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Abstract

ILUPACK is a valuable tool for the solution of sparse linear systems via iterative Krylov subspace-based methods. Its relevance for
the solution of real problems has motivated several efforts to enhance its performance on parallel machines. In this work we focus
on exploiting the task-level parallelism derived from the structure of the BiCG method, in addition to the data-level parallelism of
the internal matrix computations, with the goal of boosting the performance of a GPU (graphics processing unit) implementation
of this solver. First, we revisit the use of dual-GPU systems to execute independent stages of the BiCG concurrently on both
accelerators, while leveraging the extra memory space to improve the data access patterns. In addition, we extend our ideas to
compute the BiCG method efficiently in multicore platforms with a single GPU. In this line, we study the possibilities offered by
hybrid CPU-GPU computations, as well as a novel synchronization-free sparse triangular linear solver. The experimental results
with the new solvers show important acceleration factors with respect to the previous data-parallel CPU and GPU versions.

Key words: Sparse linear systems, iterative Krylov-subspace methods, data parallelism, ILUPACK preconditioner, graphics
processing units (GPUs)

1. Introduction

Solving large-scale sparse linear systems is a crucial task
in a large number of engineering and scientific problems, such
as the discretization of partial differential equations (PDEs) for
quantum physics and circuit simulation [1]. In addition, this
operation is frequently a computational bottleneck, demanding
a fast and accurate numerical solver when the coefficient matrix
of the system presents a large dimension [2].

A common numerical approach to tackle large and sparse
linear systems is the use of preconditioned Krylov subspace-
based methods. In particular, approximate matrix factorizations
are a versatile and powerful solution to improve the conver-
gence rate of the iterative solver [1], although their lack of ro-
bustness limits their applicability in some highly ill-conditioned
scenarios. Among the efforts to solve these problems, ILU-
PACK1 stands out as a package for the solution of sparse linear
systems via Krylov subspace methods that relies on an inverse-
based multilevel ILU (incomplete LU) preconditioning tech-
nique for general as well as Hermitian positive definite/indef-
inite linear systems [3].

Unfortunately, the favorable numerical properties of ILU-
PACK’s preconditioner in the context of an iterative Krylov
subspace solvers are overshadowed by its expensive construc-
tion and application procedures. This high computational cost

Email addresses: aliaga@icc.uji.es (José I. Aliaga),
edufrechou@fing.edu.uy (Ernesto Dufrechou), pezzatti@fing.edu.uy
(Pablo Ezzatti), quintana@icc.uji.es (Enrique S. Quintana-Ortı́)

1Available at http://ilupack.tu-bs.de.

motivated the development of parallel variants of ILUPACK’s
CG method [1], for symmetric positive definite (s.p.d.) systems,
on shared-memory and message-passing platforms [4, 5, 6].

In [4] we also introduced a version of ILUPACK’s CG method,
for s.p.d. systems, that exploits the data(-level) parallelism in-
trinsic to the most expensive kernels, off-loading their execu-
tion to a graphics processing unit (GPU). In [7], we adapted
ILUPACK’s solvers for general and symmetric indefinite linear
systems to provide data-parallel implementations of GMRES,
BiCG and SQMR [1] on GPUs.

This paper extends [8], where we exploited the intrinsic
task parallelism of the BiCG algorithm to offload each of its two
independent sequences to a different GPU, effectively avoiding
the use of inefficient transposed operators. While the approach
of our previous paper was straightforward given the presence of
two accelerators, this extension deals with the exploitation of
BiCG’s task parallelism in platforms equipped with a multicore
processor and one GPU. Our main objective is to determine the
most efficient strategy to compute the BiCG method with ILU-
PACK preconditioner on this sort of hardware. With this aim,
we explore the use of GPU streams and different strategies of
concurrent CPU and GPU computations. Our main premise
is that, in single-GPU contexts, the use of the multicore CPU
could partially compensate the absence of a second GPU. The
experimental analysis compares the performance of the differ-
ent variants of the BiCG using a set of real problems extracted
from the Suite Sparse collection of sparse matrices [9], and
test problems of scalable size derived from the discretization
of partial differential equations (PDEs), showing a notorious
improvement in the concurrent computation with respect to the
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original version.
The rest of the paper is structured as follows. In Section 2

we review the iterative solvers integrated into ILUPACK and
the use of GPUs to accelerate them. Next, in Section 3, we de-
scribe our proposals, starting with a revision and extension of
the ideas that support the exploitation of task parallelism in the
BiCG method, and later, we describe the different techniques
applied to harness the task and data(-level) parallelism of the
BiCG method, both in dual- and single-GPU hardware plat-
forms. Section 4 corresponds to the numerical evaluation of
our proposal, while Section 5 summarizes the related work. Fi-
nally, a few remarks and some lines of future work close the
paper in Section 6.

2. High Performance ILUPACK

Consider the linear system Ax = b, where the n × n co-
efficient matrix A is large and sparse, and both the right-hand
side vector b and the sought-after solution x contain n elements.
ILUPACK includes software to calculate an inverse-based mul-
tilevel ILU preconditioner M, of dimension n × n, which can
be leveraged to accelerate the convergence of Krylov subspace-
based iterative solvers. The package includes numerical meth-
ods for different matrix types, precisions and arithmetic, and
has proved to be highly effective at reducing the number of iter-
ations necessary for these methods to converge to an acceptable
solution for many sparse linear systems [3, 10, 11].

The application of ILUPACK preconditioner is a recursive
procedure that, for each level, requires two SpMV operations,
solving two linear systems with coefficient matrix of the form
LDU, and a few vector kernels (the reader is referred to [3] for
a detailed explanation of both the computation and the appli-
cation of the preconditioner). When using an iterative solver
enhanced with the ILUPACK preconditioner, this procedure,
which occurs (at least) once per iteration of the solver, is usually
the most demanding task from the computational point of view.
This has motivated the inclusion of parallel computing tech-
niques in our previous work. In [7], we relied on the nVidia cuS-
parse library to perform the sparse triangular system solves (Sp-
TrSV) and the SpMV in the GPU, since this library provides
efficient implementations of the necessary kernels and supports
the most common sparse matrix formats. The vector kernels,
which are mainly diagonal matrix scalings and reorderings that
gain mild importance only for highly sparse matrices of large
dimension, were accelerated in our codes via ad-hoc Cuda ker-
nels. In addition to the application of the preconditioner, we
further enhanced the iterative solvers by off-loading the SpMV
involving A to the GPU. For this purpose, the coefficient matrix
was stored in the GPU, and this matrix was transferred to the
GPU memory before the iterative solve commences, residing
there until completion. The coefficient matrix A was stored in
CSR format, and the SpMV was computed via the kernel for
this purpose in cuSparse.

Operation kernel
Initialize x0, r0, q0, p0,
. . . , s0, ρ0, τ0; k := 0
A→ M Compute preconditioner
while (τk > τmax)
αk := ρk/(qT

k Apk) SpMV + dot product
xk := xk + αk pk axpy

rk := rk − αkApk axpy

tk := M−1rk Apply preconditioner
zk := M−T AT qk SpMV + apply prec.
sk+1 := sk − αkzk axpy

ρk+1 := (sT
k+1rk)/ρk dot product

pk+1 := tk + ρk+1 pk axpy

qk+1 := sk+1 − ρk+1qk axpy

τk+1 :=‖ rk ‖2 dot product
k := k + 1

end while

Figure 1: Algorithmic formulation of the preconditioned BiCG method.

3. Task-data parallel BiCG in ILUPACK

While our previous work introduced optimizations to the
preconditioner aimed to leverage the data-level parallelism in
all of the Krylov subspace solvers bundled with ILUPACK, the
focus of this article is in exploiting the task-level parallelism
offered by the BiCG method.

The BiCG method was first derived by Lanczos [12] in 1952
as a variation of the two-sided Lanczos algorithm to compute
the eigenvalues of a non-symmetric matrix A. In a broad sense,
it is based on maintaining two parallel recurrences, one for ma-
trix A and the other for AT , and imposing bi-conjugacy and
bi-orthogonality conditions between the vectors of each recur-
rence. In Figure 1, we offer an algorithmic description of the
method, detailing the corresponding computational kernel on
the right column.

It follows from the algorithmic description of the BiCG, that
contrary to most iterative linear solvers, in which there exist
strict data dependencies that serialize the sequence of kernels
appearing in the iteration, the two recurrences involved in the
BiCG method are quasi-independent. Moreover, in the precon-
ditioned version of the method, there is no data dependence
between the application of the transposed and non-transposed
preconditioner inside the iteration, exposing coarse-grain paral-
lelism at the recurrence-level. Considering this context, we first
rearranged the operations in the BiCG method so that these two
sequences are isolated, making it possible to execute them con-
currently. This idea is summarized in Figure 2, where we group
the operations of the BiCG in three sets, namely Set A, Set B,
and a third set that contains the rest of the operations. Each of
the first two sets contains a single SpMV and the application
of one of the preconditioners. Although Set A also contains a
dot product and two axpy operations before the synchronization
point, these kernels have almost negligible computational cost
in general, and this distribution of the workload can be expected
to be fairly well-balanced.
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Operation kernel
Initialize x0, r0, q0, p0,
. . . , s0, ρ0, τ0; k := 0
A→ M Compute preconditioner
while (τk > τmax)
αk := ρk/(qT

k Apk) SpMV + dot product

Set A
xk := xk + αk pk axpy

rk := rk − αkApk axpy

tk := M−1rk Apply preconditioner
zk := M−T AT qk SpMV + apply prec. Set B
synchronization
sk+1 := sk − αkzk axpy

ρk+1 := (sT
k+1rk)/ρk dot product

pk+1 := tk + ρk+1 pk axpy

qk+1 := sk+1 − ρk+1qk axpy

τk+1 :=‖ rk ‖2 dot product
k := k + 1

end while

Figure 2: Algorithmic re-formulation of the preconditioned BiCG method. The
steps have been rearranged so that the two sequences that compose the method
can be isolated.

In the remainder of the section we describe the different
strategies designed to take advantage of this task-level paral-
lelism. Concretely, we first revisit the proposal of a task- and
data-level parallel implementation of the BiCG method in ILU-
PACK tailored for servers equipped with two GPUs, presented
in [8]. Later, we describe several variants in order to exploit
the task-level parallelism of BiCG in single-GPU servers, com-
pensating the lack of a second GPU with an efficient use of the
hardware resources.

3.1. Variant for dual-GPU systems, GPU ×2
In systems equipped with two discrete graphics accelera-

tors, the arrangement of the operations of the BiCG proposed in
Figure 2 allows to execute each sequence in a different device,
until reaching the synchronization point. This enables the ex-
ploitation of coarse-grain task-level parallelism, using the two
GPUs to execute the operations of the solver that belong to dif-
ferent sets concurrently, in conjunction with the data-level par-
allelism of each operation, that is leveraged inside each accel-
erator.

In addition to the concurrent execution, the presence of two
GPUs allows to avoid the use of the transposed version of the
cuSparse SpMV routine. These operations are required be-
cause in the BiCG method both the transposed coefficient ma-
trix AT and the transposed preconditioner are involved in the
calculations. In particular, the solver will perform an SpMV
with the transposed matrix in each iteration, and the application
of the transposed preconditioner will involve two transposed
SpMV per level of the preconditioner in each iteration. In our
previous implementations, these transposed SpMVs were com-
puted by calling the kernel in cuSparse on the original non-
transposed matrices setting a parameter so that the library per-
forms the transposed operation. The execution times reached

using the accelerated data-parallel version BiCG from [7] show
that the calls to SpMV that operate with AT are, on average, 2–
3× slower than those working with the non-transposed matrix,
with one special case for which it becomes almost 7× slower.
As a consequence, the application of the transposed precondi-
tioner sometimes takes more than twice the time of its non-
transposed counterpart.

As each GPU (1 and 2) has its own separate memory, we
maintain the non-transposed operands in GPU 1 and the trans-
posed ones in GPU 2, using the faster version of cuSparse SpMV
in both devices. It should be noted that we are not wasting
memory in this case, since using the transposed SpMV routine
in the second GPU would also imply the storage of the original
matrix in the device, at the same memory cost.

The copy of the data to both devices is performed concur-
rently with the construction of the preconditioner. In particular,
the asynchronous transference of one level takes place while
the next one is being computed by the incomplete factorization
procedure.

Regarding the concurrent execution in both devices, we use
two CPU threads that concurrently enqueue work to each ac-
celerator to ensure the correct overlapping of the two execution
streams.

In summary, when the hardware platform contains at least
two devices, we can exploit the extended computational power
and memory capacity obtained from the second GPU to over-
lap the execution of the two recurrences of the BiCG, using
the non-transposed version of the SpMV at no additional mem-
ory cost. The initial data transferences to both devices are per-
formed asynchronously overlapped with the construction of the
preconditioner. See [8] for more details.

3.2. Variant with two streams in a single GPU, Cusp 2str
The results obtained in [7] indicate that, when there is only

one GPU available in the server, using cuSparse to accelerate
the most data-parallel stages of BiCG is, in general, convenient.
However, the variant in [7] did not take advantage of the coarse-
grain parallelism of the BiCG method, and thus there is room
for improvement.

Perhaps the most straightforward strategy consists in ex-
ploiting the concurrent GPU execution offered by CUDA Streams.
Therefore, the first accelerated version for single-GPU plat-
forms that we propose, performs the operations that corresponded
to Set A in Figure 2 in the first stream, while the operations
corresponding to Set B are performed in the second stream. No
operations are left to the default stream, and we use cuBlas de-
vice pointer mode [13] to avoid unnecessary synchronizations
due to scalar parameters being transferred to and retrieved from
the GPU.

Regarding the computation of AT v on the GPU, we use the
transposed variant of the SpMV routine of cuSparse. An alter-
native to avoid the use of the transposed SpMV operation of
cuSparse, is to store the transposed operands in the accelerator,
and operate with them directly. This has the obvious effect of
almost duplicating the memory footprint of the method and re-
ducing the size of the problems that can be solved, and thus is
not a satisfactory solution.
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cusparseSpmv Preconditoner Transposed Preconditioner
Figure 3: Timeline of the execution of the Cusp 2str version to solve the cage15 test case in the experimental platform. Extracted with nVidiaVisual Profiler.

As the resources of the GPU must be shared between all
streams, the overlapping of kernels in different streams can be
modest in those cases where one of the kernels fully utilizes
the accelerator. In such scenario, the performance of the solver
will be almost identical to the variant that uses only one stream.
This can be appreciated in the timeline of Figure 3, correspond-
ing to an execution of this variant for test case cage15 on our
experimental platform, traced using the nVidiaVisual Profiler
(see Section 4 for details on the experimental setup).

To summarize, Cusp 2str computes the operations corre-
sponding to the Set A and Set B blocks in Figure 2 in one
device, assigning one GPU stream to each block. The GPU
computation of the SpMVs and sparse triangular linear systems
are performed using cuSparse library, the vector operations of
BiCG are computed using cuBlas, and the remaining vector
operations inside the application of the preconditioner are im-
plemented using ad-hoc GPU kernels.

3.3. Hybrid CPU-GPU variant, Hyb Cusp
The timeline in Figure 3 reveals that there is almost no over-

lapping between the operations in Set A and Set B. This indi-
cates that the kernels of the cuSparse library tend to occupy the
multiprocessors of the GPU so that there is no room to execute
two such kernels in parallel. Therefore, it is interesting to study
the use of the multicore CPU to achieve the overlapping of the
two sequences.

Given the important difference between the performance on
the GPU of the transposed and non-transposed SpMV routines,
one possibility is to leverage the multicore CPU to perform the
transposed SpMV. We still use cuSparse to compute the appli-
cation of the transposed preconditioner, as our previous results
indicate that we can still obtain an important acceleration for
this routine.

The proposed strategy aims to overlap an important part of
the operations corresponding to Set A, which execute on the
GPU, with the transposed SpMV on the CPU.

Additionally, the use of different GPU-streams for Set A
and Set B is maintained so that the computations of one set can
be overlapped with the communications of the other.

In summary, Hyb Cusp employs the multicore CPU to per-
form the transposed SpMV of BiCG using the multi-threaded
MKL library. The rest of the computations are performed in the
GPU using cuSparse and cuBlas libraries, as in Cusp 2str.

In Figure 4 we present the timeline for the Hyb Cusp ver-
sion, extracted with nVidiaVisual Profiler using the same con-

figuration parameters as in Figure 3. In the timeline, four hori-
zontal lines can be clearly distinguished, each one divided into
several bars that correspond to the duration of different tasks.
The first line corresponds to the execution of Cuda API calls
in the CPU thread (kernel launches, parameter setup, mem-
ory transferences, etc.); the second line also corresponds to the
main CPU thread, and we use it to display the duration of the
transposed SpMV in the CPU (yellow bar) and to aggregate the
Cuda API calls that correspond to the application of the trans-
posed preconditioner. The two inferior lines correspond to each
one of the two GPU streams.

At least two aspects are worth noting. First, the figure shows
that the yellow bar of the transposed SpMV considerably over-
laps with the blue bar which corresponds to the application of
the preconditioner in the GPU. Second, from the analysis of the
orange bars in the first line, it follows that an important part of
the CPU time is devoted to the processing of Cuda API calls,
which we refer to as “kernel launch overhead”. This overhead
is mainly due to the solution of four triangular linear systems at
each level of the ILUPACK preconditioner.

The solution of these operations relies on the routine
cusparseDcsrsv solve, of cuSparse library, whose imple-
mentation is based on the so-called level-set strategy [14], and
is described in [15]. In a broad sense, this technique conducts
an analysis of the triangular sparse matrix to determine sets
of independent rows called levels. The triangular solver then
launches a GPU kernel to process each of these levels, process-
ing the rows that belong to each level in parallel. The number of
levels that derive from the analysis can vary largely according
to the sparsity pattern of each triangular matrix, and for matri-
ces of considerable size the variation is usually in the order of
hundreds or even a few thousands. In such cases, the overhead
due to launching the kernels that correspond to each level can
become significant [16].

Figure 4 illustrates how the launching of these kernels de-
lays the start of the multi-threaded transposed SpMV on the
CPU.

3.4. Hybrid variant with enhanced task-parallelism,
Hyb SyncFree

The situation described in the previous section suggests that,
in order to enhance the concurrent execution between the CPU
and the GPU, it is important to reduce the overhead derived
from the many kernel launches implied by the synchronization

4
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Figure 4: Timeline of the execution of the Hyb Cusp version to solve the cage15 test case in the experimental platform. Extracted with nVidiaVisual Profiler.

between levels in the cuSparse cusparseDcsrsv solve rou-
tine.

Recent research has dealt with this problem by introducing
a self-scheduled strategy that effectively avoids the synchro-
nization with the CPU [17]. In [18] we followed these ideas
to develop a synchronization-free GPU routine to solve trian-
gular linear systems for matrices in the CSR format. Although
this technique does not always improve the runtime attained
by cuSparse for the triangular systems involved in ILUPACK,
it can favour the overlapping of operations between CPU and
GPU.

As the cost of launching the kernels involved in this routine
is completely negligible, replacing the triangular solver of cuS-
parse by our synchronization-free routine in the non-transposed
stream can enable a better overlapping of these operations with
the transposed SpMV in the CPU.

In a nutshell, the Hyb SyncFree version replaces the tri-
angular solver of the routine that applies the non-transposed
preconditioner by our new synchronization-free routine. It em-
ploys the MKL library to perform the transposed SpMV on the
CPU, and cuSparse to compute the application of the trans-
posed preconditioner on the GPU.

Figure 5 presents the timeline corresponding to the execu-
tion of the Hyb SyncFree variant for the test case cage15. In
this figure, the light-blue bars correspond to our synchronization-
free routine. It can be observed that the delay in the execution
of the transposed SpMV is significantly reduced, and that this
operation overlaps almost completely with the execution of Set
A in the GPU.

4. Experimental Evaluation

In this section we perform the analysis of the experimen-
tal results obtained from the execution of the different vari-
ants discussed in Section 3. In addition to the four variants
presented in that section (GPU ×2, Cusp 2str, Hyb Cusp and
Hyb SyncFree), we include other two reference versions in the
experimental evaluation:

• Cpu mkl performs all the computations on the multicore
processor. The two SpMV of the BiCG are performed us-
ing the multi-threaded variant of the MKL library while
the triangular solvers are computed with an optimized se-
quential code. This variant does not exploit task-level
parallelism.

• Cusp 1str computes the main operation of BiCG method
in the GPU employing only one stream and the cuSparse
library. This version is the same as that presented in [7].

Before analyzing the results we first describe the hardware
and software platform employed in the experiments, as well as
the test cases we used in the evaluation.

4.1. Experimental Setup
All experiments in this paper were carried out in IEEE double-

precision arithmetic, using a server equipped with an Intel(R)
Xeon(R) CPU E5-2620 v2 (six cores at 2.10GHz), and 128
GB of DDR3 RAM memory. The platform also contained two
NVIDIA “Kepler” K40m GPUs, each with 2,880 CUDA cores
and 12 GB of GDDR5 RAM.

The CPU codes were compiled with gcc 4.8.5 using the
-O3 flag, we used version 2017 (update 3) of the Intel MKL
library. The GPU compiler and the cuSparse library were those
in version 9.2 of the CUDA Toolkit.

4.2. Test Cases
Laplace. We considered the Laplacian equation ∆u = f in a
3D unit cube Ω = [0, 1]3 with Dirichlet boundary conditions
u = g on δΩ. The discretization consists in a uniform mesh
of size h = 1

N+1 and a seven-point stencil is used. The result-
ing linear system Au = b has an s.p.d. coefficient matrix with
seven nonzero elements per row, and n = N3 unknowns. We
performed experiments with N = 200 and 252, which results in
two benchmark s.p.d. linear systems of order n ≈ 8M and 16M,
respectively; see Table 1 for details.

SSMC. We selected a variety of large-scale matrices from the
SSMC benchmark collection2; see Table 1.

Convection-Diffusion Problems (CDP). In addition, we con-
sidered the PDE ε∆u + b ∗ u = f in Ω, where Ω = [0, 1]3. For
this example, we use homogeneous Dirichlet boundary condi-
tions, i.e. u = 0 on ∂Ω. The diffusion coefficient ε is set to 1,
and the convective functions b(x, y, z) are given by:

conv. in x-direction: [1, 0, 0],
diagonal convection: 1

√
3
[1, 1, 1],

circular convection: [ 1
2 − z, x − 1

2 ,
1
2 − y].

2Suite Sparse Matrix Collection: at https://sparse.tamu.edu/
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Figure 5: Timeline of the execution of the Hyb SyncFree version to solve the cage15 test case in the experimental platform. Extracted with nVidiaVisual Profiler.

Table 1: Main features of the matrices used in the experiments: dimension n
and number of nonzeros nnz.

Group Matrix n nnz nnz/n

Laplace A200 8,000,000 31,880,000 3.99
A252 16,003,008 63,821,520 3.99

SSMC

cage14 1,505,785 27,130,349 18.02
Freescale1 3,428,755 17,052,626 4.97
rajat31 4,690,002 20,316,253 4.33
cage15 5,154,859 99,199,551 19.24

CDP
circular 8,000,000 55,760,000 6.97
diagonal 8,000,000 55,760,000 6.97
unit-vector 8,000,000 55,760,000 6.97

The domain is discretized with a uniform mesh of size h = 1
N+1

resulting in a linear system of size N3. For the experiments we
chose a value of N = 200; see Table 1. For the diffusion part
−ε∆u we use a seven-point-stencil. The convective part b ∗ u is
discretized using up-wind differences.

4.3. Experimental results

The results obtained for the six variants are displayed in
Tables 2 and 3. We focus the analysis on the data corresponding
to the accelerated part of the BiCG because the variants differ
from each other on these computations. The runtimes of the
remaining of the stages are similar.

The runtimes in this section are computed as the wall-time
elapsed between two points in the program, and thus include the
time taken by all the CPU and GPU activity. In the tables, To-
tal is referred to the time-to-solution of the BiCG and includes
the time taken by the transference of the right-hand side vec-
tor and the solution vector to and from the GPU, respectively,
but does not include the time taken by the transference of the
coefficient matrix A and the preconditioner, as these transfer-
ences are performed asynchronously during the construction of
the preconditioner.

First, we can observe that the Cusp 1str variant improves
the MKL-based version, offering speed-ups between 2.03 and
3.63×. Additionally, these results are aligned with our previous
work, where the highest values of acceleration are attained for
the solution of the most demanding test cases.

Moreover, the results show that the GPU ×2 variant pro-
duces a sensible reduction of the execution time for all cases.
Naturally, the acceleration values tend to be higher for the cases

Table 2: Number of iterations and runtime (in seconds) obtained by the
GPU ×2 variant. The times are disaggregated in the time corresponding to the
accelerated part of the method (dominated by the SpMV and the application of
the preconditioner) and the part corresponding to other operations. The results
of the Cpu mkl and Cusp 1str variants are displayed for comparison, and we
compute the speedup of each version respect to Cpu mkl.

Matrix Routine # It. Accel. Other Total Speed vs.
part Ops. Cpu mkl

A200
Cpu mkl 12 6.03 0.73 6.88
Cusp 1str 12 1.46 0.71 2.28 3.02
GPU ×2 12 0.58 0.62 1.32 5.20

A252
Cpu mkl 12 12.13 1.34 13.69
Cusp 1str 12 3.00 1.42 4.67 2.93
GPU ×2 12 1.16 1.17 2.57 5.33

cage14
Cpu mkl 14 2.10 0.18 2.35
Cusp 1str 14 0.96 0.14 1.16 2.03
GPU ×2 14 0.34 0.14 0.54 4.34

Freescale1
Cpu mkl 442 150.91 8.23 159.21
Cusp 1str 442 36.70 7.10 43.88 3.63
GPU ×2 442 11.06 7.15 18.29 8.71

rajat31
Cpu mkl 12 3.42 0.42 3.93
Cusp 1str 12 1.35 0.45 1.87 2.10
GPU ×2 12 0.41 0.37 0.85 4.62

cage15
Cpu mkl 16 9.78 0.68 10.69
Cusp 1str 16 3.72 0.49 4.42 2.42
GPU ×2 16 1.34 0.50 2.08 5.14

diagonal
Cpu mkl 170 294.13 7.56 301.86
Cusp 1str 170 84.35 6.26 91.77 3.29
GPU ×2 170 35.75 6.63 42.53 7.10

circular
Cpu mkl 158 242.45 6.35 248.95
Cusp 1str 158 79.35 5.88 85.38 2.92
GPU ×2 158 28.18 6.24 34.57 7.20

unit-vector
Cpu mkl 170 260.81 6.83 267.81
Cusp 1str 170 89.37 6.31 95.83 2.79
GPU ×2 170 36.01 6.44 42.60 6.29
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Table 3: Number of iterations and runtime (in seconds) obtained by our single-
GPU variants. The times are disaggregated in the time corresponding to the
accelerated part of the method (dominated by the SpMV and the application of
the preconditioner) and the part corresponding to other operations. We compute
the speedup of each version respect to Cpu mkl.

Matrix Routine # It. Accel. Other Total Speed vs.
part Ops. Cpu mkl

A200
Cusp 2str 12 1.40 0.64 2.19 3.14
Hyb Cusp 12 1.12 0.64 1.88 3.67
Hyb SyncFree 12 1.07 0.64 1.82 3.77

A252
Cusp 2str 12 2.94 1.41 4.60 2.98
Hyb Cusp 12 2.13 1.24 3.59 3.81
Hyb SyncFree 12 2.12 1.26 3.61 3.79

cage14
Cusp 2str 14 0.94 0.13 1.16 2.03
Hyb Cusp 14 0.50 0.14 0.70 3.35
Hyb SyncFree 14 0.44 0.13 0.64 3.67

Freescale1
Cusp 2str 442 35.42 6.74 42.23 3.77
Hyb Cusp 442 28.70 8.95 37.73 4.22
Hyb SyncFree 442 25.75 6.80 32.62 4.88

rajat31
Cusp 2str 12 1.34 0.49 1.92 2.05
Hyb Cusp 12 1.02 0.49 1.60 2.46
Hyb SyncFree 12 0.96 0.37 1.40 2.80

cage15
Cusp 2str 16 3.65 0.53 4.40 2.43
Hyb Cusp 16 2.07 0.53 2.86 3.74
Hyb SyncFree 16 1.65 0.50 2.36 4.53

diagonal
Cusp 2str 170 86.35 6.80 93.30 3.24
Hyb Cusp 170 78.75 8.62 87.51 3.45
Hyb SyncFree 170 70.85 7.33 78.33 3.85

circular
Cusp 2str 158 79.25 6.24 85.63 2.91
Hyb Cusp 158 72.94 10.48 83.57 2.98
Hyb SyncFree 158 65.43 7.58 73.17 3.40

unit-vector
Cusp 2str 170 89.35 6.99 96.48 2.78
Hyb Cusp 170 79.81 6.46 86.42 3.10
Hyb SyncFree 170 72.05 8.68 80.89 3.31

where the impact of the operations that correspond to Set A
and Set B on the total runtime is larger. If we consider only
this stage, the acceleration achieved by the dual-GPU variant,
with respect to the CPU version, is of up to 14×. Nevertheless,
the cost of the unaccelerated parts of the solver significantly
affect the performance in some cases. Overall, for some of
the problem instances the execution time of the iterative solve
is reduced by a factor in the range 4–9×, with respect to the
multicore-based version. On the other hand, it is especially re-
markable that with our strategy the speed-up associated to dou-
bling the many-core devices overcomes the linear evolution for
the largest cases. Note that the dual-GPU version of BiCG out-
performs the Cusp 1str variant by a factor of up to 2.5× for the
whole method yielding a superlinear speed-up.

The first proposed task-data parallel variant over only one
GPU, Cusp 2str, offers a similar performance as the data-level
parallel scheme that exploits only one GPU. The differences
in runtimes between both variants are negligible for all the ad-
dressed test cases. Thus, the usage of GPU streams in this con-
text has little effect on the performance of the solver. This result
confirms the preliminary idea that the Cusp 2str version is not
able to compute both tasks (both streams) in parallel, as it can
be observed in the timelines extracted with nVidia Visual Pro-
filer, for the cage15 case in Figure 3.

Regarding the hybrid GPU-CPU variants, i.e. Hyb Cusp
version, the results show that off-loading the transposed SpMV
to the multicore can yield important benefits. In our experi-
ments, the improvements with respect to Cusp 2str variant (or
GPU) range from 3% to almost 65%. A number of factors in-
fluence the relation between the performance of Cusp 2str and
Hyb Cusp variants. For example, as illustrated in Figure 4 for
matrix cage15, a large fraction of the performance improve-
ment is due to the reduction of the time taken by the transposed
SpMV. In Cusp 2str, this takes more than half the runtime of
the iteration, and the multicore implementation in Hyb Cusp is
able to both reduce this time in half and allow the overlapping of
part of the application of the preconditioner. A different situa-
tion is observed for matrix A200, where the cuSparse routine for
the transposed SpMV outperforms the MKL counterpart. In this
case though, the difference between the runtime of both routines
is less critical, and a performance improvement is obtained re-
gardless. This is due to the almost perfect overlapping of the
application of the preconditioner with the transposed SpMV.

On the other hand, the results also reveal that the use of
our synchronization-free routine can contribute with an addi-
tional performance improvement by enabling a higher degree
of overlapping between operations. This will depend mostly on
the number of level-sets of the incomplete factors, as additional
levels imply the launching of more kernels, and augment the
corresponding overhead. For instance, the analysis of the trian-
gular factors generated for matrix A200 yields only 40 levels,
whereas for cage15 it generates 616. Thus, it is not surpris-
ing that the difference between the runtimes of Hyb Cusp and
Hyb SyncFree for matrix A200 is minimal, while for cage15
the performance gain is relevant.
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Figure 6: Comparison of the speed-up obtained (respect to Cpu mkl) between
Cusp 1str, Hyb SyncFree and GPU ×2 variants.

4.4. Characterizing the performance of the different variants
As we have proposed several strategies to compute the BiCG

method of ILUPACK in different hardware platforms, it is im-
portant to discuss a characterization of the variants in order to
estimate which is the best method for a given matrix and hard-
ware platform. Next, we analyze the factors that affect the per-
formance of each variant, knowing that the distinct implemen-
tations require different hardware configurations. Furthermore,
a complete analysis should consider other costs associated with
the use of these platforms, and not only the execution time.

Since Hyb SyncFree is the single-GPU variant that delivers
the best performance for the majority of cases, and GPU ×2 is
clearly the best performing version, we are interested in ana-
lyzing the performance gap between these two solution. In Fig-
ure 6, which presents a graphical comparison of the Cusp 1str,
GPU ×2 and Hyb SyncFree variants, it can be observed that
the differences between GPU ×2 and Hyb SyncFree are not al-
ways significant. In fact, with a more careful study, we can
group the problems into four clusters based on the difference in
performance between both versions:

1. circular, unit, diagonal: with differences near to 2.0×.
2. Freescale1, rajat31: with differences around 1.7×.
3. A252, A200: with differences in the order of 1.4×.
4. cage14, cage15: showing a gap of 1.2×.

The analysis of these results reveals that these differences
are mainly related with the cost of the application of the trans-
posed preconditioner. It should be noted that this operation lies
in the critical path of version Hyb SyncFree, as there it is per-
formed individually at the end of the computation. whereas, in
GPU ×2 this operation is overlapped with other computations.
Table 4 summarizes the runtime in version Hyb SyncFree for
the application of the transposed preconditioner and the per-
centage of the total runtime taken by this stage.

To understand why the fraction of the runtime represented
by this stage is so different in each case, it is important to note
that the number of levels of the ILUPACK preconditioner is
related with the inverse-based multilevel ILU factorization pro-
cess and the characteristics of each particular matrix. This is
described, from a mathematical perspective, in [3].

Table 4: Runtime (in seconds) of version Hyb SyncFree for the application of
the transposed preconditioner and the percentage of the total runtime taken by
this stage.

Matrix Levs. App. Transp. Prec. % TP
A200 1 0.45 25%
A252 1 0.71 25%
cage14 1 0.25 39%
Freescale1 3 14.86 46%
rajat31 3 0.64 46%
cage15 1 0.87 37%
diagonal 3 52.90 61%
circular 3 47.28 65%
unit-vector 3 52.80 65%

When the preconditioner presents more than one level, the
application process requires the computation of two SpMV op-
erations at each level in order to operate with the Schur comple-
ment of the factorization of the level. In the transposed precon-
ditioner, the SpMV kernel works with the respective transposes
of this Schur complement and, as we stated previously, the
transpose SpMV kernel strongly deteriorates the performance
of the entire process. In our test cases, the matrices with a fac-
torization that consists of only one level are cage14, cage15,
A200 and A252; while the matrices with more than one level
are circular, unit, diagonal, Freescale1 and rajat31.

Considering the previous discussion, it is evident that the
number of levels in the preconditioner, and especially whether
or not the transposed SpMV has to be computed as part of the
application of the preconditioner, is the factor that fundamen-
tally determines the differences between the Hyb SyncFree and
GPU ×2 variants. It is worth noting that the number of levels
of the preconditioner is known before the solver starts, so it can
be used to select between the different computation strategies
presented earlier.

A second aspect that affects the difference between the run-
time of both variants (although in a lower degree), is the per-
formance of the synchronization-free GPU routine to solve the
triangular linear systems. Naturally, this has a stronger effect
when the preconditioner consists of only one level and no SpMV
has to be computed.

In the selected test cases, the synchronization-free solver
outperforms the cuSparse cusparseDcsrsv solve routine by
a factor of approximately 3× for matrices cage14 and cage15,
but both triangular solvers offer similar performances for ma-
trices A200 and A252. When there is a significant advantage of
synchronization-free solver, the extra cost in Hyb SyncFree im-
plied by the impossibility of overlapping the transposed precon-
ditioner with other computations can be partially compensated
by the use of the faster solver. However, two aspects should be
noted. First, determining which triangular solver will perform
better for a given matrix is still an open question. Second, if
a prediction tool was available, it would be easy to modify the
GPU ×2 version to employ the synchronization-free solver for
the adequate matrices as well.
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Table 5: Performance gap between the the GPU ×2 and Hyb SyncFree variants
for 4 non-symmetric matrices of the Suite Sparse collection.

Matrix n nnz Levs. % TP Gap
GPU ×2

G2 circuit 150,102 726,674 1 34% 1.20
G3 circuit 1,585,478 7,660,826 1 22% 1.36
atmosmodd 1,270,432 8,814,880 3 69% 1.50
Transport 1,602,111 23,487,281 3 65% 1.99

Finally, in order to provide a better numerical evaluation
of the previous ideas, we include 4 additional non-symmetric
matrices from the Suite Sparse collection. Table 5 offers the
description of their main properties, including the dimension
of each matrix (n), the number of non-zero coefficients (nnz),
the number of levels of the preconditioner (Levels), the per-
centage of the total runtime taken by the transposed precon-
ditioner in the Hyb SyncFree variant (% TP), and the relation
between the speed-ups of GPU ×2 and Hyb SyncFree variants
(gap GPU ×2). As we can observe, the results shown in Table 5
are aligned with our previous conjectures.

5. Related work

A number of research efforts have reported important ben-
efits for the solution of sparse linear systems of equations us-
ing the BiCG method on multi-core and many-core platforms.
However, many of these address the non-preconditioned ver-
sion of the method, where the sparse matrix-vector product (SpMV)
is the main bottleneck.

In [19] a variant of the two-sided Lanczos iteration that is
equivalent to the BiCG in exact arithmetic is proposed. The
new method reduces the global synchronization points of the
original BiCG reporting performance improvements on a par-
allel machine with 120 processors. The implementation uses a
domain-decomposition approach to distribute the work among
the processors and performs the direct and transposed matrix-
vector products concurrently.

Based on this work, in [20] Yang et al. propose an Improved
BiCG algorithm for large-scale sparse matrices on distributed
memory platforms. The authors follow the ideas in [21] for
the distribution of the data among the processors as well as for
the communication schemes, efficiently overlapping communi-
cation and computation.

In 2009, Jost et al. present a multi-algorithm GPU solver
for matrices that contain few-diagonals [22]. The set of solvers
includes an implementation of the (non-preconditioned) BiCG
method for single-core and for GPUs, using a format similar
to DIA to store the sparse matrices. In 2010, N. Garcia [23]
presents a preconditioned BiCG to solve the power flow prob-
lem using GPUs. The implementation uses a row-based sparse
format to store the Jacobian of an outer Newton-Raphson itera-
tion. In 2012, Ortega et al. proposed an implementation of the
BiCG for GPUs that focuses on improving the performance of
the sparse matrix-vector products on complex matrices. In this
work, both A and AT are explicitly stored in the GPU. The au-
thors compare the performance of the BiCG using the standard

CSR SpMV routine of cuSparse, and a routine for the ELLR-
T format [24]. They show that the ELLR-T implementation
outperforms the CSR-based code on a C2050 GPU, as well as
an MKL-based implementation running on an eight-core pro-
cessor. Their experimental analysis reveals that the poor per-
formance of the inner products of the BiCG strongly degrades
the overall performance of the method for some matrices, even
though they only represent a small fraction of the workload.
The authors address this problem on [25], where they perform
the fusion of the level-1 BLAS routines of the BiCG to improve
their performance. This optimization improves the performance
of the method by up to 30%.

6. Concluding Remarks and Future Work

ILUPACK offers implementations of a variety of Krylov-
based numerical methods for the solution of sparse linear sys-
tems, and its advanced ILU-based preconditioner has achieved
remarkable results in scenarios where other general purpose
preconditioners tend to fail. Unfortunately, its higher complex-
ity makes its application costly, motivating the inclusion of high
performance computing techniques to mitigate this issue.

Data parallel versions, including a GPU-enabled implemen-
tation of ILUPACK’s BiCG solver, have been proposed in some
of our previous work. Here, we have revisited and extended
these previous efforts to offer a variant of ILUPACK’s BiCG
routine capable of efficiently exploiting the parallel processing
power of dual-GPU platforms.

In addition, we have extended the work analyzing the bene-
fits offered by the exploitation of task parallelism, when a single
GPU is only available. In this context, we have evaluated the
use of GPU streams in order to increase the concurrency, and
the use of the multicore CPU to allow further overlapping of in-
dependent operations. Finally, we take advantage of a recently
proposed synchronization-free solver for sparse triangular lin-
ear systems to accelerate the execution on a multicore CPU,
since this kind of methods diminishes the CPU overhead in-
curred by launching cuSparse kernels. The experimental evalu-
ation shows that we can reach fair runtime reductions in single-
GPU platforms, despite of the processing and memory limita-
tions.

The evaluation also exposes that, in some cases, after the
acceleration effort using GPUs, the performance bottleneck is
shifted to the cost of data transference. As part of future work,
we plan to address this issue, and evaluate the behaviour of this
solver on platforms with nvLink. We will also analyze the im-
pact of recent GPU architectures in these codes, in particular,
the new thread scheduling capabilities of the Volta generation
and the novel tensor cores.
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