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Abstract Based on the third-order Traub’s method, two iterative schemes with memory are introduced.
The proper inclusion of accelerating parameters allows the introduction of memory. Therefore, the order
of convergence of the iterative methods increases from 3 up to 3.73 without new functional evaluations.
One of them includes derivatives and the other one is derivative-free. The stability of the methods with
memory is analyzed and their basins of attraction are compared to check the differences between them. The
methods are applied to solve two nonlinear problems in Chemistry, such as the fractional conversion of the
nitrogen-hydrogen feed that gets converted to ammonia and the Colebrook-White equation.

Keywords Nonlinear equation · Iterative method with memory · Derivative-free · Complex dynamics ·
Basin of attraction · Chemistry applications

1 Introduction

In the last decades there is an extensive interest in the research about the solution of the nonlinear equation
f(x) = 0, where function f : I ⊆ R −→ R is defined in an open interval I, by means of iterative methods.
Most of these schemes are based on the well-known Newton’s method. The use of different techniques helps
the design of new iterative methods.

These kind of schemes can be sorted depending on several criteria. Based on their expression, they can
be either with or without derivatives, with or without memory, single-step or multistep,... There is another
classification that depends on the own features of the method, such as the order of convergence, the R-order
of convergence [1], the efficiency index [2] or the optimality based on the Kung and Traub’s conjecture [3].

The main goal in the research of the iterative schemes, apart from solving the equation f(x) = 0, is the
increasing of the order of convergence and the reach of the optimality. Multistep methods help to increase
this order. They can be constructed using different techniques, such as the composition or the weight
functions techniques. The former uses different steps of known methods with a later treatment to reduce
the number of functional evaluations (see for instance [4], [5]). The latter uses a weight function depending
on previous functional evaluations in specific steps of the method (see for instance [6], [7]). Moreover, a
common guideline to improve the order of convergence of a method is to include more than one previous
iterate to generate the following one, resulting in methods with memory, where the conjecture of Kung and
Traub is not valid. Several authors can be found in the literature with this purpose, highlighting the papers
of Petković [8], Chun [9], Soleymani [10] among others. Furthermore, interesting overviews can be found
in [11] and [12].

In this paper, two iterative schemes are introduced. Based on the two-step third-order Traub’s method
[13], the new methods keep the two-step structure. However, the main difference is the inclusion of memory.
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With the proper selection of the accelerating parameters, this fact will increase the order of convergence in
comparison to the original method. The design of the methods, the inclusion of memory and the proof of
their order of convergence cover Section 2. In order to analyze the stability of the schemes, in Section 3 a
dynamical study based on multidimensional real dynamics is performed. Section 4 shows how the proposed
methods can be used for solving common equations in Chemistry. Finally, Section 5 collects the main
conclusions.

2 Improvement of the order of convergence

The third-order convergent Traub’s method [13] has the iterative expression

yk = xk −
f(xk)

f ′(xk)
,

xk+1 = yk −
f(yk)

f ′(xk)
, k = 0, 1, 2, . . .

(1)

From method (1), some changes are introduced. The main idea is the modification of the original method to
check its performance over two actions: the inclusion of parameters as a way to generate methods with mem-
ory and the replacement of the derivatives to analyze a derivative-free Traub-type method. These actions
will generate two different iterative methods with memory. In order to analyze their order of convergence,
the following statement will be applied [11].

Let {gk} and {hk} be two nonzero sequences. In this work, it is used the notation gk = O(hk), or
equivalently gk ∼ hk, to indicate

gk
hk

k→∞−−−−→ C,

where C is a nonzero constant.

2.1 Inclusion of memory

The first modification in method (1) consists of the inclusion of a parameter in the first step, resulting

yk = xk −
f(xk)

f ′(xk) + βf(xk)
,

xk+1 = yk −
f(yk)

f ′(xk)
, k = 0, 1, 2, . . .

(2)

Method (2) has order of convergence 3, for every value of the parameter, and its error equation is

ek+1 = 2c2(c2 + β)e3k +O(e4k), (3)

where α is the solution of f(x) = 0, ek = xk − α and cj = f(j)(α)
j!f ′(α) , j ≥ 2. Let us remark that for β = −c2,

the method is at least fourth-order convergent, but this value cannot be reached because the value of α is

unknown. Therefore, to increase the order of convergence, we need an approximation of c2 = f ′′(α)
2f ′(α) . Using

Newton’s interpolation polynomial of second degree N(t) = f(xk)+f [xk, xk−1](t−xk)+f [xk, xk−1, yk−1](t−
xk)(t− xk−1), the value of β is approximated by

βk = − N
′′(xk)

2N ′(xk)
.

Replacing β by βk in method (2), the obtained expression is

yk = xk −
f(xk)

f ′(xk) + βkf(xk)
,

xk+1 = yk −
f(yk)

f ′(xk)
, k = 1, 2, . . .

(4)

Method (4) is called MM1. Its order of convergence is analyzed in the following result.

Theorem 1 Let f : I ⊂ R −→ R be a real function sufficiently differentiable in an open interval I. If α ∈ I
is a simple root of f(x) = 0 and x0 and x1 are initial estimations close enough to α, then the iterative
method MM1 converges to α with order of convergence p ≈ 3.30.
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Proof From the error equation (3), the following relation is hold:

ek+1 ∼ 2c2(c2 + βk)e3k. (5)

Let us denote ek,y = yk − α, for all k. Let N(t) be the Newton’s interpolation polynomial of second degree
which interpolates in xk, xk−1 and yk−1. By using the following Taylor series expansions around α,

f(xk) = f ′(α)[ek + c2e
2
k + c3e

3
k + c4e

4
k] +O(e5k),

f(xk−1) = f ′(α)[ek−1 + c2e
2
k−1 + c3e

3
k−1 + c4e

4
k−1] +O(e5k−1),

f(yk−1) = f ′(α)[ek−1,y + c2e
2
k−1,y + c3e

3
k−1,y + c4e

4
k−1,y] +O(e5k−1,y),

(6)

it is verified

c2 + βk = −c3ek−1,y − c3ek−1 + (−c2c3 − c4)ek−1,yek−1 − c4e2k−1 + (2c22 − c3)ek
+(3c2c3 − c4)ek−1,yek + (3c2c3 − c4)ek−1ek + (−4c32 + 4c2c3 − c4)e2k +O3(ek, ek−1, ek−1,y)

∼ ek−1.
(7)

Let us suppose that the R-order of the method is at least p, so it is verified

ek+1 ∼ Dk,pepk (8)

such that

Dk,p
k→∞−−−−→ Dp,

where Dp is the asymptotic error constant.

In the same way,

ek ∼ Dk−1,pe
p
k−1. (9)

By using relation (9) in (8), we obtain

ek+1 ∼ Dk,p(Dk−1,pe
p
k−1)p ∼ Dk,pDpk−1,pe

p2

k−1. (10)

Let us consider that sequence {yk} has R-order of convergence at least p1. Then,

ek,y ∼ Dk,p1e
p1
k ∼ Dk,p1(Dk−1,pe

p
k−1)p1 ∼ Dk,p1D

p1
k−1,pe

pp1
k−1. (11)

On the other hand, from (2) and the Taylor series expansion around α

f ′(xk) = f ′(α)[1 + 2c2ek + 3c3e
2
k + 4c4e

3
k] +O(e4k),

it is obtained

ek,y = ek −
f(xk)

f ′(xk)
= (c2 + βk)e2k +O(e3k) ∼ (c2 + βk)e2k.

And the use of (7) and (9) gives

ek,y ∼ ek−1(Dk−1,pe
p
k−1)2 ∼ D2

k−1,pe
2p+1
k−1 . (12)

Then, from (7) and (9) the error relation (5) becomes

ek+1 ∼ ek−1(Dk−1,pe
p
k−1)3 ∼ D3

k−1,pe
3p+1
k−1 . (13)

By matching the exponents in (11) and (12), with the exponents in (10) and (13), we obtain the following
system of two equations {

pp1 = 2p+ 1,
p2 = 3p+ 1,

whose solution p = 3.30 is the order of convergence of method MM1. �



4 F. I. Chicharro, A. Cordero, N. Garrido, J. R. Torregrosa

2.2 Derivative-free methods and inclusion of memory

As mentioned in the previous section, the interest in derivative-free methods lies in the possibility that not
every function has a known derivative. In this way, the second modification introduced in (1) is the replace-
ment of the derivative by a divided difference. For allowing the inclusion of memory, the next modification
is the introduction of a parameter in the divided difference. The proposed scheme is

yk = xk −
f(xk)

f [xk, vk]
,

xk+1 = yk −
f(yk)

f [xk, vk]
, k = 0, 1, 2, . . .

(14)

where vk = xk + δf(xk), and its error equation is

ek+1 = (1 + δf ′(α))(2 + δf ′(α))c22e
3
k +O(e4k). (15)

Note that for δf ′(α) ∈ {−1,−2} the method has, at least, order of convergence 4. However, as in the previous
method, the value of α is unknown. In an analogous way as in MM1 case, parameter δ is approximated in
terms of N(t), resulting

δk = − 1

N ′(xk)
, (16)

and replacing this value in (14), the final method with memory has the iterative expression

vk = xk + δkf(xk),

yk = xk −
f(xk)

f [xk, vk]
,

xk+1 = yk −
f(yk)

f [xk, vk]
, k = 1, 2, . . .

(17)

The order of convergence of (17), denoted by MM2, is 3.73, as the following results establishes.

Theorem 2 Let f : I ⊂ R −→ R be a real function sufficiently differentiable in an open interval I. If α ∈ I
is a simple root of f(x) = 0 and x0 and x1 are initial approximations close enough to α, then the iterative
method MM2 converges to α with order of convergence p ≈ 3.73.

Proof First, from the error equation (15)

ek+1 ∼ (1 + δkf
′(α))(2 + δkf

′(α))e3k. (18)

Let us denote ek,y = yk − α, for all k. By using Taylor series expansions (6), the definition of δk given by
(16) satisfies

1 + δkf
′(α) = −c3ek−1,yek−1 + 2c2ek + c3ek−1,yek + c3ek−1ek + (−4c22 + 2c3)e2k +O3(ek−1, ek−1,y).

Then, we have the relation

1 + δkf
′(α) ∼ ek−1,y. (19)

Analogously,

(1 + δkf
′(α))(2 + δkf

′(α)) = −c3ek−1,yek−1 + 2c2ek + c3ek−1,yek + c3ek−1ek
+2c3e

2
k +O3(ek−1, ek−1,y) ∼ ek−1,y.

(20)

Let us suppose that the R-order of the method is at least p, and for sequence {yk} is at least p1. Then,
from the proof of Theorem 1, the following relations are satisfied:

ek ∼ Dk−1,pe
p
k−1, (21)

ek+1 ∼ ep
2

k−1, (22)

ek,y ∼ Dk,p1e
p1
k (23)

∼ Dk,p1(Dk−1,pe
p
k−1)p1 ∼ Dk,p1D

p1
k−1,pe

pp1
k−1. (24)
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As vk = xk + δkf(xk), using the development of f(xk) in (6) and

f(vk) = f ′(α)[vk − α+ c2(vk − α)2 +O((vk − α)3)],

it is obtained from the iterative scheme of method MM2

ek,y = ek −
f(xk)

f [xk, vk]
= (1 + f ′(α)δk)c2e

2
k +O(e3k) ∼ (1 + f ′(α)δk)e2k.

And using relations (19), (21) and (23), we have

ek,y ∼ ek−1,ye
2
k ∼ (Dk−1,p1e

p1
k−1)(Dk−1,pe

p
k−1)2 ∼ e2p+p1k−1 . (25)

Now, from (20) and (21), (18) satisfies

ek+1 ∼ ek−1,ye
3
k ∼ e3p+p1k−1 . (26)

Finally, as the exponents in (24) and (25) match with the exponents in (22) and (26), the positive solution
of the system of equations {

pp1 = 2p+ p1,
p2 = 3p+ p1,

is p ≈ 3.73, p1 ≈ 2.73. Then, the order of convergence of method MM2 is 3.73. �

Let us note that both methods, MM1 and MM2, increase the order of convergence of Traub’s method by
means of memory without any additional functional evaluations. Moreover, method MM2 is a derivative-free
scheme which reaches higher convergence order than method MM1.

3 Dynamical analysis

In this section, we are going to present a dynamical study of the proposed methods with memory, based
on multidimensional real dynamics. Some fundamentals about real dynamics are introduced below. Further
information can be found in [6, 14,15].

3.1 Basics on multidimensional real dynamics

The standard form of an iterative method with memory which uses two previous iterates to calculate the
following one is

xk+1 = φ(xk−1, xk), k ≥ 1,

where x0 and x1 are the initial guesses. A function defined from R2 to R cannot have fixed points. Therefore,
an auxiliary vectorial function Φ is defined by means of

Φ(xk−1, xk) = (xk, xk+1) = (xk, φ(xk−1, xk)), k = 1, 2, . . .

If (xk−1, xk) is a fixed point of Φ, Φ(xk−1, xk) = (xk−1, xk) so, xk+1 = xk and xk = xk−1. Then, the
discrete dynamical system Φ : R2 → R2 is defined as

Φ(x) = Φ(z, x) = (x, φ(z, x)), (27)

where φ is the operator of the iterative scheme with memory.
The orbit of a point x is defined as the set {x, Φ(x), Φ2(x), . . . , Φn(x), . . .}. A point x = (z, x) is a fixed

point xF = (z, x)F of Φ if z = x and x = φ(z, x). If a fixed point xF of operator Φ is different from (xr, xr),
where xr satisfies f(xr) = 0, it is called strange fixed point. A point xT is T-periodic if ΦT (xT ) = xT and
Φt(xT ) 6= xT , for t < T .

In [16], the stability of a periodic point xT is defined from its asymptotical behavior in the following
result.

Theorem 3 Let Φ from Rn to Rn be C2. Assume xT is a T-periodic point. Let λ1, λ2, . . . , λn be the eigen-
values of Φ′(xT ), where Φ′ denotes the Jacobian matrix of Φ. Then,

1. If all the eigenvalues λj satisfy |λj | < 1, then xT is attracting.
2. If one eigenvalue λj0 satisfies |λj0 | > 1, then xT is unstable, that is, repelling or saddle.
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3. If all the eigenvalues λj satisfy |λj | > 1, then xT is repelling.

In addition, if all the eigenvalues λj satisfy |λj | 6= 1, the T-periodic point is called hyperbolic. In particular,
if there exist an eigenvalue λi such that |λi| < 1 and another eigenvalue λj such that |λj | > 1, then the
hyperbolic point is called saddle point. Moreover, if all the eigenvalues are equal to zero the T-periodic point
is superattracting.

A critical point xC satisfies det(Φ′(xC)) = 0. The basin of attraction of a T-periodic point x∗, is defined
as the set of pre-images of any order such that

A(x∗) =
{
x0 ∈ Rn : Φm(x0)→ x∗,m→∞

}
.

3.2 Basins of attraction

The dynamical plane represents the basins of attraction of each method. Several implementations can be
found in the literature, such as [17,18], wherein there is shown a code for different softwares devoted to the
complex analysis. For the real dynamics case, there are two variations of the complex dynamical planes.
On the one hand, the real dynamical plane with memory is very similar to the complex dynamical plane.
The current iteration xk is represented as the abscissae and the previous iteration xk−1 as the ordinates.
The method is analyzed over a mesh of values of xk and xk−1 as initial guesses. On the other hand, there
are methods with memory whose final rational function does not include memory. In this case, the real
dynamical plane with memory turns into the real dynamical line [19], and the method is analyzed over a
set of initial guesses in the real line.
When the rational function includes a parameter, two useful drawing tools are the convergence plane [20]
and the bifurcation diagram. The convergence plane covers an interval of the parameter as the ordinates,
and a set of initial guesses in the real line as the abscissae. The bifurcation diagram shows the advanced
state of the orbit on an strange fixed point with an small perturbation for a set of values of the parameter.

For the dynamical lines, the dynamical planes and the convergence planes, each attracting point is
mapped with a non-black color. If the orbit of these initial guesses tends to an attracting fixed point, the
initial guess (xk, xk−1) or xk is depicted in the corresponding color; otherwise, the initial guess is depicted
in black.

3.3 Analysis of the rational functions

The rational functions obtained when each method of Section 2 is applied on quadratic or cubic polynomials
are analyzed below.

There are three quadratic polynomials under consideration: p•2(x) = {p02(x) = x2, p+2 (x) = x2 +
λ, p−2 (x) = x2 − λ}, λ > 0. Note that polynomial p+2 (x) does not have real roots and the only real root
of polynomial p02(x) is xr = 0, while for p−2 (x) the two real roots are xr1,2 = ±

√
λ.

The cubic polynomials under analysis, following the guideline of [21], are p•3(x) = {p03(x) = x3, p+3 (x) =
x3 + x, p−3 (x) = x3 − x, pγ3 (x) = x3 + γx + 1, γ ∈ R}. Note that for p03(x) and p+3 (x), the only real root is
the value xr = 0, while for p−3 (x) there are three real roots, namely xr1 = 0, xr2,3 = ±1. The real roots of

pγ3 (x) depend on the value of γ. If we denote γ∗ = −3/ 3
√

4 ≈ −1.8899, when γ < γ∗, the polynomial has
three xr1−3(γ) real roots, but for γ > γ∗ the only real root of pγ3 (x) is xr1(γ).

Regarding the study of the fixed points of (27), they must satisfy z = x and x = φ(z, x), so the real
dynamics of Φ becomes in the study of a one-dimensional operator Φ̃(x) = Φ(z, x)|z=x.

3.3.1 Methods on p•2(x)

The dynamical systems that result from the application of methods MM1 and MM2 on the proposed poly-
nomials does not depend on the previous iterate z. Therefore, as Φ̃(x) = Φ(z, x)|z=x, the expressions of

Φ̃(x) match with the second component of the dynamical systems Φ(z, x).

When method MM1 is applied on p•2(x), the one-dimensional operators get the expressions

Φ̃0
2,MM1(x) =

5x

18
, Φ̃±2,MM1(x) = ∓λ

3 ∓ 5x6 + 23λx4 ∓ 3λ2x2

2x (λ∓ 3x2)2
,

for p02(x), p+2 (x) and p−2 (x), respectively.
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Table 1 Real repelling fixed points (SFP) when MM2 is applied on p•2(x).

p•2(x) MM2 repelling fixed points

p02(x) -

p+2 (x) xF1
p−2 (x) xF1

Lemma 1 The only fixed points of the operators associated to method MM1 on the quadratic polynomials
p•2(x) are the roots of their respective polynomials.

By applying method MM2 on polynomials p•2(x) the one-dimensional operators are the following:

Φ̃0
2,MM2(x) =

7x

27
, Φ̃±2,MM2(x) =

x
(
∓5λ3 + 7x6 ∓ 39λx4 + 13λ2x2

)
(3x2 ∓ λ)3

,

for p02(x), p+2 (x) and p−2 (x), respectively.

Lemma 2 The fixed points for the operators of method MM2, when it is applied on polynomials p•2(x),
agree with the roots of the corresponding polynomials. In addition, the rational functions corresponding to
polynomials p+2 (x) and p−2 (x) have the strange fixed point xF1 = 0, which is repelling.

Table 1 gathers the strange fixed points that are real for every value of λ > 0 for MM2, classified in
terms of the quadratic polynomials.

Figure 1 shows the bifurcation diagrams of the methods that have strange fixed points. The points in
the bifurcation diagrams represent the 500th to 700th iterates for each value of the parameter. In this way,
the behavior of the advanced orbit can be found. Method MM2 has one strange fixed point for xF = 0 for
p+2 (x), whose bifurcation diagram is represented in Fig. 1(a). For the same method applied on p−2 (x), the
bifurcation diagram corresponding to the strange fixed point xF = 0 is represented in Fig. 1(b).

(a) xF1 = 0, Φ̃+
MM2 (b) xF1 = 0, Φ̃−MM2

Fig. 1 Bifurcation diagrams of different one-dimensional operators and initial guesses for λ ∈ (0, 30].

A chaotic behavior can be observed in Fig. 1(a). For MM2 method, the application on p+2 (x) results in
an unstable behavior as this polynomial does not have real roots. Regarding Fig. 1(b), there is convergence
to the roots of the polynomial, verifying that there is not any other point where the orbit converges.

Figure 2 shows the dynamical lines of both methods when they are applied on quadratic polynomials.
Orange represents convergence either to x∗ = 0, for p02(x), or to x∗1 =

√
λ, for p−2 (x). Blue basin represents

the convergence to x∗2 = −
√
λ for p−2 (x). The initial guesses cover the values x0 ∈ [−30, 30], with a mesh of

500 points. The iterations stop when the difference between the current iteration and an attracting point is
lower than 10−3 or the number of iterations reach the value 50.

The dynamical lines of the methods over p+2 (x) are black, since they do not converge to any real root,
as expected. Regarding the application of MM1 and MM2 on p−2 (x), the real lines split in two regions, and
every initial guess converges to the nearest root.

A way to visualize the behavior for different values of the parameter is the convergence plane. Figure
3 represents, with the same map of colors, the convergence plane of the methods on polynomial p−2 (x) for
λ ∈ [0, 30]. In addition, black and white lines represent the superattracting fixed points and the strange
fixed points, respectively, for each value of λ.

The behavior of the convergence planes is similar to the behavior of the real line in Figure 2 for p−2 (x)
cases.
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(a) MM1, p02(x)
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x
0

(b) MM1, p+2 (x)
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x
0

(c) MM1, p−2 (x)
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x
0

(d) MM2, p02(x)
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x
0

(e) MM2, p+2 (x)
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x
0

(f) MM2, p−2 (x)

Fig. 2 Dynamical lines when the methods are applied on p•2(x) for λ = 2
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(a) MM1
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0
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20
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(b) MM2

Fig. 3 Convergence planes when the methods are applied on p−2 (x), λ ∈ [0, 30].

3.3.2 Methods on p•3(x)

The dynamical systems that result from the application of MM1 and MM2 on cubic polynomials include
both the previous iteration z and the current one x. Therefore, for the analysis of the fixed points, the
obtention of Φ̃(x) = Φ(z, x)|z=x is mandatory.

When method MM1 is applied on cubic polynomials, the one-dimensional operators are

Φ̃0
3,MM1(x) =

11

24
x, Φ̃±3,MM1(x) =

x5
(
3x2 ∓ 1

) (
99x8 ± 114x6 + 62x4 ± 18x2 + 3

)
(3x2 ± 1) (6x4 ± 3x2 + 1)3

,

for p03(x) and p±3 (x), respectively.

Lemma 3 The only fixed points of every operator of method MM1 on the cubic polynomials p03(x), p−3 (x)
and p+3 (x) are the roots of these polynomials.

Figure 4 represents the dynamical planes of the method MM1 for p03(x), p+3 (x) and p−3 (x). Orange is
devoted to (z, x)∗ = (0, 0), blue represents the basin of attraction of (z, x)∗ = (1, 1) and green is the basin of
(z, x)∗ = (−1,−1). Note that the dynamical planes in the bottom row are a zoom of the dynamical planes
in the top row. The dynamical planes of this work have been generated with a mesh of 500 × 500 points
and the same conditions as in the previous dyamical lines.

There are specific iterative methods for finding multiple roots, since the usual iterative methods use to
fail. Figures 4 (a,d) illustrate this fact. In the other pair of figures, the stability has a good performance in
a neighborhood of the roots, converging to the superattracting points. Let us remark that the orbit of each
initial guess represented in back converges to the infinity.

Regarding the application of MM1 on pγ3 (x) = x3 + γx+ 1, the corresponding one-dimensional operator
is

Φ̃γ3,MM1(x) = −
(
γ + 3x2

) (
x3 + γx+ 1

)
γ2 + 6x4 + 3γx2 − 3x

−
(
−γ3 + 27x6 − 27x3

) (
x3 + γx+ 1

)3
(γ + 3x2) (γ2 + 6x4 + 3γx2 − 3x)3

+ x. (28)
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Fig. 4 Dynamical planes when MM1 is applied over cubic polynomials for (a-c) [x, z] ∈ [−100, 100]× [−100, 100] and (d-f)
[x, z] ∈ [−3, 3]× [−3, 3]

The following result collects the number of fixed points depending on the value of γ.

Lemma 4 When method MM1 is applied on polynomial pγ3 (x), the fixed points of the rational operator
are the real roots of the polynomial and two strange repelling fixed points xF4,5(γ) when γ ∈ [γ∗, γ+], where
γ+ ≈ 1.483004.

The dynamical planes of Φγ3,MM1 are depicted in Figure 5. As detailed in the analysis of the rational
function, there are three regions of γ where the behavior can be different. For γ < γ∗ there are three real
roots and no strange fixed point. In the interval γ∗ < γ < γ+, there is only a real root and two strange fixed
points. For γ > γ+, only one real root is present. Therefore, the dynamical planes of Figure 5 represent one
case in each interval.

The expected behavior is observed in Figure 5 for every value of γ. In Figure 5 (d), there is convergence
to either of the three real roots in a neighborhood of them. Figures 5 (a,d) show black wide regions which
correspond to periodic orbits with no convergence to the roots. A quite different behaviour is observed from
Figures 5 (b,c,e,f), where there is only convergence to the unique real root.

The one-dimensional operators when method MM2 is applied on cubic polynomials are

Φ̃0
3,MM2(x) =

59590

130321
x, Φ̃+

3,MM2(x) =
P25(x)

(19x6 + 17x4 + 7x2 + 1)4
,

Φ̃−3,MM2(x) =
Q25(x)

(−19x6 + 17x4 − 7x2 + 1)4
,

for p03(x), p+3 (x) and p−3 (x), respectively, where P25(x) and Q25(x) are polynomials of degree 25.

Lemma 5 The roots of polynomials p03(x), p−3 (x) and p+3 (x) are fixed points of their respective operators
for method MM2. Furthermore, Φ̃−3,MM2(x) has 8 strange fixed points: xF1,2 = ∓ 1√

3
, xF3,4 ≈ ±0.494627,

xF5,6 ≈ ±0.518495 and xF7,8 ≈ ±0.49701. The fixed points xF1,2 are neutral, while xF3−8 are repelling.

The strange fixed points when MM2 is applied over the three cubic polynomials under consideration are
collected in Table 2.

Figure 6 represents the dynamical planes of MM2 for p03(x), p+3 (x) and p−3 (x). The dynamical planes of
the top and the bottom rows are applied over the same polynomial. The difference is the magnification of
the axes.
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Fig. 5 Dynamical planes when MM1 is applied over pγ3 (x) = x3 + γx + 1 for different values of γ, in the region (a-c)
[x, z] ∈ [−100, 100]× [−100, 100] and (d-f) [x, z] ∈ [−3, 3]× [−3, 3].

Table 2 Real neutral and repelling fixed points when MM2 is applied on p•3(x).

p•3(x) MM2 neutral fixed points MM2 repelling fixed points

p03(x) - -

p+3 (x) - -

p−3 (x) xF1,2 xF3−8

In comparison with the dynamical planes of MM1 represented in Figure 4, in the case of the method
MM2 there only is convergence to the roots for p03(x). For the other two polynomials, we can see a stability
behavior as in the MM1 case.

When method MM2 is applied over pγ3 (x), the one-dimensional operator is of the form

Φ̃γ3,MM2(x) =
Hγ

25(x)

(γ3 + 19x6 + 17γx4 − 7x3 + 7γ2x2 − γx+ 1)4
,

where Hγ
25(x) denotes a polynomial of degree 25 with the parameter γ.

Lemma 6 The number of real fixed points of method MM2 when it is applied on pγ3 (x) depends on the value
of γ. The real fixed points agree with the roots of the polynomial in the corresponding interval. Furthermore,
when γ < γ1 there is presence of eight strange fixed points. For γ ∈ [γ1, γ2] there are six strange fixed points.
For γ ∈ [γ2, 0] the number of strange fixed points is four and finally, when γ ∈ [0, γ3] there are two strange
fixed points, where γ1 ≈ −31.4326, γ2 ≈ −0.7976 and γ3 ≈ 0.5969.

Table 3 shows all the fixed points of the one-dimensional operator depending on γ in different intervals. As
in method MM1, the roots of pγ3 (x) are denoted by x∗1−3. Let us reamark that the strange fixed points xF4,5,

with xF4 = −xF5 , are attracting and repelling depending on small subintervals of γ.

Figure 7 shows the dynamical planes of Φγ3,MM2 taking different values for γ according to the intervals
used in Table 3. Since there are two strange fixed points that are attracting for different values of γ, their
basin of attraction is represented in white.

Figure 7 shows the good qualities of method MM2 for a generic cubic polynomial. Despite for little
initial guesses there is attraction to a strange fixed point, the usual behaviour is the convergence to the
roots.
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Fig. 6 Dynamical planes when MM2 is applied on cubic polynomials, for (a-c) [x, z] ∈ [−3, 3] × [−3, 3] and (d-f) [x, z] ∈
[−100, 100]× [−100, 100]

Table 3 Real attracting and repelling fixed points of method MM2 on pγ3 (x).

γ Attracting fixed points Repelling fixed points

γ < γ1 x∗1,2,3, x
F
4,5 xF4−11

γ1 < γ < γ∗ x∗1,2,3, x
F
4,5 xF4−9

γ∗ < γ < γ2 x∗1, x
F
4,5 xF4−9

γ2 < γ < 0 x∗1, x
F
4,5 xF4−7

0 < γ < γ3 x∗1 xF6,7
γ > γ3 x∗1 -

4 Numerical performance

This section is devoted to demonstrate the features of the introduced methods MM1 and MM2. They will
also be compared with two well-known iterative schemes: Newton’ and Traub’s methods. To carry out this
study, some nonlinear problems of applications in Chemistry are solved.

For each case, we show a table that gathers the main results of each iterative method. The stopping
criteria is either |f(xk+1)| < 10−500 or |xk+1 − xk| < 10−500, and both values are displayed in each
table. Moreover, the number of iterations needed to converge and the approximated computational order of
convergence ACOC [22] are also shown.

4.1 Fractional conversion

The fractional conversion describes the fraction of the nitrogen-hydrogen feed that gets converted to am-
monia. For 250 atm and 227K, the expression can be described by [23,24]

f(x) = x4 − 7.79075x3 + 14.7445x2 + 2.511x− 1.674. (29)

Figure 8 represents the fractional conversion.
In Table 4 we can see the results obtained for the different iterative schemes to find the solution of the

nonlinear problem defined in (29), where the initial guesses are x0 = {0.1, 0.5}. The obtained values confirm
the expected behavior. The methods with memory converge in less iterations than the original scheme of
Traub, and their ACOC is close to the theoretical values.
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Fig. 7 Dynamical planes when MM2 is applied over pγ3 (x) = x3 + γx + 1 for different values of γ and the regions
[x, z] ∈ [−100, 100]× [−100, 100] and [x, z] ∈ [−3, 3]× [−3, 3]

0 0.1 0.2 0.3 0.4 0.5

x

0

2

4

6

8

(a) 0 ≤ x ≤ 0.5

0.12 0.13 0.14 0.15 0.16

x

-0.5

0

0.5

(b) 0.111 ≤ x ≤ 0.165

Fig. 8 Fractional conversion.

Table 4 Results of several iterative methods for solving the nonlinear equation (29) of the fractional conversion with two
different initial guesses.

x0 Method Iterations |xk+1 − xk| |f(xk+1)| ACOC

0.1 Newton 11 2.43 · 10−316 5.15 · 10−631 2.00
0.1 Traub 8 2.34 · 10−257 2.17 · 10−769 3.00
0.1 MM1 7 6.69 · 10−390 1.37 · 10−1243 3.20
0.1 MM2 7 1.20 · 10−261 1.38 · 10−882 3.38

0.5 Newton 11 2.11 · 10−421 3.87 · 10−841 2.00
0.5 Traub 7 9.90 · 10−173 1.64 · 10−515 3.00
0.5 MM1 7 6.63 · 10−187 1.40 · 10−594 3.18
0.5 MM2 7 2.93 · 10−342 2.96 · 10−1155 3.38

4.2 Friction coefficients

The friction coefficients used when calculating resistance or pressure loss in ducts, tubes or pipes can be
calculated with the Colebrook-White equation as [25]

f(x) =
1√
x

+ 2 log10

(
θ

3.7065
+

2.5226

Re
√
x

)
, (30)

where θ is the relation between the roughness of the surface and de hydraulic diameter, and Re is the
number of Reynolds. For the test cases, θ = 10−4 and Re = 4 · 10−3.
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Figure 9 represents the function (30). Table 5 collects the data from the application of the different
iterative methods to the problem defined by (30). The methods with memory MM2 converges in many less
iterations than the other three methods, and its ACOC is close to the theoretical value.
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Fig. 9 Friction coefficients.

Table 5 Results of several iterative methods for solving the nonlinear equation (30) of the friction coefficients with two
different initial guesses.

x0 Method Iterations |xk+1 − xk| |f(xk+1)| ACOC

0.038 Newton 49 1.30 · 10−496 9.40 · 10−502 1.00
0.038 Traub 26 6.63 · 10−490 4.78 · 10−502 1.00
0.038 MM1 26 5.47 · 10−490 3.94 · 10−502 1.00
0.038 MM2 6 6.28 · 10−356 1.37 · 10−1197 3.35

0.044 Newton 49 1.88 · 10−501 1.36 · 10−506 1.00
0.044 Traub 26 2.46 · 10−501 1.78 · 10−513 1.00
0.044 MM1 26 2.02 · 10−501 1.46 · 10−513 1.00
0.044 MM2 7 6.68 · 10−223 1.42 · 10−747 3.39

5 Conclusions

Two new iterative methods with memory have been introduced. In comparison with Traub’s method, they
have higher order of convergence. MM1 is a method that includes derivatives of order 3.30, while MM2 is
derivative-free of order 3.73. The stability of the methods has been verified via the multidimensional real
dynamics, showing the good performance of both methods for quadratic polynomials, of MM1 for a generic
family of cubic polynomials with three roots and of MM2 for specific cubic polynomials with a multiple root,
three simple roots and a single root. In addition, the capacity of the method to solve a common chemical
problem has been shown.
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