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ABSTRACT In real-time systems, analyzing the worst-case execution time (WCET) of a task in the presence
of data caches is hard. The ACDC is a data cache that provides predictability, facilitating WCET analysis.
It works by granting data cache replacement permission to specific load/store instructions. Nonetheless,
knowing how to select these instructions to minimize the WCET, i.e., configuring the ACDC, is not trivial.
In this paper, we propose four new methods to configure the ACDC, and compare them with existing
methods. Unlike those in previous studies, our proposed methods provide specific ACDC configurations
for the different phases of a given task, instead of a single ACDC configuration per task. We evaluate the
WCET bounds obtained when using different ACDC configuration methods on the TACLeBench benchmark
suite. Our results show that the most complex benchmarks work better with multiple-content configurations,
which indicates that realistic tasks may also benefit from this kind of configuration. The methods proposed
in this study improve the WCET in more than 60% of cases, with an average WCET improvement of nearly
5% and up to 50% in some cases.

INDEX TERMS ACDC, WCET, data cache, real-time, genetic algorithms, static analysis.

I. INTRODUCTION
Real-time systems are increasingly present in industry and
daily life. We can find examples in many sectors including
avionics, robotics, automotive processes, manufacturing, and
air-traffic control. A real-time system consists of a number of
tasks, which perform the required functionality. These tasks
can be organized by priorities and they have to be scheduled
such that they meet their deadlines. To ensure the correctness
of the system, tasksmust be schedulable considering that each
one requires its corresponding Worst-Case Execution Time
(WCET) to be completed.

One of the main challenges in WCET analysis is the
memory hierarchy [1]. General purpose systems usually
have set-associative LRU instruction and data caches for
the first level, and unified set-associative LRU caches for
other levels. LRU caches introduce considerable uncertainty
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into WCET estimation, and having several levels of cache
enlarges such uncertainty, and hence, they are not adequate
for hard real-time systems. This leaves system designers with
three options: disable the caches, losing the performance
improvements brought by their use; carry out an analysis or
measurement using conventional caches [2], usually complex
and pessimistic; or instead use specialized caches that focus
on predictability rather than performance [3]. Cache locking
is the traditional way to increase cache predictability and
simplify WCET estimation. Lockable caches can be used
both for instruction [4] and data caches [5]. For data caches,
there are other predictable hardware proposals, such as the
Address-Cache Data-Cache (ACDC ) [6]. The ACDC is a
very small instruction-driven data cache able to exploit data
reuse in a very controlled and predictable way, with a much
better performance than a locked data cache. Like lockable
caches, the ACDC must be configured for the task to be run,
i.e., to specify how the cache must behave upon specific data
requests. However, obtaining a configuration that minimizes
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the WCET is not trivial. Existing approaches generate, for
each task, a particular single-content configuration to be used
during the execution of the whole task. The goal of this
configuration is to reduce the WCET of the task, but no
studies have yet evaluated the extent of such a reduction.

In this study, we focus on the ACDC. We compare the
WCET resulting from different existing ACDC configu-
ration approaches, and propose new configuration meth-
ods. Specifically, we propose two heuristic multiple-content
configuration methods, that is, methods to obtain specific
configurations for the different phases of a task. Apart from
more accurate configurations, this avoids the restrictions
that the limited size of the ACDC may imply. Additionally,
we propose two genetic algorithms to further explore the
configuration space, considering single and multiple content
types, to test whether the configurations obtained can be
improved. Evaluating how each of these proposals performs
is a first step towards integrating any of them in a compiler.

Our contributions can be summarized as follows:
• Proposal of two heuristic multiple-content configuration
methods to overcome the ACDC size limitation associ-
ated with existing (single-content heuristic) methods.

• Proposal of two genetic algorithms (single and multi-
ple content) to evaluate how much room there is for
improvement in both the existing single-content and our
proposed multiple-content heuristic methods.

• Performance comparison and analysis of existing
approaches and our proposed ones (both heuristic and
genetic) in terms of WCET and analysis time.

With these contributions, given methods can be selected for
specific tasks.

The rest of this paper is organized as follows. Section II
describes related work, in particular, the ACDC data cache
and existing configuration methods. Then, we propose new
single-content and multiple-content methods in Section III
and Section IV, respectively. Subsequently, Section V
describes the experimental environment, and Section VI
details our experiments and their results. Finally, we present
our conclusions in Section VII.

II. RELATED WORK
Typical memory hierarchies found in general purpose pro-
cessors are not adequate for real-time systems. For instance,
a WCET analysis of a level 2 cache shared between dif-
ferent cores should consider that this hardware resource is
always busy attending other cores, and therefore, that such
a potential delay in the worst case may be worse than the
delay in simpler architectures [7]. To reduce the complex-
ity of WCET analyses of systems with cache memories,
many studies propose using scratchpad memories or lockable
caches1 [3]. These caches are preconfigured/preloaded with

1Lockable caches are present in processors of most manufacturers, includ-
ing those of Motorola (ColdFire, PowerPC, MPC7451, MPC7400), MIPS
(MIPS32), ARM (904, 946E-S), Integrated Device Technology (79R4650,
79RC64574), and Intel (960). Scratchpad memories are also common, being
found, for instance, in the Xilinx Zynq Ultrascale+.

specific instructions/data, and locked so that their content is
not evicted. In this way, the hit/miss computation in the worst
case is much easier and more precise, since it is not affected
by the uncertainty introduced by the path taken during the
execution of tasks.

There are two ways of using lockable caches: statically
and dynamically. Static locking methods lock select cache
content belonging to all the tasks that run in the system,
this content being fixed at system start-up [8], [9]. On the
other hand, dynamic locking methods select content to lock
once or more per task. In general, dynamic locking performs
better than static locking in terms of WCET [10]. Focusing
on dynamic locking, single-content dynamic locking selects
a single set of content per task, which is loaded and locked
at each task context switch (e.g. [11]), and multiple-content
dynamic locking refers to methods that allow each task to load
and lock different cache contents at will during its execution
(e.g. [4], [12]).

Cache locking methods work especially well for instruc-
tion caches [13]. In contrast, their application to data caches
has major drawbacks that appear in common scenarios such
as loops, function calls, and execution-time address computa-
tion. In loops, a memory instruction may access different data
memory addresses depending on the loop iteration. In func-
tions, memory instructions accessing local variables use stack
frames, whose base address depends, among other things,
on the nesting level. Regarding address computation, a mem-
ory instruction may access a data-dependent memory address
unknown at compilation/static analysis time. Therefore, the
application of cache locking to data caches is restricted to
load and lock in cache whole data structures for specific
chunks of code [5].

Seeking to overcome the aforementioned limitations, other
data cache designs have been proposed. These include the
ACDC, which is a predictable data cache where only certain
instructions (previously configured) are allowed to replace
cache lines. The Fully-Associative FIFO tagged Buffers
(FAFBs) are auxiliary caches that follow a similar approach,
but using cache lines organized as FIFO buffers [14]. FAFBs
are designed to work coupled with any level 1 data cache
and focus exclusively on exploiting data accesses to arrays
with temporal reuse, commonly generated by tiling transfor-
mations in the compiler. In particular, FAFBs manage these
accesses, avoiding the associated pollution of the main cache,
and let the main cache deal with any other data access.

In this paper, we focus on the ACDC, described below,
since it exploits most reuse types and does not need any
particular compiler optimization.

A. ACDC DATA CACHE OVERVIEW
The ACDC is a small instruction-driven data cache that
effectively exploits reuse [6]. It operates from a fixed pres-
elected subset of load/store instruction addresses held in the
AC part of the ACDC cache (see Figure 1). These selected
load/store instructions have data cache replacement permis-
sions (DRPs). Each permission is associated with a particular
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FIGURE 1. ACDC schema [16].

FIGURE 2. ACDC operation flow chart for a load/store instruction (in PC)
to addr , which may evict a cache line u. PCs in AC are those with DC
replacement permission [16]. Note that the first three decisions can be
evaluated in parallel.

data cache line in the DC part of the ACDC. Thus, when
executing a load/store instruction that misses in the DC, the
replacement of the data line on the DC will be only allowed
if the instruction has DRP (i.e., the PC of the instruction is
kept in an AC entry). Since each selected memory instruction
replaces its own data cache line, pollution is prevented and
performance is independent of the size of the data structures
in tasks. In other words, using the ACDC the programmer
does not need to partition data sets to reduce cache con-
flicts. Figure 2 is a flowchart of the ACDC’s behavior. For
data accesses, look-up is fully-associative, meaning that any
access may benefit from the cached content. On a miss,
if the missing load/store has DRP (its PC is in the AC),
the DC line assigned to this load/store is replaced, as in a
conventional write-back write-miss-allocate cache. However,
misses triggered by instructions without DRP bypass the DC.
That is, loads bring the specified data to the processor without
modifying the DC, and stores write directly to main mem-
ory without fetching the missing data, as in a write-around
cache [15]. This behavior provides much better performance
than a locked data cache [6].

As can be seen, only the set of instruction addresses with
replacement permission in the ACDC can evict its content,
and each one of these instructions can only replace its own
associated cache line. Thus, hits and misses depend exclu-
sively on whether the referenced data have been previously
accessed by a memory instruction with replacement per-
mission. A data reuse analysis of the task provides this
information [17].

In order to support preemptive multitasking real-time
systems, cache-related preemption delay (CRPD) must be
considered. Calculating such a delay value is also straight-
forward with the ACDC. Given its small size (from 256 B
to 2 KiB in this study), saving and restoring the whole cache
content (AC and DC) is acceptable [6]. This procedure can be
used independently of the configuration policy, i.e., a single-
content configuration for the whole execution of a task,
or specific configurations for the different phases of a task
(multiple-content locking). Additionally, the resulting CRPD
is constant, and it can be easily integrated into the response
time computation [6].

Configuring the ACDC means selecting the set of
load/store instructions that will have DRP (those to be
held in the AC part of the ACDC). Previous studies have
proposed two ACDC configuration methods: single-content
WCET optimization for single-path tasks (S-OSP) [6] and
single-content estimation of WCET benefit from potential
DRPs (S-EB) [16]. Both of these methods obtain a sin-
gle set of load/store instructions for a given task. These
instructions are preloaded before running the task, and
also when the task resumes its execution after a context
switch.

B. SINGLE-CONTENT WCET OPTIMIZATION FOR
SINGLE-PATH TASKS (S-OSP)
This method was proposed along with the ACDC itself [6].
It is an extension of the Lock for Maximizing Schedula-
bility (Lock-MS) method, which minimizes the WCET in
presence of lockable instruction caches [11]. This method
builds a structure-based Integer Linear Programming (ILP)
model of the task, instead of the more common ILP flow
model used in the Implicit Path Enumeration Technique
(IPET) [18]. Structure-based models are faster to solve, but
they have more limitations than the IPET regarding costs
that depend on previously taken paths. Therefore, these
methods work well for locked instruction caches, but not
for LRU caches. For systems with an ACDC, this method
is only valid if the data memory access costs of the task
analyzed do not depend on the path taken, i.e., when the
task has a single path or a set of alternative non-interfering
paths. Otherwise, the results may not be optimal, that is, the
obtained selection of load/store instructions to be granted
DRP may not be the one that provides the best WCET
bound.

This method obtains the ACDC configuration by solving
an ILP model, summarized as follows. The cost of each
particular path p in the task is composed of the ACDC oper-
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TABLE 1. Variables and constants for the integer linear programming
models.

ation costs acdcCostp plus other costs in the path (see the
details of the Lock-MS method for the costs not related to
the ACDC [11]). In addition, the WCET must be larger than
or equal to the cost of any of the paths, plus the cost of
configuring the ACDC (preloadCost) [6].

rClWCET = preloadCost + worstPath

worstPath ≥ acdcCostp + otherCostsp, ∀ p ∈ Paths. (1)

Then, the minimization of WCET is set as the objective of
the model. That is, it will try to reduce the WCET as much
as possible, by selecting the loads/stores to be granted DRP.
Each load/store (located at a given address, PC) is associ-
ated with a binary variable stating whether this instruction
is granted DRP or not (drpPC ). Hence, the sum of these
variables provides the number of PCs to preload in theACDC,
which must be less than or equal to its number of entries (AC
entries in Figure 1) [6].

rClloadedDRPs =
∑
PC

drpPC

loadedDRPs ≤ acdcEntries (2)

Since this method calculates bounds on paths, the overall
memory cost for a path p (acdcCostp) can be calculated as
the sum of the cost of each particular memory reference ref
(associated with a given static load/store instruction) in the
path. The access cost of a given reference ref is the sum
of its number of occurrences (number of data hits dhref ,
misses dmref , and write-backs wbref ) times the cost of each
occurrence, respectively (see Table 1) [6].

rClacdcCostp=
∑

ref ∈memRefsp

hc·dhref +mc·dmref +wbc·wbref

(3)

In turn, the number of occurrences can be calculated
depending on the DRPs (binary drpPC variables) and certain

data reuse information [6].

rCldhref = mepc(ref ) − dmref

wbref =

dmref · drppc(ref ) if ref has group-reuse
stores,

0 otherwise.
dmref = mmref · drppc(ref )

+mepc(ref ) · (1− drppc(ref )) (4)

Note that the only actual variables are drp related. The
other values are either constants obtained at an earlier stage
of analysis, or calculations based on the drp variables.

As stated above, the limitation of this method is the pres-
ence of interfering paths, such as those found in if-then-
else statements inside loops. This method assumes that each
branch of a conditional is always executed in the same way,
either always taken, or always not-taken.

C. SINGLE-CONTENT ESTIMATION OF WCET BENEFIT
FROM POTENTIAL DRPs (S-EB)
S-EB is a more recent proposal that works by estimating
the specific WCET benefit from granting DRP to each and
every load/store instruction [16]. As in S-OSP, interefer-
ing paths are problematic. However, instead of isolating
paths like S-OSP, S-EB isolates each estimated benefit, i.e.,
it assumes that granting replacement permission to a given
memory instruction does not modify the benefit estimated
for other instructions. Once all benefits have been estimated,
the instructions which provide the greatest benefit in terms of
WCET reduction are selected. Since the WCET also depends
on the relations between the selected DRPs and the paths in
the task, thismethod does not guarantee an optimal configura-
tion. Nevertheless, an ACDC with this configuration method
provides better WCETs than typical (much larger) LRU data
caches [16]. As far as we know, no studies have compared
S-EB with S-OSP.

A detailed description of the ILP model for the S-EB
method has been published previously [16]. First, an IPET
model must be built to calculate the WCET by consider-
ing always-miss on data [18]. Then, further calculations are
included in the model to estimate the potential benefit (bPC )
of granting DRP to each load/store instruction, as described
below. These additional calculations do not affect the existing
constraints. Essentially, for each instruction eligible to be
granted DRP, the potential benefit is calculated as the sum
of the cost of preloading this instruction in the AC (preload),
the cost of accessing memory if granted DRP (access), the
benefits for other instructions reusing the data cached by
this load/store (reuse), and the cost of potential write-backs
(writeback) [16].

bPC = preload+
∑

ref in PC

accessref +reuseref +writebackref

(5)

The preload cost is constant, depending on the hardware.
The memory access benefit (accessref ) of an instruction with
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DRP depends on whether it is an access to a scalar outside a
loop (no benefit because it will miss anyway), or an access
inside a loop. Accesses to a scalar in a loop will always
hit except the first time, and therefore, all miss costs in the
always-miss model must be replaced by a hit cost (hc− mc)
minus one. Hits/misses of accesses to an array in a loop
depend on self-spatial reuse, which must be previously cal-
culated to generate mmref (see Table 1) [16].

accessref =


0 if ref is (scalar) outside loop,
(hc− mc) · dmref + (mc− hc)

if ref is scalar inside loop,
(hc− mc) · dmref + (mc− hc) · mmref

if ref is array inside loop.

(6)

For memory accesses reusing content brought from a pre-
vious instruction, assuming DRP for this previous instruction
implies considering a hit cost instead of a miss cost (hc−mc)
for all the times that this content is reused (dmr ) [16].

reuseref = (hc− mc) ·
∑

r reusing ref

dmr (7)

Finally, the number of write-backs depends on whether the
cached data has been modified (i.e., has stores with group
reuse) or not [16].

writebackref =

wbc · mmref if ref has group
reuse stores,

0 otherwise.
(8)

III. SINGLE-CONTENT GENETIC ALGORITHM (S-GA)
As detailed in the related work section, two methods may be
used to configure the ACDC: S-OSP (Section II-B) and S-EB
(Section II-C). The WCET results obtained using an ACDC
configured with S-EB are better than those obtained in the
presence of a conventional LRU data cache [16]. However,
no studies have evaluated the performance of these configura-
tionmethods, or compared them to determinewhich performs
better. In this section, we propose a new method, based on
genetic algorithms, for exploring the solution space of ACDC
configurations, to enable us to assess whether S-OSP and
S-EB are good enough, or there is room for improvement.

Genetic algorithms are well known metaheuristics used
to solve optimization problems [19]. Although there is no
guarantee that these algorithms find the optimal solution, they
usually provide at least a suboptimal solution in a practical
amount of time. They rely on the iteration of transformations
applied to an initial set of possible solutions. This set of
solutions is the population, and each solution is an individ-
ual. The transformations resemble biological operators that
allow a population to evolve, combining and changing the
individuals. In this study, the purpose of S-GA is to improve
on the WCET obtained by S-EB, the output of which will
be included in the initial solution. S-GA is composed of the
following elements and operators:

1) Input data: list of PCs, corresponding to load/store
instructions in the task; number of ACDC entries, cor-
responding to the number of PCs that can be kept in the

ACDC; and list of PCs to be kept in the ACDC (those
with DRP), selected by the heuristic algorithm S-EB.
The number of PCs in this second list must be less than
or equal to the number of ACDC entries.

2) Representation: each individual is an array of
acdcEntries elements, that is, all individuals have an
equal and fixed number of elements, corresponding to
the number of entries in the AC part of the ACDC.
Each element stores the address (PC) of a load/store
instruction. The presence of a PC in this array means
that this PC will be loaded in the AC and then allow
the replacement of its corresponding content in the DC
part of the ACDC. Possible solutionsmay use fewer AC
entries than available because loading PCs in the AC
has a cost in the WCET (preloadCost) that may not be
compensated for later during the task execution. Since
the size of the array is set to the number of AC entries
for all individuals in order to keep the crossover oper-
ator as simple as possible, we use replicated elements
in the array (PC values) to indicate invalid/empty AC
entries. That is, to deal with unused AC entries, PCs in
the individual are replicated as many times as required
until the individual is full. Once the final solution is
obtained, replicated PCs are removed from the solution.

3) Initialization: The PCs selected by the S-EBmethod are
the most valuable for reducing theWCET, but theymay
represent a local optimum. To expand the search space,
the initial population is created in three different ways:

a) The first individual is filled with the PCs provided
by S-EB. If the number of PCs is smaller than the
number of AC entries acdcEntries, the PCs are
replicated until reaching the size of the AC.

b) The second individual is filled with acdcEntries
PCs chosen randomly from the list of PCs in
the task. In this second individual, replicated PCs
may appear.

c) Loading PCs in the AC has a cost that may
increase the WCET instead of reducing it.
To check whether partially loading the AC
improves the WCET, for the rest of the individ-
uals, n PCs are randomly chosen from the list
of PCs of the task, where n is a random value
between 1 and the number of AC entries. The
rest of the array of each individual is filled by
replicating some of these PCs.

4) Fitness function: the fitness of each individual is the
WCET bound estimated by solving the ILP model of
the task using the individual (without repeated PCs) as
the ACDC configuration.

5) Selection and crossover: selection is accomplished
using a deterministic binary tournament, and elitism
is applied so that the best individual is always incor-
porated to the new generation. One point crossover is
carried out splitting the parents at a randomly cho-
sen point, and then merging them to create two new
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off-spring. A crossover probability is applied to decide
whether the parents are merged or pass directly to the
new generation.

6) Mutation: when a PC of an individual is randomly
selected to mutate, it can mutate in three different ways
with the same probability. In the first type of mutation,
the PC can be removed from the individual, that is, the
number of PCs is reduced. Removing a PC is carried
out by overwriting the PC with a copy of any other PC
value in the array to mark it as invalid. This mutation
might have no effect. In the second type of mutation,
the PC is replacedwith a PC coming from the list of PCs
in the task, and therefore, the number of DRPs remains
unchanged. In the last type of mutation, a new PC is
added to the individual, if possible, increasing the num-
ber of DRPs. When adding a new PC to the individual,
either replacing an existing PC or just adding one more
DRP, the presence of the new PC in the individual is
not checked, and therefore, this mutation may have no
effect.

The S-GA parameters, like population size, finishing con-
dition, and crossover and mutation probabilities are described
in Section V-B.

IV. MULTIPLE-CONTENT ACDC CONFIGURATION
The main drawback of single-content dynamic locking meth-
ods in lockable instruction caches is their limited ability to
adapt to changes in the working data set that may appear
during the different phases in the execution of a program.
The ACDC is far more flexible, due to the fact that it does
not lock data contents, but rather sets replacement permis-
sions. Nonetheless, programs that work with multiple data
structures on different parts of the code still suffer from the
aforementioned limitations.

An apparently straightforward improvement is to define
region-specific contents to load and lock prior to the exe-
cution of these regions in the task. Such an approach has
been used for lockable instruction caches [4], [12], [20], [21].
However, it implies finding both adequate loading points and
adequate elements to lock at each point, taking into account
the time overhead of instruction loading and locking, and
the modification of the memory layout of the task. Thus,
improving the behavior of single-content dynamic locking is
not as straightforward as one might think.

In this section, we detail several proposals to extend pre-
vious single-content ACDC configuration methods (S-OSP,
S-EB, and S-GA) to multiple content. As in previous stud-
ies on lockable instruction caches [4], we place the ACDC
reconfiguration points (i.e., points to revoke DRPs or grant
new ones) at the beginning of the program and prior to the
outer loops.
Definition 1: Let us define outerLoops as the set of loops

not nested, i.e., not included in any other loop. Loops in
functions called from the body of a loop are considered
nested loops. Recursive loops (loops in functions that call

themselves from within their own loop) can be processed by,
for instance, inlining the first function call.

Reconfiguring DRPs before entering these loops addresses
the following points. First, since spatial reuse (e.g., an array
traversal) is found in loops, each one of these loops has a
specialized configuration and a larger share of the ACDC.
Second, the DRPs loaded at the beginning of the program
address the temporal reuse cases that may cover the whole
program (global variables and part of the stack). Third, all
reconfigurations occur outside loops, and therefore, their cor-
responding overhead will never be multiplied by the number
of loop iterations. As in previous studies, we assume that
reloading just a part of the ACDC is possible, that is, if only
one subset of the DRPs of the ACDC needs updating, it can
be updated without affecting the other DRPs. The behavior of
context switches does not differ with respect to single-content
configurations, that is, the ACDC (both the AC and DC parts)
may be saved at context switches and restored when the task
resumes its execution.

A. MULTIPLE-CONTENT WCET OPTIMIZATION FOR
SINGLE-PATH TASKS (M-OSP)
Our first multiple-content ACDC configuration method is
built on top of the single-content WCET optimization for
single-path tasks outlined in Section II-B [6]. S-OSP defines
the DRP of each load/store as a binary variable indicating
whether such permission is granted or not. Depending on the
constraints and the constant cost of each possible event, the
solver calculates the specific values of the DRP variables that
minimize the functionmodeling theWCET bound of the task.

In order tomanagemultiple ACDC configurations,M-OSP
adds the following constraints to the S-OSP model. First, the
total number of entries of the ACDC is divided into two sets.

rClstaticDRPs+ dynamicDRPs ≤ acdcEntries (9)

The DRPs in the static set will be loaded before the task
begins its execution and will not be revoked during the
execution of the task. Essentially, these DRPs should con-
tain the addresses of the first loads/stores accessing global
scalar variables or accessing certain positions of the stack
(parameters or scalar variables) for the first time. Further,
instructions granted these DRPs cannot ever be inside loops
(see Definition 1).

rClglobalDRPs = staticDRPs

globalDRPs =
∑

PC∈{pc(ref )}

drpPC , ∀ ref outside outerLoops

(10)

The DRPs in the second set (dynamicDRPs) will not be
loaded before the task begins its execution, but will be
updated before each outer loop. Hence, the number of DRPs
in any outer loop l must be less than or equal to the entries
devoted to this set of DRPs in the ACDC.

rClloopDRPsl ≤ dynamicDRPs, ∀ l ∈ outerLoops (11)
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Essentially, DRPs of each outer loop l should contain
addresses of loads/stores inside the corresponding loop l or
its nested loops.

rClloopDRPsl =
∑

PC∈{pc(ref )}

drpPC , ∀ ref inside l (12)

Finally, the loading cost of the ACDC can be calculated as
the constant cost related to the function calls loadingCalls to
load the DRPs plus the variable cost actualLoads depending
on how many DRPs have been loaded. The cost of the func-
tion calls is the number of outer loops times the cost per call.
The cost of the actual loads is the main memory latency times
the number of loaded DRPs.

rClpreloadCost = loadingCalls+ actualLoads

loadingCalls = |outerLoops| · callCost

actualLoads = memLatency · loadedDRPs

loadedDRPs =
∑
PC

drpPC (13)

Note that, for simplicity, we assume that loading the con-
figuration for the first outer loop is performed in the same
way as for any other loop. Nonetheless, this first loop con-
figuration could be set along with the global DRPs and thus
avoid its loading call. We also assume, for simplicity, that all
loading calls have the same cost, though a specific constant
cost could be used for each loading function call.

Once these constraints have been set, the ILP model
is solved, to obtain the values for the drpPC variables
(1 or 0 indicating whether the corresponding DRP is granted
or not) that optimize the model. Using the selected DRPs,
the WCET can be analyzed [16]. Recall that the selected
DRPs may not be the ones that minimize the WCET, since
the optimized model assumes that the data accesses do not
depend on the paths taken in the task. That is, the selected
DRPs are only the best possible ones in the case of single-
path tasks.

B. MULTIPLE-CONTENT ESTIMATION OF WCET BENEFIT
FROM POTENTIAL DRPs (M-EB)
This method requires a priori estimation of the benefit of
granting DRP to each suitable load/store instruction, like
S-EB (Section II-C). However, instead of just selecting the
n (≤ acdcEntries) best instructions to which to grant DRPs
for the whole program execution, a new ILP model is built
to select the DRPs. This new model is based on the same
concepts and has the same constraints as M-OSP.

rClacdcEntries ≥ staticDRPs+ dynamicDRPs

globalDRPs = staticDRPs

globalDRPs =
∑

PC∈{pc(ref )}

drpPC , ∀ ref outside outerLoops

loopDRPsl ≤ dynamicDRPs, ∀ l ∈ outerLoops

loopDRPsl =
∑

PC∈{pc(ref )}

drpPC , ∀ ref inside l (14)

On the other hand, unlike with the S-OSP, these con-
straints are not integrated into a model that includes the task.
In this case, the ILP model just contains the aforementioned
constraints, plus the objective function. This function must
maximize the benefit of the selected DRPs, and hence, it can
be set as the sum of the constant estimation of the benefit of
granting DRP to the load/store at PC (bPC ) times the binary
variable drpPC .

rClmax:
∑
PC

bPC · drpPC (15)

Thus, solving this ILP model provides the values for the
drpPC variables that maximize the benefit, i.e., the PCs to
load into AC. As in the S-EB method, M-EB provides the
best ACDC configuration based on isolated estimates, and
therefore, the configuration it provides is not necessarily the
one that minimizes the WCET.

C. MULTIPLE-CONTENT GENETIC ALGORITHM (M-GA)
For the multiple-content version, the single-content S-GA
has been modified in the way the solution is represented.
An individual is now a (1 + |outerLoops|) × acdcEntries
matrix, where each row represents an ACDC configuration
point in the task, and the elements of the row are the PCs that
are granted DRPs at the corresponding configuration point.
The first row represents the initial configuration for the task,
with PCs with DRPs for the whole task execution. The other
rows represent the DRPs in the different outerLoops in the
task. The number of distinct PCs in the first row, staticDRPs
(< acdcEntries), is fixed for each experiment. For the other
rows, the number of distinct PCs is acdcEntries−staticDRPs.
Other genetic operators, like selection, crossover and muta-
tion, perform in the same way as in S-GA, but considering
only the distinct PCs in each row.

V. EXPERIMENTAL ENVIRONMENT
We use an ARMv7 architecture with a typical 5-stage in-
order pipeline (instruction fetch, decode, execute, data mem-
ory access, and write-back). Since we focus on the memory
hierarchy, we assume that the pipeline never stalls, and all its
stages are completed in a single cycle, except those involving
the instruction/data cache or memory. We use an ACDC (4 to
32 entries, 256 B to 2 KiB) as a data cache and a locked 8-way
set-associative instruction cache (64 sets, 32 KiB). Using
a locked instruction cache preloaded with specific contents
for each benchmark enables realistic results and avoids the
uncertainty that an LRU instruction cache would introduce.
Cache hits take a single cycle, and misses take one look-up
cycle plus the cycles required for a memory access. We con-
sider a memory access time of 13 cycles both for instructions
and data, which is a realistic value for main memories such
as the Automotive DRAM MT46V16M16 [22] clocked at
100 MHz, and has been used in previous studies [16], [23].
For the ACDC, accesses that replace a dirty cache line take a
total of 27 cycles to look-up (1), write back the dirty line to
memory (13), and bring in the new line from memory (13).
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FIGURE 3. Tested benchmarks.

For an instruction withmultiple accesses (push/pop), requests
are processed sequentially in an isolated way, i.e., no burst
memory transfers are considered.

A. BENCHMARKS
Weuse a subset of benchmarks fromTACLeBench [24]. They
have been compiled with gcc 9.2.1, with level 2 optimization
(-O2), since this optimization level provides the best WCET
results in general [16]. The binary files are analyzed using
angr version 9.0.4663 [25]. Recursive benchmarks are not yet
supported by the analysis tools considered, and have therefore
been excluded. In addition, benchmarks whose control flow
graph (CFG) is not correctly generated by angr have been
excluded. Further, we have excluded benchmarks deg2rad
and rijndael_dec because their results are almost identical
to those of rad2deg and rijndael_enc, and benchmark cover
because it has very fewmemory operations, and none of them
inside a loop. For each benchmark, the maximum number
of iterations in loops has been manually set according to
the annotations in source files and carefully observing the
transformations performed by the compiler. Nevertheless,
automatic methods could be used [26].

To provide an overview of the benchmarks used in our
study, they are plotted on Figure 3. The horizontal axis
shows the number of static load/store instructions in the
benchmark, as a data complexity metric, this being used
to order the benchmarks in the following figures in this
paper. The vertical axis shows the number of outer loops

(see Definition 1), recalling that the ACDC reconfiguration
points for multiple-content configurations are placed before
these loops. Overall, Figure 3 provides some insight into the
solution space to explore, both for single-content (x-axis)
and multiple-content (the whole figure) configurations. For
instance, note that rad2deg, cosf, and statemate have a single
non-nested loop, and hence, according to our criteria for
placing ACDC reconfiguration points (Section IV), these
benchmarks are not considered for multiple-content ACDC
configurations. In general, the benchmarks considered cover
wide ranges of load/store instructions and numbers of outer
loops.

B. GENETIC ALGORITHM SETUP
For S-GA execution, we use the parameters in Table 2, tuned
after an exploratory set of runs for a subset of the benchmarks.
Hereafter, we call each 〈benchmark, ACDC entries〉 pair
an experiment. A total of 104 experiments (26 benchmarks
times 4 ACDC entries) are performed. Since the genetic algo-
rithm uses the pseudo-random number generator arc4random
from stdlib in several operators, the effect of the seed may
be significant. To identify this effect, the algorithm runs
10 times for each experiment using the four ACDC sizes,
yielding a total of 1040 executions (26 benchmarks× 4 cache
sizes × 10 repetitions).

For M-GA, the number of experiments to check all pos-
sible ACDC configurations is much larger than for S-GA.
Therefore, a first exploration has been carried out with a
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TABLE 2. Parameters of S-GA and M-GA.

smaller population and fewer generations. In this exploration,
we have observed that the distribution of ACDC entries into
staticDRPs + dynamicDRPs in the best result always coin-
cides with the one heuristically chosen by M-EB. Therefore,
to provide M-GA results comparable to those obtained by
S-GA, we use the same parameters in both genetic algorithm
methods (Table 2), and restrict the solution space of M-GA
to the distribution of ACDC entries provided by M-EB.

VI. RESULTS
In this section, we first analyze the behavior of the genetic
algorithms, especially the effect of the pseudo-random num-
ber generator. In addition, we study the execution time of
the genetic algorithms and its relationship with ACDC size
and benchmarks. Afterwards, we analyze the WCET bounds
provided by each method.

A. S-GA RESULTS
Table 3 shows several WCET bounds obtained by the S-GA
ACDC configuration method. It shows the average, mini-
mum and maximum values of the ten repetitions for each
experiment, 〈benchmark, ACDC entries〉. The main statis-
tics for min(WCET )/max(WCET ) are listed in Table 4, and
Figure 4 shows the standard deviation within the ten repe-
titions for each of the 104 experiments. Both Table 4 and
Figure 4 show that the performance of the S-GA is very
similar in most of the experiments, with no effect from
the pseudo-random number generator. That is, the resulting
WCET is the same or extremely similar for the ten repetitions.
Nonetheless, in some cases, the effect of the pseudo-random
number generator is larger and, for the same experiment,
the S-GA provides different values of WCET. This is the
case of cosf for ACDC sizes of 8, 16 and 32, filterbank
for ACDC sizes of 8 and 16, and fft for an ACDC size
of 8. These benchmarks perform rather complex scientific
calculations, using codes that offer a really large number
possibilities for configuring the ACDC. In particular, the
cosf benchmark contains many conditional statements that
change the flow control, and hence, S-EB generates subopti-
mal configurations; while the filterbank benchmark contains
many loops with array traversals, which also implies many
candidates for the granting of replacement permissions; and
the fft benchmark contains both conditional statements and
arrays in loops. Thus, for these benchmarks, S-GA begins
with an initial solution (the configuration generated by S-EB)
that has considerable room for improvement, which makes
it much more dependent on the random generation of new
individuals.

FIGURE 4. Histogram of the standard deviation (WCET obtained by S-GA)
within the ten runs of each experiment 〈benchmark, ACDC entries〉.

B. M-GA RESULTS
Table 5 shows the average, minimum and maximum values
of the ten repetitions for each 〈benchmark, ACDC entries〉
experiment. As above, each experiment consists of 200 gen-
erations of 99 WCET analysis, each one using the ACDC
configuration provided by M-GA in this case. Table 6 shows
the main statistics for min(WCET )/max(WCET ), and Fig-
ure 5 shows the standard deviation within the ten repetitions
for each of the 92 experiments. Table 6 and Figure 5 show
that in most cases the performance of M-GA is the same or
very similar, with no effect from the pseudo-random number
generator, although there is a slightly larger dispersion than
in S-GA. The benchmarks showing the greatest variability
within repetitions for some ACDC entries are filterbank for
ACDC sizes 8, 16 and 32, and ludcmp for ACDC size 8. Like
filterbank, the ludcmp benchmark has many array traversals
in loops. However, it has few data structures and a large
ACDC is not required, and hence, the variability is focused
on one particular ACDC size.

The sensitivity of the genetic algorithm with respect to
the pseudo-random number generator is low for most of the
benchmarks, and similar for S-GA and M-GA. Nevertheless,
the WCET analysis below uses the average WCET bound
of the ten repetitions, to allow a fair comparison with other
ACDC configuration methods.

C. EXECUTION TIME OF M-GA
Generating an ACDC configuration is very fast. It takes
no more than a second, even though the proposed heuris-
tic approaches work by building an ILP problem and then
solving it. On the other hand, genetic algorithms require
much more time, since they do not calculate a single ACDC
configuration but rather multiple configurations, 19800 in our
experiments (population times generations run). Moreover,
for eachACDC configuration, both S-GA andM-GAperform
a WCET analysis to guide the selection, which takes most of
the required execution time. Nonetheless, in this case, both

132716 VOLUME 10, 2022



J. Segarra, A. Martí-Campoy: Improving the Configuration of the Predictable ACDC Data Cache

TA
B

LE
3.

W
CE

T
bo

un
ds

(a
ve

ra
ge

,m
in

im
um

an
d

m
ax

im
um

of
te

n
re

pe
ti

ti
on

s,
in

cy
cl

es
)

ob
ta

in
ed

us
in

g
S-

G
A

as
th

e
A

CD
C

co
nf

ig
ur

at
io

n
m

et
ho

d.

VOLUME 10, 2022 132717



J. Segarra, A. Martí-Campoy: Improving the Configuration of the Predictable ACDC Data Cache

TABLE 4. Statistics for min(WCET )/ max(WCET ) for S-GA.

S-GA and M-GA are executed to design the system, and
therefore, long execution times are acceptable, as the better
the design, the better the performance of the resulting system.
Since both S-GA and M-GA have very similar execution
times, only the ones for M-GA are discussed.

For our experiments, we use a 2.20 GHz Intel Xeon
Gold 5120 CPU with 55 cores, with one experiment per core.
This means that each experiment is run sequentially using a
single core. Figure 6 shows the scatter plot of the analysis
time of M-GA for the ten repetitions of each benchmark and
the four sizes. As can be seen, the 40 points per benchmark
(repetitions times ACDC size) usually overlap, demonstrat-
ing that the analysis time of M-GA depends mainly on the
benchmark analyzed, and not on ACDC size. There is some
variability in the execution time for the same benchmark
(non-overlapping points) in only 11 out of 920 executions.
The M-GA analysis time is less than a day for all except
six of the benchmarks, with the longest analysis (that for
powerwindow) taking around 5 days. Therefore, in general,
benchmarks which take more time to analyze end up running
alone for their last analyses, and hence, they share fewer
hardware resources and show more variability in analysis
time, as can be seen in Figure 6.

The most demanding operation in M-GA is fitness, i.e.,
performing the WCET analysis [16] to estimate the WCET
bound for all individuals in each iteration of the genetic
algorithm. The application of the other operators requires less
than 2% of M-GA analysis time.

Note that, for simplicity, our M-GA implementation does
not run in parallel. That is, all 99 individuals × 200 genera-
tions of each experiment are executed sequentially in a single
core. With trivial parallelization, the times we present would
be divided by the number of cores used. That is, powerwin-
dow would take around 2 hours using our 55 cores. In any
case, it is important to recall that the genetic algorithm is
executed during the design stage of the system, and hence, the
more solutions it explores at this time, the better the solutions
it will find, and the better the system run-time execution
will be.

D. WCET RESULTS
In this section, we show how the different configurations for
the ACDC affect the WCET bound. Recall that the rad2deg,
cosf, and statemate benchmarks have just one outer loop
(see Figure 3), and hence, they are not suitable for multiple-
content experiments.

Let us start with an overall summary comparing all the
ACDC configuration methods studied. For each method,

Table 7 shows its behavior with respect to the S-EB method,
taken as the baseline. That is, for the ACDC configuration
obtained for each experiment, it compares the WCET bound
computed with this configuration with the WCET bound
obtained using the S-EB configuration. Overall, the genetic
algorithm methods improve a higher percentage of the exper-
iments. Specifically, S-GA improves 56% of the experiments
with respect to using S-EB. Since S-GA uses the configura-
tion of S-EB as its initial solution, S-GA can never be worse
than with S-EB, as indicated in Table 7. Similarly, M-GA
provides better results for 54% of the experiments; however,
41% of its results are worse than with S-EB. As input, M-GA
uses the solution provided by M-EB, which may be worse
than those from S-EB, as shown in the table. Overall, at first
glance, our proposed S-GA method is the best option. Note,
however, that Table 7 shows the percentage of improved
experiments, but not the extent of these improvements, which
we discuss below.

Let us now provide a summary of the actual WCET
improvements that each method achieves with respect to
S-EB. Table 8 shows the main statistics for theWCET bounds
obtained from the experiments run. Values are normalized
with respect to the bound obtained with the S-EB method.
That is, methods having values lower than 1 means that they
reduce (improve on) the WCET bound compared to that
obtained with S-EB. Recall that S-GA uses the S-EB solution
as its initial solution, and hence, the value for S-GA in the
Maximum column is 1. On average, S-GA,M-EB, andM-GA
obtain the best WCET bounds, with 95%, 97%, and 95%
reductions in WCET, respectively. The best WCET bound is
obtained by M-EB and M-GA, with a value of 0.44, meaning
that for a particular experiment, the WCET bound obtained
with the ACDC configuration provided by both M-EB and
M-GA is less than half of that obtained using the ACDC
configuration provided by S-EB. Recall that M-GA uses the
output of M-EB as a starting point to search for better solu-
tions, and therefore, M-GA values are always better than or
equal to those from theM-EBmethod. Considering the results
in Table 8, at first glance, our proposed methods M-GA and
M-EB are the best ones.

Both Table 7 and Table 8 show aggregated results, which
provide an initial insight into the problem overall but may
hide subtle trends. In order to comprehend the whole prob-
lem, a detailed representation and discussion of all the results
is required. Figure 7 shows a comparison of the WCET
bounds calculated for each ACDC configuration method.
As above, the baseline configuration method is S-EB, with
a relative WCET bound value of 1. The WCET bound of
the other methods is presented with respect to this baseline.
We should bear in mind that all these methods are heuris-
tic, and hence, the optimal configuration (the one resulting
in the shortest WCET) is unknown. The S-EB and S-OSP
methods use different criteria to configure the ACDC: S-EB
grants DRP to the load/store instructions which, in isolation,
would obtain the greatest benefit in the estimated always-
missWCET, and S-OSP grants the DRPs that would be
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TABLE 6. Statistics for min(WCET )/ max(WCET ) for M-GA.

FIGURE 5. Histogram of the standard deviation (WCET obtained by M-GA)
within the ten runs of each experiment 〈benchmark, ACDC entries〉.

TABLE 7. Percentage of experiments showing better results than those
obtained with the S-EB method.

optimal assuming that there is no interference between paths.
In turn, S-GA applies a genetic algorithm using the S-EB
configuration as the starting point. Apart from these single-
content configurationmethods (i.e., those that specify a single
configuration for the whole task execution), we also test our
proposed multiple-content configuration versions (i.e., those
that may change the ACDC configuration during run-time
before outer loops). To visualize thismore clearly, in Figure 7,
the ACDC configuration methods tested (on the x-axis) are
also indicated with different shapes and colors. The number
of ACDC entries (4 to 32 entries, 256 B to 2 KiB of data
cache size) can be seen on the labels on the right, whereas
the different benchmarks (ordered by their number of static
load/store instructions, see Figure 3) are labeled at top of
the figure. The rightmost subplot shows the average results
considering all benchmarks.

As can be seen, results are fairly stable around 1 (the
S-EB method baseline). Further, there is no clear relationship
between ACDC size and WCET reduction. S-GA and S-OSP
show the most direct relationship, with greater improvements
being seen with larger ACDC sizes in 10 and 6 out of

TABLE 8. Main statistics for the WCET bounds of the studied methods.
Values are normalized taking the WCET bound of S-EB as baseline
(method / S-EB), i.e., the lower, the better.

26 benchmarks respectively. On the other hand, for M-GA,
the opposite trend is seen with more benchmarks: greater
improvement being seen with larger ACDC size in only 4 out
of 23 benchmarks, while greater improvement is seen with
smaller ACDC size in 8 benchmarks.

Multiple-content configurations provide better results for
the smallest ACDC (4 entries), since with its capacity only
four loads/stores can be granted replacement permission.
That is, some benchmarks improve their worst-case perfor-
mance if the four instructions selected are changed at different
execution points in the program (before outer loops). This
is the case, for instance (Figure 7), for matrix1, iir, fir2dim,
complex_updates, fft, st, and cjpeg_transupp, where the
multiple-content configurations clearly outperform single-
content ones for an ACDC with just 4 entries. When the
ACDC size grows, it can accommodate the required replace-
ment permissions with a single configuration, and therefore,
dynamically reconfiguring the ACDC provides less benefit
or none at all. The number of benchmarks clearly taking
advantage of reconfiguration falls from these 7 benchmarks
(out of 26) for an ACDC with 4 entries to 4 benchmarks for
an ACDC with 8 entries, and for an ACDC with 32 entries,
only audiobeam and powerwindow seem to still marginally
benefit from ACDC reconfiguration.

Considering the results of each method, the most extreme
cases are found with S-OSP. That is, its heuristic criteria
obtain the worst results for some benchmarks (namely, bsort,
matrix1 for an ADCS with 4 entries, countnegative, lms,
fft, g723_enc, gsm_dec, cjpeg_transupp, and rijndael_enc),
although they work very well for others (e.g., cosf for
any ACDC size, and filterbank for ACDCs with 16 and
32 entries). Indeed, the WCET results of S-OSP for
cjpeg_transupp for ACDCs with 8 and 16 entries are around
3.5 and 5 times worse than those of S-EB, respectively,
outside the range of the area plotted.

Finally, S-GA obtains very good results in general, since
it performs an exploration of possible configurations, and
uses S-EB as the starting point. It has a drawback, how-
ever, namely, the time required to perform this exploration,
as described in Section VI-C. Nevertheless, bearing in mind
that a real-time system is not usually modified once designed,
performing a thorough exploration of its configuration is still
advisable.

Figure 8 shows the results presented above from a different
point of view. In this case, we compare the methods tested
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FIGURE 6. Scatter plot of M-GA execution time versus benchmark. There are 40 points per benchmark (most of them overlapping) corresponding
to ten runs times four ACDC sizes per benchmark.

showing which one provides the best results for each ACDC
size, and how much better they are with respect to those
with other sizes. The WCET bound obtained is plotted on the
y-axis, relative to the best bound for an ACDC with 4 entries,
and the ACDC sizes tested, for each benchmark, on the
x-axis. There are many situations in which several methods
obtain the same ACDC configuration, and thus provide the
same WCET bound. For such cases, we rank the methods
in the following order: S-EB, S-OSP, S-GA, M-EB, M-OSP,
and M-GA. For instance, if both S-EB and S-GA provide
the best result for a given case, S-EB is shown as the best
choice. Our order of preference is based on the following
reasoning. Multiple-content configuration methods are more
complex than single-content methods, and hence, are less
desirable. Genetic algorithms require much more computa-
tion time, so they are considered the last resort, both for
single and multiple-content methods. Finally, S-EB is based
on the standard IPET model for WCET computation and
is relatively easy to integrate into any tool, whereas S-OSP
requires the more restricted LockMS model, and therefore,
S-EB is preferable to S-OSP.

Note that the values shown for both S-GA and M-GA
are the average of those found by the corresponding genetic
algorithm, as explained above. Seeking to gain insight into the
potential WCET improvement, we also show the best result
found by our genetic algorithms as black horizontal lines.
It can be seen, for instance, that particular genetic algoritm

runs of filterbank and cosf obtain much better results than
their corresponding average.

As expected, the larger the ACDC, the better the WCET
bound in general. However, note that the ACDC exploits
existing data reuse, like any other data cache. Therefore,
if this reuse can be completely exploited by a small ACDC,
a larger one will not achieve any improvement. This can be
seen in our smallest benchmarks (on the left of Figure 8).
In these cases, at certain ACDC sizes, the WCET no longer
decreases. On the other hand, our largest benchmarks (on the
right of Figure 8) would benefit from even larger ACDCs,
since their resulting WCET bound decreases linearly with
increasing ACDC size. It is also important to note that the
ACDC has a fully-associative design, and hence, its energy
consumption is higher than that of direct-mapped caches.
Although the associative level tested is relatively small,
ACDC designs with more entries may have energy consump-
tion issues.

To help interpret the patterns in Figure 8, it is useful to plot
the results in a different way. Figure 9 shows the number of
occurrences of each method for each ACDC size in Figure 8.
In this graph, several patterns emerge that were not evident
in the previous figure. As observed above, multiple-content
methods (M-EB, M-OSP, and M-GA) work better for very
small ACDCs. Thus, the larger the ACDC, the fewer times
such methods provide the best result, especially in the case of
M-EB, which shows a clear downward pattern.
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FIGURE 7. Relative WCET bounds.

Focusing on the single-content methods (S-EB, S-OSP, and
S-GA), S-GA shows better results as the number of entries
in the ACDC grows. In our tests, S-EB is always better than
S-OSP, and S-GA provides the best results for ACDCs with
8 or more entries. This behavior can be easily explained by
taking into account that the more ACDC entries, the larger
the configuration space, that is, there are many more possible
configurations. In such cases, a genetic algorithm shows its
capacity to obtain a good ACDC configuration.

Based on our results, we propose the following guidelines
for configuring an ACDC. If the number of entries in the
ACDC is very small, S-EB or its multiple-content version
M-EB should provide good results, though M-GA might
improve on them. If the number of entries in the ACDC is
moderate or large, S-EB should offer a good ACDC configu-
ration, but applying S-GA is likely to improve on the results.
For large ACDCs, testing for multiple-content configurations
would not be required.
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FIGURE 8. Best methods for obtaining the best WCET bounds, depending on the number of entries in the ACDC. Relative WCETs (y-axis) show the WCET
bound obtained with respect to the best result for an ACDC with 4 entries.

FIGURE 9. Number of times that a given method is the best for a given
ACDC size, in the benchmarks tested.

VII. CONCLUSION
The ACDC is a small predictable data cache, specially
designed for real-time systems. It works by granting data
replacement permission to a set of preconfigured load/store
instructions. It is, however, hard to know how to select which
loads/stores should be granted this permission to improve the
WCET. In this paper, we propose and study several different

methods to configure the ACDC in order to minimize the
resulting WCET bound. We start with two existing heuristic
methods (herein called S-EB and S-OSP). These methods
assume single-content configurations, that is, they provide a
single configuration to be used during the whole execution
of a task. Additionally, to compare with these two methods,
we propose a genetic algorithm to test whether the existing
solutions are competitive, and explore whether a genetic
algorithm might improve on them. Further, we propose three
multiple-content configuration methods, that is, methods that
provide different configurations to be used in different exe-
cution phases of a task. Our multiple-content configuration
methods are based on the same heuristics as the aforemen-
tioned single-content ones.

Our results show that the new proposed methods reduce
the WCET by 5% in average, and up to 50% in some
cases. The single-content method S-EB is the most stable,
i.e., it provides good configurations in most benchmarks,
for any ACDC size. This means that, for benchmarks larger
than those considered here, this method would be a robust
candidate to test. On the other hand, M-EB obtains its best
results for very small ACDCs, that is, when using multiple-
content configurations is a decisive factor. Although there are
few such cases in TACLeBench, this might be the general
situation for real codes. That is, the multiple-content method
we propose, M-EB, is likely to generally outperform S-EB in
larger tasks. Regarding our genetic algorithm proposals, they
obtain the best results inmany cases. In general, S-GAobtains
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the best results for medium-to-large ACDCs; that is, when
the solution space is very large. In contrast, M-GA obtains
the best results when the ACDC size does not suffice for
single-content configurations. On the other hand, while the
cost of running the genetic operators is very low, the cost of
evaluating the WCET bound, that is, computing the fitness
of each individual in all generations, makes the genetic algo-
rithms computationally costly. Despite this, bearing in mind
that minimizing theWCET bound is a critical part of any real-
time system, we recommend running these algorithms, either
to confirm that the starting solution is good, or to find a better
one.
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