fe(ll) and Fe(lll) was only quantifiable for
concentrations superior to upper levels legislated. It will be necessary to use a preconcentration
step to apply the method for determining these metals yet. Cr(lll), Co(ll) and Cu(ll) provided
enough signals to their direct quantification. Some authors have proposed the use of EDTA in
order to mask some interferences, especially for the determination of Cr(lIl). EDTA was added
to the carrier solution or sample solution, then the metal  EDTA complex was formed in the FI
system or before the FI system, respectively.

The signal (S) can be described as function of metal concentration (cM): S_acb M; where a and
b are constants. A straight line was obtained for double logarithmic calibration plot: log S_ log
a_blog cM. Table 5 shows the calibration parameters of double logarithmic or potential
regression for different experimental conditions. The peak height was used as analytical signal.
The 3_ 15 mg |_1 concentration interval for Cr(lll) provided a linear calibration model. The
working linear interval for Co was 2_ 8 mg |_1 and for Cu the linear interval was up to 20 mg
|_1. The detection limits calculated for a signal-to-noise ratio of 3 were 0.5_2 mg|_1. These
values are similar to those provided by electrothermal atomic absorption for these trace
elements [24]. To increase the selectivity of Cr(lll) determination, EDTA was added to sample
solution or carrier solution, then the metal_ EDTA complex was formed before or in the Fl
system, respectively. Co(ll) sensitivity decreased drastically in the presence of EDTA and the
Cu(ll) signal disappeared. The sensitivity of Cr(lll) decreased when EDTA 0.01 mol |_1 was
added in carrier, as it can be seen in Table 5. The addition of the masking agent to samples
provided worse sensitivities similar to that observed by the use of EDTA 0.01 mol |_1 in carrier
stream. For batch procedure and in the presence of 3_ 10_3 mol |_1 EDTA, the calibration
curves are shown in Table 6. The selectivity for Cr was three times higher than for Co as it can
be seen in this table. The batch measurements provided the following equation:



(0.079 0.05)_ (0.309 0.02)cM (R2_0.997, syx_ 0.07). Comparing both calibration slopes, the
loss of sensitivity of the FI procedure is about 55%.

3.2. Chemiluminescence signal of samples stored in HCI

Calibration in acidic conditions was evaluated with the addition of 5_ 10_3 mol |_1 HCI. Without
EDTA, the sensitivities obtained for Cr(lll), Co(ll) and Cu(ll) were similar to those obtained in
acidified conditions. The presence of EDTA in carrier solution or sample, as masking agent, was
also studied. Table 7 shows the calibration parameters for the different calibration models and
experimental conditions. Sensitivity values achieved were similar to previous conditions. The
detection limits achieved without EDTA for Cr(lll), Co(ll) and Cu(ll) were similar to those
indicated above. Similar detection limit was obtained for Cr(lll) in presence of EDTA, Cu(ll) was
not detected and Co(ll) increases its detection limit up to around 50 mg I_1. The sensitivities
obtained for Cr and Co by the batch mode were 0.898 and 0.35, respectively. These values
were similar to those reported in Table 6 for unacidified samples.

3.3. Chemiluminescence signal of samples stored in HNO3

Chemiluminescence emission was studied in drastic acidic conditions (0.5 mol I_1 HNO3).
Table 8 shows the calibration parameters in conditions without EDTA addition obtained by FI
procedure. The sensitivities achieved for the three trace elements, Cr(Ill), Co(ll) and Cu(ll),
were worse than those obtained in the two previously studied conditions without EDTA addition.
However, the slope value for Cr(lll) was similar to that obtained in unacidified or HCI acidified
standards when 0.01 mol |_1 EDTA was used. The detection limits achieved calculated for a
signal-to-noise ratio of 3, are 3, 3.5 and 10 mg |_1 for Cr, Co and Cu, respectively. For batch
procedure, neutralisation of sample was required. The best results were obtained using 0.2272
mol |_1 Na2CO3 considering a dilution 7/ 10 for samples. The Cr and Co chemiluminescence
signals are given in Fig. 1. The calibration curves were (_ 0.49 0.2) (0.389 0.01)cCr (R2_ 0.99,
syx_1.5)and (_ 0.290.2) (0.549 0.01)cCo (R2_ 0.99, syx_0.1).

3.4. Applicability

Fig. 2 shows the signal obtained for the different studied conditions using the FI method. The
chemiluminescence signal for each metal was function on sample storage procedure and the
presence of masking agent, although the influence was low for Cr. Specificity of chromium
determination can be achieved adding EDTA. No neutralisation was needed to process the
samples stored in the different options tested when the FI method is used for Cr(lll)
determination. The batch mode requires the addition of Na2CO3 when the samples were stored
in acidic conditions. Choosing the experimental conditions, the determination can be selective
enough for Cr(lll) or Cr, Co and Ni could be totally evaluated. Different experiences were
performed in order to study the total chemiluminescence signal. The aim was to check the
additivity of signals in different sample conditions. Binary and ternary mixtures of the three
metals stored in no acidic and acidic conditions were analysed by the FI method (Table 2). Fig.
3 shows the obtained signal recovery percentage. It can be seen that the metal mixture can be
calculated as sum of individual signals. A 52 experimental design of standard mixtures was
evaluated for the batch mode. A t -test showed the slopes of the different Cr(lll) calibration
curves obtained in the presence of different Co(ll) concentrations were similar at confidence
level of 95%. The same results were calculated for the slope comparison of different Co(ll)
calibration curves obtained in the presence of different Cr(lll) concentrations. Some of those
calibration equations are given in Table 6. The slope values for the mixtures were similar to
those obtained when the trace element was alone. Then, the total signal could be considered as
the sum of the Cr(lIl) and Co(ll) signals. Similar studies were performed for calibration mixtures
measured according to Fl procedure (Table 7). In all cases, t -test showed that there was no
significant difference between calibration slopes at 95% confidence interval.

The standard material reference SRM# 1640 was studied. Trace element mineral water sample
was conserved in 0.5 mol |_1 HNO3 conditions. The contents of metals are given in Table 2.
The analytical signal obtained by the batch mode appears in Fig. 1. Na2 CO3 was added to the
standard reference material. Signal of certified standard and standard mixtures of Cr and Co
reproducing the contents of SRM# 1640 was compared. Good signal recovery percentages
were obtained as it can be seen in Fig. 3. Then, only the signals of the two elements contributed
to the total analytical signal. Mainly the signal corresponded to Cr because the Co content
considering a dilution 7/10 is near to detection limit. By the FI mode, it was possible to quantify



only Cr by adding 0.01 mol |_1 EDTA or the total contribution of the Cr, Co and Cu in the
sample. To determine Cr, it was possible to use standards in acidic or non-acidic conditions in
order to process samples stored in different conditions. It can be observed from the
corresponding sensitivity values and the results for SRM# 1640 (diluted 6.4 times) given in Fig.
4. Without EDTA, standards and samples must be in the same conditions in order to obtain
accurate estimations. Fig. 4 shows that the same results were obtained for SRM# 1640 and a
mixture of Cr, Co and Cu prepared in HNOS3.

4. Conclusions

A study of chemiluminescence signal has been performed for different sample storage
procedures. Moreover, a parallel study of selectivity has been carried out. Calibration models of
each storage protocol have been calculated in order to evaluate the influence of each storage
protocol. Recovery studies have showed the signal additivity for different conditions. Selectivity,
accuracy and precision also have been checked using a standard reference material.

A guideline for metal determination based on chemiluminescence signal has been proposed.
The conditioning procedure of samples and standards should be chosen according to sampling
strategy, analysis objectives (uni- or multi-element) and storage needs. Therefore,
chemiluminescence methods by batch and FI modes can be applied for natural water stored in
different conditions successfully.

When EDTA is present, it is possible the selective analysis of Cr(lll) in natural water. The
determination of Cr(lll) is not dependent on the storage protocol working with the FI method.
Then, it is possible to use standards prepared in water for processing of samples stored at
different conditions, if 0.01 mol |_1 EDTA is employed as carrier. When batch mode is chosen,
sample pH must be controlled adding Na2CO3.
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