Document downloaded from:

http://hdl.handle.net/10251/168880

This paper must be cited as:

Navarro, C.; Feliu-Pérez, J.; Petit Marti, SV.; Gomez Requena, ME.; Sahuquillo Borras, J.
(2020). Bandwidth-Aware Dynamic Prefetch Configuration for IBM POWERS. IEEE
Transactions on Parallel and Distributed Systems. 31(8):1970-1982.
https://doi.org/10.1109/TPDS.2020.2982392

The final publication is available at

https://doi.org/10.1109/TPDS.2020.2982392

Copyright |nstitute of Electrical and Electronics Engineers

Additional Information

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

Bandwidth-Aware Dynamic Prefetch
Configuration for IBM POWERS

Carlos Navarro , Josué Feliu , Salvador Petit , Maria E. Gomez , Julio Sahuquillo

Abstract—Advanced hardware prefetch engines are being integrated in current high-performance processors. Prefetching can boost
the performance of most applications, however, the induced bandwidth consumption can lead the system to a high contention for main
memory bandwidth, which is a scarce resource in current multicores. In such a case, the system performance can be severely
damaged. This work characterizes the applications’ behavior in an IBM POWERS8 machine, which presents many prefetch settings,
varying the bandwidth contention. The study reveals that the best prefetch setting for each application depends on the main memory
bandwidth availability, that is, it depends on the co-running applications. Based on this study, we propose Bandwidth-Aware Prefetch
Configuration (BAPC) a scalable adaptive prefetching algorithm that improves the performance of multi-program workloads. BAPC
increases the performance of the applications in a 12%, 15%, and 16% of 6-, 8-, and 10-application workloads over the IBM POWERS8
default configuration. In addition, BAPC reduces bandwidth consumption in 39%, 42%, and 45%, respectively.

Index Terms—Prefetch engine, prefetch settings, performance measures.

1 INTRODUCTION

Hardware data prefetching is an effective technique to
hide the long memory latency and can greatly improve the
performance of many applications. Much research [1], [2],
[3], [4], [5] focusing on monolithic processors has shown the
high performance enhancements prefetch approaches can
bring. Because of this fact, many works [6], [7], [8], [9],
[10], [11] have focused on data prefetching for multicores
over the last decade. Research has concentrated on either
parallel workloads or multi-program workloads consisting
of a set of single-threaded applications, each one running on
a different core, and exhibiting a different memory access
pattern. To deal with this issue, some approaches, like sand-
box prefetching [6], propose to implement a set of prefetchers
and select the best prefetcher for each core, depending on
the running application.

The major shortcoming of prefetching is the introduced
interference due to it is a speculative technique. In other
words, prefetch requests compete with regular requests for
memory resources, which can adversely impact on perfor-
mance. This issue has been addressed in some approaches
[7], 18], [9], [10], [11]. Despite the interference, the impor-
tant performance gains shown by prefetching in multicores
over the last decade have led processors manufacturers to
integrate complex prefetch engines in modern processors.
These prefetchers, especially in high-performance servers,
are deployed with a wide set of prefetch settings aimed
at capturing the different access patterns that applications
exhibit. Thanks to this hardware support, recent research
has focused on commercial machines.

LibPRISM [12] focuses on dynamically selecting at run-
time the best prefetcher of an IBM POWERS to enhance
the system performance when running a single parallel
workload. In [13] an adaptive prefetcher is proposed for the
IBM POWER?7 processor, where the prefetch aggressiveness of

Departamento de Informitica de Sistemas y Computadores, Universi-
tat Politecnica de Valencia, e-mail: carnasel@inf.upv.es {jfeliu,
spetit, megomez, jsahuqui}@disca.upv.es.

each application can be throttled down and up. The study
presents results when running just two benchmarks. This
approach allows the prefetching to achieve good perfor-
mance, however, it does not scale with the number of cores.
Probably because of this fact, in a posterior work [14] by
the same authors, a more scalable approach is devised but
at the cost of limiting the prefetching flexibility. Instead of
an adaptive prefetching, authors rely on a less efficient but
much more simple on/off approach.

In order to make a prefetch approach scalable and im-
prove performance when a large number of applications is
running on the system, the approach must trade off perfor-
mance and memory bandwidth consumption. To illustrate
this claim, Figure 1 presents two cases studied on a 10-core
IBM POWERS machine with the prefetching disabled (Off)
and the default prefetch setting or simply default prefetcher
(Def). Figure la and Figure 1b present the IPC of each
application running in the mix and in isolation of two
workloads consisting of 6 and 10 applications, respectively.
The figures also plot the bandwidth (red mark and right
y-axis) of the applications when running in the workload
with the two studied prefetch configurations. The top-
right data in the figure reports the average (geo. mean)
IPC of the applications that form the workload and their
aggregated bandwidth. As observed, with 6 applications
the default prefetch setting improves the performance in
almost all the applications, so improving the overall IPC
by 23%. In this case, it can be appreciated a relatively low
bandwidth consumption, which overall amounts to 18.6 and
87.4 accesses/ s, with the prefetcher disabled and with the
default prefetch setting, respectively.

In contrast, when running 10 applications, the default
prefetch setting achieves on average worse performance (by
15% drop) than no prefetching. Note that most of the perfor-
mance benefits that prefetching could provide as observed
in the individual execution of the applications disappear
due to bandwidth contention when applications run in the

@IPCin workload aIPCalone

— Bandwidth (right axis)

(a) 6-application mix: low contention

B IPCin workload OIPCalone

— Bandwidth (right axis) 183

milc |bwaves| gems. | gcc |zeusmp| mcf [zeusmp| astar |xalanc.| astar

(b) 10-application mix: high contention
40 B On-demand BW

@ Useful prefetch BW B Wasted prefetch BW

b=
o

b=
o

b=
o

b=
o

b=
o

0
&=

[}

Bandwidth (trans/usec)
= N
o o
Off
Def BN
Def | I—
]
Def MNI—

Def N ——

b=
o

gems gCC

Def NN
Def .
Def
Def 1N
Def INEEN

Def N
off
off

milc bwaves zeusMP mcf zeus astar xalan astar

(c) Bandwidth break-down of the 10-application mix

Fig. 1: Example of mixes exhibiting (a) low and (b) high
main memory bandwidth contention. The last column re-
ports the average (geo. mean) IPC for the applications of the
workload and their aggregated main memory bandwidth.
(c) breaks down the bandwidth of the 10-application mix.

mix. In this case the default prefetch setting consumes on
average more than twice the bandwidth than no prefetching,
aggregating 182.8 accesses/ s versus 67.2 accesses/ j1s with
no prefetching. This high amount of aggregated bandwidth
consumption of the default prefetch setting increases the
inter-application interference making the memory bus a
major performance bottleneck.

Figure 1c breaks down the bandwidth consumed by the
applications of the 10-application workload into on-demand
bandwidth, useful prefetch bandwidth (i.e. saves memory
access latency), and wasted prefetch bandwidth (i.e. due
to data not accessed by the applications). This breakdown
shows that, despite prefetches have a positive effect on the
performance of most applications (on-demand bandwidth
is reduced), for many applications more than half of the
bandwidth consumed by prefetches is wasted. The wasted
bandwidth negatively impacts on the performance of the
applications and their co-runners. As the figure shows,
in general, the applications with highest bandwidth con-
sumption (e.g., milc, gemsFDTD) waste more bandwidth and
suffer higher performance degradation due to contention.
Moreover, contention impacts on the performance of the
co-running applications that access main memory, whose
IPC when running in the workload is noticeably lower than
when running alone with the same prefetch setting.

In this work we propose BAPC (Bandwidth-Aware
Prefetch Configuration), an adaptive and scalable
bandwidth-aware prefetch configuration approach for
the IBM POWERS. BAPC focuses on multi-program

2

workloads composed of single-threaded applications and
seeks to dynamically select the best prefetch setting for each
application, considering the tradeoff between performance
and bandwidth consumption each prefetch configuration
presents for each particular application.

The memory bandwidth consumed by an applica-
tion mainly depends on the performance of the prefetch
algorithm for a given application (e.g. coverage, accu-
racy and timeliness), and on the inter-application interfer-
ence. LLC interference refers to memory requests (regular
and prefetches) competing among them for cache space,
thus inaccurate prefetches —specially in aggressive prefetch
configurations— can pollute the cache causing the eviction
of live cache blocks being used by other applications [15].
To provide a sound understanding of how different lev-
els of interference may affect individual per application
performance, this work characterizes, varying the interfer-
ence level, the impact of distinct prefetch settings on both
per-application performance and consumed bandwidth. We
found that the best prefetch setting for a given application
does not depend only on the application itself, but also on
the inter-application interference. This claim, illustrated in
this work through a rigorous characterization study, differs
from the conclusions drawn in [14].

This paper makes three main contributions:

o We characterize applications varying the bandwidth
requirements of the competing applications, and we
show that the prefetch setting that mostly impacts
on performance mainly depends on the bandwidth
availability.

o We propose a scalable adaptive prefetch configura-
tion approach that is able to improve the perfor-
mance of multi-program workloads consisting on a
high number of applications.

o The proposed scheme improves performance regard-
less of the number of running applications and
amount of bandwidth the applications request.

The remainder of this paper is organized as follows.
Section 2 describes the related work. Section 3 introduces the
hardware platform. Section 4 discusses the characterization
study. Section 5 presents the BAPC proposal, and Section
6 evaluates its results. Finally, Section 7 presents some
concluding remarks.

2 RELATED WORK

Recent research work has focused on prefetching on com-
mercial machines. In [16], authors propose a methodology
based on machine learning to select which of the 4 prefetch-
ers available in an Intel Core 2 Quad CPU must be turned
on or off. Thus, they select one configuration out of the 16
possible settings. One important difference with respect to
our work is that these processors do not allow graduating
the prefetchers, they only allow switching them on and off.

Other works focus on recent IBM POWER processors.
Some works [12], [17] have focused on dynamically select-
ing at run-time the best prefetch setting to enhance the
performance of parallel workloads when running a single
application on an IBM POWERS. PATer [17] proposes a
methodology that dynamically adjusts the prefetch setting

in the IBM POWERS. This approach uses performance coun-
ters as inputs for machine learning strategies to improve the
accuracy of the prefetching models. A background daemon
is employed to make use of the prediction models to de-
cide the best prefetch setting for each application running
on the processor. Unlike our work, this proposal focuses
exclusively on parallel workloads. Finally, LibPRISM [12],
also focusing on parallel workloads, manages the SMT level
and the prefetch settings in the IBM POWERS.

Other works [13] focus on adaptive prefetching to select
the best prefetch setting for single-threaded multi-program
workloads, similarly to our work. In [13], authors present an
adaptive prefetcher capable of boosting the performance by
leveraging the prefetch configuration with respect to the de-
fault prefetch configuration of the IBM POWER?. However,
it is mainly driven by performance so that the prefetch set-
tings are mainly chosen depending on the performance each
prefetch setting is able to achieve for the target application.
Although this strategy allows the prefetcher to achieve rea-
sonable performance, it fails in that it does not scale with the
number of cores, in particular it is evaluated just with two
running applications. Mainly due to this fact, in a posterior
work [14], these authors face a more scalable approach to
configure the prefetch engine in the IBM POWER? processor
with the aim of allocating bandwidth dynamically to the co-
running applications. This approach simply activates or de-
activates the individual per-core prefetchers of the different
threads. Authors claim that they explored other prefetching
configurations with an intermediate aggressiveness but did
not observe any benefit. Nevertheless, we show that signif-
icant performance benefits can be observed, at least in the
IMB POWERS. Based on this observation, unlike [14], our
approach selects the best prefetch setting instead of only
switching the prefetch engine on or off.

Previous or contemporary with research on commercial
machines, many research work has been carried out on sim-
ulation frameworks focusing on regulating the prefetcher
aggressiveness. A representative subset of these works is
[18], [19], [8], [20], [21], [22], [23], and [24]. In a similar
way, sandbox prefetching [6], propose to implement a set of
prefetchers and, at run-time, compare the prefetch patterns
generated by each prefetcher with the memory accesses of
the application to select the prefetcher that better fits the
application memory access pattern. In essence, the problem
might look similar to the one we address but a compari-
son cannot be done mainly due to implementation issues.
The sandbox prefetching is implemented in a simulation
environment. The meachanism implements a set of inde-
pendent prefetchers and, for each interval, it gathers the
memory access patterns and estimates the performance of
each prefetcher included in the sandbox in order to choose
the best one. This simulation approach considers extra
hardware not deployed on current commercial processors.
The prefetcher of the IBM POWERS, however, consists of 9
independent but complementary fields which amount 25 bits.
This gives a huge amount of configurations which makes
the sandbox approach impractical. Nevertheless, the key
problem from a comparison perspective is that it is not
possible to simulate or measure how different prefetch con-
figurations behave in a real processor in the same interval
since only one can be active at the same time.

3 EXPERIMENTAL PLATFORM AND PREFETCHER

The results presented in this work have been carried out on
an IBM Power System S812L with a 10-core IBM POWERS
processor working at 3.69GHz. Each core implements a
64KB L1 data cache and a 512KB L2 cache. The processor
has a 80MB Last Level Cache (LLC), shared among all the
cores, and is equipped with a 32GB off-chip DRAM module.
The OS installed in the system is Ubuntu Linux 14.04 with
kernel version 4.0.2.

The processor allows the user to configure the prefetcher
through the Data Streams Control Register (DSCR) [25]. There
is one register to define the prefetch setting of each running
thread. Each register uses 25 bits to configure the prefetcher
along 9 fields.

Because exploring all possible prefetching configurations
(225) could become a tedious and though task, in this work
we focus on the parameters with higher impact on the
system performance. To this end, we studied each DSCR
field in isolation and found that the load stream disable (LSD),
the default prefetch depth (DPDF), and the prefetch urgency
(URG) are the features that most affect the performance and
bandwidth consumption of the studied applications. Other
researchers reached similar conclusions working on parallel
workloads [12], [17].

The LSD feature allows detecting bursts of loads to
prefetch them, and can only be enabled or disabled. We
always keep it enabled, since disabling LSD is equivalent
to disabling the prefetcher. DPFD and URG are configured
with a 3-bit DSCR field each. The DPFD field selects the
prefetch depth, which ranges from 2 (shallowest) to 7 (deep-
est). Setting DPFD to 1 indicates zero depth (i.e. prefetch
disabled, regardless of any other DSCR field), while setting
it to 0 selects the default depth (4). The URG field indicates
how quickly the prefetch depth can be reached. Prefetch
urgency can vary from 1 (not urgent) to 7 (most urgent).
Analogously to the DPFD field, setting URG to 0 selects
the default urgency (4). By default, all the DCSR bits are 0,
which enables the LSD characteristic and sets the prefetch
urgency and depth to their default values, that is, URG=4
and DPFD=4.

4 CHARACTERIZATION ANALYSIS

This section characterizes the applications when running in
isolation in terms of performance and bandwidth utilization
with different prefetch settings. We study the extreme (i.e.
the lowest and the highest) values for both urgency and
depth. That is, U1D2, U1D7, U7D2 and U7D7, where the
UxDy settings means URG = = and DPFD = y. In addition,
we also evaluate the default prefetch setting (DEF) and a
setting where prefetech is disabled (OFF).

4.1 Performance and Memory Bandwidth Utilization
with no Inter-Application Bandwidth Contention

Figure 2a presents the IPC achieved by each application
when running alone in the system across the studied
prefetch settings. Since, in these experiments, each appli-
cation runs in isolation, there is no inter-application inter-
ference, hence the contention for memory bandwidth is the
lowest that applications can experience.

EOFF mDEF @U1D2 @Ul1D7 ©OU7D2 m@U7D7

2.0

(a) Performance

150
(%]
< 100
4]
2
g s0
<
O\QW L HFPSLSE LS
& @é‘;’\@'é;sf&v&&&\@&m%@
A O?QO@ \’b °0
® ®

~N o
S S& L &@F &L S &
> ST I $ & &
v & & ¥
& %

(b) Bandwidth

Fig. 2: Impact of the prefetch setting on performance and bandwidth of applications in isolated execution.

From these results, three main observations can be made.
First, although the performance of some applications, such
as gamess or povray, is not affected by prefetching,
the performance of many others, such as libquantum,
zeusmp, cactusADM, leslie3d and gemsFDTD, highly
improves when prefetching is enabled. The former are typ-
ically referred as prefetch friendly application and the latter
as prefetch unfriendly. These results show that it is crucial
to keep prefetch enabled for prefetch friendly applications.
Second, in general, the prefetch depth parameter has a higher
impact on performance than urgency (e.g. in libgquantum
and zeusmp) when the application runs alone in the system.
A deeper prefetch depth prefetches more cache lines from
the main memory and, when running in isolation, usually
improves performance even when the prefetch accuracy
reduces since there is enough LLC space and main memory
bandwidth to deal with the inaccurate prefetches. Neverthe-
less, there are applications, such as gcc and mcf, that are
more affected by the urgency parameter. These applications
benefit more from speeding up prefetches so that data can
move quicker to the upper levels of the cache hierarchy
than from issuing more prefetches. Third, the performance
achieved by the best performing prefetch configuration
hardly outperforms the default configuration, with just a
few exceptions in some applications like 1ibquantum and
xalancbmk where the default prefetch setting performs
slightly worse.

As shown in the example of Section 1, the main memory
bandwidth is a critical resource that must be efficiently
handled for performance in current multicores. To address
this issue, this section nalyzes the relationship between the
prefetch settings and the consumed bandwidth.Figure 2b
shows the bandwidth each application consumes when run-
ning in isolation, quantified in main memory accesses per
ps, varying the prefetch setting. Three main observations

can be made. Firstly, bandwidth strongly varies depending
on the prefetch setting, even for those applications whose
performance is not significantly affected (e.g. milc). As
observed, depth is the parameter that impacts the most
on the consumed bandwidth. Secondly, some prefetch set-
tings achieve IPC improvements at the cost of increasing
the bandwidth consumption (e.g. DEF, U1D7, and U7D7
in gemsFDTID), which in many cases does not justify the
performance gains. Thirdly, there are situations where a
higher bandwidth consumption translates into performance
drops. For instance, in xalancbmk, the settings with high-
est bandwidth consumption (U7D2 and U7D7) offer lower
performance than the remaining settings. This is because
in these settings prefetches have a high urgency but also
very low accuracy, so bringing from memory a high number
of non-useful prefetches. It can be appreciated that the
default prefetch setting is clearly affected by the discussed
shortcomings. For instance, in milc, the DEF’'s bandwidth
consumption triples those of U1D2 and U7D2 while achiev-
ing similar performance; and in xalancbmk, DEF achieves
lower performance than UlD2 and U1lD7 in spite of its
bandwidth consumption is more than 4 times higher.

This section has characterized the behavior of the appli-
cations of the SPEC CPU2006 benchmark suite when run-
ning in isolation. The study has also been carried out for the
SPEC CPU20017 benchmarks, observing neither additional
behaviors nor conclusions from the purposes of this work.
Thus SPEC CPU2017 characterization results are not shown
neither in isolation nor in other studied bandwidth con-
tention scenarios, which are discussed below. Nevertheless,
for the sake of completeness, the experimental results (see
Section 6) include applications randomly chosen from both
SPEC CPU2006 and CPU2017 suites.

To sum up, this study illustrates that, for some ap-
plications and prefetch configurations, an important in-

2.0
1.5
01.0
a
0.5
0'0'\,0\«% £ QA X o o
‘O&)Q § & &@z (:;\Q,Q &9@ ‘O&‘Q’ Qq‘,& ,z;o‘l'b CQ@ é,bAQ’ @e"’
AN o?’b \Q’\/ O@ \’bQ AS) 03’
N

EOFF mDEF @U1P2 @U1P7 OU7P2 BU7P7

RNY Q < > > - \ Q <
&L \§\ CSFLLS N
o F e T LL e -
Voo & N e@ <

& %

(a) Performance

Accesses/us

(b) Bandwidth

Fig. 3: Impact of the prefetch setting on performance and bandwidth of applications in the highest bandwidth contention.

crease in the bandwidth consumption due to more triggered
prefetches only improves performance marginally. In some
cases, such as xalancbmk, the most aggressive prefetch con-
figurations even degrade performance. Consequently, since
the main memory bandwidth is an scarce resource and can
quickly become a performance bottleneck, it is important to
configure the prefetch aggressiveness based on the applica-
tion’s benefit of prefetch to limit bandwidth consumption.

4.2 Performance and Memory Bandwidth Utilization
with Highest Bandwidth Contention

This section evaluates the impact of prefetching on the
highest main memory bandwidth contention scenario. To
this end, each application is executed with 3 instances of
the microbenchmark designed in [26] (see Section 4.3.1)
that, when running all three together, consume the entire
memory bandwidth available in the system. This scenario
presents the highest bandwidth contention studied in this
paper. It would be possible to create worse scenarios for
some applications, varying the writing or reading rates to
main memory as well as the stride of the target page.
Nevertheless, the analysis of such situations is out of the
scope of this paper.

Figure 3 presents the IPC and memory bandwidth con-
sumption of the applications for the analyzed prefetch set-
tings. As in the previous study, disabling the prefetching
can still have a significant adverse impact on the perfor-
mance of many applications such as 1ibgquantum, zeusmp,
cactusADM or leslie3d. The performance gains in these
applications are also related to a higher bandwidth uti-
lization. However, unlike it was previously observed in
absence of inter-application interference (Section 4.1), under
high bandwidth contention, the prefetch urgency param-
eter affects the performance and bandwidth consumption
more than the prefetch depth. The reason is that when

multiple applications co-run and share the main memory
bandwidth, increasing the prefetch depth to trigger more
prefetches might not always improve performance since
it increases bandwidth contention and, in addition, these
prefetches compete for LLC storage capacity. In this sce-
nario, the prefetch urgency becomes more important since
the higher bandwidth contention translates into a longer
memory latency of the prefetches, thus triggering them
earlier improves their chances of being timely prefetched.

Taking into account performance and bandwidth con-
sumption, prefetch friendly applications can be classified in
two main groups:

Prefetch-setting sensitive applications such as gcc,
mcf, zeusmp, or cactusADM. The performance of
these applications can significantly vary with the
prefetch setting. For instance, zeusmp improves its
IPC from 0.7 to 1 when the prefetch urgency is
increased.

Prefetch-setting insensitive applications such as
bwaves or leslie3d. The performance of these ap-
plications slightly differs by varying the prefetch set-
ting. However, the associated bandwidth consump-
tion may greatly vary, as observed in leslie3d.

In summary, the discussed results show that a prefetch
configuration policy should analyze, for each application,
both performance and bandwidth metrics with the different
prefetch settings. This analysis should guide the prefetch-
ing strategy. For instance, the policy should i) disable
the prefetch engine for prefetch unfriendly applications,
ii) choose the configuration with the lowest bandwidth
consumption for prefetch-setting insensitive applications,
and iii) find a trade-off between performance gains and
bandwidth consumption for prefetch-setting sensitive ap-
plications.

4.3 IPC and Bandwidth Consumption Sensitivity to
Bandwidth Contention

So far we have studied the impact of prefetching on in-
dividual application performance in two extreme band-
width scenarios: all the memory bandwidth is available for
the studied application, and the application competes for
bandwidth with the microbenchmark (i.e. three instances'),
described below, at its maximum main memory access
rate. This section studies the impact of intermediate levels
of bandwidth contention on performance and bandwidth
consumption of each application varying the prefetch set-
ting. To this end, the microbenchmark is tuned to precisely
consume a specified amount of memory bandwidth when it
is executed in isolation. This way, when executed together
with the studied application, the microbenchmark is used
to induce the desired level of inter-application bandwidth
contention.

4.3.1 Memory Bandwidth Microbenchmark

Algorithm 1 Memory bandwidth microbenchmark

1: int AJARRAY_SIZE]

2: while true do

3: for(i=0;i< ARRAY_SIZE;i=i+stride) do
4 Ali]++

5 end for

6: for (i =0;i < #nops;i++) do
7: asm("nop”)
8

9:

end for
end while

Algorithm 1 presents the pseucodode of the microbench-
mark. It consists of a main loop (lines 2-9), where a burst of
memory requests (lines 3-5) is issued. This burst is followed
by a customizable number of NOP operations, which allow
us to set the bandwidth consumption of the microbench-
mark and study different levels of bandwidth contention.
Memory requests access a memory array defined in line
1. The array size should, at least, double the size of the
LLC of the processor to ensure that data is evicted from the
cache before it is re-accessed, and the variable stride should
also be configured, depending on the memory architecture,
to make sure that two consecutive accesses to the array
access different cache lines. In this way, we avoid LLC hits,
maximizing the memory bandwidth the microbenchmark
consumes.

We found empirically that the main memory bandwidth
saturates when at least three independent instances of the
microbenchmark are executed together each one on a differ-
ent core. Further details on this empirical experiment can be
found in Section 1.1 of the Appendix.

This scenario, as mentioned above, is referred to as the
highest bandwidth contention scenario. With this setup we
have empirically estimated that the maximum bandwidth
an application can consume ranges from 180 to 190 accesses
per us. For analysis purposes we consider 190 accesses/ s
as the maximum bandwidth utilization.

To model mid range scenarios providing different
amounts of available bandwidth, we have estimated the

1. The microbenchmark is always launched in three instances

6

number of #nops the microbenchmark instances must ex-
ecute to consume from 90% of its maximum bandwidth
consumption (i.e. 190 accesses/us) down to 10% in 10%
steps. From now on we use BCI_XX (Bandwidth Consumed
in Isolation) to refer to the configuration in which the mi-
crobenchmark instances consume XX% of the overall band-
width when running in isolation. Notice that this percentage
will be effectively reduced when the available bandwidth
saturates. In this case, the effective bandwidth consumed
by the microbenchmarks will be the difference between the
bandwidth consumed by the application and the maximum
bandwidth consumption.

4.3.2 Performance and Bandwidth Sensitivity

This section analyzes the behavior of the studied applica-
tions in eleven memory contention scenarios. Six prefetch
settings have been studied in this work but, in addition
to OFF and default, results are only shown for U1D2 and
U7D2 prefetch settings because they present similar values
to UlD7 and U7D7, respectively; that is, those having the
same urgency but the highest depth are presented. The
configurations with lowest depth have been chosen because
in some cases the consumed bandwidth is lower than when
the depth parameter is equal to 7.

Figure 4 depicts the IPC (y-axis) and bandwidth con-
sumption (x-axis) of the studied applications in four plots,
one for each prefetch configuration. Each application is
represented with a line with 11 points (or marks) which
indicate the level of main memory bandwidth contention
introduced by the microbenchmark. The rightmost point
represents the values achieved by the application running
alone under no contention (i.e. BCI_00), the leftmost rep-
resents the performance and bandwidth achieved by the
application under maximum contention (i.e. running with
BCI_100), and the 9 intermediate points (from right to left)
represent the values achieved by the application in mid
range bandwidth contention scenarios; that is, from right to
left, running with BCI_90 to BCI_10. For instance, the second
point (from right to left) of astar in Figure 4a indicates
that when this application is under the BCI_10 scenario it
achieves an IPC by 0.24 and performs by 22.5 accesses/ iis.
Section 1.2 of the Appendix complements these figures and
shows the bandwidth consumption of each application and
the co-running microbenchmarks on each point for a subset
of benchmarks with the default prefetch configuration.

In each plot, regardless of the prefetch setting, three
main application behaviors can be observed. Below these
behaviors are studied for the default prefetch setting de-
picted in Figure 4c. Firstly, applications located at the
leftmost side (e.g. close to the Y axis) in a single point
are insensitive to the bandwidth contention. The reason is
that their bandwidth consumption is really low and thus
their performance is not affected by main memory band-
width contention. Secondly, we can distinguish applications
extremely sensitive to the bandwidth contention. In this
plot, these applications present from 5 to 35 accesses/ us.
Their performance experience a sharp rise with a small
increase in the bandwidth consumption. This trend slightly
decreases as we move on to the right. And thirdly, as we
move on by about 50 accesses/ us, increasing the bandwidth
consumption still allows improving the performance but

7

-=-bzip2 +—gcc ~mcf hmmer —=-sjeng —e-libquantum ——h264ref ——omnetpp —e—astar ——xalancomk ——bwaves
——gamess ——milc zeusmp gromacs cactusADM leslie3d namd ——soplex ——povray ——gemsFDTD
2.0 2.0
[|
1.5 ’ 1.5
ol M
id J/ €10} ¢
- yapZ Py T
os| IF R S
— ,,_4;:—’-
— —a - daat
0.0 0.0
0 5 10 15 20 25 30 0 10 20 30 40 50 60
BW (accesses/us) BW (accesses/us)
(a) OFF (b) U1D2
2.0 2.0
1.6 15
1.2 } II) o k ‘{
=0 { =" £10 Sy L
. 1 >\§/ // {/ '7/ //
./ — 0.5 s L —
0.4 .a__/’W :)/:/—7‘
- R - i .wr—f"’”(’r,
0.0 0.0
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
BW (accesses/us) BW (accesses/us)
(c) DEF (d) U7D2

Fig. 4: Performance and bandwidth consumed by the applications for OFF, U1D2, DEF and U7D2 prefetch settings varying

the bandwidth consumption of the microbenchmark.

to a minor extent. That is, bandwidth consumption must
significantly increase to turn into performance gains. For
instance, increasing bandwidth consumption from 60 to 130
accesses/ s in omnetpp just improves IPC in 0.2. Notice,
however, that such a large amount of bandwidth represents
almost one third of the total system bandwidth.

Another interesting observation is that the curve of some
applications does not always experience a positive slope in
terms of bandwidth as bandwidth contention increases, but
it first grows and then reduces as the bandwidth consumed
by the microbenchmark increases. For instance, libquantum
shows an IPC by 1.1 in isolation with the default prefetch
setting. Then, as the microbenchmarks start consuming
bandwidth, libquantum’s bandwidth consumption, contrary
to expected, increases. The increase in the bandwidth uti-
lization is a result of the cache pollution [27] introduced by
the microbenchmarks. This trend is kept until libquantum
runs in the BCI_30 scenario. From that point on, the band-
width contention induced by the microbenchmarks causes
libquantum’s bandwidth utilization to decrease. In summary,
this behaviour is mainly caused by the interference between
the applications and the microbenchmarks both in the main
memory bandwidth and LLC space. Both of them grow with
the prefetch aggressiveness. In fact, the plot corresponding
to the OFF setting is the only one where all the application’s
curves present a positive slope.

Comparing the four plots among them, it can be ob-
served that, as expected, the bandwidth consumption of a
given application increases as the applied prefetch settings
are more aggressive (bottom plots). However, an interesting
observation is the magnitude of these values, which widely
differ among them depending on the prefetch setting. For

instance, the maximum bandwidth an application consumes
is by 30, 60, 130 and 140 accesses/us with the prefetcher
disabled (OFF), U1D2, DEF, and U7D2 settings, respectively.
This huge difference allows some interesting cross compar-
isons, for instance, the bandwidth consumption of some ap-
plications (e.g. omnetpp) under maximum contention with
the default prefetch setting is much higher than running the
application alone with the prefetcher disabled.

5 BAPC PREFETCHING APPROACH

This section presents the prefetch approach proposed in this
paper, Bandwidth-Aware Prefetch Configuration (BAPC),
which pursues to dynamically adapt the prefetch configu-
ration for each application taking into account the tradeoff
between the performance and bandwidth consumption of
each prefetch configuration. The results of the characteri-
zation study claim that a per-application custom prefetch
configuration is needed to regulate the use of prefetching
among the co-running applications. This per-application
configuration should take into account both performance
and bandwidth consumption, since in some cases the per-
formance of a given application can be improved by a given
prefetch setting but at expense of a high bandwidth increase.
Otherwise, bandwidth consumption can significantly grow,
causing important bandwidth contention and leading the
system to significant performance losses.

With this aim, in order to quantify the trade-off between
performance and bandwidth to select the proper prefetch
setting, we define the P2B ratio ratio calculated with Equa-
tion 1. This metric considers the improvement rate in IPC
of a given prefetch setting over the prefetch disabled, and

divides this value by the bandwidth wasting rate introduced
by that prefetch setting over no prefetch.

IPCconfig/IPCOFF
BWconfig/BWOFF .

For instance, a speedup by 1.1 (10% performance in-
crease) and bandwidth consumption rate by 2.2 (120% band-
width increase) gives a P2B ratio equal to 0.5. In general,
the IPC increase is usually much smaller than the band-
width increase, as experimental results will show. Once the
P2B ratio is quantified, it is compared to a threshold to
discern if a given prefetch configuration is eligible for that
application or not. We experimentally found that a good
trade-off is achieved when P2B ratio > 0.25, which means
that a 10% performance increase is worth enough if it comes
with a bandwidth consumption increase lower than 340%.
Notice that applications consuming a significant amount of
bandwidth present and almost flat curve in Figure 4.

P2B ratioconfig =

)

5.1 Static BAPC

With the aim of ascertain the potential of our approach,
we have first devised a static version of the mechanism
to be applied in high bandwidth contention scenarios. The
static approach selects a customized prefetch setting for each
application of the workload that is used during the whole
execution of the application. For each application, the se-
lected setting is the one that better fits the characteristics of
the application trading off performance and bandwidth. For
this purpose the approach works as follows.

First, for each considered prefetch configuration, the
IPC and bandwidth consumption of each application are
obtained when running in the highest contention scenario
(BCI_100). Second, a list of eligible prefetch settings is
obtained. To be included in the list, a configuration must
fulfill two conditions: i) its corresponding P2B ratio value
must be higher or equal than the P2B threshold (i.e. prefech
configurations with P2B ratio below the threshold are dis-
carded), and ii) its IPC must be better than the one obtained
with no prefetching. If the list is empty, then there is no
prefetch configuration that matches these conditions and,
consequently, the prefetching is turned off for the applica-
tion. On the contrary, if several configurations are in the list,
they are arranged in descending IPC order, and the prefetch
configuration at the head of the ordered list is chosen.

Table 1 presents the selected configuration obtained with
this method for each SPEC CPU2006 and SPEC CPU2017
application. For example, the configuration OFF is chosen
for sjeng because, as observed in Figure 3, neither the
performance improves due to prefetching (second condi-
tion) nor the P2B ratio is higher or equal than 0.25 (first
condition). Another example is zeusmp, whose selected
prefetch configuration is U7D2 because its performance gain
is reasonable for the bandwidth consumption increase that
the application experiments with this configuration.

By applying a custom prefetch configuration to each ap-
plication, we ensure a profitable utilization of the available
system bandwidth. In contrast, if the default configuration
is used in every application, the system will present a much
higher contention, which leads to a negative impact in
performance. Experimental results obtained when statically

8

TABLE 1: Selected configurations for each application in
SPEC CPU2006 and SPEC CPU2017.

Benchmark Benchmark

2006 Conf. 2017 Conf.
bzip2 U7D2 | perlbench_r | UlD2
gcc UlD2 | gcc_r U7D2
mcf U7D2 | mcf_r U1D2
hmmer UlD2 | parest_r U7D2
sjeng OFF deepsjeng_r | UlD2
libquantum | DEF Ibm_r U1D2
h264ref OFF x264_r U7D2
omnetpp UlD2 | omnetpp_r U1D2
astar UlD2 | cam4_r u7D2
xalancbmk | OFF imagick_r DEF
bwaves U7D2 | bwaves_r U7D2
gamess OFF wrf_r U7D2
zeusmp U7D2 | leela_r U1D2
gromacs DEF nab_r U7D2
cactusADM | U7D2 | cactuBSSN_r | U7D2
leslie3d U7D2 | roms_r U7D2
namd OFF namd_r u7D2
soplex UlD2 | xz_r U1D2
provray OFF povray_r OFF
gemsFDTD | DEF exchange2_r | U7D2

assigning the selected prefetch settings to applications are
presented in Section 6.

5.2 Dynamic BAPC

Static BAPC relies on profiled execution information of
applications obtained offline. This information is used to
select the prefetch setting for each application that is applied
during the whole execution. In contrast, dynamic BAPC acts
without previous knowledge of applications” behavior, and
dynamically selects the target prefetch setting at run-time,
so different settings can be chosen for a given application.
This way allows BAPC to adapt to the different execution
phases each application experiences.

Algorithm 2 presents the pseudo-code of dynamic
BAPC. This algorithm can be divided into three main
phases: sampling, configuration and execution. These
phases are executed sequentially in a loop until the work-
load execution completes

In the sampling phase, metrics related to performance
and bandwidth consumption are estimated. To do so, the
prefetcher is globally disabled to gather IPCopr and
BWorr for all the applications. Then, the prefetch settings
are applied, one by one, to each application while the
remaining applications run with the prefetcher turned off. In
this way, IPCconfigy BWeonfig, and P2B ratiocon fig can be
independently estimated for each application and prefetch
configuration.

To reduce the overhead of sampling, the sampling quan-
tum duration is set to 50ms, and the checked prefetch set-
tings are limited to DEF, U1D2 and U7D2, because prefetch
depth in general, as discussed in Section 4 does not affect the
performance and bandwidth consumption under important
bandwidth contention.

The metrics estimated in the sampling phase are em-
ployed in the configuration phase to obtain the best prefetch
setting for each application. In this phase, a list of candidate
settings is created for each application. A setting is eligible
if the measured IPC of the application with that setting is

Algorithm 2 Dynamic BAPC

1: while there are running applications do
SAMPLING PHASE
for all app do Prefetch(app) = OF F
Execute 1 quantum and update IPCorF,qpp and BWorF app
for all apps
5. for all app do
6 for all con fig in {DEF, U1D2, U7D2} do
7: Prefetch(app) = config
8: Execute 1 quantum and
BWeonfig,app, and P2B ratiocon fig,app

update IPCeonfig,apps

9: Prefetch(app) = OFF
10: end for
11: end for
122 —— CONFIGURATION PHASE
13: for all app do
14: config_listapp = {}
15: for all con fig in {DEF, U1D2, U7D2} do
16: if IPClonig app > (IPCactor X IPCORF app) then
17: Add config to config_listapp
18: end if
19: end for
20: Sort con fig_listapp in descending IPC order
21: for all config in config_listapp do
22: if P2B ratiocon fig,app = P2B ratioipreshola then
23: Prefetch(app) = config
24: end if
25: end for
26: end for
27. ——— EXECUTION PHASE

28: Set quantum duration (e.g. 400ms)
29: for1to N quantums do

30: Execute 1 quantum

31: Update BWgystem

32: if BWSysiem > BWihreshold then

33: min_app = app with lowest P2B ratiocon fig value
34: Prefetch(min_app) = OFF

35: end if

36: end for

37: end while

significantly higher than the IPC with prefetcher disabled.
This is regulated with the IPCYy4cor parameter, which
avoids selecting wrong settings due to estimation errors in
the sampling phase. This factor is not necessary in static
BAPC since it relies in profiling information obtained offline.

Once the list of prefetch settings is made for a given
application, the prefetch settings in the list are arranged in
descending IPC order. Then, the list is looked up to find the
configuration with the maximum IPC among those whose
P2B ratio value is greater or equal than the threshold. In case
of there is not any configuration that fulfills the condition,
the prefetch engine is disabled.

The prefetch settings chosen in the configuration phase
are applied to the execution phase, which keeps the selected
settings for a given number of quanta while monitoring the
total accumulated main memory bandwidth consumption.
If the bandwidth consumption is over the BWip, eshold,
BAPC disables prefetching for the application whose active
prefetch setting presents the lowest P2B ratio value. The
rationale behind this design choice is that this setting is the
least efficient in terms of the performance/bandwidth ratio.

Note that the time taken in the execution phase must
be limited in order to capture dynamic phase changes in
the application behaviors that affect both performance and
bandwidth. In this regard, previous works like [28] have
shown that, on average, execution phases last a few seconds
without significant changes in the IPC of the application.

6 PERFORMANCE EVALUATION
6.1 Methodology

To study the performance and bandwidth utilization under
BAPC, we have implemented both the static and dynamic
versions in a user-level scheduler. In the dynamic version,
this scheduler orchestrates the sampling, configuration and
execution phases, collects performance counters to obtain
the IPC and main memory bandwidth utilization of the
applications, and updates the prefetch configuration for
each application based on Algorithm 2. To analyze how
BAPC performs compared to other prefetch configurations,
we have implemented two static policies in the user-level
scheduler: one keeps prefetching disabled, the other keeps
it to the default prefetch setting. Note that the later is the
default case in a Linux system. In addition, we have also
implemented the Intelligent Bandwidth Shifting (IBS) mecha-
nism proposed by Jiménez et al. [14].

To evaluate the proposal we have designed 3 sets of 25
workload mixes each composed of 6, 8, and 10 applications
randomly selected from SPEC CPU2006 and SPEC CPU2017
benchmark suites. In order to give the same weight to all
the applications in a mix, we have measured the number
of instructions that each application executes in isolation
during 120 seconds with the prefetcher turned off. This
value is used as the target number of instructions of each
application. During the execution of a workload mix, when
an application completes its target number of instructions,
its IPC is obtained and the application relaunched again to
keep a constant load during the whole experiment, which
finishes when all the applications of the mix complete their
target number of instructions. We measure performance by
means of the weighted speedup metric [29], which is calcu-
lated as the sum of the performance of each application of
the workload normalized to its performance when running
in isolation with prefetching disabled.

The thresholds and parameters used by the dynamic
BAPC approach have been obtained through a wide set of
experiments. The presented experimental results have been
obtained with P2B ratioihreshoid = 0.3, BWinreshold =
185, IPCyactor = 1.1, while the execution phase length in
quanta (V) and the quantum length are set to 50 and 400ms,
respectively. Sensitivity studies of all these parameters have
been carried out. For illustrative purposes, Section 2 of the
Appendix presents two sensitivity studies varying the P2B
threshold and sampling quantum length.

6.2 Static BAPC

Figure 5 presents the performance achieved by the default
(DEF) and proposed static (BAPC_static) prefetch configura-
tion algorithms normalized to the performance of prefetch-
ing disabled (OFF) across 6-, 8-, and 10-application work-
loads. The 25 workloads of each scenario are presented
in increasing speedup order of DEF over no prefetching.
As observed, the default prefetch setting does not always
achieve higher performance than no prefetching. Moreover,
performance losses in some mixes can be as high as 30%.
These cases appear due to prefetch inaccuracy and the high
memory contention that prefetching causes. Because band-
width contention increases with the number of applications,
the number of workloads where DEF is outperformed by

—=OFF —-DEF —BAPC_Static

g 1.0
‘25 0.9
0.8
0.7

123 456 7 8 9 101112 1314151617 18 19 20 21 22 23 24 25
Worload

(a) 6-application workloads

14 -=-OFF —+-DEF —BAPC_Static
13

012
Q.
11

1.0
©
Eog
o
Z08
0.7

0.6

lized |

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Workload

(b) 8-application workloads
14 -=-OFF —-DEF —Static

13
o 12
&
511
w
=10
5
Eo9
o
Zo038

07

06

f/vv‘*/
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
Workload

(c) 10-application workloads

Fig. 5: Performance of DEF and BAPC_Static prefetch con-
figurations normalized to prefetching disabled.

OFF tends to grow with the mix size. There are 10, 9, and 14
workloads in the 6-, 8-, and 10-application scenarios respec-
tively, where the OFF setting outperforms DEF. However,
despite these cases, DEF achieves better performance than
OFF in most workloads, reaching speedups close to or above
40% regardless of the number of applications in the mix.

Figure 6 presents the bandwidth utilization (190
accesses/ s is assumed as the 100%) consumed by each
workload mix in the studied approaches. The reported
bandwidth consumption includes both on demand and
prefetch accesses. As observed, the bandwidth utilization
greatly varies across the studied approaches. While it ap-
proximately ranges from 10% to 40% when prefetching is
disabled, it grows over 90% in many workloads with the
default configuration. This means that DEF saturates the
system bandwidth with prefetches, which translates into
system performance degradation when prefetch accuracy
and timeliness are low and do not compensate the induced
bandwidth contention.

In contrast, the BAPC_static approach reaches an in-
termediate bandwidth consumption, usually ranging from
40% to 90% of the system bandwidth. This is because
BAPC_static disables prefetching for prefetch unfriendly ap-
plications and selects the best prefetch setting, considering
performance and bandwidth, for the remaining, prefetch
friendly, applications. This way allows BAPC_static to re-
duce the bandwidth consumption of those applications

10

HOFF MDEF mBAPC_Stati
100% —>tatie

80%

[=4
2 60%
H
5 40%
ES
20%
0%
123456 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25
Workload
(a) 6-application workloads
1009 BWOFF mDEF mBAPC_Static
3
80%
c
2 60%
]
5 40%
2
o

20%
0%

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Workload

(b) 8-application workloads

mOFF ®DEF mBAPC_Static
100%

80%

on

60%

BW Utilizat
B
o
X

20%

0%
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
Workload

(c) 10-application workloads

Fig. 6: Bandwidth consumed by BAPC_Static, DEF, and OFF
with respect to the maximum available in the system.

that do not benefit from the additional prefetch requests,
thus reducing the bandwidth contention and increasing the
bandwidth availability for those applications that really
need it. These key actions turn into performance gains.

To better figure out how bandwidth contention impacts
on performance, notice that BAPC_static greatly outper-
forms the default prefetch configuration when the band-
width utilization exceeds 90% (e.g. workloads 7, 28, and 51).

6.3 Dynamic BAPC

This section evaluates the dynamic version of the proposed
mechanism, which, as mentioned above, selects the prefetch
settings at run-time for each application depending on the
execution phase and the system bandwidth utilization. We
compare its performance and bandwidth consumption with
no prefetching, the default prefetch configuration, and the
IBS mechanism [14]. As our approach, IBS also seeks to save
bandwidth and only enables prefetching for those applica-
tions that IBS estimates that can benefit from it. However,
it only considers two prefetch configurations: disabled or
enabled at its maximum aggressiveness. Consequently, it
does not take advantage of less aggressive prefetch con-
figurations which, as shown in Section 4.2, can achieve
most of the performance benefits of the most aggressive
configuration while significantly consuming less bandwidth
thus reducing the bandwidth contention. This section eval-
uates the studied schemes under multiprogram workloads.

14 -=-OFF —DEF

IBS -e-BAPC_Dynamic

123 456 7 8 91011121314151617 18 19 202122232425
Worload

(a) 6 applications workloads

1.4 -=-OFF -+DEF IBS -e-BAPC_Dynamic

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Workload

(b) 8 applications workloads

14 -=-OFF —+DEF

1.3
g 12 \WM—
S 11 -
[
£10 =

Eo9

(=}

Z038
0.7
06

IBS -e-BAPC_Dynamic

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
Workload

(c) 10 applications workloads

Fig. 7: Performance of DEF, IBS, and BAPC_Dynamic con-
figurations normalized to prefetching disabled.

Sections 3 and 4 of the Appendix discuss the accuracy of
the performance and bandwidth estimated in the sampling
phase, and the per-application performance achieved when
the workloads run under dynamic BAPC compared to the
default prefetch configuration, respectively.

Figure 7 shows the normalized IPC of the dynamic
approach (BAPC_dynamic), the default configuration, and
IBS with respect to no prefetching. Comparing Figure 7
to Figure 5 we can observe that the dynamic approach
achieves similar results to the static version. BAPC_dynamic
achieves a noticeable IPC improvement over OFF, DEF and
IBS, with the only exception of just a few workloads where
they present barely the same behavior. The performance
improvement is on average by 12%, 15%, and 16% over DEF
for 6-, 8- and 10-application workload mixes, respectively.
This means that BAPC_dynamic is able to detect which is
the proper configuration in the distinct execution intervals,
making an excellent use of the system bandwidth. IBS
outperforms the default prefetch configuration by turning
off the prefetching for the applications that do not benefit
from it, which reduces bandwidth contention. However,
BAPC_dynamic has a finer control of the prefetch aggres-
siveness and thus it achieves a better bandwidth utilization,
which results in significantly higher performance for most
of the workloads.

Figure 8 shows the bandwidth utilization results for the

11

EOFF EmDEF OIBS M BAPC_Dynamic
100%

80%
60%

40%

BW Utilization

20%

0%
123456 7 8 910111213141516171819202122232425
Workload

(a) 6-application workloads

EOFF EDEF OIBS MBAPC_Dynamic
100%

80%
60%

40%

BW Utilization

20%

0%
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Workload

(b) 8-application workloads

EOFF WMDEF [OIBS MBAPC_Dynamic

BW Utilization

5152 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
Workload

(c) 10-application workloads
Fig. 8: Bandwidth consumption of the OFF, DEF, and
BAPC_Dynamic prefetch configurations with respect to the
maximum bandwidth available in the system.

studied prefetch configurations and mechanisms. We can
drawn the same conclusions as in the static BAPC approach.
In this case, the dynamic approach achieves, on average,
39%, 42%, and 45% bandwidth savings compared to the
default configuration for 6-, 8-, and 10-applications.

Finally, notice that the bandwidth utilization of the dy-
namic approach is significantly lower than that of the static
approach. Thus, there is still room to further increase the
performance by properly relaxing the thresholds of the algo-
rithm. However, we choose relatively strict thresholds since
they provide both high performance and low bandwidth,
which makes the approach to stand out in scalability.

6.4 Case study

In order to better understand the reason why our proposal
is able to improve performance and bandwidth, this section
analyzes the behavior of each individual application of a
given workload. For illustrative purposes we study mix
58. Figure 9a, Figure 9b, and Figure 9c depict the IPC,
bandwidth utilization, and prefetch configuration for each
application of the workload and the studied prefetch con-
figurations and BAPC mechanisms.

First of all, looking at Figure 9a, we can observe how
the configuration with prefetching disabled outperforms the
default prefetch configuration in most benchmarks, which

1.4 EOFF WDEF EBAPC_Static M BAPC_Dynamic

(a) IPC

EOFF mDEF OBAPC_Static B BAPC_Dynamic

N
[=}
o

[
v
o

wv
o

Bandwidth (trans/usec)
=
o
S

o

0

(b) Bandwidth consumption

EOFF mMDEF OU1D2 mU7D2

100%

80%

L 60%
=

40%

20%

0%

xalan| mcf |namd| libqu [soplex| sjeng | gems | zeus | astar | zeus
(c) Prefetch configuration

Fig. 9: IPC, bandwidth consumption and prefetch configu-
ration of the applications in workload 58.

indicates that the default prefetch configuration suffers from
bandwidth contention. Figure 9a confirms this fact since
the applications reach an overall bandwidth utilization of
190 trans/us for the default prefetch configuration, which
eliminate the potential benefits that prefetching usually has.

The static BAPC mechanism selects the best prefetch
configuration for each application. For some application this
turns into higher prefetch aggressiveness and bandwidth
utilization (e. g., mcf) while for others prefetching is disabled
and bandwidth saved (e.g., xalancbmk). The static BAPC
mechanism improves the performance of the configuration
with prefetching disabled but it still suffers from significant
bandwidth contention (overall bandwidth utilization of 180
trans/ ps). Thus, the performance benefits it has compared
to the prefetching disabled are moderate.

The dynamic BAPC mechanism is able to (i) adapt the
prefetch configuration to the dynamic phase behavior of
the applications and (ii) reduce the prefetch aggressiveness
of some applications as soon as it detects that the band-
width utilization is excessive and could significantly rise
bandwidth contention. As Figure 9c shows, these features
make the prefetch configuration of most applications to
vary among different prefetch settings. This way turns into
important bandwidth savings for several applications that
reduce their prefetch aggressiveness for a long time in
their execution (e.g., mcf, GemsFDTD) with minor impact on

12

their performance. Other applications such as xalancbmk run
with more aggressive prefetch configurations (compared to
the static BAPC mechanism) for approximately 30% of the
execution time, which significantly improves the perfor-
mance with a small increase in the bandwidth utilization. In
summary, adapting the prefetch configuration to the phase
behavior of applications while limiting the bandwidth uti-
lization to avoid bandwidth contention allows the dynamic
BAPC mechanism to improve the performance of most
applications compared to the static BAPC mechanism.

7 CONCLUSIONS

Prefetch engines in current high-performance processors
include a wide range of prefetch settings, which makes
difficult to dynamically configure them at run-time. This
work makes two main contributions. Firstly, we charac-
terize the behavior of a wide set of applications varying
the bandwidth contention for the most significant prefetch
configurations in the IBM POWERS. We found that the best
prefetch setting for each individual application, considering
both performance and bandwidth consumption, does not
depends only on the application itself but also on the co-
running applications competing for memory bandwidth.
Secondly, we propose Bandwidth-Aware Prefetch Config-
uration (BAPC), an scalable and adaptive prefetch algo-
rithm. The dynamic version of BAPC chooses the prefetch
setting that better fits the behavior of each application in
order to achieve a good trade-off between performance and
bandwidth. Experimental results show that BAPC excels in
high-contention bandwidth scenarios. Compared to default
prefetching, BAPC outperforms by 12%, 15%, and 16% for
workload mixes consisting of 6, 8, and 10 applications, while
dramatically reducing the bandwidth consumption.
Although the focus of this paper has been on the IBM
POWERS, the fundamentals of the characterization study
and the devised approach could be generally adapted to
other processors implementing programmable prefetchers.

ACKNOWLEDGMENTS

This work was partially supported by Ministerio de Cien-
cia, Innovacién y Universidades and the European ERDF
under Grant RTI2018-098156-B-C51, Generalitat Valenciana
under Grant AICO/2019/317, and Universitat Politénica de
Valencia (PAID-06-18) under grant SP20180140.

REFERENCES

[1] J.-L.Baer and T.-E. Chen, “An effective on-chip preloading scheme
to reduce data access penalty,” in ACM/IEEE Conference on Super-
computing, 1991, pp. 176-186.

[2] J.W.Fu,]. H. Patel, and B. L. Janssens, “Stride directed prefetching
in scalar processors,” ACM SIGMICRO Neuwsletter, vol. 23, no. 1-2,
pp. 102-110, 1992.

[3] D. Joseph and D. Grunwald, “Prefetching using markov predic-
tors,” in 24th International Symposium on Computer architecture,
1997, pp. 252-263.

[4] G. B. Kandiraju and A. Sivasubramaniam, “Going the distance
for TLB prefetching: an application-driven study,” in 29th Annual
International Symposium on Computer Architecture, 2002, pp. 195-
206.

[5] K.J.Nesbitand J. E. Smith, “Data cache prefetching using a global
history buffer,” in 10th International Symposium on High Performance
Computer Architecture, 2004, pp. 96-96.

6]

(71

(8]

(9]

[10]

(1]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

S. H. Pugsley, Z. Chishti, C. Wilkerson, P. Chuang, R. L. Scott,
A. Jaleel, S. Lu, K. Chow, and R. Balasubramonian, “Sandbox
prefetching: Safe run-time evaluation of aggressive prefetchers,”
in IEEE 20th International Symposium on High Performance Computer
Architecture (HPCA), 2014, pp. 626-637.

S. Byna, Y. Chen, and X.-H. Sun, “Taxonomy of data prefetching
for multicore processors,” in Journal of Computer Science and Tech-
nology, vol. 24, no. 3, 2009, pp. 405-417.

E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt, “Coordinated
control of multiple prefetchers in multi-core systems,” in 42st
Annual IEEE/ACM International Symposium on Microarchitecture,
2009, pp. 316-326.

E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Prefetch-aware
shared resource management for multi-core systems,” in 38th
Annual International Symposium on Computer Architecture, 2011, p.
141-152.

C.]. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt, “Prefetch-aware
DRAM controllers,” in 41st IEEE/ACM International Symposium on
Microarchitecture, 2008, pp. 200-209.

M. Torrens, “Improving prefetching mechanisms for tiled cmp
platforms,” in PhD. Thesis. Universitat Politécnica de Catalunya,
2016.

C. Ortega, M. Moreto, M. Casas, R. Bertran, A. Buyuktosunoglu,
A. E. Eichenberger, and P. Bose, “libprism: An intelligent adap-
tation of prefetch and smt levels,” in International Conference on
Supercomputing, 2017, pp. 28:1-28:10.

V. Jiménez, F. J. Cazorla, R. Gioiosa, A. Buyuktosunoglu, P. Bose,
E. P. O'Connell, and B. G. Mealey, “Adaptive prefetching on
POWER?: improving performance and power consumption,”
ACM Transactions on Parallel Computing, vol. 1, no. 1, pp. 1-25,
2014.

V. Jiménez, A. Buyuktosunoglu, P. Bose, F. P. O’Connell, F. J.
Cazorla, and M. Valero, “Increasing multicore system efficiency
through intelligent bandwidth shifting,” in 21st IEEE International
Symposium on High Performance Computer Architecture, 2015, pp.
39-50.

A. Valero,]J. Sahuquillo, S. Petit, P. Lépez, and]. Duato, “Com-
bining recency of information with selective random and a victim
cache in last-level caches,” ACM Transactions on Architecture and
Code Optimization, vol. 9, no. 3, pp. 1-20, 2012.

S.-w. Liao, T.-H. Hung, D. Nguyen, C. Chou, C. Tu, and H. Zhou,
“Machine learning-based prefetch optimization for data center
applications,” in Conference on High Performance Computing Net-
working, Storage and Analysis, 2009, pp. 1-10.

M. Li, G. Chen, Q. Wang, Y. Lin, P. Hofstee, P. Stenstrém, and
D. Zhou, “Pater: A hardware prefetching automatic tuner on IBM
POWERS processor,” Computer Architecture Letters, vol. 15, no. 1,
pp- 3740, 2016.

K. Nesbit, A. Dhodapkar, and J. Smith, “Ac/dc: an adaptive
data cache prefetcher,” in 13th International Conference on Parallel
Architecture and Compilation Techniques, 2004, pp. 135-145.

S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback directed
prefetching: Improving the performance and bandwidth-efficiency
of hardware prefetchers,” in 13st International Conference on High-
Performance Computer Architecture, 2007, pp. 63-74.

W. Heirman, K. D. Bois, Y. Vandriessche, S. Eyerman, and 1. Hur,
“Near-side prefetch throttling: adaptive prefetching for high-
performance many-core processors,” in 27th International Confer-
ence on Parallel Architectures and Compilation Techniques, 2018, pp.
28:1-28:11.

B. Panda and S. Balachandran, “Expert prefetch prediction: An ex-
pert predicting the usefulness of hardware prefetchers,” Computer
Architecture Letters, vol. 15, no. 1, pp. 13-16, 2016.

X. Zhuang and H. S. Lee, “Reducing cache pollution via dynamic
data prefetch filtering,” IEEE Trans. Computers, vol. 56, no. 1, pp.
18-31, 2007.

X. Dang, X. Wang, D. Tong, Z. Xie, L. Li, and K. Wang, “An adap-
tive filtering mechanism for energy efficient data prefetching,” in
18th Asia and South Pacific Design Automation Conference, 2013, pp.
332-337.

V. Selfa, J. Sahuquillo, M. E. Gémez, and C. G. Requena, “Effi-
cient selective multicore prefetching under limited memory band-
width,” Journal of Parallel and Distributed Computing, vol. 120, pp.
32-43, 2018.

B. Hall, P. Bergner, A. S. Housfater, M. Kandasamy, T. Magno,
A. Mericas, S. Munroe, M. Oliveira, B. Schmidt, W. Schmidt

[26]

[27]

[28]

[29]

13

et al., Performance optimization and tuning techniques for IBM Power
Systems processors including IBM POWERS. IBM Redbooks, 2017.
J. Feliu, S. Petit,]J. Sahuquillo, and J. Duato, “Cache-Hierarchy
Contention Aware Scheduling in CMPs,” in IEEE Transactions on
Parallel and Distributed Systems, vol. 25, no. 3, 2014, pp. 581-590.

S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback directed
prefetching: Improving the performance and bandwidth-efficiency
of hardware prefetchers,” in 13th International Symposium on High
Performance Computer Architecture, 2007, pp. 63-74.

J. Feliu, J. Sahuquillo, S. Petit, and J. Duato, “Addressing fairness
in smt multicores with a progress-aware scheduler,” in 2015 IEEE
International Parallel and Distributed Processing Symposium, 2015, pp.
187-196.

S. Eyerman and L. Eeckhout, “System-level performance metrics
for multiprogram workloads,” IEEE Micro, vol. 28, no. 3, pp. 42-53,
2008.

Carlos Navarro received the BS and MS de-
grees in computer engineering from the Uni-
versitat Politecnica de Valéncia (UPV), Spain,
in 2018 and 2019, respectively. He is currently
working towards a PhD degree at the Depart-
ment of Computer Engineering (DISCA) of the
same university. His PhD research focuses on
prefetching strategies in commercial multicore
processors.

Josué Feliu received his MSc and PhD de-
grees in computer engineering from the UPV,
Spain, in 2012 and 2017, respectively. He is
currently working as a postdoctoral researcher at
the Department of Computer Engineering of the
same university. His research interests include
scheduling strategies and performance model-
ing for multicore and multi-threaded processors.
He was awarded the "IEEE TCSC Outstanding
Ph.D Dissertation Award” in 2017.

Salvador Petit (M'07) received the PhD degree
in computer engineering for the UPV, Spain.
Since 2009, he has been an Associate Professor
with DISCA Department at UPV, where he has
taught several courses on computer organiza-
tion. He has authored over 100 refereed confer-
ence and journal papers. His current research in-
terests include multithreaded and multicore pro-
cessors, memory hierarchy design, GPU archi-
tecture, and resource management.

Maria E. Gomez received her M.S. and Ph.D.
degrees in Computer Engineering from the UPV,
Spain, in 1996 and 2000, respectively. She
joined the DISCA department at UPV in 1996
where she is currently a Full Professor. She has
published more than 70 conference and journal
papers. She has served on program committees
for several major conferences. Her research in-
terests are on processor architecture and inter-
connection networks.

Julio Sahuquillo (M’04) received the BS, MS,
and PhD degrees from the UPV, Spain, all in
computer engineering. He is a Full Professor
with DISCA department at the UPV. He has
taught several courses on computer architec-
ture. He has authored over 150 refereed confer-
ence and journal papers. His research interests
include processor microarchitecture, memory hi-
erarchy design, GPU architecture, and system
resource management.

