
 

  
 

 

Resumen — Junto con satisfacer la creciente demanda a ser soportada por las redes de datos en términos de 

capacidad, la seguridad de la información en las comunicaciones también se ha convertido en un tema que ha 

atraído el interés de los investigadores en los últimos años. Muchas han sido las soluciones planteadas hasta 

la fecha. Entre ellas y, debido a sus características inherentes, los sistemas basados en caos se presentan como 

el complemento perfecto de las soluciones más utilizadas actualmente, siendo éstas la criptografía cuántica y 

la encriptación soportada por software. Ello, tiene como objetivo reportar un alto valor añadido al grado de 

seguridad ya establecido por dichas soluciones. En este trabajo, se presenta una estructura novedosa formada 

por un SOA-MZI con bucle de realimentación, cuyo objetivo es el de desarrollar funcionalidades propias de 

un generador de señal caótica. El estudio del comportamiento de la estructura se realiza en función de sus 

parámetros físicos más importantes a partir principalmente del cálculo del Exponente Global de Lyapunov 

(GLE). 

 

 

 

Abstract — Together with providing larger capacities in data networks with the aim at fulfilling the increasing 

demand, security has become an important issue which has intensively attracted the researchers’ attention in 

the last years. In order to deal with this issue, several solutions have already been presented so far. Among 

them, due to their inherent characteristics, chaos-based systems have arisen as the perfect complement to the 

most extensively used solutions, as the quantum cryptography and the software encryption are. In this work, a 

novel all-optical structure based on a single SOA-MZI with feedback loop is presented for the purpose of 

acting as a chaotic carrier generator. The performance of the structure is mainly characterized in terms of the 

Global Lyapunov Exponent (GLE) as a function of the most important physical parameters.  
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I. Overview 

In the last decades, an exponential growth of the demanded bandwidth per final network user has 

been experienced. It means that data networks have to be able to process high bitrates in order to 

satisfy a certain quality of service. 

Historically, the electronic technology has been employed to process optical signals. 

Nowadays, electronic devices are becoming a bottleneck in optical networks owing to their narrow 

bandwidth compared to the capacity available in the optical systems. The aforementioned 

limitation can be overcome by implementing all-optical data processing networks. Devices based 

on optical technology establish a series of advantages that cannot be overlooked. These advantages 

mainly consist of the huge bandwidth which they are capable of supporting and the transparency 

regarding the data bitrates, the data format, and the transmission encoding. Moreover, other 

inherent characteristics of optics can be also exploited like, for instance, electromagnetic 

interference immunity, absence of impedance-matching problems and low skew and weight. 

Equally important as the increase of processing capacity, is the fact of providing secure 

communications and information exchanges. Due to the nature of the optical link, it becomes 

difficult to tap by an eavesdropper; but certainly possible. Furthermore, in multiplexed systems 

where several users are sharing the physical medium, it is of great importance to provide high 

degree of privacy by isolating the information addressed to the receiver from the rest of the 

network users. In scenarios like these, chaos plays an important role with the aim at increasing the 

value added of secure transmissions. 

In 1963, Edward Lorentz was the first one in observing strange aperiodic behavior in a three-

dimensional system [1]. In the beginning, it was desirable to avoid this sort of behavior, because it 

was associated to system instabilities. However, in the eighties, researchers start realizing how 

chaos could be used as a very powerful tool in order to implement secure solutions at the hardware 

level in data networks. To develop functionalities directly at the physical layer allows the system 

to fully exploit the advantages of the photonic technology, relying on an important issue to be 

considered when implementing the security subsystems in data networks. 

The issue of communication secrecy has served as an important motivation for research 

involving communications with chaos. Much of this research has sought to use chaotic signals as a 

means of sending secret messages. Certainly, fundamental properties of chaotic systems seem to 

make them ideal for this purpose. Chaotic systems are inherently unpredictable because their 

dynamics are aperiodic and irregular [2]. The following figure clearly shows the basic concept of 

chaotic-based secure communications. In which, a message is added to or modulated onto 

unpredictable behavior generated by the chaotic system at the transmitter. Once the message 

reaches the receiver, it becomes necessary to efficiently separate the unpredictable behavior from 
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the valid information. For this purpose, a second chaotic system identical to the first must be 

perfectly synchronized to the transmitter. 

 

 

 

 

 

 

Fig. 1. Basic concept of chaotic-based transmission system.  

 

According to the pioneering of the secrecy in data transmissions, Claude Shannon, an efficient 

secret communication system must respect three important aspects: concealment, privacy, and 

encryption [3]. These aspects can be interpreted in the context of chaotic communications. By 

concealment, Shannon refers to such methods as invisible ink in which the existence of the 

message is concealed from an eavesdropper. Concealment of a message using chaotic carrier 

signals is possible due to their aperiodic and irregular behavior, so the presence of a message in the 

chaotic fluctuations may not be obvious. Regarding the second aspect, communication privacy, 

occurs in systems in which special equipment is required to recover the message. This situation is 

present in chaotic communication systems since an eavesdropper must have a proper receiver, with 

matched parameter settings to decode the message. Finally, encryption occurs naturally in chaotic 

communication techniques. In conventional encryption techniques, a “key” is often used to encrypt 

the message. If the transmitter and receiver share the same key, the scrambled message can be 

recovered by the receiver. In chaotic systems, the transmitter itself acts as a “dynamical key” 

depending on the initial conditions and setting parameters of the system. 

As a result, nowadays optical chaos encryption has arisen as a promising and efficient 

technique in order to implement secure communications. The purpose of chaos does not consist of 

displacing existing technologies like quantum cryptography or software-based solutions, but act as 

a complement of them with the aim at increasing the data privacy and security in optical and 

hybrid networks [4, 5]. 

I.1. Pursued objectives. 

The main objective of the present work is to design and characterize an all-optical structure which 

can act as a chaotic carrier generation. The structure must allow being routed to chaotic behavior 

by means of adjusting the proper setting parameters subject to certain initial conditions. It is also 

highly desirable to define controllable parameters, whose status can govern the nature, chaotic or 

not chaotic, of the system’s output. In order to meet the above-mentioned objectives, the present 

work addresses the following separate goals: 

CHAOTIC 

SYSTEM 
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SYSTEM 
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Transmitter Receiver 



Chaotic signal generation using photonic techniques 7 

• To gain good understanding of the basic concepts involving the chaos theory. 

• To fully understand the advantages and limitations of the chaos-based communications 

secure systems with respect to more popular solutions, like software encryption or 

quantum cryptography, as well as its possible market role. 

• To develop an accurate analytical description of the proposed structure for the purpose of 

performing stability studies and numerical calculations. 

• To implement a generic algorithm with the functionality of calculating a relevant enough 

indicator of chaotic dynamics. 

• To find out the values of the controllable parameters that yield chaotic behavior to give 

proper support in the design’s stage of the architecture, as well as to define the optimum 

solutions in terms of the performance. 

I.1. Introduction. 

Investigations carried out in the present work focuses on studying the chaotic behavior induced by 

a novel all-optical structure based on a single SOA-MZI with optical feedback. The structure can 

be routed to complex dynamics by exploiting nonlinear effects in the semiconductor waveguides, 

which are magnified by means of the feedback loop.  

The work reported in the present document is split into 5 mainly sections. Firstly, section I 

depicts important theoretical concepts and background necessary in order to make this work as 

outstanding as possible. Following, section II gives brief comments about the current state-of-the-

art in this field, as well as about the proposed system. Section III focuses on presenting the 

analytical description developed for the purpose of accurately modeling the proposed system. In 

addition, stability studies when considering static and dynamic behavior are performed. On the 

other hand, section IV contains the numerical results of the Global Lyapunov Exponent (GLE) 

depending on some of the most important system parameters. Finally, section V summarizes the 

main conclusions obtained and some suggestions regarding further investigations that could be 

interesting on this device are given as well. 

I.2. Definition of Chaos. 

Chaos is defined as an aperiodic long-term behavior in a deterministic system that exhibits 

sensitive dependence on initial conditions [2]. The three components which made the definition up 

are clarified as follows: 

Aperiodic long-term behavior means that the system’s trajectory in the phase space does not 

settle down to any fixed points (steady state), periodic orbits or quasi-periodic solutions as time 

tends to infinity. This part of the definition differentiates aperiodicity due to chaotic dynamics 

from the transient aperiodicity of, for example, a periodically oscillating system that has been 

momentarily perturbed. 



  Chaotic signal generation using photonic techniques 8 

Deterministic system can allow no stochastic parameters. It is a common misconception that 

chaotic systems are noisy driven by chaos processes. The irregular behavior of chaotic systems 

arises from intrinsic nonlinearities rather than noise. As any deterministic system, chaos is 

predictable on a short time scale, whereas on a long time scale, chaotic systems become 

unpredictable. 

Sensitive dependence on initial conditions requires that trajectories originating from very nearly 

identical initial conditions will diverge exponentially quickly. For the same system, small 

differences in the initial conditions yield large differences in the long-run behavior. 

I.3. How to measure chaos. 

The chaotic behavior of a system can be characterized according to both the geometrical and the 

dynamical aspects of its attractor.  

Firstly, it must be mentioned that the geometrical representation of the system’s solution with 

the time is known as phase space. Loosely speaking, an attractor is a subset of the phase space of 

a dissipative dynamical system that “attracts” phase points from other regions of the phase space in 

the basin of the attractor. Once a phase point enters an attractor, it does not leave it. There exists 

different kind of attractors and they can be classified as: fixed points, limit cycles, two-

dimensional toris and strange attractors. In case of presenting the attractor chaotic behavior, then it 

is called strange attractor [6]. Figure 2 shows some examples of different kind of attractors for 

two-dimensional systems. 

 

   

(a) (b) (c) 

Fig. 2. Examples of different attractors. (a) Limit cycle. (b) Noisy two-dimensional tori. (c) Strange 

attractor (Lorentz attractor). 

 

As it will be shown in section III, the analytical description of the proposed system is based on 

a set of delay nonlinear differential equations. It means that the current state of the system also 

depends on past-time states, as one can see in the general description given by (1).  

 

 ( ) ( ) ( )[ ]τ−= txtxF
dt

tdx
,  (1) 
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A delay differential equation is found to be infinite-dimensional, since an infinite set of 

numbers along the time τ is needed in order to completely define the initial condition. To simulate 

the behavior of infinite-dimensional systems, it is necessary to approximate the continuous 

evolution of an infinite-dimensional system by a finite number of elements whose values change at 

discrete time steps. In this manner, a continuous infinite-dimensional system is replaced by a 

finite-dimensional iterated map. Hence, the theory of finite-dimensional dynamical systems can be 

applied. The number of independent real numbers that are needed to specify an arbitrary initial 

condition is called the phase space dimension (N) [6]. 

On the other hand, the number of degrees of freedom is known as embedding dimension (M). In 

general, to gain geometric picture of an N-dimensional system, all N coordinates must be taken 

into account. However, if an attractor has embedding dimension M<N, only M variables are 

needed to determine a trajectory on the attractor. 

In order to study the chaotic behavior of a certain system, several indicators have been reported 

in the literature. Among them, three are the most important due to their wider application field. 

Specifically, these are the fractal dimension, the metric entropy and the spectrum of Lyapunov 

exponents. The last one has been the most commonly used to measure the strangeness of attractors 

in the last years. In the beginning, however, the fractal dimension was extensively used because it 

requires less computation capacity. Following, brief comments about the three methods are given. 

I.3.1. Fractal dimension. 

For a dynamical system with an N-dimensional phase space, let n(ε) be the number of N-

dimensional balls of radius ε required to cover an attractor. So, the fractal dimension (also known 

as capacity) of a dynamical system is defined as [6], 

 

 ( )[ ]
[ ]ε

ε
ε log

log
lim

0

n
DF

→
=  (2) 

 

Strange attractors are typically characterized by fractal dimensionality DF which is smaller than 

the number of degrees of freedom, or equivalently, the embedding dimension M of the system, 

DF<M. Several attempts to compute this number directly from box-counting algorithms, which 

stem from the definition of this dimensionality, have been presented [7, 8]. However, it turns out 

that it is very difficult or impractical to compute DF whenever DF>2 [9]. 

In 1982, P. Grassberger and I. Proccacia suggested a different measure for the strangeness of 

attractors, a measure which can be easily performed from any time series, which is closely related 

to the fractal dimension. Indeed, in many cases, this measure is more relevant at the time of 

characterizing chaotic behavior than the fractal dimension itself [10]. The measure is obtained by 
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considering correlations between points of a long-term time series on the attractor. Specifically, 

the k points of such a long-time series are denoted by: 

 

 { } ( ){ }k
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k

ii itXX 11 == += σ , 
(3) 

 

where σ is an arbitrary but fixed time step increment. On the other hand, the standard 

correlation integral in the discrete time domain is defined as follows. 
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Being θ(x) the Heavisade step function, where θ(x)=1 if x≥0 and θ(x)=0 if x<0. The main point 

is that C(r) behaves as a power of r when considering r small enough.  

 

 ( ) vrrC ∝  (5) 

   

The exponent v is closely related to DF. Both parameters normally only differs few hundredths 

and they always follow the relation v ≤ DF. Hence, the slope of the correlation integral establishes 

an excellent estimate of the fractal dimension of a strange attractor. 

By considering the definition depicted in (2), the regions of the attractor which are rarely 

visited contribute to DF with identical weight as regions characterized by high visiting rate. The 

correlation integral, however, is sensitive to this effect. In this sense v may be a more relevant 

measure of the strangeness than DF, because it is sensitive to the dynamical process of coverage of 

the attractor. So, the difference between v and DF gives a measure of the importance of the 

different seniority of diverse neighborhoods. 

 

 

Fig. 3. Computed correlation integrals. (a) Hénon map. (b) Lorentz model. Both traces in (b) are obtained 

by taking into account two different values of the time step σ [10]. 
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In figure above, an example of the computation of the correlation integral plotted on log-log 

scale is shown for the Hénon map and the Lorentz system. One can clearly see how the correlation 

integral presents linear behavior with an arbitrary scale of r. In order to decide if the attractor is 

characterized or not by chaotic aperiodicity, the exponent of the power-law must be compared with 

the embedding dimension of the system. Specifically, M is 2 for the Hénon map and 3 for the 

Lorentz model. Therefore, both attractors are found to be chaotic in the case under study, since 

fractal dimensions of approximately 1.21 and 2.05 are obtained respectively, fulfilling that DF<M. 

I.3.2. Metric entropy. 

One of the essential differences between chaotic and predictable behavior is that chaotic 

trajectories continually generate new information, whereas predictable trajectories do not. The 

metric entropy makes this notion precise. Moreover, the metric entropy not only provides good 

definition of chaos, but also provides a quantitative way to describe how chaotic a dynamical 

system is [6]. 

For proper definition of the metric entropy, suppose a phase space partitioned into n elements, 

each of which is assigned a symbol si. Consider a sequence Sj(m) of m successive measurements 

made at a time interval ∆t, Sj(m)={si1, si2, …, sim}. Let P(Sj(m)) be the probability of the sequence 

Sj(m) normalized, it means ΣjP(Sj(m))=1. Then, the amount of information contained in sequences 

of length m can be expressed as [6]: 

 

 ( )( ) ( )( )( )mSPmSPI j

j

jm log∑−=  (6) 

 

By taking the maximum value over all the possible partitions, the metric entropy hµ is defined 

as the information per time unit in a sequence of measurements [6]. 
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For predictable dynamical systems, eventually new measurements provide no further new 

information, and the metric entropy is zero. However, for chaotic dynamical systems new 

measurements continue providing new information, giving as a result positive metric entropy. 

As defined, the metric entropy depends on the set of probabilities P(Sj(m)). This in turn may 

depend on the choice of initial conditions. So, special care must be taken at the time of choosing 

the initial condition. More complete discussions regarding this issue can be found in [11]. 

I.3.2. Lyapunov exponents. 

The spectrum of Lyapunov characteristic exponents provides good knowledge of the local stability 

properties of a certain attractor.  
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The stability properties of a system are determined by studying its behavior under small 

perturbations. It must be highlighted that a system can be stable to perturbations in certain 

directions, yet be unstable to perturbations in others. All possible perturbations can be examined 

simultaneously by following the evolution of an ensemble of points that is initially contained in a 

small N-dimensional ball, where N is the dimension of the phase space [6]. This motivates the 

concept of spectrum of Lyapunov exponents. 

Consider an N-dimensional dynamical system. It is well-known that two different initial 

conditions will report two different orbits on the phase space. Take one of them as a reference 

orbit. Following, imagine an infinitesimal ball which is characterized by radius ε(0) at time t=0 

and centered enclosing both initial conditions of both orbits. As time goes on, the ball evolves 

under the action of the non-uniform flow described by the dynamical system, and it will be distort 

because the separation between both orbits is time-dependent. The shape’s change of the ball is 

mainly determined by the linear part of the flow, which means that the ball remains as a sort of 

ellipsoid as it evolves. Let call the axis of this ellipsoid at time t εi(t) where i ϵ [1,N]. So, the 

spectrum of Lyapunov exponents λi for a given starting point is [6] 
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From the definition, it must be noticed that there exists N Lyapunov exponents in the spectrum 

of an attractor of an N-dimensional dynamical system for a given starting point. Positive Lyapunov 

exponents measure average exponential spreading of nearby trajectories, and negative exponents 

measure exponential convergence of trajectories onto the attractor. Note that the sum of Lyapunov 

exponents is the average divergence, which for a dissipative system must be always negative [6]. 

The largest Lyapunov exponent, λ=supi{λi}, is called Global Lyapunov Exponent (GLE), and the 

information which reports is especially useful for distinguishing among the various types of orbits: 

λ<0: The orbit attracts to a stable fixed point or stable periodic orbit. Negative Lyapunov 

exponents are characteristic of dissipative or non-conservative systems. Such systems exhibit 

asymptotic stability; the more negative the exponent, the higher the stability. Super-stable fixed 

points and super-stable periodic orbits have a GLE of λ=−∞ [12]. 

λ=0: The orbit is a neutral fixed point (or an eventually fixed point). It indicates that the system 

is in a sort of steady state mode, so it is found to be conservative but close to the “transition to 

chaos” [12]. 

λ>0: The orbit present unstable and chaotic behavior. Nearby points, no matter how close they 

may be, will diverge to any arbitrary separation. All neighborhoods in the phase space will 

eventually be visited. These points are said to be unstable [12]. 
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For estimating the GLE, two main methods have been published in the literature so far. On one 

hand, the first one was proposed by Wolf et al. in 1985 and it is based on the direct approach. The 

direct approach consists of tracing the exponential divergence of nearby trajectories. It must be 

mentioned that this approach is subject to many critics, because it requires long data series and is 

sensitive to dynamic noise. On the other hand, the second one was proposed by Eckmann & Ruelle 

in 1985 and, in this case, it is based on a Jacobian approach [12]. By using the derivatives instead 

of the data series directly obtained from the solutions of the dynamical system, has important 

advantages in terms of accurately estimating the GLE even in presence of moderate noise. 

From the Lyapunov spectrum, it can be characterized both the geometrical and the dynamical 

aspects of a strange attractor. The first one can be accomplished by computing the Kaplan-Yorke 

dimension or the Mori dimension. On the other hand, the second one can be obtained by 

calculating the Kolmogorov-Sinai entropy. 

I.3.2.1. Kaplan-Yorke and Mori dimensions. 

Two conjectures have been put forth to define the dimension of the dynamical system from the 

spectrum of Lyapunov exponents. 

In first place, according to the conjecture of Kaplan-Yorke, the information dimension with the 

Lyapunov exponents is related to as follows. 
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Where j is the largest integer for which the relationship λ1+λ2+…λj≥0 is obeyed. It represents a 

measure of the degree of disorder of the points on the attractor [13]. 

Secondly, Mori conjectured that the fractal dimension of an attractor may be related to the 

spectrum of Lyapunov exponents as [14]: 
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Where d is the number of non-negative exponents, k is the number of positive exponents λi
+
, 

and l is the number of negative exponents λi
-
. 

Both conjectures will report the same result in the case of continuous dynamical systems of 

embedding dimensions three or less, or in the case of discrete dynamical systems of embedding 

dimension two or less [6]. 
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I.3.2.2. Kolmogorov-Sinai entropy. 

The degree of chaos of a system can be measured from a generalization of the concept of entropy 

for state space dynamics. Loosely speaking, the Kolmogorov-Sinai entropy measures the average 

loss of the information rate. So, it is inversely proportional to the time interval over which the 

future evolution can be predicted [15]. 

The computation of the Kolmogorov-Sinai entropy may be performed from the spectrum of 

Lyapunov exponents through the so-called Pesin identity, which states that 

 

 ∑=
i

iKSh λ  
(11) 

 

Where the index i makes only reference to those Lyapunov exponents which obey that λi>0. To 

be precise, the sum of the positive Lyapunov exponents is an upper bound to the Kolmogorov- 

Sinai entropy, but (11) seems to hold in very general situations and it is usually the only way to 

obtain a good estimation of hKS [15]. The important point here is that the larger the entropy, the 

larger the unpredictability of the system, which is a highly desired property to ensure security in a 

chaos encryption scheme. 
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II. State-of-the-art and proposed system 

Once a capacity large enough for guaranteeing short and medium-term applications requirements is 

provided by the telecommunication networks, the next big challenge is focused on the 

development of security communications. Up until now, much of scientists’ efforts have actively 

been on software coding methods, such as the well-known public-key cryptography. However, 

researchers are also developing other promising techniques which operate at the physical level. 

Among these, quantum cryptography has arisen as the preferred solution, with some 

commercial systems already available. Nevertheless, the potential of chaotic signals as a powerful 

complement to quantum cryptography has intensively attracted the researchers’ attention. Now, 

after more than a decade of investigation, optical chaotic cryptography is approaching the market. 

Several solutions for implementing chaotic-based communication systems have already been 

reported in the literature [15-17]. In the beginning, hybrid solutions by using both electronic and 

photonic technologies were suggested. However, communication networks tend toward all-optical 

technologies, so the future passes through designing integrated all-optical robustness solutions. 

All the solutions reported can be classified attending to the encryption techniques implemented 

in the transmitters, as well as the topology of the receivers. 

II.1. Encryption techniques in the transmitter. 

The transmitter of a chaotic-based communication system is made up by a subsystem which may 

be routed to chaotic behavior under certain conditions. Transmitters can be classified according to 

the method used for combining chaos and message. Historically, all encryption techniques have 

been based on amplitude modulation (AM) of the chaotic carrier, and there mainly exists three 

different techniques as shown in Fig. 4. 

 

 

 

 

 

 

  

(a) (b) (c) 

Fig. 4. Encryption techniques. (a) Chaos shift keying. (b) Chaos modulation. (c) Additive chaos masking. 

 

In the basic scheme, the chaotic carrier is simply superposed over the message to strongly 

reduce its signal-to-noise ratio, thus implementing the so-called additive chaotic masking, as 

shown in Fig. 4 (c). Another possible approach is to superpose the message to the pump current of 

the laser by direct modulation, being referred as chaos shift keying (Fig. 4 (a)). Finally, other 

scheme consist of modulating in amplitude the light beam emitted by the chaotic carrier generator 
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by means of an electro-optical modulator, sketched in Fig. 4 (b), which is known as chaos 

modulation. More complex structures based on phase modulation (PM) by using an in-cavity phase 

modulator are also possible [18]. 

Figure 5 shows a real-implemented all-optical integrated module which acts as an entire 

transmitter. It is mainly made up by a DFB laser provided by an external cavity, which develops 

the functionality of chaotic carrier generator. The cavity is composed by a SOI waveguide, which 

is terminated by a highly reflective mirror (HR) in one of both sides. The message is modulated in 

phase by means of a phase modulator and the amplitude of the feedback signal injected into the 

DFB again is controlled by a variable optical attenuator (VOA). By employing integrated 

solutions, better mechanical stability, lower temperature sensitivity, and more compact and rugged 

systems can be achieved at lower volume cost. 

 

Fig. 5. Top view of all-optical integrated module for chaos-based transmission [18]. 

II.2. Open and close loop receivers. 

Two possible configurations have been presented so far in the literature in order to design a proper 

receiver able to extract the message from the chaotic carrier. Specifically, both architectures 

proposed are based on the same idea, which is to reproduce the chaotic carrier at the receiver for 

the purpose of subtracting it from the transmitted signal. However, both architectures carry this 

objective out in a different way. 

On one hand, the so-called close-loop configuration consists of a totally symmetric scheme 

used in the transmitter and in the receiver. It means that the receiver is chaotic by itself, even 

without injection (Fig. 6 (a)). 

On the other hand, the receiver in a scheme based on open-loop configuration is not subject to 

feedback. Hence, the receiver is not chaotic in the absence of the transmitted signal (Fig. 6 (b)). 

Earlier studies have shown that the open-loop configuration leads to synchronization more 

readily than the closed-loop one. Furthermore, the close-loop architecture requires careful tuning 

of the feedback phase to adjust it in a similar way for both the transmitter and the receiver [19]. 

The dependence of implementing different decoding processes at the receiver on the fidelity of 

the recovered signal has also been object of study in the literature. Specifically, two major 

decoding techniques have focused the interests of researchers. The first one relies on the widely 

proposed process based on subtracting the chaotic carrier from the received signal directly in the 

optical domain, which is known as normalized difference of electric fields. However, the second 
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one corresponds to a more realistic case and it is extensively used under “real-world” conditions, 

as well as in experimental set-ups. The subtraction of photocurrents, as it is known the above-

mentioned decoding process, is based on subtracting the electrical current outputs of a pair of 

photodiodes (see Fig. 6). The normalized difference of electric fields technique is found to be less 

complex than the subtraction of photocurrents, because a lower number of devices are needed. 

Moreover, the processing is completely implemented on the optical layer. Nevertheless, especially 

when using close-loop configurations, this technique becomes strictly dependent on the degree of 

synchronization between the transmitter and the receiver. That is the reason why the subtraction of 

photocurrents decoding process is commonly used in order to overcome the above-mentioned 

limitation independently of the receiver topology [20]. 

 

 

Fig. 6. Two different communications chaos-based schemes characterized by close-loop receiver 

configuration (a) and by open-loop receiver configuration (b) [20]. 

 

Finally, it must be highlighted that some years ago the first test under real-world conditions 

chaos-based communication was performed [19]. The test was carried out by making use of 

commercial devices strictly. It consisted of transmitting a message embedded within optical chaos 

along a 120 km optical link based in the metropolitan optical network of Athens. Successful results 

in terms of bit error rate (BER) were achieved. To avoid problems related to fiber dispersion, 

compensation modules made up by proper length dispersion-shifted fibers were utilized. This is 

issue becomes important because otherwise, the receiver could not correctly synchronize with the 

transmitted signal due to temporal repercussions on the signal induced by the fiber dispersion. 

Moreover, high order effects were also avoided thanks to the use of single-mode optical links, as 

well as the use of distributed feedback (DFB) lasers. Both the set-up tested and the performance 

achieved by the system is shown in Fig. 7. 

In Fig. 7(a), one can see how the decoded message and the input one are practically identical. It 

must be noticed that the electric voltage level is roughly the same, issue which has been possible 

by using an erbium doped fiber amplifier (EDFA) pumped with the proper power at the 

transmitter’s output in order to compensate the propagation losses of the optical link.  Fig. 7(b) 

also shows that the fact of taking into account the fiber link and larger code lengths slightly 

penalize the BER as a function of the bit rate, but the penalization is not so important. Therefore, 
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the results obtained by the test provide a convincing proof-of-practical-concept for optical chaos 

communications. Building on this, it should be possible to develop reliable cost-effective secure 

communications systems for the purpose of being implanted in real networks [19]. 

 

 

 

 

 

(a) (b) 

Fig. 7. (a) Set-up and temporal waveforms of the input and decoded message, and transmitted signal 

(message + chaos). (b) BER performance of different scenarios and code lengths [19]. 

II.4. Proposed system based on SOA-MZI with optical feedback. 

In this section, a novel all-optical structure which can act as optical carrier generator under certain 

initial conditions and proper setting parameters is presented. Specifically, the structure is based on 

a semiconductor-optical-amplifier-based Mach-Zehnder interferometer with optical feedback loop, 

as one can see in Fig. 8(a). 

 

 

 

 

 

(a) (b) 

Fig. 8. (a) Proposed architecture for the chaotic carrier generator based on a single SOA-MZI with optical 

feedback loop [21]. (b) Example of temporal traces for the flip-flop operation [21]. 

 

The above-shown architecture has already been extensively studied in the literature. In 

particular, it has been demonstrated that bistability can be forced on this sort of configuration [22]. 
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It means that flip-flop operation can be achieved, since two possible stable states which can be 

dynamically changed by external control pulses may be switched. 

The principle of operation as a flip-flop behavior of the presented architecture is as follows. A 

continuous-wave (CW) optical signal of power Pbias is injected into the input port #1 of the SOA-

MZI. Both the input and the output couplers provide a phase shift of π/2 radians between the MZI 

branches. Therefore, in absence of other input signals, no optical power is obtained at the SOA-

MZI output port #2 as a consequence of a destructive interference at the output coupler. The output 

port #2 is interconnected through a feedback loop to the lower MZI branch by means of an optical 

coupler. Inside the feedback loop, another coupler is also used for extracting the output signal from 

the optical flip-flop, port #3, as well as for introducing the set pulses, port #4, which act as 

enabling signals. Finally, an optical coupler is used in the upper MZI branch to balance the 

interferometer and to allow the introduction of reset pulses through port #5, which act as disabling 

signals [21]. 

 When injecting a set pulse into the architecture through the port #4, the carrier density and, 

therefore, the gain is reduced at the SOA 2. In this way, the interferometric structure becomes 

unbalanced, and the CW signal experiences different gains and phase shifts along both MZI 

branches, which gives as a result a certain power level at port #2 (Fig. 8(b)). The main function of 

the feedback loop is to forward a fraction of the output power in port #2 into the SOA 2 in order to 

hold its state when the optical power of the set pulse vanishes. The output power of the optical 

flip-flop and the input energy needed for the set pulses can be set by adjusting the coupling factor 

which is inside the feedback loop. Conversely, when injecting a reset pulse into port #5, it arrives 

to SOA 1 and reduces its carrier density and optical gain in a similar way, but due to the feedback 

loop, the carrier density in SOA 2 is also changed (Fig. 8(b)). If injecting a reset pulse with energy 

high enough, the flip-flop state is switched. So, the SOA-MZI becomes balanced again, resulting in 

an output power at port #2 equal to zero [21]. 

The strength of the feedback loop has important influence on the performance of the 

architecture and it plays an important role when talking about stability. Specifically, when the 

strength of the feedback loop becomes significant, it provides an extra dimension to the phase 

space, fact which strongly modifies the dynamics. Once it is modified in this sense, it can be 

affected by irregular behavior. Hence, the introduction of high enough feedback strength provides 

two extra dynamical degrees of freedom, which are sufficient to yield self-pulsing and chaotic 

behavior when the loop length and coupling factor r2 are appropriately chosen. Detailed 

performance results as a function of different system parameters are given in section IV. 
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III. Analytical model 

In section II, the qualitative behavior of the proposed system has been detailed. Now, an analytical 

description is derived for the purpose of accurately model the dependences of the most important 

physical parameters on the performance. 

III.1. SOA-MZI-based system with optical feedback. 

The theoretical model reported is based on the approach proposed by Agrawal, which models the 

propagation of a single optical carrier through a semiconductor waveguide by means of the 

following set of coupled differential equations [23]. It is assumed by the model that the CW carrier 

is placed at the SOA peak-gain wavelength. Otherwise, a gain reduction coefficient should be 

applied. 
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Where τ represents the reduced time, which is given by τ = t – z / vg with vg = c / ng, being vg the 

group velocity and ng the group index. According to the definition of the field envelope, which is 

expressed as A = [P(z,τ)]
1/2

exp{jϕ(z,τ)}, P(z,τ) and ϕ(z,τ) are the power and the phase of the 

optical wave. On the other hand, αint, g, g0, αN, τc and Esat are the internal loss, the gain, the small-

signal gain, the linewidth enhancement factor, the carrier lifetime and the saturation energy 

respectively.  
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Being Γ the confinement factor, a the differential gain, I the injection current, q the electron 

charge, V the active cavity volume, N the carrier density, N0 the carrier density at transparency, hυ 

the photon energy, and ωd the cross-section of the active layer. A, B and C are the linear 

recombination, the bimolecular recombination and the Auger recombination coefficients 

respectively. 
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A numerical method is required in order to solve the coupled differential equation system 

specified by (12)−(14). Nevertheless, if the assumption αint << g is taken into account, the 

previous equations can be simplified considerably. This condition is often satisfied in practice 

[21]. Hence, by integrating (12) and (13) over the active cavity length, the output power and the 

output phase can be expressed as a function of the input slow-varying field envelope as: 
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being L the active cavity length and h(τ) the gain transfer function of the SOA, which is 

mathematically defined as: 
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By making use of the above-mentioned transfer function, the so-called instantaneous amplifier 

gain can be calculated as G(τ)=exp{h(τ)} [21]. Finally, via integrating equation (14) over the active 

layer length and taking in consideration the result derived from (19), h(τ) can be found as the 

solutions of the following nonlinear differential system made up by two equations, one for each 

SOA [21]. 
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Where i refers to the ith SOA, being i = 1, 2. The term Pin,SOAi stands for the total optical power 

entering SOAi which is comprised of different contributions as shown in Fig. 8(a). By carrying out 

a detailed analysis of the propagation of the different contributions existing in each point of the 

structure, the total input power for both amplifiers can be obtained as [21]: 
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where 
ih is the delayed version of 

ih due to the feedback loop. By defining τ0 as the feedback-

loop delay, the delayed version can be written as follows [21]. 
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III.2. Stability analysis. 

Equations (22)−(24) makes up a non-linear non-autonomous differential equation system, which 

must be numerically solved in order to obtain the transfer function of each SOA embedded in both 

branches of the interferometric structure. Performing stability analysis of the structure is of great 

importance to clearly distinguish between stable and unstable regions. 

In order to route the structure to chaos, nonlinear behavior must be forced on the semiconductor 

waveguides for the purpose of generating complex dynamics. Furthermore, the strength of the 

feedback loop must be also carefully set by controlling the length and the coupling factor, which 

adjusts the amount of the output power re-injected again into SOA 2. In the table below, the values 

taken into account for the simulations carried out in this work are depicted. Some of them have 

been kept constant during the simulation framework, whereas the values of other specific ones 

have been varied for the purpose of studying their impact on the structure behavior. 

 

Symbol Parameter description Value 

L SOA length 500 µm 

ωd Transversal section 2·10
-13

 m
2
 

V Active cavity volume 1·10
-16

 m
3
 

a Differential gain 3·10
-20

 m
2
 

N0 Carrier density at 

transparency 

1.5·10
24

 m
-3

 

V Active cavity volume 1·10
-16

 m
3
 

Γ 

ng 

Confinement factor 

Group index 

0.4 

3.4 

αN Linewidth enhancement 

factor 

8 

ISOA1 Bias current 600 mA 

ISOA2 Bias current 600 mA 

Pbias 

 λ0 

CW input optical power 

Nominal wavelength 

2 mW 

1550 nm 

r1 Coupling factor 0.5 

r2 

τ0 

Coupling factor 

Feedback-loop delay 

0.7 

300 ps 

A Linear recombination 

coefficient 

0.5·10
8
 s

-1
 

B Bimolecular 

recombination coefficient 

5·10
-16

 m
3
s

-1
 

C Auger recombination 

coefficient 

5·10
-41

 m
6
s

-1
 

Table 1: Setting parameters of the proposed system [21] 
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III.2.1 Static behavior. 

As a first resort, the steady-state solution of the nonlinear delay differential system made up by 

equations (22)−(24) is obtained. For this purpose, some important considerations have to be taken 

into account, which concern the dynamics, the feedback-loop delay, and the input powers of the set 

and reset pulses. 
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By modifying equations (22)−(24) according to (26)−(28), the stability theory of autonomous 

systems may be applied [24]. If plotting the results obtained in maps of the form h1 versus h2, the 

crossovers between both traces set the steady-state solutions or fixed points. Via using the setting 

parameters depicted in table 1, 5 fixed points characterizes the dynamics of the system. The couple 

of values (h1, h2)j, with j ϵ [1,5], satisfies the rate equation (22) for SOA 1 and SOA 2 

simultaneously.  

 

 
 

 

 

(h1, h2)1 = (5.5166, 3.0284) 
 

(h1, h2)2 = (5.3702, 3.3397) 
 

(h1, h2)3 = (5.0911, 3.8313) 
 

(h1, h2)4 = (4.6023, 4.5307) 
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(h1, h2)5 = (4.5712, 4.5712) 

 

Fig. 9. Steady-state curves for both SOAs. Blue trace refers to SOA 1 solution and the yellow one to SOA 

2 solution. Intersections between both establish the fixed points. 

 

Once calculated the value of all the five steady-state solutions, a stability study must be carried 

out for taking aim at deciding if stable or unstable behavior occurs. In order to determine the 

stability of a fixed point, the Jacobian matrix of (22) needs to be evaluated [24]. 
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(29) 

 

According to the stability theory [24], a fixed point (h1, h2)j is found to be stable if all the 

eigenvalues of its Jj matrix are characterized by a negative real part. In this manner, the 

characteristic equation must be solved for the purpose of obtain the corresponding eigenvalues. 

 

 ( ) 0det =− jj JIλ  (30) 

Where here I refers to the identity matrix, det(·) is the determinant, and λj are the eigenvalues of 

the matrix Jj. By calculating the eigenvalues when considering each fixed point, one can determine 

their stability, which can be summarized as follows. 

 

Real part of the eigenvalues Stability 

Re{(λ1 , λ2 )1 }= (−2.32·10
11

, −4.67·10
11

) Stable 

Re{(λ1 , λ2 )2 }= (−3.29·10
11

, 4.03·10
11

) Unstable 

Re{(λ1 , λ2 )3 }= (−0.33·10
12

, −1.23·10
12

) Stable 

Re{(λ1 , λ2 )4 }= (−3.72·10
11

, 3.51·10
11

) Unstable 

Re{(λ1 , λ2 )5 }= (−3.73·10
11

, −3.73·10
11

) Stable 

Table 2: Stability results of the different fixed points 

 

In accordance with the nonlinear systems’ theory [25], and by making use of a geometric way 

of thinking, conclusions regarding the stability of a fixed point may be also derived by studying the 

sign of the flow’s slope in the certain point. By taking as a reference trace the solution for the SOA 

1, if the derivative of the solution for the SOA 2 becomes positive, then the fixed point presents 

repelling nature and therefore is an unstable point. On the other hand, when presenting attracting 

nature due to a negative slope, the fixed point is stable. There is another way to discern if a fixed 

point meets the stability condition, which is based on the physical idea of the potential energy. 

Specifically, local minima of the potential energy of the system correspond to stable fixed points, 

whereas local maxima to unstable ones [25]. 

Finally, by keeping in mind the proposed architecture shown in Fig. 8(a), the output power Pout 

as a function of the transfer function of both SOAs under the conditions expressed in (26)−(28), as 

well as the different system parameters can be written as [21]: 
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It becomes interesting to notice that a null output power is obtained when considering the 

condition h1 = h2, which corresponds to the fixed point number five. 

III.2.2 Dynamic behavior. 

Once gained knowledge of the quantitative behavior of the proposed system under static conditions 

(26)−(28), it is time to study the structure when supposing dynamic effects, such as transients and 

the response to input stimuli (set and reset pulses). For this purpose, it must be highlighted that 

(22)−(24) turns into a nonautonomous system of functional differential equations, since τ0 ≠ 0. 

Fortunately, it falls into the category of delay differential equations system with constant delays, 

which have been extensively studied. 

Keeping in mind that the structure is found to be used as a chaotic carrier generator, it is not so 

much interesting to study the response of the structure under the injection of input stimuli. The 

reason is that it is not necessary to change the dynamics between different working points, just set 

one and provide routing to chaotic behavior by controlling certain system parameters. 

By the fact of considering nonzero delay time of the feedback loop, the characteristic equation 

which must to be solved, according to the stability theory becomes [24]: 

 

 ( ) 0det 0)1()0( =−− − τλλ jeJJI jjj
 (32) 

where the matrices J 
(0)

 and J 
(1)

 are the Jacobian with hi(τ) and hi(τ-τ0) respectively. As before, 

those matrices have to be evaluated at the different fixed points in order to obtain their stability. 

Taking into account that (h1(τ), h2(τ))j = (h1(τ- τ0), h2(τ- τ0))j, so: 
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(33) 

 

The roots of (32) are known as characteristic roots and determine the local stability of the fixed 

point. Negative real part of all the eigenvalues stands for stable behavior, whereas it is unstable if 

there is any root characterized by positive real part. It is important to mention that a Hopf 

bifurcation occurs when the real part of a pair of complex conjugate characteristics roots becomes 

positive. If the system undergoes a Hopf bifurcation, the stable fixed point changes its dynamics to 

a limit cycle [21]. 
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IV. Numerical results 

In the present section, numerical calculations of the degree of chaos reached by the proposed 

system under certain initial conditions are depicted. With the goal of accounting for how chaotic 

the structure is, the value of the Global Lyapunov Exponent (GLE) is obtained as a function of the 

most important controlling parameters. The GLE is calculated by making use of a neural network-

based algorithm which meets the Jacobian approach [12]. Just mention that, although noise 

considerations have been skipped over in the simulation process, the Jacobian approach has been 

implemented in order to allow possible future numerical calculations of noisy systems. 

Studies carried out in the present work have shown that the variables h1(τ) and h2(τ) become 

chaotic when setting the appropriate values of certain parameters, as well as when the proper 

initial conditions are accurately chosen. It means that at the output of each SOA, chaotic behavior 

can be achieved independently. According to the architecture of the proposed system (see Fig. 

8(a)), the output power is taken from somewhere inside the feedback loop. Because of the 

interferometric phenomenon that takes place at the output coupler of the Mach-Zenhder structure, 

both contributions coming from both arms are combined. Although identical SOAs are considered, 

which are also biased with the same current level, the output power of both SOAs differs in their 

amplitude. This fact is caused by the different gain which experiences the optical carrier along 

both arms due to the power excess injected into SOA 2 by the feedback loop. Moreover, the output 

power of the SOA 2 at a given reduced time τ is also function of the power which was at the output 

of the interferometric structure τ0 seconds before. Taking into account the above-mentioned 

considerations, as a result of combining both optical carriers passing through both arms, the total 

power tested at port #3 brakes the aperiodicity which characterizes both SOAs outputs. Owing to 

the appearing of periodic components in the total power, to the best of our knowledge, it is not 

possible to route it to chaotic behavior. 

In order to overcome this limitation, the tests have been performed by considering the optical 

signal provided by port #5. In this way, the sort of correlation between both transfer functions at 

the interferometric output port has not important repercussions on the new output power. Hence, 

from now on, port #5 will be referred as the output port, and its output power can be defined as 

follows by keeping in mind the static conditions expressed in (26)−(28). 
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On one hand, the impact of the strength of the feedback loop on the nature of the system’s 

behavior has been characterized. The study has been carried out in terms of the feedback loop 

delay and the coupling factor r2, which defines the amount of power re-injected into the SOA 2 by 

the loop. 
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On the other hand, the effect produced by the SOA dynamics on the system’s behavior has also 

been object of study. Specifically, numerical calculations have been performed as a function of the 

injection currents and the input power. 

In all the simulations performed, data arrays of 30001 points have been used as inputs of the 

algorithm for calculating the GLE. It must be highlighted that the transients of the solutions have 

not been considered for creating the data arrays; it means that only steady-state points are taken 

into account. In order to design the neural network used for approximating the points given by a 

certain input data array, 3 dimension parameters must be defined. The triplet (L, m, q) defines the 

complexity of the chaotic map. Theoretically, as the values of these parameters increase, the neural 

net function (which must be also defined) can approximate any smooth, nonlinear function to 

arbitrary accuracy. However, over-dimensioned neural networks will give as a result a run-time 

excess. The optimum solution consists of dynamically adjusting the dimensionality of the neural 

network according to the dynamics complexity. Nevertheless, this solution requires an in-depth 

study of the output signal. For simplicity purposes, the triplet (L, m, q) has been fixed to (7, 8, 7), 

which is good enough for providing accurate results over all the cases under study. The mean run-

time of the algorithm by taking into account data arrays of 30001 points and the above-defined 

dimensionality is approximately 20 hours. The starting point, which defines the initial condition 

for running the algorithm, has been set to h1(τ=0)=3.96 and h2(τ=0)= 3.61 for all the simulations 

performed. 

IV.1 Chaotic behavior as a function of the feedback loop delay. 

To study the effect of the feedback loop length on the dynamics of the system, the behavior of the 

output power when sweeping the loop delay τ0 is characterized. 

With the goal of demonstrating that chaotic behavior occurs under certain loop delays, the GLE 

is calculated considering different scenarios. Moreover, the time traces, the spectra and the phase 

spaces are also subject of study because they can be useful indicators of chaos.  

It must be noticed that the degrees of freedom of the set of equations which model the system, 

consists of h1(τ), h2(τ), and their corresponding delayed versions, h1(τ-τ0) and h2(τ-τ0). Therefore, 

the embedding dimension of the system is 4. It means that to gain full geometrical information 

from the nature of the attractor in the phase space, four-dimensional plots should be calculated. 

Since the phase space results shown are two-dimensional, information in two directions is only 

given. However, interesting practical conclusions can be derived. 

Fig. 10 depicts the numerical calculations of the GLE as a function of the loop delay, which has 

been varied from 10 to 500 ps. All the system parameters are set to the values specified by Table 1, 

unless for the loop delay τ0.  
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Fig. 10. GLE as a function of the feedback loop delay τ0. The insets show the attractor in the phase space 

when τ0 = 40 ps (left-hand) and when τ0 = 150 ps (right-hand). 
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Fig. 11. (a) Time trace when τ0 = 40 ps. (b) Spectrum when τ0 = 40 ps. (c) Time trace when τ0 = 150 ps. 

(d) Spectrum when τ0 = 150 ps. 
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As one can see, by the fact of connecting the feedback loop, the structure reports chaotic 

behavior whatever the delay. The only points characterized for high enough periodic components 

able to break the aperiodicity are τ0 = 40 ps and τ0 = 200 ps. The GLE for these values of the loop 

delay are slightly below than zero. In these cases, it is far from straightforward to discern periodic 

components from aperiodic ones in the phase spaces. The reason is because the structure becomes 

stable after a long time, so the aperiodic behavior is superimposed to the periodic one. That is the 

reason why the phase space seems to present strange behavior (see the left-hand inset in Fig. 10), 

but certainly is periodic, as the sign of the GLE indicates. Therefore, from visual inspection of the 

phase spaces, conclusions cannot be appropriately drawn. The right-hand inset in Fig. 10 shows 

the nature of the phase space when setting τ0 = 150 ps. According to its GLE, for this delay the 

maximum strangeness output is obtained. 

On the other hand, the time traces at the output port and their corresponding spectra are shown 

in Fig. 11. Chaotic signals are characterized by strange behavior, fact which is in good agreement 

with the totally aperiodic waveform and the flat spectrum shown in (c) and (d) respectively. 

However, periodicity appears in (a) and (b), since the waveform and the spectrum discern strong 

enough periodic components for reporting a negative GLE. 

IV.2 Chaotic behavior as a function of the feedback loop strength. 

In order to carry out a complete characterization of the impact of the feedback loop on the 

performance of the system, numerical calculations involving the amount of power re-injected into 

SOA 2 are accomplished. 

For this purpose, the coupling factor r2 has been swept from 0, i.e., when no feedback loop is 

taken into account, to 0.9, where the 90% of the power existing at port #2 is feedback into SOA 2. 

As before, the study is fulfilled in terms of the GLE, as well as the time traces, the optical 

spectrum, and the phase space. 
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Fig. 12. GLE as a function of the coupling factor r2. The insets show the attractor in the phase space when 

r2=0.2 (upper) and when r2=0.5 (lower). 
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In figure above, the evolution of the GLE as a function of the coupling factor is shown. All the 

system parameters are set to the values specified by Table 1, unless for the coupling factor r2. As 

one can see, the chaotic behavior is reached by the structure when adjusting the coupling factor 

between 0.41 and 0.78 approximately. Moreover, the optimum value of the coupling factor which 

generates the most chaotic dynamics at the structure’s output is 0.5. On the other hand, the insets 

refer to the phase space when considering specific cases. The upper inset depicts the phase space 

nature when setting the coupling factor r2 = 0.2. As it is shown, the attractor in the phase space 

consists of a sort of limit cycle; which is disturbed because apart from the most significant periodic 

perturbation, there also exist other spectral components characterized by lower amplitude. The 

lower inset stands for the phase space when considering r2 = 0.5. It is a clear example of a strange 

attractor, in which the dynamics seems to follow a totally aperiodic behavior. 
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Fig. 13. (a) Time trace when r2=0.2. (b) Spectrum when r2=0.2. (c) Time trace when r2=0.5. (d) Spectrum 

when r2=0.5. 

 

Fig. 13 summarizes the time traces and the spectra of the system’s output when the coupling 

factor is set to 0.2 and 0.5 respectively. In Fig. 13(a), clear periodic behavior can be observed, fact 
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which is perfectly consistent with the results drawn from the phase space. It must be noticed that 

on the maxima and minima of the periodic perturbation, a sort of ripple is superimposed. That is 

the reason why the attractor is disturbed from the typical appearance of a limit cycle. If attention is 

paid on the spectral characterization (Fig. 13(b)), one can clearly see the line representing the 

periodic perturbation, as well as other contributions with lower amplitude due to the above-

mentioned ripple. Fig. 13(c) shows the time trace when the attractor becomes strange. Apparently 

the trace does not follow any periodic pattern, since periodic components cannot be discerned. 

This fact agrees the spectral characterization because it is roughly flat (Fig. 13(d)). 

IV.3 Chaotic behavior as a function of the injection currents. 

The impact of the feedback loop on the nature of the output power has been characterized in terms 

of its delay and strength in the last sections. Now, the dependence of the SOA dynamics on the 

degree of chaos reached by the structure is deeply studied. The controlling parameters used for 

adjusting the dynamics generated by both SOAs are the injection currents and the input powers. 

Firstly, the GLE is calculated as a function of the current injected into the SOAs. Both the 

amplifiers are biased with the same current level, which has been swept from 100 mA to 800 mA. 

As one can see in Fig. 14, the structure generates chaotic behavior over a wide range of injection 

currents. However, when considering injection currents between 290 mA and 420 mA 

approximately, the GLE becomes negative giving as a result non-chaotic behavior. This fact is 

caused by a change in the stability of the structure. Probably, as a result of a bifurcation, the 

structure becomes stable due to the appearing of periodic components. In this case, it is not easy to 

discern periodic components from aperiodic contributions in the phase spaces. The reason is 

because the structure becomes stable after a long time, so the aperiodic behavior is superimposed 

to the periodic one. Therefore, from visual inspection of the phase spaces, conclusions cannot be 

appropriately derived.  
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Fig. 14. GLE as a function of the injection currents I into both SOAs. The insets show the attractor in the 

phase space when I=400 mA (left-hand) and when I=800 mA (right-hand). 
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The corresponding time traces and spectra for both currents under study are presented in Fig 

15. These indicators of chaos provide more useful information than the phase space. From the 

spectra shown in (b) and (d), one can assure that both contain periodic components. However, 

when setting the highest current, more harmonics can be discerned in the spectral characterization, 

but with roughly the same power level. In this sense, the spectrum approaches to a flatter spectrum 

more than the case of biasing with I = 400 mA. Flat spectra are typical of chaotic signals. From the 

time traces (a) and (c) becomes difficult to discern the strange behavior from the case in which 

non-chaotic output is obtained. 

120 120.2 120.4 120.6 120.8 121 121.2 121.4 121.6 121.8 122
10

20

30

40

50

60

70

80

90

100

110

Time [ns]

O
u

tp
u

t 
p

o
w

er
 [

m
W

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-5

Frequency [GHz]

O
u

tp
u

t 
p

o
w

er
 [

a.
 u

.]

            (a)            (b) 

140 140.2 140.4 140.6 140.8 141 141.2 141.4 141.6 141.8 142
20

40

60

80

100

120

140

160

180

200

220

Time [ns]

O
u

tp
u

t 
p

o
w

er
 [

m
W

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2
x 10

-4

Frequency [GHz]

O
u

tp
u

t 
p

o
w

er
 [

a.
 u

.]

             (c)            (d) 

Fig. 15. (a) Time trace when I = 400 mA. (b) Spectrum when I = 400 mA. (c) Time trace when I = 800 

mA. (d) Spectrum when I = 800 mA. 

IV.4 Chaotic behavior as a function of the input power. 

Finally, the chaotic behavior is studied as a function of the input power. It must be mentioned that 

the input power refers to the power injected into the port #1 of the structure Pbias (see Fig. 8(a)). 

Therefore, the power injected into each SOA is a halved due to the input coupler. 
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Fig. 16. GLE as a function of the input power Pbias. The insets show the attractor in the phase space when 

Pbias = 0.5 mW (left-hand) and when Pbias = 2 mW (right-hand). 
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Fig. 17. (a) Time trace when Pbias = 0.5 mW. (b) Spectrum when Pbias = 0.5 mW. (c) Time trace when  

Pbias = 2 mW. (d) Spectrum when Pbias = 2 mW. 
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Loosely speaking, the larger the input power, the higher the GLE will be (see Fig. 16). The 

threshold value of the input power for guaranteeing chaotic behavior is approximately 1.25 mW, 

when considering the values of the parameters summarized in Table 1. However, for larger bias 

powers, the value of the GLE suffers saturation.  

It means that the degree of chaos increases with the input power, because more complex 

dynamics are achieved at the output of the structure. The reasoning is as follows. If good enough 

bias power is applied at the input of a semiconductor device, the gain saturation effect will take 

place. The aforementioned effect gives as a result a non-linear gain response and, therefore, 

complex dynamics. The left-hand inset depicts how the attractor in the phase space follows a 

pseudo-periodic pattern. Specifically, the shape of the attractor approaches a sort of disturbed 

saddle function. In this sense, the attractor is somewhat predictable. On the other hand, the right-

hand inset shows the attractor when injecting an input power of 2 mW. It seems to be strange since 

as far as one can discern, only non-periodic contributions appear.  

In this case, from the time traces become difficult to assure if the structure has been routed or 

not to chaotic behavior (Fig. 17(a)-(c)). However, when low input power is applied, the spectrum 

is characterized by 2 predominant periodic components (Fig. 17(b)). For larger input powers, the 

spectrum displays several periodic contributions generated by the nonlinear gain response. 

Nevertheless, their amplitude is not found to be enough for forcing negative GLE.  
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V. Conclusions and further work 

A novel all-optical structure based on a single SOA-MZI with optical feedback loop has been 

presented for the purpose of implementing chaotic carrier generation functionalities. Up until now, 

bistability behavior has already been demonstrated by this kind of structure in the literature. 

However, as far as we concern, it is demonstrated for the first time in the present work that the 

structure can be routed to chaotic behavior under certain initial conditions.  

The main application of chaos is found to be the implementation of secure communications in 

optical data networks. Chaos-based security does not focus on competing with quantum 

cryptography or software encryption, but it has arisen as an efficient solution to complement them. 

The reason why chaos has become attractive for researchers is because it represents a fully all-

optical hardware-based solution, which can be directly implemented on the physical layer. It must 

be highlighted that implement functionalities directly on the physical layer reports a non negligible 

series of advantages with respect to implement them on the electrical domain, which must not be 

overlooked. 

Analytical and numerical investigations have been carried out with the goal of accurately 

modeling the behavior of the proposed architecture. On one hand, a complete analytical model has 

been developed in order to obtain proper mathematical description of the behavior of the structure. 

Following, a deeper insight into the stability properties has been performed, identifying both the 

stable and unstable fixed points. Finally, a generic neural network-based algorithm which meets 

the Jacobian approach has been implemented for the purpose of calculating the GLE. The calculus 

of the aforementioned exponent is pretty enough to decide if the system is chaotic or not, as well 

as how chaotic it is. As inputs of the numerical algorithm, only is needed to specify the vector 

containing the data to be evaluated and the dimensionality of the neural network. The 

dimensionality is directly contingent on the precision of the algorithm. Specifically, the higher the 

dimensionality, the more accurate results are obtained, because better approximations are 

performed. However, the run-time is considerably increased when setting higher dimensionality, so 

special care needs to be taken at the time of adjusting the parameters of the neural network. 

By making use of the developed algorithm, calculations of the GLE have been carried out with 

the aim at characterizing the chaotic behavior of the structure. The numerical results show how 

chaos can be reached by the structure as a function of the most important controllable parameters. 

Specifically, the regions in which chaos is present at the structure output are calculated as a 

function of the loop delay, the loop strength, the injection currents, and the input optical power. 

These parameters cover the characterization attending to loop properties and to the dynamics 

generated by the semiconductor waveguides. 
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Regarding further possible work on this issue, some interesting suggestions are reported below: 

• The dimensionality of the neural network has to be dynamically adjusted by accurately 

setting the optimum combination in each case. In this work, the values of the setting 

parameters have been over-dimensioned to assure always right computation, and they have 

been kept fixed for all the cases under study. Take special care of this issue, can provide 

considerably faster computation. 

• To pursue deeper characterization of the GLE as a function of the most important physical 

parameters of the structure. It must be also taken into account other relevant system 

parameters that have not been studied in this work, like for instance, the coupling factor r1.  

• To study the response of the structure to input stimuli, it means, when reset and set pulses 

are injected. Consider the possibility of using these pulses as enabling signals for routing the 

structure to chaotic behavior instead of changing the value of the controllable parameters. 

• To implement the complete transmitter, as well as to evaluate the different modulating 

schemes for the purpose of choosing that which reports the best performance. 

• To implement the complete receiver attending to the open and the close loop designs. In 

consistency with the performance reported, to choose the best solution. 

• Once designed both the transmitter and the receiver, the entire chaos-based communications 

system must be evaluated. Special careful must be taken into account when implementing the 

synchronization issues. 

• To study the impact of possible mismatch tolerances between some of the most important 

physical parameters of the chaotic carrier generator of the transmitter and the receiver on the 

final performance of the system. 

• To check out the effect produced on the final performance the fact of linking the transmitter 

and the receiver by means of an optical fiber. The study should be made, at least, in terms of 

attenuation and dispersion. Possible nonlinearities generated in the optical link, as well as 

the assumption of multi-mode fibers (MMF) could be interesting aspects to be also 

considered.  
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