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We present a Solidity smart contract implementation of the TAVS e-voting
protocol. The Two Authorities Electronic Voting Scheme (TAVS) is a voting
scheme that achieves universal verifiability with a reduced time-complexity
both for the elector and the voting system. TAVS security derives from the RSA
cryptosystem it employs, and the assumption of two entities that do not share
information. We present a Solidity implementation which replaces one of these
entities with an immutable smart contract in Ethereum based networks. By doing
so, our implementation extends the security properties of TAVS and achieves a
higher degree of resilience, verifiability, and availability. We open source the code
of the implementation.
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1 Introduction

Electronic voting has been heavily studied given its crucial role in democratic societies.
Electronic voting is generally based on cryptography to ensure both the privacy of the voter,
as well as the legitimacy of the scheme. The use of different cryptographic primitives such as:
blind signatures (Chaum, 1983), homomorphic cryptography (Moore et al., 2014), ring
signatures (Rivest et al, 2006) or zero-knowledge proofs (Goldwasser et al., 1989) is intended
to prevent double voting while ensuring elector’s privacy and the integrity of the tally. We
refer the interested reader to (Mursi et al., 2013) as a recommended survey on e-voting to
learn more about these techniques.

In (Larriba et al., 2020), the authors present a Two Authorities Voting Scheme
(TAVS), an e-voting protocol based on blind signatures and focused on efficiency. TAVS
provides all the properties an e-voting scheme requires (verifiability, democracy,
integrity, correctness, and privacy), while providing reduced time computational
complexity when compared to other similar schemes. TAVS security is derived from
the RSA cryptosystem used to implement blind signatures and from the fact that it
assumes two unrelated entities that do not share information during the election. While
there are many instances of an election where you can find two antagonistic entities that
will never share information, there are also many scenarios where finding such unrelated
entities might be impossible. Our implementation reduces the assumption of honesty,
from two entities to one, without degrading the security properties of TAVS. The main
motivation of our work is to reduce security assumptions. We replace the tallying
authority by an immutable smart contract, solving this way the problem of finding two
honest entities, since smart contracts are self-governed entities that only obey the source
code. Our solution accomplishes these properties has been made public for auditability
and to contribute to the open source community. This implementation is fully
equivalent to TAVS except in the tallying property, since everything is public in
blockchain, and by default anyone can see the votes before the election ends. We
address this difference of the implementation with respect original proposal, by later
presenting a solution to overcome this issue.
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Since the Bitcoin whitepaper (Nakamoto, 2008) was published
in 2008, blockchain technology adoption exploded. Blockchain has
become one of the most relevant decentralized networks ever. Due to
its decentralized consensus layer, Bitcoin was able to provide a global
and secure payment network. From the user’s perspective, the
blockchain is seen as an immutable public ledger structured as a
sequence of blocks. These blocks bundle transactions that contain
information to update the ledger state. Hence, the blockchain can be
seen as a state machine that is updated through atomic blocks.

This decentralized capability to update a global state such as the
blockchain is a two-edged sword. To limit the implied risks, Bitcoin
was designed to only support a small non-Turing complete script
language. This fact made the Bitcoin network extremely stable, but
also limited and only able to support simple value transfers.
Ethereum (Ethereum, 2014) was introduced as a network with a
Turing complete support language called Solidity. Solidity allows to
implement custom and arbitrary functionality through smart
contracts. Hence, Ethereum can be seen as a global network for
distributed computation and not only as a payment network. To
address the threats of malicious users collapsing the network,
Ethereum introduced the concept of gas, forcing users to pay (in
the same currency the network employs) for computing units.

The contributions of this work can be summarized as:

• We implement the TAVS voting scheme in Solidity without
compromising any of its security properties.

• We demonstrate how by using blockchain technology and
smart contracts, a higher degree of privacy can be achieved by
removing trusted entities.

• We present a guide and a use case to prove the feasibility of our
implementation.

• We open-source the code to allow further research on
blockchain-based voting schemes.

In this work, we explore and demonstrate the smart contract
capabilities to implement the TAVS voting scheme as a Solidity
smart contract.

The rest of the paper is organized as follows. Section 2 covers the
related works in the literature. Section 3 provides a short and concise
summary of how TAVS operates and the votes are crafted. In Section
4 we present our Solidity implementation: the design decisions, the
limitations in the Ethereum Virtual Machine (EVM) model, and the
code organization. Next, we provide some working examples in
Section 5 describing interaction with the implementation. Finally,
we present our closing thoughts in Section 6.

2 Related work

Blockchain-based systems have become very popular as
blockchain technology matured from a transactional system to a
general and distributed consensus layer. Its positive effect on
transparency and voter confidence issues (Moura and Gomes,
2017) also helped to bring blockchain into electronic voting. In
this section, we review relevant theoretical works in the literature.
We refer the interested reader to these surveys to learn more about
the challenges of blockchain systems (Taş, 2020), and some of their
implementations (Curran, 2018; Kshetri and Voas, 2018).

In (Hreiðarsson et al., 20182018), the authors introduce a smart
contract based voting scheme. In this protocol, there are only two
entities: electors, and election administration officers. Electors go
trough an identification process that provides them with a unique
wallet. Only official wallets are able to send a valid vote. Electors
need to communicate through ballot smart contracts, which depend
on the district, to cast their votes. These votes are verified by a Proof-
of-Authority (PoA) network (also run by election administrators)
external to the blockchain. If the verification succeeds, the PoA
network adds the transaction containing the vote in the blockchain.
The limitation of this approach is twofold: first, it requires a
dedicated PoA network to scan the blockchain; and second, the
election administrators have all the power in the system. Thus, the
creation of the election, the privacy of users, and the validity of the
votes depend on the administrators. Therefore, there is no real
privacy of the electors nor distribution of the responsibilities.

The authors present in (Gioulis and Markantonakis, 20182018)
a blockchain voting system similar to our approach. Their
registration phase is also based on blind signatures, although the
ballot structure is different, and requires an honest authority
responsible for identifying the electors. The main difference with
our implementation is that the verification and tallying of votes is
carried out manually by the electors themselves. Since they do not
employ smart contracts, they require to be involved in block
production, and they have to operate in private blockchains as
well. The implementation does not seem to be open sourced.

In (Yang et al., 2020), the authors propose a range voting
protocol based on blockchain to structure the election process.
All candidates are ranked (voted with tokens in the blockchain),
and the candidate with a higher score wins. ElGamal (1985) and
group-based encryption is employed to preserve elector’s privacy.
Thanks to the homomorphic properties of ElGamal, the final tally
can be computed without decrypting individual votes. Hence,
preserving the final elector’s privacy. They do not use smart
contracts, the blockchain is used as a secure public bulletin.

In (Gao et al., 2019), an e-voting protocol based on blockchain
technology is presented. The protocol is based on a NP-complete
problem (Niederreiter, 1985) and provides post-quantum resistance.
The method also employs ring signatures to preserve the privacy of
the sender. Votes are structured as transactions from electors to
candidates. The protocol has an audit function that allows to detect
fraudulent voters, and compute the tally, while respecting their
privacy. This work does not consider smart contracts in the
implementation of the protocol.

A blockchain-based election scheme was presented in (Chouhan
and Arora, 2022). The authors present an implementation, built on
the Hyperledger1 blockchain framework, that it is compatible with
most election setups and supports an unlimited number of electors.
To keep the outcome of the elections private until the tallying phase,
they employ Shamir’s secret sharing scheme (Shamir, 1979). Votes
are encoded as points of a polynomial which are distributed between
a set of assumed honest authorities. When the voting phase ends,
these authorities interpolate the resulting polynomial and recover
the vote. To protect the elector’s privacy, during the registration

1 https://www.hyperledger.org/

Frontiers in Blockchain frontiersin.org02

Larriba and López 10.3389/fbloc.2023.1105119

https://www.hyperledger.org/
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1105119


phase elector’s identification is mapped to an anonymous
identification. Unfortunately, this is only possible because
Hyperledger is not completely transparent and does not produce
decentralized networks, only permissioned distributed networks.
The authors present a comprehensive explanation of the
Hyperledger contracts, but the code is not open-sourced.

In (Onur and Arda, 2022), the authors present a smart-contract
based election scheme for ranked voting. To the best of our
knowledge, it is the most similar system to our implementation.
Their protocol is also developed in Solidity for Ethereum compatible
chains, and they do open-source their implementation. In this
scheme, the privacy of the voter is obtained through Zero-
Knowledge proofs (Goldwasser et al., 2019). During the
registration phase, electors produce a commitment of their
identity that is stored in a Merkle tree. Later on, during the
voting phase, they can craft a zero-knowledge proof that shows
they are eligible electors in the census, without revealing in which
specific leaf of the Merkle tree their commitment is stored. To
maintain the vote secret until the tallying phase, they employ a
commit and reveal scheme. The main differences with our
implementation are flexibility and scalability. First, the vote
encoding of or implementation does not limit the election to
ranked voting, multiple election systems should be supported.
Secondly, and despite their great power, general zero-knowledge
proof systems are computationally heavy. The number of potential
electors is limited by the size of the Merkle tree. The size of the
Merkle tree can of course be increased, but not without deeply
affecting the computational resources needed to generate the proof.

To the best of our knowledge, we are one of the few works that
implements and open-sources the code of a peer-reviewed election
blockchain voting system based on smart contracts. Almost all the
proposals in the literature are theoretical and do not leverage the
computation layer of blockchain. In those protocols, blockchain is
generally used simply as a messaging layer and/or a public bulletin
board.

3 TAVS review

We devote this section to provide a summary of how TAVS is
designed and how the ballot is constructed. Please note, that,
unlike other voting systems, the corruption of one of the involved
parties does not compromise the integrity of the voting scheme,
but it could compromise the privacy of the electors. For this
reason, we substitute the authority in charge of verifying and
tallying votes with a smart contract. We refer the reader to
(Larriba et al., 2020) for more details and security proofs on
TAVS. For the rest of the article, we use the feminine she/her to
refer to the elector, to make a clear distinction between the final
user, and the parties involved in the election itself. This is done
with the sole purpose of clarity.

TAVS is an electronic voting scheme that reduces the number of
involved authorities to only 2 of them: an Identification Authority
(IA) in charge of ensuring membership of the elector in the census;
and, a Remote Polling Station (RPS) in charge of receiving, verifying
and tallying the votes. In order to ensure the privacy of the elector, as
well as the validity of the votes, TAVS employs a blind signature
scheme. The blind signature scheme is built by taking advantage

from the homomorphic properties of the RSA signature protocol
(Rivest et al, 1983).

TAVS consists on three sequential steps. First, the elector carries
out a pre-ballot generation step without interacting with any party.
Then, she initiates an identification process with the IA by using
blind signatures to obtain a valid ballot. Finally, she anonymously
sends the ballot to the RPS to be consider in the final tally.

3.1 Pre-ballot generation

Before the voting process, the methods and parameters of the
election are agreed upon and made public for everyone to consult. Let s
denote the private key, in a RSA scheme, only known by the IA. Let n
and v denote the public key and modulus components of the same key.
Let h be an agreed hash function that produces TH bit length outputs.
Let TS denote the number of bits in the binary representation of n.

Before interacting with any of the entities, the elector can
independently craft his pre-ballot by performing the following steps:

1. The elector selects the desired choice for the election.
2. The elector also selects a random (secret) integer invertible

modulo n. This value will be the mask used to blind the pre-
ballot.

3. She computes the hash = h(choice‖mask).
4. Finally the pre-ballot is crafted by applying the public key v:

(choice‖hash) · maskv mod n.

3.2 Identification step

Once the pre-ballot is crafted, the elector needs to engage in an
identification process with the IA to obtain a valid and certified
ballot. Thanks to the blinding factor of the mask, the direction of the
vote is not leaked.

1. The elector sends to the IA the pre-ballot and his identification
credentials.

2. The IA checks the credentials against the elector census. If valid,
it will sign the pre-ballot with its secret key s:

choice‖hash( ) ·maskv( )s � choice‖hash( )s ·maskmod n

and will send it back to the elector. The IA will reject if the
credentials are invalid.

3. The elector gets the signed ballot and she is able to cast a vote.

3.3 Casting the ballot

The elector needs to cast the valid ballot to be considered in the
final tally. To do so, she sends the ballot, and the inverse of the mask
to the RPS. Please note that none of these values reveal any
information about the elector’s identity.

1. The elector send to the RPS the ballot (choice‖hash)s · mask and
the inverse of the mask mask−1.
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2. RPS removes the mask by applying its inverse (choice‖hash)s ·
mask · mask−1 mod n = (choice‖hash)s.

3. RPS decrypts the ballot by applying the public key v:

choice‖hash( )sv mod n � choice‖hash

4. RPS strips the last TH bits corresponding to the hash and obtains
and tallies the elector choice.

5. RPS publishes the hash so that electors can achieve universal
verifiability.

4 Solidity implementation

In this section, we illustrate how our implementation was
planned and built. We cover the technical and design decisions
that we encountered during the implementation.

4.1 Ethereum and the EVM

We devote this subsection to provide a glimpse of the Ethereum
ecosystem. We only cover the general and crucial aspects for our
implementation. An experienced reader might want to skip this
section. An interested reader can find a detailed and gentle
introduction to Ethereum in (Antonopoulos and Wood, 2018).

As mentioned before, Ethereum can be understood as a global
and distributed state machine. The state is defined by a sequence of
finalized blocks and new block proposals define the update to the
state. Blocks are defined by the set of transactions they contain.
Transactions usually define an origin, a destination and a set of
transactional data that depends on the transaction type. Blocks are
atomic in the sense that, either they are processed and a new state is
achieved, or they are not processed and the blockchain state remains
the same.

Ethereum yellowpaper (Ethereum, 2022) defines the
technical specification of the Ethereum Virtual Machine
(EVM). The EVM is in charge of processing transactions and
updating the current state. All applications and smart contracts
need to be EVM compliant to operate in the Ethereum ecosystem.
The EVM can be understood as the core technical specification
that handles blockchain state, while.

Ethereum is usually employed as a broader term that covers
the full ecosystem (e.g.,: client nodes software, external data
structures).

The state in Ethereum is handled using an account model (as
opposed to the unspent transaction output or UTXO model2).
This means every address in Ethereum has an attached account
balance that can be used to send or receive funds. The global
state can be computed from the individual states of each
account. There are 2 kind of addresses in Ethereum: Eternally
Owned Accounts (EOA) and contract addresses. Users can own
EOAs and operate them through digital private keys, signatures
and address derivation techniques. Contrarily, contract

addresses are solely controlled by the smart contract code.
Therefore, contract addresses have no private key associated
and all executions are initiated by a transaction coming from
a EOA.

As mentioned before, Ethereum uses gas as the unit to
measure computational and storage resources. While this gives
miners an incentive to run the nodes in the network and prevents
malicious uses of the blockchain (e.g.,: an infinite loop), it also
forces the users to incur in an expense. Hence, gas optimization
techniques are broadly researched and affect the smart contract
development. For this reason, Ethereum includes a reduced set of
pre-compiled contracts that deal with especially expensive and
common mathematical operations such as elliptic curve
arithmetic, hashes and signature verification. Otherwise the
implementation of this operations would be prohibitively
expensive.

4.2 From ECC to RSA

Because of its efficient computation, Ethereum is based, as well
as Bitcoin, in the Secp256k13 elliptic curve. It also supports some
Bn2544 curve operations, as pre-compiles, because of its friendly
pairing properties for zero-knowledge proofs (Bryan et al., 2016;
Groth, 2016). This means that no other cryptographic primitive has
native or optimized support. TAVS requires RSA signature
verification to operate, so tackle the implementation of the
necessary support.

Solidity is a Turing complete language, so it is possible to
implement any arbitrary system. However, Solidity is a high-
level language and only supports a default word size of 32 bytes,
which makes it difficult to implement direct support for big
integers (integers that require more than 32 bytes to be
represented) required in RSA and many other systems based
on modular arithmetic. To handle big integers we employed
arrays of bytes and assembly code in Yul5. Yul is an intermediate
level language that can be compiled to low-level bytecode
directly used by the EVM. Yul is used to write assembly code
for the EVM that can handle lower level details. The goal of
Yul is twofold: allows for more detailed management of
memory and can save some gas by optimizing code at a lower
level.

To implement TAVS, we adapted the big number library
developed by Firo6 to be compatible with the latest Solidity
versions. The developed library gives support for basic
arithmetic operations using big integers as well as more
complex operations that enable cryptographic primitives:
modular exponentiation or computing inverses in a given
modulo.

2 Blockonomi—Comparing UTXO vs. Account Based-https://blockonomi.
com/utxo-vs-account-based-transaction-models/

3 Standard curve database—Secp256k1 https://neuromancer.sk/std/secg/
secp256k1

4 Standard curve database—Bn254 https://neuromancer.sk/std/bn/bn254

5 Yul—Bytecode Language https://docs.soliditylang.org/en/latest/yul.html

6 Github—Solidity Big Number https://github.com/firoorg/solidity-
BigNumber
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4.3 Events

Being public and being accessible are two different things.
Ethereum makes use of events and indexed parameters so the
blockchain can be queried more efficiently and integrated with
user interfaces. Otherwise, blocks and transactions are long
hexadecimal strings that need to be parsed manually.

Events are employed to allow asynchronous triggers with
data. User interfaces can be listening for this events which
contain return values from EOA initiated transactions. Events
also provide a cheaper (in gas) form of storage when compared
against smart contract storage. Our implementation contains
2 kind of events: NewElection and NewVote, so that all
the information about the elections carried out can be easily
located and traced.

Parameters within events can be indexed (up to 3 of them per
event), which provides a finer degree of control for indexing events.
So that all events with a given value for a parameter can be filtered
from other events with different values.

4.4 Code organization

The Solidity implementation of TAVS is publicly available in
Github

(https://github.com/Fantoni0/svs). A high level overview of the
smart contract interaction can be found in Figure 1. The smart
contracts have been tested in a local EVM-compatible network and
also have been deployed to a real testnet network. We used Mumbai
testnet (a testnet to Polygon) because of the high cost of deploying
directly to the main Ethereum network.

All the code has been developed using Solidity version 8.107

and the development library Hardhat8. Hardhat is one of the
most complete Solidity libraries, it allows for compiling and
running Solidity code locally, as well as it provides multiple
helper functions for debugging smart contracts. The code is
structured as follows:

• contracts: Contains all the smart contracts that constitute
the implementation of TAVS. They are smart contracts
written in Solidity.
– BigNumber.sol: A Solidity library adapted from the
implementation by Fire9. Contains all the code needed to deal
with big integers and implement the blind signature scheme
based on RSA.
– ElectionFactory.sol: A smart contract that
implements the factory design pattern. It creates and
deploys instances of Election contracts. Handles and
archives the created elections. It emits a event
NewElection when a new Election is created. The
Mumbai network deployment of this contract can be found
in address
0xEBa9F87654171f88004f519CC18EfBD8A02e9421.

– Election.sol: It contains all the logic to implement a
TAVS election. Handles candidates, verifies votes and stores
the current state of the election. It emits a NewVote event

FIGURE 1
Scheme representing the interaction between the user and the smart contracts.

7 https://docs.soliditylang.org/en/v0.8.10/

8 https://hardhat.org/

9 Solidity Big Number-https://github.com/firoorg/solidity-BigNumber

Frontiers in Blockchain frontiersin.org05

Larriba and López 10.3389/fbloc.2023.1105119

https://github.com/Fantoni0/svs
https://docs.soliditylang.org/en/v0.8.10/
https://hardhat.org/
https://github.com/firoorg/solidity-BigNumber
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1105119


when a new Vote is received. The Mumbai network
deployment of this contract can be found in address
0x9E459651D2A14B100a310FDd542954bd9565dFC0.

• deploy: Contains files to deploy the contracts in networks
outside local deployment.
– Deploy.ts: Deploys the ElectionFactory smart contract to
a specified network. It creates an Election and sends
10 random votes.
– *Template.ts: A set of template files the interested
reader can use to carry out his own election process. See
Section 5 for a detailed guide.

• verify: Contains the file arguments.js, which contains
a description of the parameters of the Election smart contract
constructor needed to verify the contract. Verifying contracts
allows to upload the source code to blockchain explorers such
as Etherscan.

• scripts: Auxiliary files that implement different
functionalities.
– Tavs.ts: Utility functions to simulate the IA in TAVS. it
also generates random and valid votes for the scheme.
– Utils.js: Different functions needed for testing: packing
parameters, list functions etc.

• test: Contains typescript tests to verify the integrity of the
smart contracts. See Section 4.5 for more details.

4.5 Tests

Ethereum is a global adversarial network with economic
incentives. This means any bug in the code will be public and
people will exploit it in order to obtain an economic reward. In
addition to this, these can of hacks do not require physical access and
allow the attacker to remain anonymous. Hence, testing code is
especially relevant when developing smart contracts. The folder
test contains various tests that analyze the behavior of the code.
To run them and verify the validity of the code, the user can simply
run npx hardhat test. We present here a short list of these
assessments and its expected result.

• ElectionFactory.ts.
1. It creates a valid election. It should create a new election

and trigger the NewElection event.
2. It creates an invalid election. The test should fail and the

transaction reverts with error message “No elections
shorter than 1 h allowed”.

3. It creates an invalid election. The test should fail and the
transaction reverts with error message “No elections longer
than 4 days allowed”.

• Election.ts.
1. It creates a valid vote. It should create and send a new vote

and trigger the NewVote event.
2. It creates an invalid vote with the wrong hash. The test

should fail and the transaction reverts with error message
“Invalid hash”.

3. It sends a vote after the election is finished. The test
should fail and the transaction reverted with error
message “Election has already finished. No more votes
accepted”.

4. It should compute the winner of an election. The test sends
a unique vote, forces the election to end and checks the
winner is the voted candidate.

5. It tries to compute the winner of an election before the
election is finished. The test should fail and the transaction
reverted with error message “Election must be finished to
compute tally”.

6. It simulates and election with multiple votes and then
computes the winner of the election.

4.6 Properties

Our Solidity implementation fulfills all the e-voting properties
that TAVS presents. The implementations does not degrade the
quality of the voting system. Indeed, some properties benefit from
the immutability and decentralization of our approach. We now
briefly cover the properties of the TAVS election scheme, and
explain how our implementation also accomplishes them. For the
actual demonstration of the properties, we refer the reader to the
original article (Larriba et al., 2020), where properties are enunciated
in Section 4. In this section we consider the arguments in that article
and formalize the properties of our implementation in the form of
Lemmas. Note that we do not proof the lemma whenever the proof is
direct consecuence of the mentioned arguments.

Lemma4.1. TAVS is private, and therefore, it is not possible to relate
a vote with the elector who casted it.

Our implementation not only guarantees voters privacys, it also
improves the degree of privacy provided in TAVS. TAVS’ privacy is
derived from the assumption of two honest non-colliding entities.
Since we substitute the RPS with a smart contract, this assumption is
no longer needed. At first, the idea of privacy and a public
blockchain may seem conflicting. Non-etheless, please note that
ballots sent to the RPS (the smart contract in our implementation),
are not linked to the elector’s identity in any form. Once the ballot
has been signed by the IA, the elector can generate a burner address,
not linked to her in any way, and send the ballot. The validity of the
ballot depends on the digital signature by the IA. Hence, we can
benefit from the public verifiability of the blockchain without
degrading privacy.

Lemma 4.2. TAVS guarantees the Integrity of the vote, thus it is
unfeasible for any partner in the system to modify a ballot without
detecting the forgery.

Lemma 4.3. TAVS ensures the Correctness of the final tally since it
only considers verified and correct ballots.

Lemma 4.4. TAVS provides Verifiability since any elector in the
census can verify that her vote has been taken into account in the way
it was casted.

Verifiability is hold when all the processing on ballot in order to
go through the process do not affect to the ballot itself. In the
implementation we propose, the logic of the processing is described
in a smart contract, and the results are published in a globally
distributed network with thousands of participants. Thus, the
implementation of the protocol is more resilient to attacks (as,
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for instance, DDoS attacks) than a clasical implementation that
considers a private-access public bulletin board. Therefore, the
verifiability process of the ballots and their integrity can be
publicly audited, guaranteeing that only correct votes are accepted.

Lemma 4.5. TAVS is a Democratic scheme since only electors in the
census can vote.

Lemma 4.6. TAVS guarantees the Uniqueness of the votes by
ensuring that electors can only vote once.

Because our implementation maintains the IA and the blind
signature scheme, we provide the same democracy and uniqueness
as TAVS. The registration procedure does not differ from TAVS.
Hence, registered electors can only vote once, since they only have
one signed ballot, and, only electors in the census are able to get the
signed ballot.

The only difference with respect to TAVS is the immediateness
of the tally. In TAVS the final tally is computed and only revealed at
the end of the election, since it depends on the authority that plays
the role of Remote Polling Station. In our implementation,
everything is in the blockchain, hence it is public by default. This
means that everyone can see partial votes and compute a partial tally
even before the election is finished.

Despite this can be considered not as an issue, it is usually
considered as one. To address this (potential) drawback, we note
that votes can be encrypted within a public key cryptosystem, whose
key is set before hand by the IA (or alternatively by a set of parties),
broadcasting the public key together with the election parameters,
and revealing the decrypting key only after the end of the election. If
in some scenarios the IA cannot be trusted with guarding this key. In
those cases, a threshold system could be employed, in such a way
that the responsibility of aggregating the key, once the election is
finished, rests on a set of reputed parties. For that end, a threshold
RSA system (Rabin, 1998; Damgård and Koprowski, 2001) can be
used. The parties guarding the keys must hold two requirements:
they have to be interested in the correct development of the election;
and, they must have antagonistic interests. The first ensures the
honest participation of the parties, and the second one prevents
malicious collaborations between them. Hence, political parties and/
or a subset of electors could conform a suitable the set of guarding
parties. This threshold scheme can be configured on demand to
tolerate potential errors in the key recovering phase. So that if some
parties are unable or unwilling to participate, a subset of honest
parties can still decrypt the votes and carry on with the election.
Please note, that this would only ensure the anonymity of the tally
until the election ends. Furthermore, the privacy of users would not
be affected in any form.

5 How to create your own election

In this section we show how to leverage our implementation and
the open sourced code to create a particular election. The
deployment and interaction will be created in the Mumbai
network to reduce gas fees. This tutorial assumes the reader to
have an up to date Node.js version installed.

1. Clone and install the code.

git clone https://github.com/Fantoni0/svs
cd svs/
npm install
Compile and verify the smart contracts:
npx hardhat test

2. Get an address and funds.

To operate in the blockchain environment it is necessary to have
an EOA address. Ownership of addresses is determined by the
associated secret key. It is possible to use services such as Vanity-
Eth10 or Crypterium11 to generate your own key. Once the key is
available, it is necessary to add it in the env/.env file as MUMBAI_
PRIVATE_KEY. The next step is to uncomment the lines adding the
Mumbai network in hardhat.config.ts file. This will let
hardhat use the key to send the transactions.

Once the key is ready, it is mandatory to get some funds available
to pay for the transactions gas. Polygon Faucet12 is a service that
gives away small amounts to allow developers to pay for some
transactions. To do so it is necessary to paste our address and then
claim the funds.

3. Generate the keys to simulate the IA.

The open-source implementation already includes a pair of
public and private RSA keys that simulate the IA. This is
sufficient for test purposes but a new pair will be needed to
generate secure elections. It is possible to do it using OpenSSL:

openssl genrsa -out private-key.pem 2048
openssl rsa -in private-key.pem -pubout
-out public-key.pem

TABLE 1 Average costs of execution in the Mumbai and Ethereum network. Average price per gas unit of 43 gwei.

Contract Method Gas Units USD Cost (Mumbai) USD Cost (Ethereum)

Election computeWinner 68,000 0.0024$ 4.22$

Election sendVote 39,717 0.015$ 2.47$

Election factory createElection 235,067 0.01$ 14.56$

Election factory Deployment 4,209,467 0.16$ 260.81$

10 https://vanity-eth.tk/

11 https://mycrypto.tools/ethaddress.html

12 https://faucet.polygon.technology/
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From the output it is possible to extract the hexadecimal
representation from the generated keys and substitute the
modulo, public and private key instances in the code.

4. Create a particular Election Factory. (Optional)

There is already an instance of the Election Factory, but a new
one can be deployed by running:

npx hardhat deploy --tags ElectionFactory
--network mumbai
If generated, the new address must be copied in the smart

contract to be deployed. We need the Election Factory address to
be able to interact with the contract and create new elections in
the future.

5. Create an instance of Election.

It is possible to make use of the file:
deploy/electionTemplate.ts

and make the necessary changes to adjust the election to our
needs and run:

npx hardhat deploy --tags Election
--network mumbai
As done previously, we will need to copy the address in which

the Election smart contract was deployed. We’ll need the address to
send the future votes.

6. Vote.

To finally send a vote, simply set the vote in
deploy/electionTemplate.ts and execute:
npx hardhat deploy --tags Vote
--network mumbai

7. Verify your contract. (Optional)

If it is desired to verify the deployed contracts, we need to obtain
some API keys. First the etherscan_api_key in
hardhat.config.ts must be specified. Second, the
ElectionFactory program can be simply verified by providing the
address in which it was deployed.

npx hardhat verify ADDRESS_TO_VERIFY
--network mumbai
To verify the Election contract, since it was called with

arguments, it is mandatory to provide the exact same arguments
in the deploy/arguments.js, otherwise the verification will fail. To

check for the parameters is possible to use the Mumbai Block
Explorer.

npx hardhat verify --constructor-args
verify/arguments.js --network mumbai
ADDRESS_TO_VERIFY

5.1 Gas analysis: Costs of having an election

In this section, we present an empirical study of the gas cost of
deploying your own contracts. As mentioned before, gas was
introduced in Ethereum as a computation unit to measure the
cost associated with specific operations (e.g.,: arithmetic
operations, calls, deployments . . . ). Gas fees are paid in
Ethereum’s native currency, ether (ETH), and are denoted in
gweis. A gwei is equivalent to 10–9 ETH. For the rest of this
section, we assume the current prices of ETH (1,410$) and
MATIC (0.90$) at the moment of writing.

Fees are paid in the currency of the network. Hence, if we
operate in the Mumbai testnet, fees will be paid in MATIC, and in
ETH if the deployment is made in the Ethereummainnet. In Table 1
we depict the gas units and USD costs of running the contracts and
interacting with them in the Mumbai and Ethereum network
respectively. The experiments have been carried out 200 times
and the results have been averaged. Table represents the single
execution cost of a given method.

All the tests have been run with the same Hardhat framework
used for development. The plugin.

hardhat-gas-reporter provides a detailed report on the
gas metrics used in the tests. As covered in Section 4.5, by executing
npx hardhat test, the user can test the implementation itself,
and replicate the presented gas cost analysis. Small variances
depending on the average price per gas unit may occur.

As we can appreciate in Table 1, the costs of running the election
process in Mumbai is significantly cheaper than carrying out the
same process in Ethereum. The methods, no matter the network,
show a linear dependency with its complexity. The more
computation and storage required, the higher the costs. The
deployment of the ElectionFactory contract is specially costly
since it needs to upload the whole contract into the blockchain.

All methods exposed in Table 1 are constant in their costs except
computeWinner. This extrinsic method depends on the internal
state of the contract, and needs to iterate over the list of all
candidates to compute the most voted one. The length of the
candidate list affects the computation, and therefore the gas units
and associated costs. Since the previous table only reports average

TABLE 2 Costs for computeWinner method. Average price per gas unit of 43 gwei.

Number of candidates Gas units USD cost (Mumbai) USD cost (Ethereum)

2 117,179 0.004$ 7.10$

4 129,393 0.005$ 7.84$

8 167,397 0.006$ 10.14$

16 195,889 0.007$ 11.87$

32 307,184 0.011$ 18.62$
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units over the run of multiple tests, the effect of the candidate list on
the computeWinner method is not captured. For this reason, we
provide a specific description of the cost depending on the
cardinality of the candidate’s list in Table 2. The cost of calling
the method has been isolated from other tests to avoid any possible
cross contamination of results.

As we can see in Table 2, while the costs of computing the
winner of the election increase with the number of candidates, it is
not a severe change. Specially if we consider that elections with
32 or more candidates are unlikely, or we compare the number of
gas units with the deployment of the smart contract reflected in
Table 1.

Results show that our implementation of TAVS is perfectly
feasible and affordable even for large elections. The deployment in
networks such as Mumbai, is within everyone’s reach, and the use of
Ethereum, while more expensive, it is still an effective solution.
Specially if we compare the costs with those related to running a
traditional election.

6 Conclusion

In this paper we presented our Solidity implementation of the
TAVS voting protocol. We showed that, by replacing one the
authorities with a smart contract, the overall privacy can be
improved by reducing the set of security assumptions. Other
properties also benefit from the publicity and auditability
properties of the blockchain technology.

We also open-sourced and deployed the implementation to a
public testnet, so that users and interested reader can verify and
interact with the code. They can benefit from the implementation
itself and from the libraries and utilities we developed and adapted to
implement and RSA blind signature scheme within the EVM. We
further presented a use case to prove the feasibility of our
implementation in a real scenario.

As future work, we are working on the code audit and the
development of a friendly front-end for the unexperienced user.
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