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Abstract

Many materials present different behavior in tension and compression. Within the infinitesi-

mal isotropic theory, the widely used approach based on the Ambartsumyan theory presents

only three independent constants to preserve symmetry of the elasticity tensor. The re-

ported finite element implementation of this and similar theories are complex and lack the

convergence properties expected for a bi-linear material. In this work we address the prob-

lem through a hyperelastic approach, obtaining a simple and consistent framework which

retain the four independent constants and yields the expected convergence characteristics of

a bi-linear material. The Ambartsumyan model is obtained as a particular case within this

framework.

Keywords: Bi-modulus materials, tension-compression asymmetry, finite elements,

hyperelasticity, Ambartsumyan theory.

1. Introduction

The classical theory of infinitesimal isotropic elasticity considers only two independent

material constants, for example the Young modulus E and the Poisson ratio ν; or alter-

natively, the bulk modulus K and the shear modulus (or the Lame constant) μ. However,

many common materials present different elastic behavior in tension and in compression,

for example different observed Young moduli, say E+ in tension and E− in compression.
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Examples of these materials are concrete and ceramics [1], specially under damage [2], rocks

[3, 4], graphite [5], nacre [6], polypropylene composites [7], asphalt-mixture materials [8],

some cellular materials [9], Nitinol [10–12], etc. The resulting materials from 3D printing,

may also show elastic tension-compression asymmetry [13]. Fibre-reinforced materials [14–

16], biological tissues [17, 18] and cartilage [19], rubber [20], thin sheets (films) subject to

local buckling [21, 22], and tensegrity structures as those used in space structures [23, 24]

and cell mechanics [25], are also complex structures or materials which may be modelled

using bimodulus materials. Table 1 gives some representative values of bimodulus materials.

Therefore, for quite long time, attention has been placed in modelling this type of materials

[14, 26], searching for a proper, consistent description of the theory [27], obtaining analytical

solutions of beams [28] or plates [29, 30], including influence of bi-modularity in their stability

[20, 22], and devising efficient implementations of that theory for finite element analyses [31].

In particular, many recent publications deal with the optimization of structures composed

of bi-modulus materials and related inverse problems, see e.g. [32–36]. In these works, an

important keystone is the constitutive algorithm for bi-modulus materials during the finite

element simulations, where disappointing performance is reported.

Typically, the bi-modulus (bi-linear) materials are considered within the infinitesimal

framework. Hence, in principle, they should present little additional difficulty to that of

linear elasticity. However, according to the literature, the extension of the classical approach

of elasticity to bi-modulus materials has proven to be challenging. A review of some of the

theoretical approaches, as well as of the related difficulties in finite element implementations

may be found in Sun et al [27]. One of the main issues in developing the theory is the defini-

tion of a bi-modulus material itself, in particular, which quantity produces the switch from

“tension” to “compression” and, hence, which related moduli brings the material duality.

The best-known theory for isotropic materials is that of Ambartsumyan [26], which proposed

in a phenomenological manner that the switch should be controlled by the corresponding

principal stress signs. A similar approach was followed by Medri for nonlinear hypoelasticity

[37] and by Vijayakumar and Rao [38] for reinforced materials. In this case, the stress do-

main (longitudinal-transverse) was divided into eight zones, each one having its respective

compliance matrix. The fiber reinforcement cases were also addressed by Jones [14] and Bert
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[16]. They applied the Ambartsumyan model to these materials containing stress switches

and introducing variations to improve consistency aspects in the theory; Jones by using a

weighted compliance matrix and Bert by retaining a non-symmetric tangent. Indeed, an

important issue in all these works is the symmetry of the constitutive matrix, so followers

of the work of Ambartsumyan [26] frequently restrict the theory with the requirement (as-

sumed implied from thermodynamic considerations) that ν−/E− = ν+/E+, where ν+ and

ν− are the Poisson ratios for tension and compression respectively; see for instance the recent

works [1, 31, 35, 36, 39, 40], among others. This leaves an “isotropic” theory restricted to

only materials with three independent constants, a formulation criticised in [41] for arguably

being incompatible with isotropy.

In addition to the mentioned restriction on the material constants, the finite element

implementation of the bi-modulus isotropic materials has been cumbersome, and the numer-

ical performance disappointing. Starting from the complex variational formulations [40] and

their also complex associated finite element implementations [31], a relatively high number

of iterations are needed to obtain a solution of a material which is conceptually just bi-linear;

see for example the numerical implementations and the analyses performed in [35, 39, 42].

Indeed, in [42] it is inferred that the inconsistency of the Ambartsumyan model may be

the reason why Newton convergence rates are slow. Smoothing techniques have been pro-

posed to regularize the change of stiffness to improve convergence, e.g. [8, 36]. In structural

optimization and inverse analyses, where the efficiency and robustness of the material al-

gorithms are very important, the bi-modulus material is replaced by fictitious linear-elastic

materials with properties of tension or compression depending on stored energy indices, see

e.g. [32, 34], among others. However, we note that abrupt stiffness changes are present,

for example, in finite element elastoplastic formulations, which are nowadays very efficient

and preserve asymptotic quadratic convergence rates. In our opinion, a consistent theory

and finite element implementation of bi-modulus materials should show, at least, similar

performance.

Therefore, the purpose of this work is to present a consistent, hyperelasticity-based alter-

native for the problem addressed above which depends on four independent constants in the

isotropic case, is more suitable for a direct and simpler implementation in a finite element
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program and, furthermore, has an immediate extension to large strain isotropic hyperelas-

ticity [43] (see below) and relatively simple for anisotropic materials as well [44]. We show

by numerical examples that the efficiency is also as expected: only an additional iteration

is needed from the linear case in homogeneous deformations. This iteration is needed when

there is a transition from tension to compression during the loading procedure. In nonhomo-

geneous cases (where different stress points may change their state at different iterations),

asymptotic second order convergence is attained. We also analyse the (non-algorithmic)

reasons why some proposed alternatives may encounter difficulties in obtaining asymptotic

quadratic convergence. Noteworthy, we show that the widely used Ambartsumyan model

emerges as a very particular case within the present framework.

2. Hyperelastic materials exhibiting different behavior in tension and compres-

sion

A simple way to deal with a (hyper-)elastic isotropic material that shows a bi-linear

mechanical response is to assume the existence of a strain energy function that depends on

two bi-linear elastic constants.

2.1. Deviatoric-volumetric split of strains and stresses

Consider, for further use in bi-modulus formulations introduced below, the well-known

decomposition of the infinitesimal strain tensor ε into deviatoric (distortional) εd and volu-

metric (dilatational) εv parts

ε : = εd + εv = (ε − εv) + εv (1)

=

[

IS −
1

3
(I ⊗ I)

]

: ε +
1

3
(I ⊗ I) : ε (2)

= Pd : ε + Pv : ε (3)

where (IS)ijkl = 1
2
(δikδjl + δilδjk) is the fourth-order symmetric identity tensor written in

terms of Kronecker’s deltas, Pd is the fourth-order deviatoric projector tensor, Pv is the
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fourth-order volumetric projector tensor, and we have used

εv =
1

3
(tr ε)I =

1

3
(ε : I) I =

1

3
(I ⊗ I) : ε (4)

with I the second-order identity tensor. If we represent the local dilatation or volume strain

as e := tr ε, then εv = 1
3
eI. Furthermore, deviatoric and volumetric strain tensors are

independent (say uncoupled, “perpendicular”) because

εd : εv = ε : εv − εv : εv =
1

3
(tr ε) (ε : I) −

1

3
(tr ε) (εv : I) =

1

3
(tr ε)2 −

1

3
(tr ε)2 = 0 (5)

and also complementary by means of Eq. (1).

Similarly, the decomposition of the (kinematically infinitesimal) stress tensor σ into de-

viatoric (distortional) σd and volumetric (hydrostatic) σv parts reads

σ := σd + σv = Pd : σ + Pv : σ

where σd : σv = 0. In this case, p := 1
3
tr σ is the mean or hydrostatic stress1 (or pressure)

and σv = pI.

2.2. Strain-driven bi-modulus formulations

The strain energy function for a linear elastic isotropic material may be expressed in

terms of any independent pair of elastic constants. For example, in terms of the shear μ = G

and the bulk K stiffness moduli, it reads

Ψ (ε) = μεd : εd +
3

2
Kεv : εv = μ

∥
∥εd
∥
∥2

+
1

2
Ke2 =: W(εd) + U(e) (6)

where ‖∙‖ is the usual 2-norm. The first addend W(εd) accounts for the distortional stored

energy and the second addend U(e) for the dilatational one, which, importantly, may change

1p may alternatively be defined to be positive in compression and negative in tension, but we do not use
such convention here.
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independent to each other. In principal strain (and stress) directions, we can write

Ψ (ε) = W(εd) + U(e) = μεd2
1 + μεd2

2 + μεd2
3 +

1

2
Ke2 (7)

where we use εd2 = (εd)2. The stresses σ = dΨ (ε) /dε that directly derive from Eq. (6) are

σ =
dW(εd)

dεd
:
dεd

dε
+

dU(e)

de

de

dε
= 2μεd : Pd + KeI = 2μεd + 3Kεv = σd + σv (8)

where we used εd : Pd = εd, hence σd = 2μεd and σv = 3Kεv, the latter also yielding

p = Ke in scalar form.

A coupled form of the strain energy function is obtained by introducing εd = ε − εv,

from Eq. (1), into Eq. (6)

Ψ (ε) = με : ε +

(
3

2
K − μ

)

εv : εv = μ ‖ε‖2 +
1

2
λe2 (9)

which is now expressed in terms of the first (λ = K − 2
3
μ) and second (μ) Lamé stiffness

moduli. In principal strain (and stress) directions

Ψ (ε) = με2
1 + με2

2 + με2
3 +

1

2
λe2 (10)

The stresses that directly derive from Eq. (9) are

σ =
dΨ (ε)

dε
= 2με + λeI = σd + σv (11)

where, in general, σd 6= 2με or σv 6= λeI, but σd = 2μ(ε − 1
3
eI) and σv = (λ + 2

3
μ)eI.

2.2.1. Uncoupled strain-driven bi-modulus formulation

Noticing the special fact that each term on the right-hand side in Eq. (7) is expressed

in terms of a single elastic constant and a single strain component, a bi-linear generalization

is straightforward using a deviatoric-strain-driven shear stiffness bi-modulus in each one of
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the first three addends

μ̂i =






μ̂+ if εd
i ≥ 0

μ̂− if εd
i < 0





, i = 1, 2, 3 (12)

and a volumetric-strain-driven bulk stiffness bi-modulus

K̂ =






K̂+ if e ≥ 0

K̂− if e < 0
(13)

Note that, in this case, deviatoric and volumetric strain switches control respective effective

values for μ̂i and K̂ independent to each other. Hence, the resulting strain energy function

for uncoupled strain-driven bi-linear elastic isotropic materials

Ψ̂ (ε) = Ŵ(εd) + Û(e) = μ̂1ε
d2
1 + μ̂2ε

d2
2 + μ̂3ε

d2
3 + 1

2
K̂e2 (14)

is uncoupled in terms of deviatoric and volumetric strain contributions and depends on four

independent material constants overall.

2.2.2. Coupled strain-driven bi-modulus formulation

Each term on the right-hand side in Eq. (10) is also expressed in terms of a single elastic

constant and strain component. Hence, a bi-linear generalization is also possible, in this case

using a total-strain-driven shear stiffness bi-modulus in each one of the first three addends

μ̄i =






μ̄+ if εi ≥ 0

μ̄− if εi < 0





, i = 1, 2, 3 (15)

and a volumetric-strain-driven Lamé stiffness bi-modulus

λ̄ =






λ̄+ if e ≥ 0

λ̄− if e < 0
(16)

Since total and volumetric strain switches are not independent to each other, that is, a

change in sign of e may imply a change in sign of εi, note that μ̄+ and μ̄− are, in general,
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different from μ̂+ and μ̂−. Nevertheless, the resulting strain energy function for coupled

strain-driven bi-linear elastic isotropic materials

Ψ̄ (ε) = μ̄1ε
d2
1 + μ̄2ε

d2
2 + μ̄3ε

d2
3 + 1

2
λ̄e2 (17)

still depends on four independent material constants overall.

2.3. Stress-driven bi-modulus formulations

Following the Legendre transformation Ψc(σ) = σ : ε − Ψ(ε) we define Ψc (σ) as the

complementary strain energy function to Ψ (ε), which for a linear elastic isotropic material

can be obtained through the replacement Ψc (σ) = Ψ (ε(σ)). If Ψ (ε) is uncoupled, as in Eq.

(6), then Ψc(σ) = W(εd(σd)) + U(εv(σv)), which, with εd(σd) = 1
2μ

σd and εv(σv) = 1
3K

σv,

reads

Ψc(σ) =
1

4μ
σd : σd +

1

6K
σv : σv =

1

4μ

∥
∥σd

∥
∥2

+
1

2K
p2 := Wc(σd) + U c(p) (18)

which is expressed in terms of the shear 1/μ and bulk 1/K compliance (or flexibility) moduli.

In principal stress (and strain) directions

Ψc(σ) = Wc(σd) + U c(p) =
1

4μ
σd2

1 +
1

4μ
σd2

2 +
1

4μ
σd2

3 +
1

2K
p2 (19)

The strains ε = dΨc (σ) /dσ that directly derive from Eq. (18) are

ε =
dWc(σd)

dσd
:
dσd

dσ
+

dU c(p)

dp

dp

dσ
=

1

2μ
σd : Pd +

p

3K
I =

1

2μ
σd +

1

3K
σv = εd + εv (20)

where σd : Pd = σd, and one recovers εd = 1
2μ

σd and εv = 1
3K

σv, or e = p
K

.

A coupled form of the complementary strain energy function is obtained by introducing

σd = σ − σv into Eq. (18)

Ψc(σ) =
1

4μ
σ : σ +

(
1

6K
−

1

4μ

)

σv : σv =
1

4μ
‖σ‖2 −

9

2ζ
p2 (21)

which is expressed in terms of the herein called first ( 1
ζ

= 1
6μ

− 1
9K

) and second ( 1
μ
) Lamé
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compliance moduli (by obvious comparison to Eq. (9)). Note that ζ has been defined such

that ζ > 0 if 3K > 2μ > 0, which also yields λ > 0, and that ζ = 9(( 2
3
μ)−1 − K−1)−1 6=

K − 2
3
μ = λ. In fact, ζ = (18μK)/(3K − 2μ) = E/ν, with E the Young modulus and ν the

Poisson ratio for linear elastic materials. In principal stress (and strain) directions

Ψc (σ) =
1

4μ
σ2

1 +
1

4μ
σ2

2 +
1

4μ
σ2

3 −
9

2ζ
p2 (22)

The strains that directly derive from Eq. (21) are

ε =
dΨc (σ)

dσ
=

1

2μ
σ −

1

ζ
3pI = εd + εv (23)

where εd 6= 1
2μ

σ or εv 6= −3
ζ
pI, in general. Hooke’s law is immediately recovered for ζ = E/ν

and 2μ = E/(1 + ν)

ε =
1 + ν

E
σ −

ν

E
(tr σ)I (24)

2.3.1. Uncoupled stress-driven bi-modulus formulation

Similarly to our motivation to posit strain-driven formulations above, each term on the

right-hand side in Eq. (19) is expressed in terms of a single elastic constant and stress

component. Hence, a bi-linear generalization follows by using a deviatoric-stress-driven

shear compliance bi-modulus in each one of the first three addends

1

μ̃i

=






1

μ̃+
if σd

i ≥ 0

1

μ̃−
if σd

i < 0





, i = 1, 2, 3 (25)

and a volumetric-stress-driven compliance bulk bi-modulus

1

K̃
=






1

K̃+
if p ≥ 0

1

K̃−
if p < 0

(26)

Again in this case, deviatoric and volumetric stress switches control respective effective values

for μ̃i and K̃ independent to each other. Hence, the resulting complementary strain energy
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function for uncoupled stress-driven bi-linear elastic isotropic materials

Ψ̃c(σ) = W̃c(σd) + Ũ c(p) =
1

4μ̃1

σd2
1 +

1

4μ̃2

σd2
2 +

1

4μ̃3

σd2
3 +

1

2K̃
p2 (27)

is uncoupled in terms of deviatoric and volumetric stress contributions and depends on four

independent material constants overall.

2.3.2. Coupled stress-driven bi-modulus formulation

Eq. (22), also expressed in terms of respective single elastic constants and stress com-

ponents, motivates a possible bi-linear generalization, in this case using a total-stress-driven

shear compliance bi-modulus in each one of the first three addends

1

μ̌i

=






1

μ̌+
if σi ≥ 0

1

μ̌−
if σi < 0





, i = 1, 2, 3 (28)

and a volumetric-stress-driven Lamé compliance bi-modulus

1

ζ̌
=






1

ζ̌+
if p ≥ 0

1

ζ̌−
if p < 0

(29)

Since total and volumetric stress switches are not independent to each other, that is, a change

in sign of p may imply a change in sign of σi, then μ̃+ and μ̃− are, in general, different from

μ̌+ and μ̌−. The resulting complementary strain energy function for coupled stress-driven

bi-linear elastic isotropic materials

Ψ̌c (σ) =
1

4μ̌1

σ2
1 +

1

4μ̌2

σ2
2 +

1

4μ̌3

σ2
3 −

9

2ζ̌
p2 (30)

still depends on four independent material constants overall.
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2.4. Stresses and tangent stiffness moduli for strain-driven formulations

2.4.1. Uncoupled strain-driven bi-modulus formulation

The stresses that directly derive from Eq. (14) are

σ =
dΨ̂ (ε)

dε
=

dŴ(εd)

dεd
:
dεd

dε
+

dÛ(e)

de

de

dε
=

dŴ(εd)

dεd
: Pd +

dÛ(e)

de
I (31)

where both the fictitious (non-deviatoric, in general) stresses dŴ(εd)/dεd, expressed in terms

of the principal basis vectors Ni, and dÛ(e)/de are

dŴ(εd)

dεd
=

3∑

i=1

2μ̂iε
d
i Ni ⊗ Ni and

dÛ(e)

de
= K̂e (32)

The exact and symmetric tangent stiffness tensor is

C =
dσ

dε
=

d2Ψ̂ (ε)

dε ⊗ dε
= Pd :

d2Ŵ(εd)

dεd ⊗ dεd
: Pd +

d2Û(e)

de2
I ⊗ I (33)

where d2Û(e)/de2 = K̂ and the fourth-order tensor d2Ŵ(εd)/dεd ⊗ dεd reads [45]

d2Ŵ(εd)

dεd ⊗ dεd
=

3∑

i=1

2μ̂iNiiii +
3∑

i=1

∑

j 6=i

2μ̂jε
d
j − 2μ̂iε

d
i

εd
j − εd

i

1

2
(Nijij + Nijji) (34)

with

Nijkl := Ni ⊗ Nj ⊗ Nk ⊗ Nl (35)

Note that the shear components of C in the basis of principal directions, obtained from Eq.

(34), depend on relative values of principal deviatoric strains εd
i and εd

j , i = 1, 2, 3, i 6= j,

particularly when sign[εd
i ] 6= sign[εd

j ], because then μ̂i 6= μ̂j (say μ+ 6= μ−). In contrast, if

sign[εd
i ] = sign[εd

j ], then μ̂i = μ̂j (= μ+, say) and the component (μ̂jε
d
j − μ̂iε

d
i )/(εd

j − εd
i )

particularizes to μ̂i = μ̂j (= μ+) in the principal plane ij.

2.4.2. Coupled strain-driven bi-modulus formulation

The stresses that derive from Eq. (17) are
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σ =
dΨ̄(ε)

dε
=

3∑

i=1

2μ̄iεiNi ⊗ Ni + λ̄eI (36)

The exact and symmetric tangent stiffness tensor is

C =
d2Ψ̄(ε)

dε ⊗ dε
=

3∑

i=1

2μ̄iNiiii +
3∑

i=1

∑

j 6=i

2μ̄jεj − 2μ̄iεi

εj − εi

1

2
(Nijij + Nijji) + λ̄I ⊗ I (37)

2.5. Strains and tangent compliance moduli for stress-driven formulations

2.5.1. Uncoupled stress-driven bi-modulus formulation

The strains that directly derive from Eq. (27) are

ε =
dΨ̃c (σ)

dσ
=

dW̃c(σd)

dσd
:
dσd

dσ
+

dŨ c(p)

dp

dp

dσ
=

dW̃c(σd)

dσd
: Pd +

1

3

dŨ c(p)

dp
I (38)

where both the fictitious (non-deviatoric, in general) strains dW̃c(σd)/dεd, expressed in

terms of the principal basis vectors Ni, and dÛ c(p)/dp are

dW̃c(σd)

dσd
=

3∑

i=1

1

2μ̃i

σd
i Ni ⊗ Ni and

dŨ c(p)

dp
=

p

K̃
(39)

The exact and symmetric tangent compliance tensor is

S =
dε

dσ
=

d2Ψ̃c (σ)

dσ ⊗ dσ
= Pd :

d2W̃c(σd)

dσd ⊗ dσd
: Pd +

1

9

d2Ũ c(p)

dp2
I ⊗ I (40)

where d2Ũ c(p)/dp2 = 1/K̃ and the fourth-order tensor d2Wc(σd)/dσd ⊗ dσd reads

d2W̃c(σd)

dσd ⊗ dσd
=

3∑

i=1

1

2μ̃i

Niiii +
3∑

i=1

∑

j 6=i

1
2μ̃j

σd
j −

1
2μ̃i

σd
i

σd
j − σd

i

1

2
(Nijij + Nijji) (41)

2.5.2. Coupled stress-driven bi-modulus formulation

The strains that derive from Eq. (30) are

ε =
dΨ̌c(σ)

dσ
=

3∑

i=1

1

2μ̌i

σiNi ⊗ Ni −
3

ζ̌
pI (42)
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and the associated exact and symmetric compliance tensor is

S =
d2Ψ̌c(σ)

dσ ⊗ dσ
=

3∑

i=1

1

2μ̌i

Niiii +
3∑

i=1

∑

j 6=i

1
2μ̌j

σj − 1
2μ̌i

σi

σj − σi

1

2
(Nijij + Nijji) −

1

ζ̌
I ⊗ I (43)

2.6. Different generalizations of Hooke’s law in principal directions

2.6.1. Uncoupled strain-driven bi-modulus formulation

The axial-to-axial components of Eq. (33) in principal directions and expressed in matrix

notation read

[C]N =
[
Pd
]








2μ̂1 0 0

0 2μ̂2 0

0 0 2μ̂3








[
Pd
]
+ K̂








1 1 1

1 1 1

1 1 1








(44)

where

[
Pd
]

=
1

3








2 −1 −1

−1 2 −1

−1 −1 2








(45)

or, in expanded form (where we define the mean, deformation-dependent shear moduli

3μ̂m := μ̂1 + μ̂2 + μ̂3)

[C]N =
1

3








2μ̂m + 2μ̂1 −4μ̂m + 2μ̂3 −4μ̂m + 2μ̂2

−4μ̂m + 2μ̂3 2μ̂m + 2μ̂2 −4μ̂m + 2μ̂1

−4μ̂m + 2μ̂2 −4μ̂m + 2μ̂1 2μ̂m + 2μ̂3








+ K̂








1 1 1

1 1 1

1 1 1








(46)

which, consistent with the hyperelasticity assumption, is symmetric by construction. Impor-

tantly, different specializations of this tensor are immediately obtained from its associated

strain switches in Eqs. (12) and (13), i.e. respective signs of deviatoric principal strains and

volumetric strain.

It can be readily shown that the inverse of the material stiffness matrix [C]N can also be
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decomposed into deviatoric and volumetric parts, namely [S]N = [C]−1
N reads

[S]N =
[
Pd
]








−ŝ1 + 2ŝ2 + 2ŝ3 0 0

0 2ŝ1 − ŝ2 + 2ŝ3 0

0 0 2ŝ1 + 2ŝ2 − ŝ3








[
Pd
]
+

1

9K̂








1 1 1

1 1 1

1 1 1








with the strain-based tension-compression compliances

ŝi =
μ̂i

2μ̂1μ̂2 + 2μ̂2μ̂3 + 2μ̂3μ̂1

, i = 1, 2, 3 (47)

or, in expanded form

[S]N =








ŝ2 + ŝ3 −ŝ3 −ŝ2

−ŝ3 ŝ1 + ŝ3 −ŝ1

−ŝ2 −ŝ1 ŝ1 + ŝ2








+
1

9K̂








1 1 1

1 1 1

1 1 1








(48)

By letting [ε1, ε2, ε3]
T = [S]N [σ1, σ2, σ3]

T , we obtain the following generalized Hooke’s law in

principal directions for uncoupled strain-driven bi-modulus materials

εi =

(

ŝj + ŝk +
1

9K̂

)

σi −

(

ŝk −
1

9K̂

)

σj −

(

ŝj −
1

9K̂

)

σk , i 6= j 6= k 6= i = 1, 2, 3 (49)

2.6.2. Coupled strain-driven bi-modulus formulation

The axial-to-axial components of Eq. (37) in principal directions and expressed in matrix

notation read

[C]N =








2μ̄1 + λ̄ λ̄ λ̄

λ̄ 2μ̄2 + λ̄ λ̄

λ̄ λ̄ 2μ̄3 + λ̄








(50)

Different specializations of this matrix are immediately obtained from its associated strain

switches in Eqs. (15) and (16), i.e. respective signs of total principal strains and volumetric

strain. The compliance matrix [S]N = [C]−1
N reads (with D = 1

2
det [C]N := 2λ̄(μ̄1μ̄2 + μ̄2μ̄3 +
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μ̄3μ̄1) + 4μ̄1μ̄2μ̄3)

[S]N =
1

D








λ̄(μ̄2 + μ̄3) + 2μ̄2μ̄3 −λ̄μ̄3 −λ̄μ̄2

−λ̄μ̄3 λ̄(μ̄1 + μ̄3) + 2μ̄1μ̄3 −λ̄μ̄1

−λ̄μ̄2 −λ̄μ̄1 λ̄(μ̄1 + μ̄2) + 2μ̄1μ̄2








(51)

which yields the following generalized Hooke’s law in principal directions for coupled strain-

driven bi-modulus materials

εi =
λ̄(μ̄j + μ̄k) + 2μ̄jμ̄k

D
σi −

λ̄μ̄k

D
σj −

λ̄μ̄j

D
σk , i 6= j 6= k 6= i = 1, 2, 3 (52)

2.6.3. Uncoupled stress-driven bi-modulus formulation

The axial-to-axial components of Eq. (40) in principal directions and expressed in matrix

notation read

[S]N =
[
Pd
]










1

2μ̃1

0 0

0
1

2μ̃2

0

0 0
1

2μ̃3










[
Pd
]
+

1

9K̃








1 1 1

1 1 1

1 1 1








(53)

or, in expanded form (where we define the mean, deformation-dependent shear moduli

3/(2μ̃m) := 1/(2μ̃1) + 1/(2μ̃2) + 1/(2μ̃3))

[S]N =
1

3








1
2μ̃m

+ 1
2μ̃1

− 2
2μ̃m

+ 1
2μ̃3

− 2
2μ̃m

+ 1
2μ̃2

− 2
2μ̃m

+ 1
2μ̃3

1
2μ̃m

+ 1
2μ̃2

− 2
2μ̃m

+ 1
2μ̃1

− 2
2μ̃m

+ 1
2μ̃2

− 2
2μ̃m

+ 1
2μ̃1

1
2μ̃m

+ 1
2μ̃3








+
1

9K̃








1 1 1

1 1 1

1 1 1








(54)

Different specializations of this matrix are immediately obtained from its associated stress

switches in Eqs. (25) and (26), i.e. respective signs of deviatoric principal stresses and

volumetric stress. We obtain the following generalized Hooke’s law in principal directions

for uncoupled stress-driven bi-modulus materials

εi =
1

9

(
3

2μ̃m

+
3

2μ̃i

+
1

K̃

)

σi −
1

9

(
6

2μ̃m

−
3

2μ̃k

−
1

K̃

)

σj −
1

9

(
6

2μ̃m

−
3

2μ̃j

−
1

K̃

)

σk (55)
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2.6.4. Coupled stress-driven bi-modulus formulation

The axial-to-axial components of Eq. (43) in principal directions and expressed in matrix

notation read

[S]N =













1

2μ̌1

−
1

ζ̌
−

1

ζ̌
−

1

ζ̌

−
1

ζ̌

1

2μ̌2

−
1

ζ̌
−

1

ζ̌

−
1

ζ̌
−

1

ζ̌

1

2μ̌3

−
1

ζ̌













(56)

Different specializations of this matrix are immediately obtained from its associated stress

switches in Eqs. (28) and (29), i.e. respective signs of total principal stresses and volumetric

stress. We obtain the following generalized Hooke’s law in principal directions for coupled

stress-driven bi-modulus materials

εi =

(
1

2μ̌i

−
1

ζ̌

)

σi −
1

ζ̌
(σj + σk) , i 6= j 6= k 6= i = 1, 2, 3 (57)

Finally, it is straightforward to show that all four previous strain-stress relations, namely

Eqs. (49), (52), (55), and (57), recover Hooke’s law εi = 1
E
σi − ν

E
(σj + σk) (depending on

two constants) for linear isotropic materials.

Remark 1. Equation (57) represents, importantly, a generalization of a widely used model

for a subset of coupled stress-driven bi-modulus materials, namely Ambartsumyan’s model

[26] (cf. Ref. [31] and references therein)

εi =
1

E+
σi − C0 (σj + σk) , if σi > 0 (58)

εi =
1

E−
σi − C0 (σj + σk) , if σi ≤ 0 (59)

with i 6= j 6= k 6= i = 1, 2, 3. In this regard, note that Ambartsumyan’s model, first, depends

on three independent constants (E+, E−, C0), rather than four (μ̌+, μ̌−, ζ̌+, ζ̌−), and,

second, is based on a single type of switches (for total stresses σi), rather than two types of

simultaneous switches (for total stresses σi and hydrostatic pressure p).
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2.7. Determination of material parameters

We determine here all the previous models, depending on four material parameters each,

from four experimental values, typically stress-strain or strain-strain slopes, obtained from

a complete tension-compression uniaxial test.

2.7.1. Uncoupled strain-driven bi-modulus formulation

Consider a uniaxial tension test in direction 1, i.e. ε1 ≡ ε > 0, for which we define the

(apparent, external) tensile Young modulus E+ and Poisson ratio ν+ such that σ1 = E+ε1

and ε2 = ε3 = −ν+ε1. In this case

εv = ε1 − 2ν+ε1 =
(
1 − 2ν+

)
ε (60)

εd
1 = ε1 −

1

3
εv =

2

3

(
1 + ν+

)
ε (61)

so both εd
1 and εv are positive if −1 < ν+ < 1/2, as we consider next. Hence, μ̂1 = μ̂+

(because εd
1 > 0) and μ̂2 = μ̂3 = μ̂− (because εd

2 = εd
3 = −εd

1/2 < 0), as well as K̂ = K̂+

(because εv > 0), so axial-to-axial components of the compliance tensor S in Eq. (48) reduce

to

[S]N =
1

2μ̂− (2μ̂+ + μ̂−)








2μ̂− −μ̂− −μ̂−

−μ̂− μ̂+ + μ̂− −μ̂+

−μ̂− −μ̂+ μ̂+ + μ̂−








+
1

9K̂+








1 1 1

1 1 1

1 1 1








(62)

such that 






ε1

ε2

ε3








=
1

E+








1

−ν+

−ν+








σ1 = [S]








σ1

0

0








(63)

i.e.

1

E+








1

−ν+

−ν+








=
1

2μ̂+ + μ̂−








1

−1/2

−1/2








+
1

9K̂+








1

1

1








(64)

which gives the following relations for uncoupled strain-driven bi-modulus materials

E+ =
(2μ̂+ + μ̂−) 9K̂+

2μ̂+ + μ̂− + 9K̂+
(65)
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and

ν+ =
−4μ̂+ − 2μ̂− + 9K̂+

4μ̂+ + 2μ̂− + 18K̂+
(66)

It is straightforward to verify for a uniaxial compression test in direction 1 (i.e., ε1 < 0),

for which we define the compression Young modulus E− and Poisson ratio ν−, that the

following relations are obtained

E− =
(2μ̂− + μ̂+) 9K̂−

2μ̂− + μ̂+ + 9K̂−
(67)

and

ν− =
−4μ̂− − 2μ̂+ + 9K̂−

4μ̂− + 2μ̂+ + 18K̂−
(68)

Therefore, again, an alternative set of four generally independent material constants (E+,

E−, ν+, and ν−) can be used to define a bi-linear elastic isotropic material.

Nevertheless, what one usually seeks to determine is the shear bi-modulus and bulk bi-

modulus (i.e., the model parameters) from experimentally measured Young bi-modulus and

Poisson bi-ratio. Equations (65)-(68) give such relations, namely

μ̂+ =
E+

1 + ν+
−

1

2

E−

1 + ν−
(69)

μ̂− =
E−

1 + ν−
−

1

2

E+

1 + ν+
(70)

and

K̂+ =
1

3

E+

1 − 2ν+
(71)

K̂− =
1

3

E−

1 − 2ν−
(72)

which specialize to 2μ = E/(1+ν) and 3K = E/(1−2ν) for E+ = E− ≡ E and ν+ = ν− ≡ ν.
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2.7.2. Coupled strain-driven bi-modulus formulation

Following similar steps as above, for both tension and compression uniaxial tests, the

following relations for coupled strain-driven bi-modulus materials are obtained

E+ =
λ̄+ (2μ̄+ + μ̄−) + 2μ̄+μ̄−

λ̄+ + μ̄−
and E− =

λ̄− (2μ̄− + μ̄+) + 2μ̄−μ̄+

λ̄− + μ̄+
(73)

as well as

ν+ =
1

2

λ̄+

λ̄+ + μ̄−
and ν− =

1

2

λ̄−

λ̄− + μ̄+
(74)

which define the model parameters μ̄+, μ̄−, λ̄+, λ̄− from the experimental values E+, E−,

ν+, ν−

μ̄+ =
1

2

E+ − ν+E−

1 − ν+ν−
(75)

μ̄− =
1

2

E− − ν−E+

1 − ν+ν−
(76)

and

λ̄+ =
(E− − ν−E+) ν+

(1 − ν+ν−) (1 − 2ν+)
(77)

λ̄− =
(E+ − ν+E−) ν−

(1 − ν+ν−) (1 − 2ν−)
(78)

which specialize to 2μ = E/(1 + ν) and λ = Eν/ ((1 + ν) (1 − 2ν)) for linear elasticity. As

mentioned above, note that μ̂+ 6= μ̄+ or μ̂− 6= μ̄− for given E+, E−, ν+, ν−, in general.

2.7.3. Uncoupled stress-driven bi-modulus formulation

Following similar steps, the following relations for uncoupled stress-driven bi-modulus

materials are obtained

E+ =
9K̃+μ̃+μ̃−

μ̃+μ̃− + K̃+μ̃+ + 2K̃+μ̃−
and E− =

9K̃−μ̃−μ̃+

μ̃−μ̃+ + K̃−μ̃− + 2K̃−μ̃+
(79)
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as well as

ν+ =
1

2

K̃+ (μ̃+ + 2μ̃−) − 2μ̃+μ̃−

μ̃+μ̃− + K̃+μ̃+ + 2K̃+μ̃−
and ν− =

1

2

K̃− (μ̃− + 2μ̃+) − 2μ̃−μ̃+

μ̃−μ̃+ + K̃−μ̃− + 2K̃−μ̃+
(80)

which define the model parameters μ̃+, μ̃−, λ̃+, λ̃− from the experimental values E+, E−,

ν+, ν−

μ̃+ =
E+E−

−2E+ + 4E− − 2ν−E+ + 4ν+E−
(81)

μ̃− =
E+E−

−2E− + 4E+ − 2ν+E− + 4ν−E+
(82)

and

K̃+ =
1

3

E+

1 − 2ν+
(83)

K̃− =
1

3

E−

1 − 2ν−
(84)

which specialize to 2μ = E/(1+ν) and 3K = E/(1−2ν) for E+ = E− ≡ E and ν+ = ν− ≡ ν.

Note that both, strain- and stress-based, uncoupled formulations have the same bulk bi-

modulus values K̃+ = K̂+ and K̃− = K̂− but, in general, different shear bi-modulus μ̃+ 6= μ̂+

and μ̃− 6= μ̂−, compare Eqs. (69)-(72) to (81)-(84).

2.7.4. Coupled stress-driven bi-modulus formulation

Following similar steps, the following relations for coupled stress-driven bi-modulus ma-

terials are obtained

E+ =
2μ̌+ζ̌+

ζ̌+ − 2μ̌+
and E− =

2μ̌−ζ̌−

ζ̌− − 2μ̌−
(85)

as well as

ν+ =
2μ̌+

ζ̌+ − 2μ̌+
and ν− =

2μ̌−

ζ̌− − 2μ̌−
(86)
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which define the model parameters μ̌+, μ̌−, λ̌+, λ̌− from the experimental values E+, E−,

ν+, ν−

μ̌+ =
E+

2 (1 + ν+)
(87)

μ̌− =
E−

2 (1 + ν−)
(88)

and

ζ̌+ =
E+

ν+
(89)

ζ̌− =
E−

ν−
(90)

which specialize to 2μ = E/(1 + ν) and ζ = E/ν for linear elasticity.

Remark 2. For the particular case of coupled stress-driven bi-modulus materials, note that,

in general
E+

ν+
= ζ̌+ 6= ζ̌− =

E−

ν−
(91)

Hence, Ambartsumyan’s model [26], for which

E+

ν+
=

1

C0

=
E−

ν−
(92)

in Eqs. (58) and (59), represents a particular case of the coupled stress-driven formulation for

which the volumetric stress switch in Eq. (29) is not required because both Lamé compliance

moduli (ζ̌+ and ζ̌−) are implicitly assumed to collapse to a single one (1/C0). Furthermore,

E+ (if σi > 0) and E− (if σi < 0) in Eqs. (58) and (59) consistently relate to μ̌+ (if σi > 0)

and μ̌− (if σi < 0) through Eq. (85) with ζ̌ ≡ ζ̌+ = ζ̌−, see also Eq. (57). We remark,

however, that this simplifying assumption is not necessarily satisfied by actual bi-modulus

materials, for which two independent switches are simultaneously needed to determine the

two independent moduli that are simultaneously active at a given stress-strain state. In

this respect, we note that the symmetrizing assumption ν+/E+ = ν−/E− is not generally

satisfied by any of the uncoupled or coupled, strain- or stress-driven bi-modulus hyperelastic
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formulations presented in this work.

2.8. Extension to finite strains

The previous formulations may be extended to the finite strain framework in a quite

straightforward manner by using logarithmic strains E and the work-conjugate [45] gener-

alized Kirchhoff stresses T, which are equal to the rotated Kirchhoff stresses in the case of

isotropy [46]. Material logarithmic strains are defined as the logarithm of the right stretch

tensor U, i.e. E = lnU, so the principal logarithmic strains are the logarithm of the corre-

sponding stretches, ln(λi). It has been shown that in a general case, they can be interpreted

as the integral of differential infinitesimal strains along specific paths [47]. Then, it is im-

mediate to verify that most operators are the same for infinitesimal and logarithmic strains;

e.g. volumetric and deviatoric logarithmic strains are, respectively

Ev = E : I = ln λ1 + ln λ2 + ln λ3 = ln J (93)

Ed = E − 1
3
EvI = diag

[
ln(J− 1

3 λ1), ln(J− 1
3 λ2), ln(J− 1

3 λ3)
]

(94)

where Ed has the diagonal matrix representation in principal directions, with principal values

Ed
i := ln(λd

i ) = ln(J− 1
3 λi), where λd

i are the isochoric stretches; i.e. λd
1λ

d
2λ

d
3 = 1, and J is

the Jacobian of the finite deformation. Similar parallelism can be found between σ and T.

Then, the previous formulations may be extended to finite strains replacing ε by E and σ

by T. This approach is common in finite strain multiplicative elasto-plasticity to preserve

the simple structure of infinitesimal strain algorithms at large strains; see e.g. [48–51], and

[52] for visco-hyperelasticity, among others. The extension to anisotropic cases is slightly

more elaborate because material invariants must be used (for example in symmetry planes

[53, 54]) instead of principal strains, and material-symmetries congruency should be taken

into account [55].

However, we note that logarithmic strains are nonlinear functions of the displacements,

so a fully nonlinear model is obtained. In this case, little advantage is obtained respect a

classical hyperelastic model: note that spline-based hyperelasticity allows for abrupt changes

in material moduli [44].
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3. Predictions for additional tests: Determining the model to use

We show here that once the four material parameters for each model have been deter-

mined from four known experimental values (i.e., from two bi-linear experimental responses),

predicted responses for additional tests given by different tension-compression models may

result different. The predictive capability of each model for additional tests may serve then

to identify which model, from the four addressed above, is better suited for the specific

material under study.

3.1. Uncoupled strain-driven bi-modulus formulation

Consider, as an illustrative shear example, a (simple) shear test performed in a plane xy

of a Cartesian reference frame Xxyz = {x, y, z}, for which εxy = εyx = γ/2, with γ the so-

called angular distortion or engineering (orthogonal) shear strain, and all other components

of ε being zero. Principal strain components, e.g. 1 and 2, in the plane xy are

ε1 = −ε2 = γ/2 > 0 (95)

along with ε3 = 0. Then, of course, εv = tr ε = 0, so ε ≡ εd, i.e. εd
1 = −εd

2 = γ/2 with

respective moduli μ̂1 = μ̂+ and μ̂2 = μ̂−. The associated shear modulus Ĝ12 in the plane

defined by i = 1 and j = 2 in Eq. (34) is, for uncoupled strain-driven bi-modulus materials

Ĝ12 =
μ̂2ε

d
2 − μ̂1ε

d
1

εd
2 − εd

1

=
μ̂−εd

2 + μ̂+εd
2

εd
2 + εd

2

=
μ̂− + μ̂+

2
=

1

4

(
E+

1 + ν+
+

E−

1 + ν−

)

(96)

where we used Eqs. (69) and (70).

3.2. Coupled strain-driven bi-modulus formulation

Following similar steps as for the uncoupled strain-driven formulation, for a shear test,

the following shear modulus Ḡ12 in Eq. (37) is obtained for coupled strain-driven bi-modulus

materials

Ḡ12 =
μ̄2ε2 − μ̄1ε1

ε2 − ε1

=
μ̄−εd

2 + μ̄+εd
2

εd
2 + εd

2

=
μ̄− + μ̄+

2
=

1

4

E+ (1 − ν−) + E− (1 − ν+)

1 − ν+ν−
(97)

where we used Eqs. (75) and (76).
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3.3. Uncoupled stress-driven bi-modulus formulation

For a shear test as the one considered above, Eq. (38), with [ε]TN = [ε1, ε2, 0]T and

ε1 = −ε2 = εxy > 0, yields in principal directions

[ε]TN =








εxy

−εxy

0








T

=
1

3











σd
1

2μ̃+

σd
2

2μ̃−

σd
3

2μ̃3











T







2 −1 −1

−1 2 −1

−1 −1 2








=
1

6











2σd
1

μ̃+
−

σd
2

μ̃−
−

σd
3

μ̃3

2σd
2

μ̃−
−

σd
3

μ̃3

−
σd

1

μ̃+

2σd
3

μ̃3

−
σd

1

μ̃+
−

σd
2

μ̃−











T

(98)

which, with σd
1 + σd

2 + σd
3 = 0, yields

σd
1

εxy

=
6μ̃+μ̃−

2μ̃− + μ̃+
,

σd
2

εxy

= −
(2μ̃+ + μ̃−) 2μ̃−

2μ̃− + μ̃+
and

σd
3

εxy

= −2μ̃3
μ̃+ − μ̃−

μ̃+ + μ̃− + μ̃3

(99)

so, if, for example, μ̃+ > μ̃− > 0

σd
3 < 0 =⇒ μ̃3 = μ̃− (100)

Note also that μ̃1 = μ̃+ (because σd
1 > 0) and μ̃2 = μ̃− (because σd

2 < 0), as assumed

initially. The following shear modulus G̃12 in Eq. (41) is obtained for uncoupled stress-

driven bi-modulus materials (with μ̃+ > μ̃−)

G̃12 =
σd

1 − σd
2

σd
1/μ̃

+ − σd
2/μ̃

−
=

μ̃− (5μ̃+ + μ̃−)

4μ̃− + 2μ̃+
= G̃12(E

+, E−, ν+, ν−) (101)

where the relation G̃12(E
+, E−, ν+, ν−) is obtained from Eqs. (81) and (82).

3.4. Coupled stress-driven bi-modulus formulation

For a shear test as the one considered above, Eq. (42) yields in principal directions

[ε]N =








ε1

ε2

ε3








=








εxy

−εxy

0








=











σ1

2μ̌+
−

σ1 + σ2 + σ3

ζ̌
σ2

2μ̌−
−

σ1 + σ2 + σ3

ζ̌
σ3

2μ̌3

−
σ1 + σ2 + σ3

ζ̌











(102)
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which yields

σ1

εxy

= 2μ̌+ ζ̌ − 4μ̌− − 2μ̌3

ζ̌ − 2μ̌+ − 2μ̌− − 2μ̌3

,
σ2

εxy

= −2μ̌− ζ̌ − 4μ̌+ − 2μ̌3

ζ̌ − 2μ̌+ − 2μ̌− − 2μ̌3

(103)

and
σ3

εxy

= 4μ̌3
μ̌+ − μ̌−

ζ̌ − 2μ̌+ − 2μ̌− − 2μ̌3

(104)

so, if, for example, μ̌+ > μ̌− > 0 and ζ̌+ > 6μ̌+

σ3 > 0 =⇒ μ̌3 = μ̌+ (105)

and

p ∝ (μ̌+ − μ̌−) > 0 =⇒ ζ̌ = ζ̌+ (106)

which is also consistent with μ̌1 = μ̌+ (i.e., σ1 > 0) and μ̌2 = μ̌− (i.e., σ2 < 0), as assumed

initially. The following shear modulus Ǧ12 in Eq. (43) is obtained for coupled stress-driven

bi-modulus materials (with μ̌+ > μ̌− and ζ̌+ > 6μ̌+)

Ǧ12 =
σ1 − σ2

σ1/μ̌+ − σ2/μ̌−
=

ζ̌+ (μ̌+ + μ̌−) − 2μ̌+ (μ̌+ + 5μ̌−)

2ζ̌+ − 8μ̌+ − 4μ̌−
= Ǧ12(E

+, E−, ν+, ν−) (107)

where the relation Ǧ12(E
+, E−, ν+, ν−) is obtained from Eqs. (87)-(90).

4. Stress-driven vs. strain-driven procedures

It has been recently submitted that a stress-driven, rather than strain-driven, formulation

should be used when dealing with bi-modulus materials, with a heuristic proof given in

Remark 1 in Ref. [40], based on the example in Fig. 5 therein. We show next that, for

example, an uncoupled strain-driven approach based on deviatoric and volumetric strain

components and respective shear and bulk bi-moduli, constitutes an alternative systematic

procedure to determine the three-dimensional tension-compression state of the material along

principal directions. Albeit not addressed in detail, a similar reasoning follows for the coupled

strain-driven approach.

Considering the laterally constrained uniaxial test in Fig. 5 in Ref. [40], which we
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assume is performed along principal direction 1 (with ε1 ≡ εu > 0) and constrained on both

lateral directions 2 and 3, one obtains that the transverse strains ε2 = ε3 ≡ εt are such that

−ν+ ≤ εt/εu ≤ 0, where the lower limit −ν+ describes a laterally unconstrained uniaxial

test (see Eq. (63)) and the higher limit 0 describes a test under total lateral restriction.

Then, since εt are, in general, negative, but the lateral tensile force exerted over the body

is, in general, positive, the authors in Ref. [40] conclude that “principle stresses rather than

principle strains should be employed to determine the tensile or compressive status of a

material point along a specific principal direction”. The authors apparently refer to total

strains. However, we show next that deviatoric and volumetric components of strain, either

positive or negative, can be systematically employed for such a task.

For simplicity, consider the case completely constrained laterally. Then, εu > 0 and

εt = 0, so e = εu > 0, εd
u = 2

3
εu > 0 and εd

t = −1
3
εu < 0, whereupon K̂ = K̂+, μ̂u = μ̂+

and μ̂t = μ̂−. Hence, in contrast to the observation in Remark 1 in Ref. [40], note that one

can indeed consider a compression constant in transverse directions (i.e., μ̂t = μ̂−) even if

σt > 0. Axial and transverse equations, obtained from Eq. (31) for example, reduce to

σu =

(

K̂+ +
8μ̂+ + 4μ̂−

9

)

εu (108)

σt =

(

K̂+ −
4μ̂+ + 2μ̂−

9

)

εu (109)

or, using relations in Eqs. (69)-(71)

σu =
E+ (1 − ν+)

(1 + ν+) (1 − 2ν+)
εu (110)

σt =
E+ν+

(1 + ν+) (1 − 2ν+)
εu (111)

which, note, ultimately depend on the tensile Young modulus E+ and tensile Poisson ratio

ν+.

Finally, regarding general computational procedures associated with stress- or strain-

driven approaches, note that a phenomenological generalization of the stress-driven frame-

work in Ref. [40] does not seem optimal for (displacement-based) finite element implemen-

tations, leading to the iterative algorithm and elaborate tangents in Ref. [31] (see Fig. 2
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and Appendix B therein, respectively); below we further address this issue. In contrast,

both coupled and uncoupled strain-driven approaches are optimal for (displacement-based)

finite element implementations, with stresses and exact material tangent moduli determined

immediately once the strain-driven switches are evaluated. Indeed, bi-linear materials as

the ones addressed in this work are just a special case of materially non-linear (elastic)

materials [46]. Furthermore, the present uncoupled strain-driven framework is a special

case of fully nonlinear (uncoupled) hyperelastic materials [43] and can be easily extended

to anisotropic materials [53, 54]. Hence, asymptotic quadratic rates of convergence within

Newton-Raphson iterative procedures at the quadrature points are guaranteed by construc-

tion of the bi-modulus constitutive theory developed herein without any further modification

(cf. Ref. [31]), as we show in Section 6.

As mentioned, stress-driven approaches are not as well suited for finite element codes,

since they require an additional local iterative loop to fulfill the compatibility equation.

For instance, the strain ε(σ) = dΨc(σ)/dσ cannot be computed directly because at the

material routine level, the final stresses are unknown until global equilibrium is established

in the structure. Indeed, element subroutines facilitate to the material subroutines the

strains (obtained from the iterative displacements) and expect to receive the corresponding

stresses and tangent moduli. Thus the following compatibility equation must be enforced

between the (global) element-level strains ε� and the (local) iterative material-level strains

ε[j](σ[j]) = dΨc/dσ[j]

ρ[j](σ[j]) := ε[j](σ[j]) − ε� → 0 (112)

Obviously this equation may be solved as usual through a Newton-Raphson scheme or similar

scheme until convergence is attained locally, e.g.

σ[j+1] = σ[j] −

[
dρ[j](σ[j])

dσ[j]

]−1

: (ε[j] − ε�) = σ[j] − S[j]−1 : (ε[j] − ε�) (113)

A similar iterative approach was needed to plot Figs. 5 and 6, where strains were prescribed,

but no iterations were needed for Figs. 1 to 4. After the computation of the compatible

stresses, the stresses and tangent C[j] = S[j]−1 fulfilling both the constitutive and compatibil-

ity relations are returned, the latter for the global (equilibrium) iterations. Therefore, this
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scheme introduces a new local loop, not present even in nonlinear large-strain hyperelasticity,

which may be avoided using strain-driven formulations, unless strictly needed for an accu-

rate material behavior description. In finite element simulations performed below, including

both homogeneous and non-homogeneous deformation states, the initial guess (j = 0) to

start the iterative procedure in Eq. (113) also proved relevant, especially for relatively high

differences between tension and compression moduli. In this respect, stresses computed using

either uncoupled or coupled strain-driven formulations proved useful to initialize Eq. (112)

for either uncoupled or coupled stress-driven formulations, respectively.

5. Uncoupled vs. coupled formulations

To understand the implications of employing coupled switches, consider a deformation

case with a volumetric strain 3ε and a superposed pure shear strain γ. Note that this is a quite

general deformation state in the sense that the two types of deformation modes (dilatational

and distortional) are superimposed in terms of their own variables. Then ε1 = γ/2 + ε,

ε2 = −γ/2 + ε and ε3 = ε. Consider for now γ/2 + ε > 0 and −γ/2 + ε < 0. Then, the

stresses are

σ1 = 3λ̄ε + μ+(γ + 2ε) (114)

σ2 = 3λ̄ε + μ−(−γ + 2ε) (115)

σ3 = 3λ̄ε + 2μ̄3ε (116)

The in-plane maximum shear stress is

τ =
σ1 − σ2

2
=

μ+ + μ−

2
γ + (μ+ − μ−)ε (117)

In Figure 1 we plot these equations for a given range of values for γ and ε. For the case

of the shear stresses, in Figure 2 we plot the shear stress surface. It is seen that there

is not only a single change of slope in each curve, but several of them and with changing

sign. Furthermore, those changes are at different combinations of γ and ε. Note that we only

considered distortion in one plane, so the picture becomes more complicated under combined
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distortions. Hence, convergence difficulties can be expected, or at least a lag in convergence

speed. Furthermore, the material can only be considered a “bi-modulus” material because

it is defined by two constants for two independent material parameters, but not because it

shows two slopes during a (combined) test.

Noteworthy, if the same exercise is performed for the associated (strain-based) uncoupled

model, we obtain the plots shown in Figures 3 and 4. It is clearly seen that the curves have

only two slopes in all cases, and the switches and shear stresses are independent of the

dilatation.

Employing uncoupled switches for stresses in the associated complementary energy, one

obtains bi-linear schemes similar to those shown in Figs. 3 and 4.

We can compare the previous approaches also with Ambartsumyan’s model results for the

same analysis, which are shown in Figures 5 and 6. It is seen than in this case, not only the

elastic constants are reduced by one, but the curves are not bi-linear, having several changes

of slope, also present at different combinations of ε and γ. As before, cases with combined

distortions in other planes, introduce even more changes of slopes. This may explain some

of the difficulties continuously reported in all works using Ambartsumyan’s approach and

their variants.

6. Illustrative examples

We perform in this Section finite element simulations with the general-purpose finite

element analysis software ADINA [56], where the different models have been programmed

through a user-defined material subroutine based on a materially-nonlinear-only formulation

under small displacements and strains [46].

6.1. Tension-compression uniaxial tests: verification of material models

Assume that we have measured both tensile and compression Young moduli and Poisson

ratios from respective uniaxial tests performed in tension (from which we obtain E+ = σ+
u /ε+

u

and ν+ = −ε+
t /ε+

u ) and compression (from which we obtain E− = σ−
u /ε−u and ν− = −ε−t /ε−u ).

In particular, consider “experimental” slopes

E+ = 105 MPa , ν+ = 0.4, E− = 48 MPa , ν− = 0.2 (118)
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We can subsequently determine the model parameters for the different formulations presented

above, which are the only material parameters for our ADINA user-defined subroutine. We

obtain from Eqs. (69)-(72)

μ̂+ = 55 MPa , μ̂− = 2.5 MPa , K̂+ = 175 MPa , K̂− = 26.67 MPa (119)

or from Eqs. (75)-(78)

μ̄+ = 46.63 MPa , μ̄− = 14.67 MPa , λ̄+ = 58.70 MPa , λ̄− = 31.09 MPa (120)

or from Eqs. (81)-(84)

μ̃+ = 300 MPa , μ̃− = 13.64 MPa , K̃+ = 175 MPa , K̃− = 26.67 MPa (121)

or from Eqs. (87)-(90)

μ̌+ = 37.5 MPa , μ̌− = 20 MPa , ζ̌+ = 262.5 MPa , ζ̌− = 240 MPa (122)

We have simulated four tension-compression uniaxial tests in ADINA using respective

material constants in Eqs. (119)-(122). The finite element model consists of a single brick

8-node element, with displacement-driven faces (both extension and compression) along axis

x, and displacement-free lateral faces (axes y and z). We show in Fig. 7 results for uniaxial

stress σu ≡ σxx and transverse strain εt ≡ εyy = εzz, respectively, as a function of the uniaxial

strain εu ≡ εxx, all of them being principal components. One can easily observe in these

figures that, effectively, E+ = σ+
u /ε+

u = 105 MPa, E− = σ−
u /ε−u = 48 MPa, ν+ = −ε+

t /ε+
u =

0.4, and ν− = −ε−t /ε−u = 0.2 for all four material models, with all four response curves

overlapping. The fact that the response curves obtained from the numerically simulated

tension-compression uniaxial tests reproduce the initially assumed “experimental” responses

serves as numerical verification of the consistency of the models in principal directions,

specifically, between respective internal model parameters in Eqs. (119)-(122) and external

material constants in Eq. (118).
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Finally, different situations were encountered when analyzing the numerical convergence

of the simulations. When no local change of constitutive behavior took place (i.e., for in-

cremental steps within either the tension branch, preserving εu > 0, or the compression

branch, preserving εu < 0), exact numerical solutions (up to machine precision) were ob-

tained in a single Newton-Raphson global iteration for all four models, consistent with a

linear finite element computation. On other hand, when a local change in constitutive be-

havior took place (i.e., for incremental steps from the tension to the compression branch, or

vice versa), two initial iterations were required to re-adjust tangents, with the corresponding

exact numerical solution obtained at the final Newton-Raphson global iteration (now within

the corresponding branch) for all formulations.

6.2. Shear test

In this example, we simulate four (simple) shear tests in ADINA in a plane x − y,

with y the glide plane and x the shearing direction, using respective material constants in

Eqs. (119)-(122). The finite element model consists of a single brick 8-node element, with

displacements of the four nodes on face with normal y being prescribed along direction x

and all other degrees of freedom fixed. This discretization ensures uniform fields of strain

and stress within the element, which enables a comparison between numerical outcomes and

analytical calculations. In particular, Eqs. (96), (97), (101) and (107) yield respective shear

modulus

Ĝxy =
μ̂− + μ̂+

2
= 28.75 MPa , (123)

Ḡxy =
μ̄− + μ̄+

2
= 30.65 MPa , (124)

G̃xy =
μ̃− (5μ̃+ + μ̃−)

4μ̃− + 2μ̃+
= 31.54 MPa , (125)

and

Ǧxy =
ζ̌+ (μ̌+ + μ̌−) − 2μ̌+ (μ̌+ + 5μ̌−)

2ζ̌+ − 8μ̌+ − 4μ̌−
= 32.97 MPa (126)

We show in Fig. 8 results for shear stresses σxy as a function of the shear strain −10−3 ≤

γxy ≤ 10−3. One can observe that, effectively, different numerical predictions for σxy at

γxy = 10−3 are consistent with respective analytical results given by σxy = Gxyγxy. In
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addition, we show numerical predictions for axial stresses σxx, σyy, and σzz, which were also

verified analytically. Note the different axial stress components that different models require

for this (totally) imposed shear strain state, especially the out-of-plane stress σzz, which is

negative for both uncoupled formulations (cf., e.g., Eq. (100), valid for μ̃+ > μ̃−), positive

for the coupled stress-driven formulation (cf. Eq. (105), valid for μ̌+ > μ̌− and ζ̌+ > 6μ̌+),

and vanishes for the coupled strain-driven formulation. Furthermore, even if in-plane axial

components σxx = σyy > 0 for all four cases, note a factor of 4 between respective predictions

by the coupled or uncoupled stress-driven formulations.

6.3. Tension-compression response of a plate with a central hole

In the previous examples we have verified numerically that both axial and shear responses

computed with ADINA provide exact analytical solutions in uniform deformation states.

We simulate here the stretching, under both tension and compression, of a rectangular

plate with a concentric circular hole to verify that Eqs. (33) and (37), for strain-driven

procedures, as well as Eqs. (40) and (43) along with the local iterations in Eq. (113), for

stress-driven procedures, provide respective consistent linearization of stresses for general

multi-axial non-uniform deformation states, with different integration points likely presenting

different tension-compression states along differently oriented principal directions.

The geometry and finite element discretization are shown in Fig. 9. The plate is stretched

±0.1% (relative to its length) along axis x. We assume perfectly lubricated grips at both

ends (free displacements along y) as well as a plane strain condition in direction z (fixed

displacements along z at both faces). In this case, we employ fully integrated 27-node

brick elements (with 3 × 3 × 3 Gauss integration points), and perform four cyclic tension-

compression simulations with respective material constants in Eqs. (119)-(122). Figures 10

to 13 show deformed meshes (magnified) and von Mises stress maps for maximum (0 .1%) and

minimum (−0.1%) mean axial strain εxx, which clearly show the existent asymmetric global

responses under tension and compression for the four formulations, especially regarding

absolute values of stress (respective von Mises maps, under tension and compression, are

identical for linear materials). Note that, since all model constants have been determined to

give the same uniaxial response (Figure 7) and the in-plane shear stresses predicted by all
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four models turned to be very similar (Figure 8), then associated deformed meshes and von

Mises stresses also result to be similar, although some differences can be noticed. Nonetheless,

higher differences are observed for particular stress components, as one would expect from the

results in Figure 8. Finally, similar to what we observed for the tension-compression uniaxial

test analyzed above, exact numerical solutions were obtained in a single Newton-Raphson

global iteration when no local change of constitutive behavior took place during incremental

steps with proportional loading (i.e., for either εxx > 0 or εxx < 0 preserved), consistent with

a linear computation. For steps involving local changes of constitutive behavior (i.e., for

either εxx > 0 becoming negative or εxx < 0 becoming positive), additional global iterations

were required to obtain a solution, although they showed asymptotically quadratic rates

of convergence for both residual force and energy, as shown in Table 2. Indeed, Table 3

shows that convergence (e.g., in the uncoupled strain-driven case) is afforded by progressive

iterations with less and less integration points undergoing changes in material switches, with

the relevance of the remaining points for which switches are being decided less and less

important in the solution (hence in the residual). If there are no changes in the switches, the

solution is obtained in just one iteration consistent with a linear problem. Finally, and only

for the uncoupled stress-driven formulation with the specific material constants in Eq. (121),

global line searches were needed to run a complete tension-compression cyclic test (likely,

during initial iterations only, involving resetting of local tangents), with the finite element

computation converging quadratically when the globally bi-linear incremental solution was

engaged, see Table 2. Noteworthy, other sets of parameters for the uncoupled stress-driven

model did not present this numerical issue or need line searches to find an incremental

solution during critical, bi-linear, steps.

7. Conclusion

The theory of bi-modulus materials, with different behavior in tension and compression,

is applicable to a wide variety of materials. Therefore, departing from the work of Ambart-

sumyan, several approaches have been presented in the literature to analyse these materials.

However, these approaches present a restriction on the elasticity constants (reducing to three

the independent constants to preserve symmetry and thermodynamic consistency) and result

33



in complex tangent matrices and corresponding finite element implementations which, fre-

quently, report poor convergence properties, among them a loss of asymptotic second order

convergence.

In this work we have presented a generalized framework based on hyperelasticity to deal

systematically with this class of materials. We have analysed four possibilities attending

to the stress or strain nature of the switches and their coupled or uncoupled setting. In

all these cases, the presented formulations preserve the expected four independent moduli,

retaining thermodynamic consistency, symmetry of the constitutive tensors and resulting

in simple and efficient finite element formulations. Indeed, the anticipated efficiency for a

bilinear material, with at least asymptotic quadratic convergence rates, is obtained as we

have shown in the examples.
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Material E+[MPa] E−[MPa] ν+ ν− Refs.

Fine grained Concrete 650 1820 − − [21, 26]
Glass fiber KC-30 535 115 − − [21, 26]
Glass fiber AC-30 139 20 − − [21, 26]
Epoxi E862 resin (at 20oC) 2, 520 2, 710 0.43 0.39 [63]
Epoxi E862 resin (at 80oC) 1, 950 1, 660 0.40 0.37 [63]
Epoxi resin (by Brazilian test) 1, 590 ∼ 1, 630 1, 760 ∼ 5, 590 − − [3]
PLA 3D-printed, filament at 0o 3, 980 4, 730 − − [65]
Articular cartilage 12.75 0.60 0.186 0.034 [19]
Georgia marble 23, 400 42, 100 − − [4, 61]
Russian marble 9, 000 20, 700 − − [4, 61]
Russian sandstone 11, 700 57, 200 − − [4, 61]
Granite (different types) 14, 000 ∼ 55, 200 20, 000 ∼ 68, 900 − − [4]
Pinctada nacre 51, 000 73, 000 − − [6, 62]
Poplar 12%MC (fiber dir.) ' 8, 000 ' 4, 000 − − [57, 58, 66]
Sugar Maple 12%MC (fiber) ' 12, 600 ' 9, 860 ' 0.45 ' 0.05 [58, 60, 64]
Soft traslucent silicone 0.45 0.25 (' 0.5) (' 0.5) [59]
Natural rubber NR70 3.94 ∼ 5.84 8.33 (' 0.5) (' 0.5) [59]

Table 1: Typical constants for some bimodulus materials
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Figure 1: Response of a “bi-modulus” hyperelastic isotropic material employing total strain switches under
changes of dilatation and pure shear strain (stress units in [MPa]); principal stresses and in-plane shear
stress. Strain energy density function Ψ(ε) = μ̄1ε
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2 λ̄εv2.
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Figure 2: Response of a “bi-modulus” hyperelastic isotropic material employing total strain switches under
changes of dilatation and pure shear strain (stress units in [MPa]); shear strain. Strain energy density
function Ψ(ε) = μ̄1ε

2
1 + μ̄2ε

2
2 + μ̄3ε

2
3 + 1

2 λ̄εv2.
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Figure 3: Response of a “bi-modulus” hyperelastic isotropic material employing uncoupled strain switches
under changes of dilatation and pure shear strain (stress units in [MPa]); principal stresses and in-plane
shear stress. Strain energy density function Ψ(ε) = μ̂1ε
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Figure 4: Response of a bi-modulus hyperelastic isotropic material employing uncoupled strain switches
under changes of dilatation and pure shear strain (stress units in [MPa]); in-plane shear stress. Strain energy
density function Ψ(ε) = μ̄1ε

2
1 + μ̄2ε

2
2 + μ̄3ε

2
3 + 1

2 λ̄εv2.
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Figure 5: Response of the “bi-modulus” isotropic material from Ambartsumyan employing total stress
switches under changes of dilatation and pure shear strain (stress units in [MPa]); principal stresses and
in-plane shear stress.
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Figure 6: Response of a “bi-modulus” hyperelastic isotropic material employing total strain switches under
changes of dilatation and pure shear strain (stress units in [MPa]). Strain energy density function Ψ(ε) =
μ̄1ε

2
1 + μ̄2ε

2
2 + μ̄3ε

2
3 + 1

2 λ̄εv2.
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Figure 7: Response curves for uniaxial stress σu = σxx [MPa] (top panel) and transverse strain εt = εyy = εzz

(bottom panel) as a function of the uniaxial strain εu = εxx for four uniaxial test computed with Adina
(shown in top panel as well is the single element considered with the axial displacements prescribed) with
prescribed uncoupled / coupled or strain / stress based bi-modulus parameters in Eqs. (119)-(122). Note
that the experimentally observable Young’s bi-modulus and Poisson’s bi-ratio in Eq. (118), from which
parameters for the four models have been previously determined, are reproduced by respective numerical
simulations (with overlapped curves).
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Figure 8: Response curves for shear stress σxy [MPa] (top panel) as well as axial σxx = σyy (center panel)
and σzz (bottom panel) stress as a function of the shear strain γxy = 2εxy for four shear tests computed with
Adina (shown in center panel as well is the single element considered with the displacements prescribed) with
prescribed uncoupled / coupled or strain / stress based bi-modulus parameters in Eqs. (119)-(122). Note the
different responses, especially axial stress components, that different bi-modulus formulations, characterized
from a common tension-compression uniaxial test (Figure 7), predict for a shear test.
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Figure 9: Elongation of a plate with a circular hole under a plane strain condition. Finite element undeformed
three-dimensional mesh with applied displacements. Length = 32mm; Height = 16mm; Hole Diameter =
8mm.
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Figure 10: Uncoupled strain-driven formulation: Deformed configurations (magnified by a factor of 165)
and non-smoothed band plots of von Mises stress for an overall axial strain εxx = ΔLx/Lx = 10−3 (top) or
εxx = ΔLx/Lx = −10−3 (bottom).
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Figure 11: Coupled strain-driven formulation: Deformed configurations (magnified by a factor of 165) and
non-smoothed band plots of von Mises stress for an overall axial strain εxx = ΔLx/Lx = 10−3 (top) or
εxx = ΔLx/Lx = −10−3 (bottom).
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Figure 12: Uncoupled stress-driven formulation: Deformed configurations (magnified by a factor of 165) and
non-smoothed band plots of von Mises stress for an overall axial strain εxx = ΔLx/Lx = 10−3 (top) or
εxx = ΔLx/Lx = −10−3 (bottom).
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Figure 13: Coupled stress-driven formulation: Deformed configurations (magnified by a factor of 165) and
non-smoothed band plots of von Mises stress for an overall axial strain εxx = ΔLx/Lx = 10−3 (top) or
εxx = ΔLx/Lx = −10−3 (bottom).
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Uncoupled-Strain Coupled-Strain Uncoupled-Stress Coupled-Stress

Iter. Force Energy Force Energy Force Energy Force Energy

1 6.0E-02 4.8E-04 3.3E-02 3.4E-04 2.1E-01 5.7E-03 3.4E-02 2.0E-04
2 3.9E-03 5.7E-07 2.1E-03 2.7E-07 2.0E-02 1.5E-05 4.1E-03 1.6E-06
3 1.5E-04 2.9E-10 2.9E-05 1.7E-11 4.7E-03 2.4E-07 6.2E-04 2.1E-08
4 5.3E-08 5.2E-17 2.2E-09 8.2E-20 1.7E-04 1.3E-08 5.4E-05 7.5E-11
5 2.1E-14 5.7E-30 6.1E-15 3.9E-31 3.2E-06 1.2E-13 3.7E-09 2.8E-19
6 1.2E-09 3.9E-21 7.2E-15 4.4E-31
7 9.3E-15 5.5E-31

Table 2: Plate with a hole: residual force (left sub-columns) and energy (right sub-columns) during globally
bi-linear elastic incremental steps for the four coupled / uncoupled or strain / stress driven simulations shown
in Figs. 10 to 13. Line searches were needed for the uncoupled stress-driven formulation.
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Bi-linear incremental step Linear incremental step

Iter. Deviatoric Volumetric Deviatoric Volumetric

1 11596 12238 0 0
2 2468 409
3 103 36
4 18 5
5 0 0

Table 3: Plate with a hole; strain-driven uncoupled case (Fig. 10). Number of integration points (out of
24192) for which any shear μ̂i, i = 1, 2, or 3 (left sub-columns) or the bulk K̂ (right sub-columns) bi-moduli
change their values relative to their respective values in the previous iteration (the first iteration compares
values against converged values at the previous load step). Convergence up to machine precision (Table 2)
is attained in both globally bi-linear (left) and linear (right) incremental steps with proportional loading
at the specific iteration (5 and 1, respectively) for which the complete set of moduli have converged locally
throughout the plate.
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