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Abstract:

The objective of this study was to test a regenerative medicine strategy for the regeneration of 

articular cartilage. This approach combines microfracture of the subchondral bone with the 

implant at the site of the cartilage defect of a supporting biomaterial in the form of microspheres 

aimed at creating an adequate biomechanical environment for the differentiation of the 

mesenchymal stem cells that migrate from the bone marrow. The possible inflammatory 

response to these biomaterials was previously studied by means of the culture of RAW264.7 

macrophages. The microspheres were implanted in a defect of 3 mm in diameter in the trochlea 

of the femoral condyle of New Zealand rabbits, covering them with a PLLA membrane 

manufactured by electrospinning. Experimental groups included a group where exclusively 

poly(L-lactic acid) (PLLA) microspheres were implanted, another group where a mixture of 

50/50 microspheres of PLLA, (hydrophobic and rigid) and others of chitosan, CHT, (a 

hydrogel) were used, and a third group used as a control where no material was used and only 

the membrane was covering the defect. The histological characteristics of the regenerated tissue 

have been evaluated three months after the operation. We found that during the regeneration 

process the microspheres, and the membrane covering them, are displaced by the neoformed 

tissue in the regeneration space towards the subchondral bone region, leaving room for the 

formation of a tissue with the characteristics of hyaline cartilage.

Keywords: Articular cartilage regeneration, cartilage engineering, rabbit knee model, 
polylactide, chitosan, microspheres

Running title: Microspheres for a cell free approach for cartilage regeneration
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Introduction

Cartilage regeneration is a problem yet to be solved in clinical practice, since it is a tissue with 

a low cell density and without vascularization. Osteochondral injuries often result in articular 

cartilage damage and premature osteoarthritis. This is already a huge problem, as it has been 

described to affect over 10,2% of adult population [1], and its effect is noted in a 5-fold increase 

of articular prosthesis implanted in the period between 1994 and 2005 [2].

In clinical practice, a series of techniques have been applied for the regeneration or repair of 

articular cartilage that do not require the manipulation of cells outside the patient's organism, 

such as microfracture [3], mosaicplasty [4]. Other techniques based on tissue engineering 

require the implant of chondrocytes (autologous chondrocyte implantation, ACI, or matrix-

assisted chondrocyte implantation, MACI) [5] or mesenchymal stem cells, MSCs, expanded ex 

vivo.

Cell-free approaches based on injuring subchondral bone to induce migration of pluripotent 

cells with chondrogenic capacity to the site of the defect are cheaper and technically easier to 

perform, but their intermediate and long-term results are poor, especially for younger and active 

patients [6]. It has been hypothesized that the implantation of a supporting biomaterial able to 

create the adequate biomechanical environment for the cells arriving to the regeneration site 

could significantly improve the quality of the new-formed cartilage. The implantation of cell-

free scaffolds for cartilage regeneration greatly simplifies the treatment with respect to the 

implant of cell laden scaffolds or hydrogels with lower mean costs and fewer surgeries needed, 

avoiding complications related to two-step techniques [7]. These scaffolds should be non-

immunogenic and biodegradable to avoid deposits, porous to allow migration and adhesion of 

cells from subchondral bone, and mechanically stable to sustain the regeneration process. 

Bioresorbable polyesters, such as polylactide, PLA [8,9] or polycaprolactone, PCL [10,11] have 

been used previously in cartilage engineering animal models. Cell-free strategies using PCL 

[10,11] or biostable acrylic scaffolds of varying stiffness [12,13] probed in rabbit knee models 

their capacity to induce the formation of histologically high quality tissue with the 

characteristics of hyaline cartilage. To increase the wettability of these hydrophobic materials 

their combination with hydrophilic coatings have been proposed [14]. 

In this work, we studied in a rabbit model the performance of a scaffolding material in the form 

of microspheres, combining stiff and hydrophobic microspheres made of a bioresorbable 

material such as PLLA with hydrophilic and compliant chitosan, CHT, microspheres. CHT has 
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been proved to be a biodegradable and biocompatible material, and has been proposed for 

cartilage regeneration. Although many works demonstrated good biocompatibility of CHT-

scaffolds [15-18], others have reported increased inflammatory response of CHT materials 

when macrophages were studied [19,20]. This is why the possible inflammatory response was 

investigated using a model of RAW264.7 macrophages in culture in the presence of PLLA 

and/or CHT microspheres before implantation in animals. 

Materials and Methods

Microspheres obtaining and characterization

PLLA used was medical grade (Purasorb PL-18 by Corbion). PLLA microspheres were 

fabricated via an oil/water emulsion method. The oil phase consisted of 2% w/v PLLA solution 

in chloroform and the aqueous phase 4% w/v poly(vinyl alcohol) solution (Mw 130,000 Da, 

99% + hydrolized by Sigma Aldrich). Briefly, 20 mL of PLLA solution was added drop wise 

via a syringe pump into 200 mL of PVA solution under constant stirring at 750 rpm with a feed 

rate of 1 mL/min. 150 mL of deionized water was added to assist with solvent evaporation, and 

the mixture was kept stirring during 24 h. After stirring, the resulting microparticles suspension 

were washed twice with water, filtered with ethanol through a 50 µm filter, air-dried and 

vacuum dried prior to microparticles collection. 

In order to improve the hydrophilicity, the microparticles were subjected to plasma treatment 

inside a Piccolo (Plasma Electronic) Microwave plasma chamber. The plasma treatment 

parameters were: Argon gas, 50 Pa initial gas pressure, with a gas flow rate of 160 sccm, during 

600 s. 

Electrospun PLLA mat was prepared from a 2% w/v PLLA solution in a 30/70 mixture of NN 

Dimethyl Formamide and Methylene Chloride (Sigma) with a voltage of 25 kV between the 

needle and the flat collector, with a traveling distance of 15 cm and needle diameter of 0.5 mm, 

and feeding rate of 8 mL/h.

CHT, microspheres were formed by neutralization of an acid solution of CHT in a basic solution 

subjected to an electric field. Medical-grade CHT (Protasan UP B 80/20, Novamatrix) was 

dissolved at a concentration of 2.5% w/v in a 2 % v/v acetic acid solution. The precipitating 

solution was prepared with NaOH 1M, Na2SO4·10 H2O 0.5 M and distilled water in a ratio 

10/30/60 and mixed with absolute ethanol in a proportion 70/30 to get better dispersion of the 

beads. The process consisted in passing the solution through a needle of 0.2 mm inner diameter, 
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placed at a height of 7 cm over the coagulant bath in agitation, with constant feed ratio of 70 

µL/min controlled by a syringe pump. A continuous electric field of 6 kV was applied between 

the needle and the bottom of the coagulating bath, performing the process inside an 

Encapsulation Unit VARV1 (Nisco Enginering).

CHT microspheres were washed with distilled water several times until pH7, by decantation 

and aspiration of the supernatant.

Confined compression tests were performed in a Microtest Electromecánica SCM3000 95 

instrument. Prior to the test, the microspheres were kept immersed in liquid water for 24 h. The 

microspheres were introduced in a plunger cylinder device, made of PTFE, with a diameter of 

5 mm. The initial thickness of the microsphere layer was 1 mm. The cylinder had perforations 

in the lower part that allow eliminating the water that comes out of the microspheres during the 

compression test. A deformation ramp was applied at a speed of 1 mm/min until the force 

measured in the load cell was 10 N. The result expressed in terms of a compression module, K, 

is the average of 5 measurements on a confined cylindrical sample of cross section S, and initial 

height l0

𝐾 =

𝐹
𝑆

∆𝑙
𝑙0

where F is the applied compression force, and l is the measured deformation.

The morphology of PLLA microparticles was observed in the Field Emission Scanning 

Electron Microscopy (FESEM) (Ultra 55, Zeiss Auriga Compact, Germany). The images were 

taken at 1 kV, with platinum coated samples (JFC 1100, JEOL, Japan device). Images of the 

CHT microspheres, swollen in water, were obtained by binocular loupe (MZ APO, Leica 

Microsystems, Germany). 

Raw264.7 culture and incubations. Evaluation of Cytotoxicity

Cell viability and the eventual cytotoxicity of the CHT, PLLA and PLLA+CHT microspheres 

(in a 1:1 volume ratio) were studied in vitro using murine RAW264.7 macrophage. This cell 

line constitute an excellent model for studies of cytotoxicity of different substances on 

biological systems, because RAW264.7 expresses different markers of cellular activity, such 

as, interleukin synthesis, nitric oxide production (NO), expression of nitric oxide synthases 

(NOS) against toxic substances [21]. These cells were maintained in DMEM without phenol 
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red supplemented with 10% FBS and antibiotics (100 U/mL penicillin and 100 g/mL 

streptomycin) at 37°C in a 5% CO2 atmosphere. The polymeric microspheres were sterilized 

with ethanol (70% v/v) overnight. Then, they were washed three times with mili-Q water sterile 

and were incubated with DMEM without phenol red, 10% FBS and antibiotics overnight at 4°C 

before its use. Cell viability was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 

tetrazolium bromide (MTT) assay [17]. Briefly, 1×105 cells/tube were seeded inside 500 µl 

eppendorf tubes with the microspheres and cultured during 24 or 48 h. After these culture 

periods, cells were incubated for two additional hours with a solution of 0.1 mg/mL MTT 

(Sigma, USA). After washing, the formazan precipitate was dissolved in 100 μL of dimethyl 

sulfoxide (DMSO) and the absorbance read at 570 nm using an automatic ELISA plate reader 

(Infinite® F50, Tecan Trading AG, Switzerland). Results were expressed as % basal, taking as 

basal the cell viability in the control condition at 24 h. The potential cytotoxicity of the 

microspheres was evaluated by the interleukin-1β (IL-1β) and the nitric oxide (NO) production 

released into the culture medium by RAW264.7 cells after 24 and 48 h. IL-1β was measured by 

ELISA kits (BD OptEIA™ mouse IL-1β ELISA) following the manufacturer's 

recommendations. The stable end-product of NO production was assessed using Griess reagent 

[22]. Briefly, 200 µL samples of conditioned media or nitrite standards (0–100 nM) were mixed 

with 200 µL of Griess reagent (1% sulfanylamide and 0.1% naphthylethylene-diamine in 5% 

phosphoric acid) and absorbance was measured at 530 nm. 

Results are expressed as the mean ± SEM and were obtained from two separate experiments 

performed in quadruplicate. Differences between groups were assessed by one-way ANOVA 

with Tukey post hoc test. For non-normal distributed data nonparametrical Kruskal–Wallis with 

Dunn’s post hoc test was performed, using Graph Pad InStat v. 3.00 (Graph Pad Software, San 

Diego, CA, USA). p<0.05 was considered significant for all statistical analyses.

Rabbit model 

In order to evaluate cartilage regeneration, an animal model was designed following the ICRS 

guide [23]. With the approval of the ethics committee of the Universitat de València, 12 week-

old male New Zealand rabbits weighing about 1800 g were used. The surgical technique 

included a medial para-patellar approach to the right knee, eversion of the patella and the 

creation of the osteochondral injury in the femoral trochlear groove using a 3 mm diameter 

sized punch. The cartilage defect was filled with wet biomaterial microspheres (with the 

consistency of a paste), and over them a circular membrane composed of PLLA, 3 mm diameter 
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and 100 μm thick, was placed. This membrane, with the clot formed by the subchondral bone 

injury bleeding, ensured mechanical stability without the need for sutures or fibrin glue. 

A total of 9 rabbits were used for each experimental group to have results statistically 

significant. In order to limit the number of experimental animals, only two microspheres 

formulations were considered: In one of the series, named PLLA, only PLLA microspheres 

were implanted, in the second series, named PLLA+CHT, a mixture of PLLA and CHT (in a 

1:1 volume ratio) was implanted. A different group, named M was used to evaluate the 

biological ability of the animals to repair the injury, where the cartilage defect was created 

including the injury of the subchondral bone, but only the PLLA membrane was placed. The 

control group of native cartilage consisted of the left knees of the rabbits. It must be noted that 

2 rabbits deceased during the initial anaesthetic part of the surgery, previous to the implantation 

of the scaffolds.

12 weeks after the procedure, the animals were sacrificed using a veterinary-controlled tiopental 

overdose. The knees were extracted and the macroscopic evaluation was carried out following 

the ICRS proposal [24]. They were then processed, including a fixation in 10% buffered 

formaldehyde for 5 days followed by decalcification using Osteosoft® for 5 weeks. The 

samples were then included in polyester-wax for microscopy, low melting-point, and 5 to 7 μm 

seriated sections were performed. The different sections were stained using Haematoxylin-

Eosin (H&E), Toluidine blue and Masson trichromic for the different microscopic 

measurements. Polarized light microscopy was also used in order to observe the orientation of 

the collagen fibers. 

Microscopic evaluation was also performed following the ICRS II scale [25], where each 

parameter is scored using a 100 unit visual analogue scale, with a score of 0 being assigned for 

properties considered indicative of fibrous cartilage or poor quality articular hyaline cartilage, 

and 100 for good-quality articular hyaline cartilage. However, we added 3 parameters to 

evaluate the presence of non-reabsorbed membrane and microspheres, as well as inflammation 

in the areas where they were observed. The quality of the regenerated cartilage obtained was 

also evaluated using the Image Pro Plus 7.0 programme with morphometric criteria: we 

measured cartilage and subchondral bone thickness, cell density, interdigitation index (the 

index obtained by dividing the length of cartilage surface measured in a particular sample and 

the ideal curved surface a normal cartilage would have), number of non-reabsorbed 
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microspheres and their depth, area of non-reabsorbed membrane and its depth and, in the cases 

where they were observed, area and depth of cyst formation or inflammation.

Two independent observers carried out all the measurements, and  coefficients [26] were 

calculated in order to establish the consistency of the observations.

The statistical analysis included a Kolmogorov-Smirnov test to determine the normal 

distribution of the data, R-Pearson test to establish the absence of correlation between variables, 

Anova test for mean comparison, Chi2 test for categorical variables and Scheffe or Games-

Howell test for multiple mean comparisons depending on whether the variances were 

homogeneous or not. Significant differences were established below p<0.05.

Results

Supporting biomaterials

Figure 1 shows the morphology of the PLLA and CHT microspheres. The diameter was 40 20 

µm for PLLA and 2055 µm for CHT. The combination of the rigid and hydrophobic 

microspheres of PLLA with the hydrophilic ones of CHT allows modulating the biomechanical 

environment found by the cells that invade the site of the cartilage defect. The mechanical 

confined compression test aims to simulate the situation that occurs in vivo, with the implanted 

microspheres in the cartilage defect. In this test the microspheres are introduced into the 

poly(tetrafluor ethylene), PTFE cylinder (inset in Figure 2), to a thickness of 1 mm, and distilled 

water is added to fill the space between the microspheres. The stress-strain diagram (Figure 2) 

of the test carried out with CHT microspheres shows how, at the beginning, with a tension close 

to 0, the piston moves, eliminating the excess water (I). In a second stage (II), the applied force 

grows when the microspheres contact each other and start to deform, and is the stage II that has 

been considered representative of the elastic modulus during the regeneration process. The 

origin of deformation was detected by the shift of the stress-strain curve from the straight line 

fitted to the experimental data in stage I. When the microspheres occupy all the volume, the 

tension grows rapidly representing the elastic modulus of the block material (III). The value of 

the compression module was calculated in the strain interval between 0.1 and 0.2 that 

corresponds to the physiological deformation of cartilage. The values obtained were 1.20.25 

MPa in the case of PLLA, 0.640.03 MPa for the mixture of PLLA and CHT microspheres and 

0.210.08 MPa for CHT.

In vitro tests, induction of inflammation mediators
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As a first step, before implantation of the biomaterial in the animals, inflammatory response 

was tested in vitro. We evaluated cell viability of RAW264.7 macrophages with the different 

microspheres compared to spheres-free culture (control condition). Figure 3 shows no 

significant differences in viability of cells cultured in the presence of different microspheres 

and the control condition, after 24 or 48 h of incubation. The influence of microspheres on the 

inflammatory response was evaluated by measuring the pro-inflammatory cytokines IL-1β and 

the NO production by macrophages in culture. We found no differences on IL-1β produced 

after the cells were grown in the presence or absence (control condition) of microspheres after 

24 or 48 h (Figure 4a). Similar results were obtained for NO produced (Figure 4b), although we 

only found a significant increase in NO production after 48 h of incubation of cells grown in 

the presence of PLLA+CHT respect to the control (Figure 4b, p<0.05).

Rabbit knee model

No inflammatory reaction or infection was observed throughout the post-operative period, and 

all of the animals were found to have a normal walking behaviour and were able to maintain 

bipedalism within three weeks after the procedure.

Figure 5 shows representative histology images of the regenerating zone three months after 

implantation of only PLLA microspheres (Figure 5a) or a mixture of PLLA and CHT 

microspheres (5c), in both cases covered by a PLLA membrane. The histology of the new-

formed tissue when only the membrane was implanted after osteochondral injury is shown in 

Figure 5d. It is worth noting that the degradation time of PLLA is much longer than three 

months, thus, both the PLLA membrane and PLLA microspheres are expected to be in the 

regeneration zone yet. Interestingly enough both are shifted out of the cartilage zone, as 

observed in Figure 5a (microspheres are indicated by the yellow arrows) and at higher 

magnification in Figure 5b, while the rests of the membrane are shown by the green arrows. 

The number of particles shown in the histology when a 50/50 mixture of PLLA and CHT 

microspheres is implanted is much smaller than when only PLLA microspheres are implanted, 

and they appear at a larger distance to the articular surface. A macroscopic view of the articular 

surface three months after implantation is shown in Figure 6. The areas of regenerated cartilage 

in PLLA series had a smooth white-coloured surface, with only occasional irregularities or 

small lumps (Figure 6a). Cross section also shows a quite homogeneous cartilage layer in the 

regeneration site (Figure 6b). Nevertheless, when PLLA and CHT microspheres were implanted 

irregularities, in the form of lumps, at the surface were more frequent, appearing even at some 
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distance from the site of the cartilage defect (Figure 6c). The histology of these lumps is shown 

in Figure 7b and corresponds to a disordered growth of cartilaginous tissue. Group M had a 

very irregular surface in 75% of the cases, having generally a fibrous appearance, showing a 

repaired surface with a matt appearance, bulges and filiform projections and occasionally 

fissures between native and repaired tissues. 

Subchondral cysts present in the PLLA and CHT group were present in 44.4% of the 

PLLA+CHT samples, at a main depth of 2421979 m from the surface, and had a mean area 

of 3,60.96×106 m2.

Discussion

There are currently many researches on microspheres use in regenerative medicine and delivery 

drugs. However, little is known about the influence of the nature of polymers commonly used 

to prepare microspheres on their interaction with macrophages, and on the release induction of 

inflammation mediators [20]. Macrophages are a very sensitive culture model to evaluate 

possible in vitro inflammatory responses to a material with potential application in regenerative 

medicine [16,17,21,22].

Several researchers have also reported good results on the cell viability of osteoblasts [27], 

chondrocytes [18] and stromal cells [15] cultured in the presence of microspheres, similarly to 

the present study. In addition, Zan et al. did not find significant differences in cell viability 

when the cells grow with CHT microspheres even after 10 days of culture [27]. 

Luzardo-Alvarez et al. also studied of NO production for RAW264.7 macrophages with CHT 

microspheres [28]. They found that CHT did not induce significant levels of NO production as 

compared with control condition, but when cells were stimulated with lipopolysaccharide (LPS) 

produced levels of NO were six times higher than those of the control. They also evaluated the 

effect of CHT microspheres to macrophages on tumor necrosis factor alpha (TNF-α) production 

and found that this cytokine was unaffected by the treatment. 

Altogether, our results suggest that the microspheres do not induce cytotoxicity effects on 

macrophages during the times tested. Macrophages are the first line of defence and recognition 

of foreign substances and microorganisms [29], hence the importance of our results. This 

hypothesis, however, was later confirmed using the in vivo model.

Rabbit knee model has been widely used as in vivo model for articular cartilage regeneration 

[30,31]. Our group has previously studied the regeneration of articular cartilage in a rabbit knee 
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model using the combination of a macroporous implant and the stimulation of the subchondral 

bone by microfracture [10,12,13,14]. The results pointed to the displacement of the implanted 

biomaterial out of the area of regeneration penetrating the subchondral bone, allowing a tissue 

with the histological characteristics of the hyaline cartilage to form between the scaffold and 

the articular surface. This is a very promising result because, on the one hand, it allows the 

organization of the new formed tissue without the impediment of the presence of the scaffolding 

material and, on the other hand, the degradation time of the biomaterial needs not to be adjusted 

(can be longer) to the regenerated cartilage formation. In this study we intend to continue in 

this line, making it easier for the new tissue to move the supporting biomaterial and acquire the 

proper organization of the hyaline cartilage.

Particles displacement is more effective in this case. For sure, PLLA microspheres are not 

reabsorbed, but there are no proofs about degradation of CHT microspheres that could be 

inserted into the cysts (as we will see below) formed in the subchondral cancellous bone area. 

The shift of the biomaterial out of the cartilage regeneration zone allows the organization of the 

new-formed cartilage with the characteristic ordering of hyaline cartilage, with chondrocytes 

isolated in lacunae and aligned in columns perpendicular to the articular surface. In this way, 

articular surface has a smooth appearance in the macroscopic view (Figure 6). Microspheres 

displacement was found in all the cases with a single exception in one case when only PLLA 

microspheres were implanted, and PLLA remaining microspheres appeared into the new 

formed cartilage.

Dynamic compression in the site of the regeneration should play an important role in the 

remodelling of the regeneration site along time. In a previous work [12], we followed the 

invasion of the cartilage defect along time in a rabbit knee model in which a scaffold was 

implanted in the cartilage defect after injuring subchondral bone. Just one week after 

implantation a layer of cells and extracellular matrix was formed at the articular surface attached 

to the scaffold external surface, and this layer became thicker as regeneration time increased. 

At the same time, the scaffold pores were invaded by cells. In the present study, we have data 

only for the regeneration time of three months, but the fact that the membrane that covers the 

defect is pushed down towards subchondral bone suggests the initial formation of a layer of 

tissue on top of the practiced cartilage defect. 

A comparison of the quality of the regenerated cartilage after implantation of PLLA, 

PLLA+CHT or no microspheres is performed on the basis of macroscopic and microscopic 
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evaluation. Since two exitus occurred, the lack of new animals that would qualify for the 

methodology used within the established time frames justifies the difference in group sizes (7 

in group PLLA vs 9 in group PLLA+CHT). 

Macroscopic evaluation

Individual scores for each category and group are summed up in Table 1. PLLA series obtained 

the highest mean score (10.59±0.79), PLLA+CHT obtained a slightly lower mean score 

(9.38±1.51), group M had the lowest mean score (8.50±1.29), and control group obtained 

maximum scores (12) as it was expected. Significant differences were observed in PLLA series 

(p=0.018) for the macroscopic appearance category, resulting in better scores.

All intraobserver Kappa correlation index (κ) for macroscopic evaluation were found to be 

‘moderate’ or higher, with 62.5% of the results having a correlation of ‘substantial’ or ‘almost 

perfect’. Interobserver κ were found to be ‘fair’ or ‘moderate’.

Significant differences were observed in the category macroscopic surface assessment, with 

higher results in PLLA series (Table 1). This implies a more regular surface, with absence of 

fissures or fibrillations. All of the experimental groups’ totals were in the range 8-11, thus being 

described as “nearly normal” regeneration cartilage by the ICRS scale. However, PLLA series 

was in the upper limit, whilst both groups PLLA+CHT and M obtained totals that placed them 

in the lower limit of the grade. This is due to sufficient thickness and integration of the repaired 

or regenerated tissue in all groups, and does not imply a hyaline-like cartilage.

Microscopic evaluation

Histological parameters are listed in Table 2. In all of the experimental groups, a small 

invagination was observed where the reparative/regenerative area and the native cartilage met. 

An increase in the vascularization of the subchondral bone was also noted in comparison to that 

of native cartilage. Whenever there were different qualities of cartilage regeneration obtained, 

seriated samples were taken and the scores were calculated with those considered more 

representative. 

PLLA series had a slightly thicker cartilage, with better tissue architecture in the areas nearest 

to the native cartilage. Its cell morphology was normal, with chondrocytes having a basophilic 

cytoplasm and no apparent morphological changes. Chondrocyte clustering was generally 

observed both in the peripheral areas of regenerated cartilage and the adjacent native areas 

(Figure 5a).
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In the PLLA+CHT group, normal cellularity was also observed, with a slightly thicker 

regeneration cartilage and the presence of clustering, besides the appearance of lumps 

aformentioned. It is worth note the formation of subchondral cysts in 66.7% of the cases (Figure 

7a), with multinucleated cells and remains of membranes and biomaterials within them. These 

cysts appear quite far from the articular surface deep in the subchondral spongy bone tissue, 

which might weaken the joint. The series M obtained poor cartilage regeneration, similar to a 

fibrous repair. Cartilage thickness was variable, with cases of increases or decreases with 

respect to native one. The tissue obtained was poorly organised and the surface was found to 

be generally irregular (Figure 5d).

All interobserver κ for macroscopic evaluation were found to be ‘fair’ or higher, with 68.5% of 

the results having a correlation of ‘substantial’ or ‘almost perfect’. 

Significant differences were observed in the categories tissue morphology, surface architecture 

and superficial assessment. In them, group M had significantly lower scores compared to groups 

PLLA or PLLA+CHT. No significant differences were found between PLLA and PLLA+CHT 

series and native cartilage (control group), suggesting a high quality regeneration cartilage. 

The categories added to the ICRS II score to evaluate material reabsorption had a significant 

difference in PLLA microsphere presence. However, the presence of subchondral cysts was 

only observed in PLLA+CHT. A possible explanation would be that biomaterials were 

reabsorbed at a similar rate, but whereas PLLA was found as microspheres, CHT would have 

been dragged into these cysts in the subchondral bone, probably originating from an immune 

response already described in literature with biomaterials [8,9], although our in vitro 

experiments only showed an increase in NO production in PLLA+CHT group after 24 h of 

culture.

It must be noted that the time of evolution of the regeneration prior to the sacrifice of the rabbits 

was 12 weeks. This time was decided as it is within the range established by the ICRS [32], and 

longer times do not seem to improve the quality of cartilage regeneration [33,34]. Nevertheless, 

it is shorter than the half-life of both PLLA and CHT, so presence of the biomaterial in the 

samples was expected. Further studies with different evolution times could clarify the matter. 

Differences were also found in surface architecture and surface assessment, having significantly 

worse results in group M. This was further demonstrated by significantly better values of 

interdigitation index in groups PLLA, PLLA+CHT and Control to group M, whilst no 

differences were observed when comparing groups PLLA and PLLA+CHT to the control 
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group. Hence, microspheres scaffolding with PLLA and CHT results in a tissue whose surface 

is both microscopically and numerically equivalent to normal hyaline cartilage.

Morphometric evaluation

Individual morphometric values for each category and group are summarized up in Table 3. 

Some parameters lack clear reference values in literature, and hence must be approached with 

care. Cell density increases both in immature cartilage and in fibrocartilage, an increase 

observed in M series with respect to the native cartilage was expected, but the increase observed 

in group PLLA+CHT and M and the decrease observed in group PLLA have unclear meaning. 

Chondrocyte clustering was also described as a negative feature associated with degeneration 

in ostheoarthritic tissue [11]. Other studies interpret these clusters as a sign of immature 

cartilage during the healing process [33,35,36]. Regenerated tissues were generally thicker than 

native cartilage, as was the subchondral bone beneath them. Interdigitation index showed 

significantly lower values in control group, with no differences observed in groups PLLA, 

PLLA+CHT and M. 

Conclusions

The regeneration of the articular cartilage requires both the presence of cells with chondrogenic 

capacity in the site of the defect and a mechanical support capable to transmit to the cells the 

dynamic compression efforts to which the cartilage is subjected in vivo, so as to stimulate the 

characteristic organization of the hyaline cartilage. In the regeneration strategy presented in this 

paper, mesenchymal stem cells come from the microfracture of subchondral bone, while the 

role of the mechanical support is made by the microspheres, either PLLA or a mixture of PLLA 

and CHT. In both cases, the histological characteristics of the regenerated tissue are those of 

the hyaline cartilage that can grow with its characteristic arrangement thanks to the 

simultaneous displacement of the implanted microspheres towards the subchondral bone. 

Interestingly enough, even the membrane that was placed covering the microspheres at the time 

of the intervention is also displaced towards subchondral bone. The system is very promising 

as a strategy of regeneration, however, the presence of chitosan has produced certain anomalous 

effects, such as the formation of lumps on the articular surface outside the region where the 

defect was created and which have the structure of a cartilaginous disordered tissue, and also 

the formation of cysts in the bone at a considerable distance from the articular surface. It is 

noteworthy that neither the CHT nor the PLLA micro-spheres gave any inflammatory response 

that could be highlighted in the trials carried out on cultures with macrophages.
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Captions to Figures

Fig. 1 (a) FESEM picture of poly(L-lactic acid), PLLA, microspheres produced by an oil/water 

emulsion (dimension bar 20 µm, the diameter of these microspheres was 40  20 µm, mean  

standard deviation); (b) binocular loupe pictures of chitosan, CHT, microspheres produced by 

neutralization of the CHT acidic solution swollen in water (dimension bar 200 µm, the diameter 

of these microspheres was 205  5 µm, mean  standard deviation)

Fig. 2 Stress-strain compression test of the wet microspheres confined in a plunger cylinder 

device (see text). () Chitosan, CHT, (▬) poly(L-lactic acid), PLLA (■) PLLA+CHT 

Fig. 3 MTT assay results expressed as % basal, taking as basal the cell viability in the control 

condition at 24 h. RAW 264.7 macrophages cultured for 24 and 48 h with chitosan, CHT, 

poly(L-lactic acid), PLLA and CHT+PLLA microspheres. Data represent the mean ± SEM

Fig. 4 Cytotoxicity assay. Production of interleukin-1β, IL-1β (a) and NO (b) by RAW 264.7 

macrophages upon incubation with different microspheres. Data represent the mean ± SEM. 

*p<0.05 vs control

Fig. 5 Microscopic views of the experimental areas for groups (a) poly(L-lactic acid), PLLA 

(H&E), (b) PLLA sample with higher magnification showing the remaining microspheres and 

membrane located in subchondral bone (H&E), (c) PLLA+chitosan, PLLA+CHT (H&E), (d) 

series M (H&E), (e) sample of group PLLA+CHT stained with toluidine blue in order to 

evaluate metachromasia, (f) image viewed under polarized light microscopy of a sample of the 

PLLA group. White arrows show the limit of the practiced cartilage defect, yellow arrows and 

green arrows indicate some of the PLLA microspheres and the membrane remaining after three-

months implantation. Individual scores in the ICRS II scale for each category and group are 

summed up in Table 2 

Fig. 6 Macroscopic visualization of the regenerated cartilage, (a) and (b) frontal and cross 

section views after implantation of poly(L-lactic acid), PLLA microspheres covered by the 

membrane, (c) implantation of PLLA and chitosan, CHT microspheres, (d) only microfracture 

of subchondral bone covered by the membrane. Arrowheads point some of the superficial lumps

Fig. 7 Histological views (H&E) showing (a) the formation of cysts and (b) lumps in the 

articular surface in poly(L-lactic acid) + chitosan, PLLA+CHT series
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Tables

Table 1. ICRS macroscopic evaluation of cartilage repair. Data are presented as mean ± SD. 

Statistical significance was determined by Chi2 test, and p<0.05 was considered statistically 

significant. Results for native cartilage are not presented, as they were always maximum (4 in 

each category, with a total of 12), as to be expected from hyaline cartilage.

Table 2. ICRS II scale. Each parameter is scored using a 100 unit visual analogue scale, with a 

score of 0 being assigned for properties considered indicative of fibrous cartilage or poor quality 

articular hyaline cartilage, and 100 for good-quality articular hyaline cartilage, and are 

presented as mean ± SD. Statistical significance was determined by Chi2 test, and p<0.05 was 

considered statistically significant. Results for control group are not presented, as they were 

always maximum (100), as to be expected from hyaline cartilage. Tidemark values are not 

included as they could not be measured. Mean ICRS II were calculated with the other 13 

parameters.

Table 3. Morphometrical parameters measured. * P<0.05
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Category PLLA PLLA+CHT Membrane (M)

Degree of defect 

repair

3.86±0.38 3.25±0.89 3.25±0.96

Integration to 

border zone

3.00±0.00 3.38±0.52 2.75±0.50

Macroscopic 

appearance

3.71±0.76* 2.75±0.46 2.50±1.29

Total 10.57±0.79 9.38±1.51 8.50±1.29

Grade II II II

Table 1. ICRS macroscopic evaluation of cartilage repair. Data are presented as 

mean ± SD. Statistical significance was determined by Chi2 test, and p<0.05 was 

considered statistically significant. Results for native cartilage are not presented as 

they were always maximum (4 in each category, with a total of 12), as to be 

expected from hyaline cartilage.
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Histological parameter PLLA PLLA+CHT Membrane

Tissue morphology 75.0±14.4 86.1±18.2 25.0±28.9*

Matrix staining 53.6±33.6* 88.9±13.2 18.8±12.5*

Cell morphology 78.6±30.4 94.4±9.4 31.3±31.5

Chondrocyte clustering 75.0±14.4 75.0±37.5 50.0±45.6

Surface architecture 96.4±9.4 86.1±18.2 25.0±35.4*

Basal integration 67.9±37.4 77.8±26.4 62.5±43.3

Marrow fibrosis 100.0±0.0 86.1±33.3 93.8±12.5

Inflammation 100.0±0.0 97.2±8.3 75.0±50.0

Abnormal calcification 100.0±0.0 100.0±0.0 100.0±0.0

Vascularization 96.4±9.4 100.0±0.0 100.0±0.0

Surface assessment 82.1±18.9 83.3±12.5 12.5±14.4*

Mid/deep zone assessment 78.6±17.3 72.2±31.7 31.3±37.5

Overall assessment 78.6±17.3 80.6±20.8 31.3±37.5

Mean ICRS II 83.2±9.7 86.8±10.6 50.5±20.6

Table 2. ICRS II scale. Each parameter is scored using a 100 unit visual analogue scale, 

with a score of 0 being assigned for properties considered indicative of fibrous cartilage 

or poor quality articular hyaline cartilage, and 100 for good-quality articular hyaline 

cartilage, and are presented as mean ± SD. Statistical significance was determined by 

Chi2 test, and p<0.05 was considered statistically significant. Results for control group 

are not presented, as they were always maximum (100), as to be expected from hyaline 

cartilage. Tidemark values are not included as they could not be measured. Mean ICRS 

II were calculated with the other 13 parameters.
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Morphometry parameter PLLA PLLA+CHT Membrane Native

Cartilage thickness (m) 705±292 711±215 670±244 478±94

Subchondral bone thickness (m) 786±195 720±225 566±193 650±235

Cell density (cells/mm2) 1498±149 2366±1041 2579±1490 1914±466

Interdigitation index 1.14±0.10 1.28±0.14 1.73±0.60* 1.03±0.02

Table 3. Morphometrical parameters measured. * P<0.05
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Fig. 1 (a) FESEM picture of poly(L-lactic acid), PLLA, microspheres produced by an oil/water emulsion 
(dimension bar 20 µm, the diameter of these microspheres was 40 ± 20 µm, mean ± standard deviation); 
(b) binocular loupe pictures of chitosan, CHT, microspheres produced by neutralization of the CHT acidic 
solution swollen in water (dimension bar 200 µm, the diameter of these microspheres was 205  ± 5 µm, 

mean ± standard deviation) 
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Fig. 2 Stress-strain compression test of the wet microspheres confined in a plunger cylinder device (see 
text). (•) Chitosan, CHT, (▬) poly(L-lactic acid), PLLA (■) PLLA+CHT 
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Fig. 3 MTT assay results expressed as % basal, taking as basal the cell viability in the control condition at 24 
h. RAW 264.7 macrophages cultured for 24 and 48 h with chitosan, CHT, poly(L-lactic acid), PLLA and 

CHT+PLLA microspheres. Data represent the mean ± SEM 

Page 27 of 31 Journal of Biomedical Materials Research: Part B - Applied Biomaterials



 

Fig. 4 Cytotoxicity assay. Production of interleukin-1β, IL-1β (a) and NO (b) by RAW 264.7 macrophages 
upon incubation with different microspheres. Data represent the mean ± SEM. *p<0.05 vs control 
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Fig. 5 Microscopic views of the experimental areas for groups (a) poly(L-lactic acid), PLLA (H&E), (b) PLLA 
sample with higher magnification showing the remaining microspheres and membrane located in 

subchondral bone (H&E), (c) PLLA+chitosan, PLLA+CHT (H&E), (d) series M (H&E), (e) sample of group 
PLLA+CHT stained with toluidine blue in order to evaluate metachromasia, (f) image viewed under polarized 

light microscopy of a sample of the PLLA group. White arrows show the limit of the practiced cartilage 
defect, yellow arrows and green arrows indicate some of the PLLA microspheres and the membrane 

remaining after three-months implantation. Individual scores in the ICRS II scale for each category and 
group are summed up in Table 2 
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Fig. 6 Macroscopic visualization of the regenerated cartilage, (a) and (b) frontal and cross section views 
after implantation of poly(L-lactic acid), PLLA microspheres covered by the membrane, (c) implantation of 

PLLA and chitosan, CHT microspheres, (d) only microfracture of subchondral bone covered by the 
membrane. Arrowheads point some of the superficial lumps 
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Fig. 7 Histological views (H&E) showing (a) the formation of cysts and (b) lumps in the articular surface in 
poly(L-lactic acid) + chitosan, PLLA+CHT series 
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