
Universitat Politècnica de València

Master Thesis

A Dynamic Power-Aware Partitioner

with Real-Time Task Migration for

Embedded Multicore Processors

Author:

José Luis March Cabrelles

Advisors:

Dr. Julio Sahuquillo Borrás

Dr. Salvador V. Petit Mart́ı

A thesis submitted in partial fulfillment of

the requirements for the degree of

Master of Science

in the

Parallel Architectures Group

Department of Computer Engineering

June 2012

http://www.upv.es
http://www.gap.upv.es/jomarcab
http://www.disca.upv.es/jsahuqui
http://www.disca.upv.es/spetit
http://www.gap.upv.es
http://www.disca.upv.es

UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Abstract

Escuela Tècnica Superior de Ingenieŕıa Informática

Department of Computer Engineering

Master of Science

A Dynamic Power-Aware Partitioner with Real-Time Task Migration for

Embedded Multicore Processors

by José Luis March Cabrelles

A major design issue in embedded systems is reducing the power consumption since

batteries have a limited energy budget. For this purpose, several techniques such as

Dynamic Voltage and Frequency Scaling (DVFS) or task migration are being used.

DVFS circuitry allows reducing power by selecting the optimal voltage supply, while

task migration achieves this effect by balancing the workload among cores.

This work focuses on power-aware scheduling allowing task migration to reduce en-

ergy consumption in multicore embedded systems implementing DVFS capabilities. To

address energy savings, the devised schedulers follow two main rules: migrations are

allowed at specific points of time and only one task is allowed to migrate each time.

Two algorithms have been proposed working under real-time constraints. The simpler

algorithm, namely, Single Option Migration (SOM) only checks one target core before

performing a migration. In contrast, the Multiple Option Migration (MOM) searches

the optimal target core.

In general, the MOM algorithm achieves better energy savings than the SOM algorithm,

although differences are wider for a reduced number of cores and frequency/voltage

levels. Moreover, the MOM algorithm reduces energy consumption as much as 40% over

the typical Worst Fit (WF) strategy.

i

http://www.upv.es
http://www.etsinf.upv.es
http://www.disca.upv.es

Contents

Abstract i

List of Figures v

List of Tables vii

Acronyms ix

1 Introduction 1

2 Related Work 5

2.1 Partitioned Scheduling . 5

2.2 Task Migration . 6

2.3 Scheduling in Multicore and Multithreaded Systems 7

3 System Model 9

3.1 Real-Time Task Behavior . 9

3.2 Power-Aware Scheduler . 10

4 Partitioning Heuristics 13

4.1 Single Option Migration Policies . 13

4.2 Multiple Option Migration Dynamic Partitioner 15

5 Experimental Results 19

5.1 Impact of Migrations at Specific Points of Time 21

5.2 Comparing MOM versus SOM Variants 25

6 Conclusions 29

6.1 Current and Future Work . 30

6.2 Publications . 30

References 33

iii

List of Figures

3.1 Modeled system. 10

4.1 Example of task migrations to balance the system. 14

4.2 Migration Attempt algorithm. 15

4.3 Multiple Option Migration dynamic partitioner algorithm. 16

4.4 SOMin−out vs MOM working example. 17

5.1 Single Option Migration variants comparison for different DVFS levels
and number of cores. 22

5.2 Effective action of the SOMin partitioning algorithm. 23

5.3 Differences of the required frequencies. 24

5.4 SOMin−out versus MOM for different DVFS levels and number of cores. . 26

v

List of Tables

3.1 Frequency (F) vs Power (P). 11

5.1 Benchmark description and mixes. 20

5.2 Algorithms action on workload changes. 23

5.3 Average and standard deviation of task utilization. 27

vii

Acronyms

EDF Earliest Deadline First

DVFS Dynamic Voltage (and) Frequency Scaling

FF First Fit

MOM Multiple Option Migration

MPSoC MultiProcessor System-on-Chip

OS Operating System

PDA Personal Digital Assistant

RMS Rate Monotonic Scheduling

SMT Simultaneous Multithreaded

SOM Single Option Migration

WF Worst Fit

ix

Chapter 1

Introduction

Embedded systems are an important segment of the microprocessor market as they are

becoming ubiquitous in our life. Systems like PDAs, smartphones, and automotive de-

vices, provide an increasing number of functionalities such as navigation, multimedia or

gaming, so that computational power is becoming more important every day. However,

increasing computational power impacts on battery lifetime. Therefore, a major design

concern is power management and optimization [1, 2].

To deal with both computational and power management requirements, many systems

use multicore processors. These processors allow a more efficient power management

than complex monolithic processors for a given performance level. Moreover, many

manufacturers (e.g., Intel, IBM, Sun, etc.) deliver processors providing multithread-

ing capabilities, that is, they provide support to run several threads simultaneously.

Some examples of current multithreaded processors are Intel Montecito [3] and IBM

Power 7 [4]. Also, leading manufacturers of the embedded sector, like ARM, plan to

include multithreading technology in next processor generations [5].

A power management technique that is being implemented in most current micropro-

cessors is Dynamic Voltage and Frequency Scaling (DVFS) [6]. This technique allows

the system to improve its energy consumption by reducing the frequency when the pro-

cessor has a low activity level (e.g., a mobile phone that is not being actively used). In

a multicore system, the DVFS regulator can be shared by several cores, also referred to

as global, which means that leakage power consumption is mostly the same in all the

cores. On the contrary, some systems have a local or private DVFS regulator for each

1

Chapter 1. Introduction 2

individual core. In the former case, all cores are forced to work at the same speed but

less regulators are required so it is a cheaper solution. The latter case could enable

more energy savings since each core frequency can be properly tuned to its applications

requirements but it is more expensive [7].

On the other hand, energy consumption in systems with a global DVFS regulator can

be further improved by properly balancing the workload [1, 8]. To this end, a partitioner

module is in charge of distributing the workload (i.e., the set of tasks) according to a

given algorithm, such as the Worst Fit (WF) or First Fit(FF) [9], that selects the target

core to run each task. Unfortunately, the nature of some workload mixes prevents the

partitioner from achieving a good balance. To deal with this drawback some systems

allow tasks to migrate and move their execution from one core to another, which results

in energy saving improvements.

In this work, two algorithms allowing task migration to reduce energy consumption in

multicore embedded systems with real-time constraints implementing DVFS capabilities

are proposed. The simpler algorithm, namely, Single Option Migration (SOM) checks

just one target core before performing a migration. In contrast, the Multiple Option Mi-

gration (MOM) searches the optimal target core. To address energy savings, the devised

schedulers follow two main rules: (i) migrations are allowed at specific points of time

because analyzing all the possible task migrations may result in a prohibitive overhead;

and (ii) only one task is allowed to migrate each time. This work focuses on multi-

core processors where the scheduler includes a partitioner module to distribute tasks

among cores. This partitioner is in charge of readjusting possible workload imbalances

at run-time that may occur at arrivals or exits of tasks by applying task migration. To

keep overhead low and studying the impact of the point of time when the algorithm is

applied, three variants of the SOM algorithm have been devised, depending on when the

scheduler acts: at each task arrival (SOMin), when a task leaves the system (SOMout),

and in both cases (SOMin−out).

Because of energy constraints, embedded systems are still limited to a lower number

of cores than their high-performance counterparts. Therefore, energy evaluation results

focus on a realistic number of cores: two, three and four cores. Some examples are the

bi-core Intel Atom [10], the tri-core Marvell ARMADATM 628 [11] or the quad-core

Chapter 1. Introduction 3

ARM 11 MPCore [12]. On the other hand, this work assumes a relatively wide number

of frequency/voltage levels (up to eight) in order to approach the results to real systems.

Experimental results show that applying the algorithm at tasks exits can achieve better

energy savings than applying only at tasks arrivals, but the highest benefits are obtained

when the algorithm is applied in both cases. In addition, the MOM algorithm achieves

better energy savings than the SOM algorithm. Differences are wider for a reduced num-

ber of cores and frequency/voltage levels. Both algorithms show that migration allows

achieving important energy benefits. These benefits are, on average, as much as 17%

and 24% for the SOM and MOM algorithms, respectively, over the WF algorithm. An

interesting observation is that global DVFS regulators minimize differences among the

scheduling strategies for a high number of cores and frequency/voltage levels; showing

that, in such a case, SOM achieves many times energy savings close to an idealized

scheduler.

The remainder of this work is structured as follows. Chapter 2 discusses the related

research on energy management and task migration for embedded systems. Chapter 3

describes the modeled system, including the partitioner and the power-aware scheduler.

Chapter 4 presents the proposed workload partitioning algorithms. Chapter 5 analyzes

experimental results. Finally, Chapter 6 presents some concluding remarks.

Chapter 2

Related Work

Scheduling in multiprocessor systems can be performed in two main ways depending on

the task queue management: global scheduling, where a single task queue is shared by all

the processors, or partitioned scheduling, which uses a private queue for each processor.

The former allows task migration by design since all the processors share the same task

queue. In the latter case, the scheduling in each processor can be performed by applying

well-established uniprocessor algorithms such as EDF (Earliest Deadline First) or RMS

(Rate Monotonic Scheduling). An example of a modern global scheduling proposal can

be found in [13].

2.1 Partitioned Scheduling

In the partitioned scheduling case, research can focus either on the partitioner or the

scheduler. Acting in the partitioner, recent works have addressed the energy-aware task

allocation problem [9, 14, 15]. For instance, Wei et al. [14] reduce energy consumption

by exploiting parallelism of multimedia tasks on a multicore platform combining DVFS

with switching-off cores.

Aydin et al. [15] showed that the problem of minimizing energy-consumption on parti-

tioned systems remains NP-Hard even when the feasibility is guaranteed a priori. They

also stated that tasks with large utilization values must be allocated to separate proces-

sors in the optimal solution for the load balancing problem. Therefore, they proposed an

5

Chapter 2. Related Work 6

algorithm that reserves a subset of processors for the execution of tasks with utilization

not exceeding a threshold.

Schranzhofer et al. [16] presented a method for allocating tasks to a MultiProcessor

System-on-Chip (MPSoC) platform, aimed at minimizing the average power consump-

tion. A dynamic mapping strategy is devised, where static mappings for scenario se-

quences are computed and stored as templates on the system. Then, a manager observes

mode changes at runtime and chooses an appropriate precomputed template to assign

newly arriving tasks to processing units. However, their application is modeled without

considering timing constraints.

Unlike this work, none of the previous techniques analyzes the power benefits of task

migration among cores.

In [9] the problem of energy minimization for periodic preemptive hard real-time tasks

scheduled with RMS in identical multiprocessor platform is proposed. That work uses

static priorities based on the RMS, which is not a suitable scheduler for a dynamic system

like the one proposed in this work where tasks enter and leave dynamically the system.

In contrast to EDF, which is used in our proposal, for RMS no polynomial-time nor

exact feasibility tests exist as of today (i.e. one that provides necessary and sufficient

conditions for feasibility). Moreover, the algorithms in [9] run in pseudo-polynomial

time, which increases the overhead.

2.2 Task Migration

Some proposals dealing with task migration can be found in the literature. Brandenburg

et al. [17] evaluate global and partitioned scheduling algorithms in terms of scalability

based upon empirically-derived overheads. They conclude that each tested algorithm

proved to be a viable choice for some subset of the workload categories considered.

However, power consumption was not investigated.

In [18], Zheng divides tasks into fixed and migration tasks, allocating each of the latter

category to two cores, so they can migrate from one to another. Nevertheless, his work

does not consider dynamic workload changes, instead, all tasks are assumed to arrive at

the same time, so migrations can be scheduled off-line.

Chapter 2. Related Work 7

In [19] Brião et al. analyze how migrating soft tasks affects NoC-based MPSoCs in terms

of deadline misses and energy consumption. They assume a model of task migration

where the task is stalled and then all its code and data are transferred through network

links. Besides, task migration is triggered only when the allocation heuristic is executed

to balance the system, that is, when a new load of tasks is available. However, they

focus on non-threaded architectures.

Seo et al. [7] present a dynamic repartitioning algorithm with migration to balance the

workload and reduce consumption. Their work differs from this in that they perform a

theoretical exploration assuming parameters like number of cores and number of tasks,

but neither computational core nor real-time benchmarks are used through their evalu-

ation. Thus, their main contribution is the theoretical estimation of benefits.

2.3 Scheduling in Multicore and Multithreaded Systems

Regarding the scheduler, in [20] the authors virtualize a Simultaneous Multithreaded

(SMT) processor into multiple single-threaded superscalar processors with the aim of

combining high performance with real-time formalism. A simple real-time scheduling

approach concentrates scheduling within a small time interval, producing a simple re-

peating space/time schedule that orchestrates virtualization. Experiments show that

more task sets are provably schedulable on their proposal than on conventional rigid

multiprocessors with equal aggregate resources, and the advantage only intensifies with

more demanding task sets.

In order to improve real-time tasks predictability, Cazorla et al. [21] devise an interaction

technique between the Operating System (OS) and an SMT processor. Their approach

enables the OS to run time-critical jobs without dedicating all internal resources to

them so that non-time-critical jobs can make significant progress as well and without

significantly compromising overall throughput.

Fisher and Baruah [22] derived near-optimal sufficient tests for determining whether a

given collection of jobs with precedence constraints can feasibly meet all deadlines upon

a specified multiprocessor platform under global EDF scheduling.

Chapter 2. Related Work 8

In [23], the authors propose a methodology for abstracting the computing power available

on a multicore platform by a set of virtual processors in order to allocate real-time tasks.

The set of tasks is partitioned into a set of subgraphs that are selected to minimize either

the required computational power or the number of cores. Their task model considers

precedence relations while this work considers independent tasks and dynamic workload

changes. Besides, authors do not undertake the power consumption issue, which is

the main focus of this research by using DVFS. Moreover, they focus on a theoretical

analysis instead of modeling a detailed cycle-by-cycle multicore architecture as this work

presents.

Chapter 3

System Model

When a task arrives to the system, a partitioner module allocates it into a task queue

associated to a given core, which contains the tasks that are ready for execution in that

core. These queues are components of the power-aware scheduler that controls a global

DVFS regulator. In this scheme, the scheduler is in charge of adjusting the working

frequency of the cores in order to satisfy the workload requirements. Figure 3.1 shows

a block diagram of the modeled system.

Processor cores, modelled as an ARM11 MPCore, implement the coarse-grain multi-

threading paradigm that switches the running thread when a long latency event occurs

(i.e., a main memory access). Thus, the running thread issues instructions to execute

while another thread is performing the memory access, so overlapping their execution. In

the modeled system, the issue slots are always assigned to the thread executing the task

with the highest real-time priority. If this thread stalls due to a long latency memory

event, then the issue slots are temporarily reassigned until the event is resolved.

3.1 Real-Time Task Behavior

The system workload executes periodic hard real-time tasks. There is no task depen-

dency and each task has its own period of computation. A task can be launched to

execute at the beginning of each active period, and it must end its execution before its

deadline. The end of the period and the deadline of a task are assumed to be the same

for a more tractable scheduling process. There are also some periods where tasks do not

9

Chapter 3. System Model 10

Figure 3.1: Modeled system.

execute since they are not active (i.e., inactive periods). In short, a task arrives to the

system, executes several times repeatedly, leaves the system, remains out of the system

for some periods, and then it enters the system again. This sequence of consecutive

active and inactive periods allows modelling real systems with mode changes.

Besides its period and deadline, a task is also characterized by its Worst Case Execution

Time (WCET). The task utilization is obtained as U =
WCET

Period
and is used by several

schedulers and partitioners to check whether schedulability of the task set is feasible or

not.

3.2 Power-Aware Scheduler

Once a task is allocated to a core, it is inserted into the task queue of that core, where

incoming tasks are ordered according to the EDF policy, which prioritizes the tasks with

the closest deadlines. Thus, the tasks with the closest deadlines will be mapped into the

hardware threads of cores.

The scheduler is also in charge of calculating the required target speed of each core

according to the tasks requirements. In this sense, the EDF scheduler of each core

choses the minimum frequency that fulfills the temporal contraints of its task set in

order to minimize power consumption. This information is sent to the global DVFS

regulator that selects the maximum frequency/voltage level among the requested by the

EDF schedulers.

Chapter 3. System Model 11

Table 3.1: Frequency (F) vs Power (P).

F[MHz] 1700 1500 1400 1300 1200 1100 900 600

P[Watts] 24.5 24.5 22 22 12 12 7 6

The target frequencies are recalculated only when the workload changes, that is, when

a task arrives to and/or leaves the system. In the former case, a higher speed can be

required because the workload increases. In the latter, it could happen that a lower

frequency could satisfy the deadline requirements of the remaining tasks.

Different frequency values are considered for the power-aware scheduler, based on the

frequency levels of a Pentium M [24] which are shown in Table 3.1. This work evaluates

the benefits of a DVFS with 8, 4 and 2 frequency/voltage levels. The 8L configuration

allows the system to work at all the frequencies indicated in the table, whereas the

4L mode permits running tasks at 1700, 1400, 1100 and 600 MHz. The last DVFS

configuration, referred to as 2L, only supports the extreme frequencies (i.e., 600 and

1700 MHz). In addition, the overhead of changing the frequency/voltage level has been

modeled according to a voltage transition rate of 1mv/1µs [2].

Chapter 4

Partitioning Heuristics

There are several partitioning heuristics that can be used to distribute tasks among cores

as they arrive to the system. The Worst Fit (WF) partitioning heuristic is considered

as one of the best choices in order to balance the workload [9], so yielding to improved

energy savings. WF balances the workload by assigning each incoming task to the

least loaded core. If more than one task arrives to the system at the same time, WF

arranges the incoming tasks in a decreasing utilization order and assigns them to the

cores starting with the task with the highest utilization. This algorithm was originally

used in partitioned scheduling, and it does not deal with task migration among cores

by design. In other words, once WF assigns an incoming task to a given core, the

task remains in that core until it leaves the system (i.e., it has executed all its active

periods). To allow migration, Single Option Migration (SOM) policies are devised in

the next section.

4.1 Single Option Migration Policies

Figure 4.1 shows an example of how task migration could improve workload balance. At

the beginning of the execution (time t0), task 0 and task 1 are the only tasks assigned

to core 0 and core 1, respectively. Task 0 presents an utilization around 33% while the

utilization of task 1 is around 25% (i.e., its WCET occupies a quarter of its period).

At point t2, task 2, whose utilization is around 66%, arrives to the system. The WF

algorithm would assign it to core 1 (since it is the least loaded core); leading the system

13

Chapter 4. Partitioning Heuristics 14

Figure 4.1: Example of task migrations to balance the system.

to a high workload imbalance since the global utilization of core 0 and core 1 would be

33% and 91%, respectively. This imbalance problem could be solved by allowing task

migration. For instance, allowing task 1 to migrate to core 0, would provide a much fair

balance (58% in core 0 versus 66% in core 1).

This work assumes that the running workload dynamically changes at run-time. In this

context, the system can mainly become strongly unbalanced when the workload changes,

that is, when a task enters or leaves the system, as seen in the previous example. Thus,

in the evaluated system migration policies should apply in these points in order to

maximize benefits due to migration. For this purpose, we have devised three policies

based on the WF to explore energy benefits: (SOMin), SOMout, and SOMin−out. The

first one, SOMin, allows migration only when a new task arrives to the system, SOMout

when a task leaves the system, and the last one, SOMin−out, allows migration in both

cases. To avoid performing an excessive number of migrations, which could lead to an

unacceptable overhead, the number of migrations is limited to only one which can be

performed when a task arrives to or leaves the system.

Figure 4.2 illustrates the devised Migration Attempt (MA) algorithm. This algorithm

calculates the imbalance by subtracting the utilization of the least loaded core from the

Chapter 4. Partitioning Heuristics 15

1: imbalance← max core utilization−min core utilization
2: target utilization← imbalance/2
3: minimum difference←MAX V ALUE
4: for all task in most loaded core do
5: if |Utask − target utilization| < minimum difference then
6: minimum difference← |Utask − target utilization|
7: candidate← task
8: end if
9: end for

10: new max core utilization← max core utilization− Ucandidate

11: new min core utilization← min core utilization+ Ucandidate

12: new imbalance← |new max core utilization− new min core utilization|
13: if new imbalance < imbalance then
14: migrate(candidate)
15: end if

Figure 4.2: Migration Attempt algorithm.

utilization of the most loaded one. This result is divided by two to obtain a theoretical

utilization value that represents the amount of work that should migrate to achieve a

perfect balance between the two cited cores, and hence, a better global balance. Then,

it searches the task in the most loaded core whose utilization is the closest one to this

value. Notice that if the utilization of the selected task is not close enough, the migration

could yield to a worse imbalance; therefore, the algorithm performs the migration only

if it effectively reduces the imbalance.

4.2 Multiple Option Migration Dynamic Partitioner

This section presents the Multiple Option Migration (MOM) dynamic partitioner algo-

rithm, which applies both at tasks arrivals and exits. When a task arrives to the system,

MOM selects the target core and performs a migration attempt acording to the MA al-

gorithm discussed above. When a task leaves the system, MOM checks if a migration

attempt would provide energy improvements.

MOM (Figure 4.3) arranges the tasks arriving to the system in decreasing utilization

order. Then, it iteratively performs a temptative assignment of the task showing more

utilization to each core in order to find which assignment provides the minimum utiliza-

tion for the most loaded core (Umin variable in the figure). Notice that all the possible

assignments include a migration attempt according to the MA algorithm discussed above.

Chapter 4. Partitioning Heuristics 16

1: Algorithm: Multiple Option Migration dynamic partitioner (MOM)
2: Input: Task set(Task0, Task1, ..., TaskT−1): task set to be distributed;
3: Input: T : number of tasks
4: Input: Core set(Core0, Core1, ..., CoreM−1): cores in the system
5: Input: M : number of cores
6: Input/Output: Tasks0, Tasks1, ..., TasksM−1: tasks sets assigned to the different

M cores
7: while Task set is not empty do
8: target task ← Taski : (Taski) ≥MAX(U(Task0), U(Task1), ..., U(TaskT−1))
9: Umin ←∞

10: initial task assignment = Tasks0, Tasks1, ..., TasksM−1

11: for all target core in Core set do
12: Taskstarget core ← Taskstarget core ∪ {target task}
13: Migration Attempt()
14: if Umin > MAX(U(Core0), U(Core1), ..., U(CoreM−1)) then
15: Umin ←MAX(U(Core0), U(Core1), ..., U(CoreM−1))
16: best task assignment← Tasks0, Tasks1, ..., TasksM−1

17: end if
18: Tasks0, Tasks1, ..., TasksM−1 ← initial task assignment
19: end for
20: Tasks0, Tasks1, ..., TasksM−1 ← best task assignment
21: end while

Figure 4.3: Multiple Option Migration dynamic partitioner algorithm.

Finally, the task assignment that provides the best overall balance is applied and the

algorithm continues with the next task.

Figure 4.4 depicts an example where the MOM heuristic improves the behavior of

SOMin−out on a task arrival. The SOMin−out allocates the incoming task to core 0

and then performs a migration attempt, but in this case, there is not any possible mi-

gration enabling a better workload balance. Thus, the final imbalance becomes 40% (i.e.,

90% − 50%). In contrast, when MOM is applied, it also checks the result of allocating

the new task to core 1 (arrow labeled as MOM B) and then considering one migration.

In this case, the task migration enables a better balance since both cores remain equally

loaded with 70% of utilization, which is the distribution selected by MOM.

To sum up, the main difference between SOMin−out and MOM is that the former selects

only one core and performs a migration attempt, whereas the proposed heuristic checks

different cores, and then choses the best option in terms of workload balance.

Figure 4.4: SOMin−out vs MOM working example.

Chapter 5

Experimental Results

Experimental evaluation has been conducted on Multi2Sim [25], a cycle-by-cycle exe-

cution driven simulation framework for evaluating multicore multithreaded processors,

which has been extended to model the system described in Chapter 3. This Chapter

evaluates a multicore processor with two, three and four cores, implementing three hard-

ware threads each. Internal core features have been modeled like an ARM11 MPCore

based processor, modified to work as a coarse-grain multithreaded processor with in-

order execution, two-instruction issue width, and a 34-cycle memory latency. Regarding

the migration overhead, a 10.000 cycles penalty has been assumed [26]. This penalty is

applied each time a running context switches its execution to another core.

Since some time is needed to overcome the voltage difference between two different DVFS

levels, frequency changes are not instantaneous. To model this latency and the power

overhead caused by these changes, the worst case for that transition has been assumed.

That is, during a frequency transition the speed of the lowest frequency and the power

consumption of the highest one are taken into account.

Table 5.1 shows the benchmarks from [27] that have been used to prepare real-time

workload mixes (a mix number with an asterisk means that the benchmark is used in

the mix more than once). Each mix is composed of a set of benchmarks whose number

ranges from 7 to 34, running concurrently depending on the number of cores executed.

Mixes 1, 2 and 3 are executed in a 2-core system, mixes 4, 5 and 6 in a system with

three cores, and mixes 7, 8 and 9 in a 4-core system. These mixes have been designed

considering aspects such as task utilization, task periodicity, and the sequence of active

19

Chapter 5. Experimental Results 20

Table 5.1: Benchmark description and mixes.

Name Function Description Mix

bs Binary search for a 15-element array 1, 3, 4*, 9*
bsort100 Bubblesort program 3
cnt Counts non-negative numbers in a matrix 2, 3, 4, 7*
compress Data compression program 2, 3, 4, 7*
cover Program for testing many paths 5*, 8*
crc Cyclic redundancy check on 40-byte data 7*
duff Copy 43-byte array 3, 4*
edn FIR filter calculations 7*
expint Series expansion for integral function 2, 3, 4*, 7*
fac Factorial of a number 1, 2, 3, 4*, 7*, 9*
fdct Fast Discrete Cosine Transform 5, 8*
fft1 1024-point Fast Fourier Transform 2, 3, 4*, 7*
fibcall Simple iterative Fibonacci calculation 1, 3, 4*, 6*, 9*
fir Finite impulse response filter 5, 8*
insertsort Insertion sort on a reversed array of size 10 3, 4*
janne complex Nested loop program 1, 2, 5*, 7*, 8*, 9*
jfdctint Discrete-cosine transformation 2, 5*, 7*, 8*
lcdnum Read ten values, output half to LCD 1, 3, 4*, 6*, 9*
loop3 Function with diverse loops 3, 6*
ludcmp LU decomposition algorithm 2, 5*, 7*, 8*
minmax Minimum and maximum functions 5*, 6*, 8*
minver Inversion of floating point matrix 3, 4*
ns Search in a multi-dimensional array 3
nsichneu Simulate an extended Petri Net 5*, 8*
qsort-exam Non-recursive version of quick sort algorithm 5*, 8*
qurt Root computation of quadratic equations 2, 5*, 7*, 8*
select Nth largest number in a floating point array 5*, 6*, 8*
sqrt Square root function 1, 5*, 6*, 8*, 9*
statemate Automatically generated code 1, 3, 4*, 9*

Legend: * the benchmark appears more than once in the mix.

and inactive periods. Task periods range from 100.000 to 18.000.000 cycles, the number

of times that a task arrives to and leaves the system from 1 to 21, and the consecutive

number of active periods of a task from 1 to 70. The global system utilization varies in

a single execution from 35% to 95% in order to test the algorithms behavior across a

wide range of situations. In addition, all results are presented and analyzed for a system

implementing two, four and eight voltage levels.

Chapter 5. Experimental Results 21

5.1 Impact of Migrations at Specific Points of Time

This section analyzes the three devised Single Option Migration variants (SOMin,

SOMout and SOMin−out). The main goal is to identify the best points of time to

carry out migrations. Figure 5.1 shows the relative energy consumption compared to

the energy consumed by the system working always at the maximum speed for different

benchmark mixes, DVFS configurations, and number of cores. The results are obtained

by multiplying the number of cycles working at each frequency by the energy required

per cycle at that frequency.

As it can be observed in the results of the 2-core system (Figure 5.1(a)), migration

can provide important energy savings with respect to no migration (WF). For instance,

for mix 2 in the 4L case with task migration, both when a task arrives to and leaves

the system, the energy consumption can be reduced by up to 23.27% compared to the

execution without migration.

An interesting observation is that, in some mixes, the SOMin variant consumes more

power than the classical WF algorithm with no migration. For example, in the 3-core

system (Figure 5.1(b)) allowing migrations only at tasks arrivals turns out in harmful

effects for mix 4 in terms of power consumption, where SOMin consumes 12.27% more

energy than WF for 4L configuration. The reason is related to the fraction of time that

the system is controlled by the partitioning algorithm. That is, the SOMin partitioning

heuristic only applies at tasks arrivals. Therefore, as soon as a task leaves the system,

the workload imbalance will rise since SOMin does not apply on such events.

Figure 5.2 illustrates an example. At time t0, tasks T1, T2, and T3 arrive to the

system, and the scheduler selects the frequency/voltage level that best fits the workload

requirements. Lets assume that the workload is perfectly balanced in a 2-core system.

Then, at time t1, task T1 leaves the system, so workload imbalance will rise (dashed

area) in algorithms like WF or SOMin where no migration is performed, yielding to

energy wasting. Notice that this area is uncontrolled since the set of tasks running

has changed. On the contrary, the controlled time periods are those where the set of

tasks running matches the set used to perform the scheduling actions. Moreover, further

imbalance would rise if the next task T2 leaves the system from the same core. This

imbalance will remain until the algorithm applies, which happens only on tasks arrivals

Chapter 5. Experimental Results 22

(a) 2 Cores

(b) 3 Cores

(c) 4 Cores

Figure 5.1: Single Option Migration variants comparison for different DVFS levels
and number of cores.

Chapter 5. Experimental Results 23

Table 5.2: Algorithms action on workload changes.

Algorithm Task Arrival Task Exit

WF WF -

SOMin WF, Task Migration -

SOMout WF Task Migration

SOMin−out WF, Task Migration Task Migration

MOM MOM Task Migration

in WF and SOMin (in t3). This drawback is solved in the algorithms which allow

migration when a task leaves the system like SOMout, SOMin−out and MOM. Table 5.2

shows which actions are performed by the different algorithms both when a task arrives

to and leaves the system.

The longer the algorithm controls the running workload, the better the workload balance.

Consequently, the frequency levels requested by the different cores will be similar, so

avoiding energy wasting. Figure 5.3 shows, for mix 4, in a 3-core system with 8 DVFS

levels, the difference among frequencies required by the cores along the execution time

(in percentage). For instance, label 0 means that both cores require the same frequency

and label 2 means that the core with less frequency/voltage requirements requested

level i to the DVFS regulator, while the core with the maximum requirements requested

level i+2. This figure explains the curious behavior identified above, where SOMin

performed worse than WF. As observed, both partitioners yield the system to spend a

similar amount of time with all the cores requiring a similar speed (i.e., with a difference

less or equal than 1 level). Nevertheless, the main reason why SOMin consumes more

power than WF is that, in this mix, there is a significant amount of time where the

difference in speed required by the cores in SOMin is 3 and 4 levels, while in WF most

Figure 5.2: Effective action of the SOMin partitioning algorithm.

Chapter 5. Experimental Results 24

Figure 5.3: Differences of the required frequencies.

of this time the difference is only 2 levels. Notice that SOMout and SOMin−out balance

the workload in a better way (area associated to label 0 is much longer) than WF and

SOMin . The reason is due to the former algorithm controls the system both at tasks

arrivals and exits.

Another interesting remark is that if the system implements more DVFS frequency

levels, then more energy savings can be potentially obtained since the system can select

a frequency closer to the optimal estimated by the scheduler. However, despite this fact,

in some cases energy benefits due to migration in a system with few frequency levels can

reach or even surpass the benefits of having more levels without migration. For example,

the energy consumption of SOMin−out for mix 2 in the 4L 2-core system is around 44%

the consumption of the baseline, whereas the same value of WF in the 8L system is 46%.

Finally, it can be noticed that the system behaves in a similar way regardless of the

number of cores, that is, the benefits of migration that are observed in systems with two

or three cores are also similar in a system with four cores, as shown in Figure 5.1(c).

This fact makes the proposal a good candidate for commercial systems attending to the

current industry trend of increasing the number of cores.

Chapter 5. Experimental Results 25

5.2 Comparing MOM versus SOM Variants

This section analyzes the energy improvements of the proposed MOM algorithm over

the variants of the SOM algorithm. For comparison purposes the best SOM variant on

average (SOMin−out), and a theoretical threshold have been also included in the plots.

This theoretical threshold is a value that represents the maximum energy savings that

can be achieved in a system where the number of task migrations is not limited, they

have no cost, and they can be performed at any point of the execution time. That is, a

system with perfect task balancing and without penalties due to migration. Figure 5.4

shows the energy results for two, three and four cores, normalized with respect to the

energy consumed by the system working always at the maximum speed.

Results show that, regardless of the number of cores, the mix, and the number of fre-

quency levels, MOM saves more energy than SOMin−out. For example, when running

mix 3 in the 2L 2-core system, MOM consumes 60.17% and 68.01% of the energy con-

sumed by WF and by SOMin−out, respectively. The reason is that MOM enables the

processor cores to work at a similar frequency for longer than any SOM variant. This can

be also observed in the example of Figure 5.3. Comparing the working behavior of MOM

with SOMin−out it can be appreciated that both algorithms perform the same action

when a task leaves the system (see Table 5.2). Therefore, differences in benefits between

them come from applying the algorithm at tasks arrivals. The reason is that SOMin−out

first allocates the incoming task and then makes one migration attempt, whereas MOM

checks for each core which combination of task-to-core allocation plus a single migration

attempt would achieve a better workload balance. Thus, MOM examines a wider range

of possible distributions.

Moreover, in some mixes (e.g., mix 3) MOM results are very close to the energy savings

of the theoretical threshold. However, if the utilizations of the tasks in a given mix

widely differ among them, and depending on how run-time conditions evolve, the results

of any practical scheduler may be far from the theoretical threshold (e.g., mix 7 and

mix 9). The standard deviation of the task utilization (see Table 5.3) in these mixes is

relatively high since a few tasks have a huge utilization. This fact prevents SOM and

MOM from achieving a perfect balancing in some scenarios, as done by the theoretical

threshold. Notice that mix 1 for a 2-core system also presents a high standard deviation

value, but in this case it is due to a single task requiring a much higher utilization than

Chapter 5. Experimental Results 26

(a) 2 Cores

(b) 3 Cores

(c) 4 Cores

Figure 5.4: SOMin−out versus MOM for different DVFS levels and number of cores.

Chapter 5. Experimental Results 27

Table 5.3: Average and standard deviation of task utilization.

Mix 1 2 3 4 5 6 7 8 9

Average 30.54 24.29 15.32 14.96 14.86 20.28 19.94 13.33 16.06

Standar deviation 13.86 8.12 5.29 3.39 2.76 4.44 12.07 3.64 10.46

the others. On the other hand, in mix 3 most tasks present similar utilizations within a

limited range (10%-17%). Thus, it is more feasible that practical schedulers can obtain

a perfect balancing.

Finally, as the number of cores and voltage levels increases (4 cores), a Single Option

Migration algorithm is enough to achieve important energy savings, although MOM

can slightly improve those results. Moreover, these results fall close to the theoretical

maximum. Thus, in this scenario, a possible choice to enhance energy savings is to

change the voltage regulator domain (i.e., to implement several regulators, each one

shared by a subset of the cores).

Chapter 6

Conclusions

Workload balancing has been proved to be an efficient power technique in multicore

systems. Unfortunately, unexpected workload imbalances can rise at run-time provided

that the workload changes dynamically since new tasks arrive to or leave the system.

To palliate this shortcoming, this work has analyzed the impact on energy consumption

due to scheduling strategies in a multicore embedded system implementing DVFS.

Two power-aware schedulers working with real-time constraints, namely SOM and MOM

have been devised, which check only one target core or the optimal core before per-

forming a migration, respectively. To prevent excessive overhead, task migration has

been strategically applied at three specific execution points of time where the workload

changes: at tasks arrivals, at tasks exits, and in both cases. Three variants of SOM

algorithm have been devised depending on the point of time the algorithm applies.

Experimental evaluation has been performed using sets of mixes of real-time benchmarks

executed on a modeled ARM11 MPCore processor. A first observation is that applying

the algorithm at tasks exits achieves better energy savings than applying it only at

tasks arrivals, but the highest benefits are obtained when the algorithm is applied in

both cases. On the other hand, MOM performs in general better than SOM, however as

the number of cores and frequency/voltage levels increases, the differences among energy

benefits are reduced. Results show that task migration allows the proposed schedulers

to achieve important energy benefits over the WF. These benefits are, on average, by

17% and 24% over the WF, for the SOM and MOM, respectively. Moreover, in some

cases MOM benefits are up to 40%.

29

Chapter 6. Conclusions 30

This work has shown how task migration combined with DVFS can allow important

energy savings. Thus, benefits come from both techniques. Analyzing the results one can

notice that migration is a powerful technique since it allows reducing energy consumption

compared to a system with more voltage levels without migration.

A final remark is that improving the workload balance by supporting task migration,

not only energy savings can be enhanced, but since the utilization of the most loaded

core is also reduced, then also a wider set of tasks could be scheduled.

6.1 Current and Future Work

As for future work we plan to extend this research, whose main topic is reducing power

consumption in multicore embedded real-time systems. Besides task migration and load

balancing we plan to focus on reducing energy consumption at the memory controller.

More precisely we plan to devise different scheduling policies based on real-time priori-

ties, or taking advantage of structures like the row buffer.

Moreover, since sometimes the nature of the workload prevents the partitioner from

achieving a good balancing, having several frequency/voltage domains (each one for a

subset of cores) can also help to enhance energy savings.

6.2 Publications

The following papers related with this work were submitted and accepted for publication

in different international conferences and journals:

• J. L. March, J. Sahuquillo, H. Hassan, S. Petit and J. Duato. ”A New Energy-

Aware Dynamic Task Set Partitioning Algorithm for Soft and Hard Embedded

Real-Time Systems”. The Computer Journal. Vol. 54. Num. 8. Pages 1282-1294.

ISSN: 0010-4620. Oxford University Press. August 2011. (JCR 1st Tertile)

• J. L. March, J. Sahuquillo, S. Petit, H. Hassan and J. Duato. ”Power-Aware

Scheduling with Effective Task Migration for Real-Time Multicore Embedded Sys-

tems”. Concurrency and Computation: Practice and Experience. ISSN: 1532-

0626. Wiley-Blackwell. To Be Published in 2012. (JCR 2nd Tertile)

Chapter 6. Conclusions 31

• J. L. March, J. Sahuquillo, S. Petit, H. Hassan and J. Duato. ”A Dynamic

Power-Aware Partitioner with Task Migration for Multicore Embedded Systems”.

Proceedings of the 17th International European Conference on Parallel and Dis-

tributed Computing. Pages 218-229. ISBN: 978-3-642-23399-9. Springer-Verlag.

Bordeaux, France. 29 August - 2 September 2011. (CORE A)

• J. L. March, J. Sahuquillo, H. Hassan, S. Petit and J. Duato. ”Extending a Mul-

ticore Multithread Simulator to Model Power-Aware Hard Real-Time Systems”.

Proceedings of the 10th International Conference on Algorithms and Architectures

for Parallel Processing. Pages 444-453. 978-3-642-13135-6. Springer-Verlag. Bu-

san, Korea. 21-23 May 2010. (CORE B)

• J. L. March, J. Sahuquillo, S. Petit, H. Hassan and J. Duato. ”How to Model

Real-Time Task Constraints on a High-Performance Processor Simulator”. 7th

HiPEAC International Summer School on Advanced Computer Architecture and

Compilation for High-Performance and Embedded Systems. Pages 301-304. ISBN:

978-90-382-1798-7. Academia Press. Fiuggi, Italy. July 2011.

• J. L. March, J. Sahuquillo, S. Petit, H. Hassan and J. Duato. ”Dynamic Virtual

Migration to Reduce Power Consumption in Multicore Embedded Systems”. 8th

HiPEAC International Summer School on Advanced Computer Architecture and

Compilation for High-Performance and Embedded Systems. Fiuggi, Italy. To Be

Published in 2012.

In addition, also in domestic conferences some related papers have been published:

• J. L. March, J. Sahuquillo, H. Hassan, S. Petit and J. Duato. ”Ampliación de

un simulador de sistemas multinúcleo para la ejecución de tareas de tiempo real

con control de consumo”. XXI Jornadas de Paralelismo. Pages 391-398. ISBN:

978-84-92812-49-3. Ibergarceta Publicaciones. Valencia, Spain. 7-10 September

2010.

• J. L. March, J. Sahuquillo, S. Petit, H. Hassan and J. Duato. ”Real-Time Task

Migration with Dynamic Partitioning to Reduce Power Consumption”. XXII Jor-

nadas de Paralelismo. Pages 185-190. ISBN: 978-84-694-1791-1. Servicio de Pub-

licaciones de la Universidad de La Laguna. Tenerife, Spain. 7-9 September 2011.

Chapter 6. Conclusions 32

• J. L. March, J. Sahuquillo, S. Petit, H. Hassan and J. Duato. ”Balanceo Dinámico

con Control de Consumo en Sistemas Multinúcleo de Tiempo Real”. XXIII Jor-

nadas de Paralelismo. Elche, Spain. To be Published in 2012.

References

[1] J. Donald and M. Martonosi. Techniques for Multicore Thermal Management:

Classification and New Exploration. In Proceedings of the 33rd Annual International

Symposium on Computer Architecture, pages 78–88, Boston, MA, USA, 17-21 June

2006. IEEE Computer Society.

[2] Q. Wu, M. Martonosi, D. W. Clark, V. J. Reddi, D. Connors, Y. Wu, J. Lee, and

D. Brooks. A Dynamic Compilation Framework for Controlling Microprocessor

Energy and Performance. In Proceedings of the 38th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, pages 271–282, Barcelona, Spain, 12-16

November 2005. IEEE Computer Society.

[3] C. McNairy and R. Bhatia. Montecito: A Dual-Core, Dual-Thread Itanium Pro-

cessor. IEEE Micro, 25(2):10–20, 2005.

[4] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd. Power7: IBM’s Next-Generation

Server Processor. IEEE Micro, 30(2):7–15, 2010.

[5] Agam Shah. Arm plans to add multithreading to chip design. IT-

world, 2010. [Online]. Available: http://www.itworld.com/hardware/122383/

arm-plans-add-multithreading-chip-design.

[6] C. Hung, J. Chen, and T. Kuo. Energy-Efficient Real-Time Task Scheduling for a

DVS System with a Non-DVS Processing Element. In Proceedings of the 27th Real-

Time Systems Symposium, pages 303–312, Rio de Janeiro, Brazil, 5-8 December

2006. IEEE Computer Society.

[7] E. Seo, J. Jeong, S. Park, and J. Lee. Energy Efficient Scheduling of Real-Time

Tasks on Multicore Processors. IEEE Transactions on Parallel and Distributed

Systems, 19(11):1540–1552, 2008.

33

http://www.itworld.com/hardware/122383/arm-plans-add-multithreading-chip-design
http://www.itworld.com/hardware/122383/arm-plans-add-multithreading-chip-design

References 34

[8] J.L. March, J. Sahuquillo, H. Hassan, S. Petit, and J. Duato. A New Energy-Aware

Dynamic Task Set Partitioning Algorithm for Soft and Hard Embedded Real-Time

Systems. The Computer Journal, 54(8):1282–1294, 2011.

[9] T. A. AlEnawy and H. Aydin. Energy-Aware Task Allocation for Rate Monotonic

Scheduling. In Proceedings of the 11th Real Time on Embedded Technology and

Applications Symposium, pages 213–223, San Francisco, CA, USA, 7-10 March 2005.

IEEE Computer Society.

[10] Intel Atom Processor Microarchitecture. INTEL Corp., Santa Clara, CA, USA,

2012. [Online]. Available: www.intel.com.

[11] Marvell ARMADATM 628. Marvell Semiconductor, Inc., Santa Clara, CA,

USA, 2012. [Online]. Available: http://www.marvell.com/company/press_kit/

assets/Marvell_ARMADA_628_Release_FINAL3.pdf.

[12] K. Hirata and J. Goodacre. ARM MPCore; The streamlined and scalable ARM11

processor core. In Proceedings of the Conference on Asia South Pacific Design Au-

tomation, pages 747–748, Yokohama, Japan, 23-26 January 2007. IEEE Computer

Society.

[13] S. Kato and N. Yamasaki. Global EDF-based Scheduling with Efficient Priority

Promotion. In Proceedings of the 14th International Conference on Embedded and

Real-Time Computing Systems and Applications, pages 197–206, Kaohisung, Tai-

wan, 25-27 August 2008. IEEE Computer Society.

[14] Y. Wei, C. Yang, T. Kuo, and S. Hung. Energy-Efficient Real-Time Scheduling

of Multimedia Tasks on Multi-Core Processors. In Proceedings of the 25th Sympo-

sium on Applied Computing, pages 258–262, Sierre, Switzerland, 22-26 March 2010.

ACM.

[15] H. Aydin and Q. Yang. Energy-Aware Partitioning for Multiprocessor Real-Time

Systems. In Proceedings of the 17th International Parallel and Distributed Process-

ing Symposium, Workshop on Parallel and Distributed Real-Time Systems, page

113, Nice, France, 22-26 April 2003. IEEE Computer Society.

[16] A. Schranzhofer, J.-J. Chen, and L. Thiele. Dynamic power-aware mapping of ap-

plications onto heterogeneous MPSoC platforms. IEEE Transactions on Industrial

Informatics, 6(4):692–707, 2010.

www.intel.com
http://www.marvell.com/company/press_kit/assets/Marvell_ARMADA_628_Release_FINAL3.pdf
http://www.marvell.com/company/press_kit/assets/Marvell_ARMADA_628_Release_FINAL3.pdf

References 35

[17] B. B. Brandenburg, J. M. Calandrino, and J. H. Anderson. On the Scalability

of Real-Time Scheduling Algorithms on Multicore Platforms: A Case Study. In

Proceedings of the 29th Real-Time Systems Symposium, pages 157–169, Barcelona,

Spain, 30 November - 3 December 2008. IEEE Computer Society.

[18] Liu Zheng. A Task Migration Constrained Energy-Efficient Scheduling Algorithm

for Multiprocessor Real-time Systems. In Proceedings of the International Con-

ference on Wireless Communications, Networking and Mobile Computing, pages

3055–3058, Shanghai, China, 21-25 September 2007. IEEE Computer Society.

[19] E. Brião, D. Barcelos, F. Wronski, and F. R. Wagner. Impact of Task Migration

in NoC-based MPSoCs for Soft Real-time Applications. In Proceedings of the In-

ternational Conference on VLSI, pages 296–299, Atlanta, GA, USA, 15-17 October

2007. IEEE Computer Society.

[20] A. El-Haj-Mahmoud, A.AL-Zawawi, A. Anantaraman, and E. Rotenberg. Vir-

tual Multiprocessor: An Analyzable, High-Performance Architecture for Real-Time

Computing. In Proceedings of the International Conference on Compilers, Archi-

tectures and Synthesis for Embedded Systems, pages 213–224, San Francisco, CA,

USA, 24-27 September 2005. ACM Press.

[21] F. Cazorla, P. Knijnenburg, R. Sakellariou, E. Fernández, A. Ramirez, and

M. Valero. Predictable Performance in SMT Processors: Synergy between the

OS and SMTs. IEEE Transactions on Computers, 55(7):785–799, 2006.

[22] N. Fisher and S. Baruah. The feasibility of general task systems with precedence

constraints on multiprocessor platforms. Real-Time Systems, 41(1):1–26, 2009.

[23] G. Buttazzo, E. Bini, and Yifan Wu. Partitioning Real-Time Applications Over

Multicore Reservations. IEEE Transactions on Industrial Informatics, 7(2):302–

315, 2011.

[24] Intel Pentium M Processor Datasheet. INTEL Corp., Santa Clara, CA, USA, 2004.

[Online]. Available: http://download.intel.com/support/processors/mobile/

pm/sb/25261203.pdf.

http://download.intel.com/support/processors/mobile/pm/sb/25261203.pdf
http://download.intel.com/support/processors/mobile/pm/sb/25261203.pdf

References 36

[25] R. Ubal, J. Sahuquillo, S. Petit, and P. López. Multi2Sim: A Simulation Framework

to Evaluate Multicore-Multithreaded Processors. In Proceedings of the 19th Inter-

national Symposium on Computer Architecture and High Performance Computing,

pages 62–68, Gramado, RS, Brazil, 24-27 October 2007. IEEE Computer Society.

[26] P. Chaparro, J. González, G. Magklis, Qiong Cai, and A. González. Understand-

ing the Thermal Implications of Multi-Core Architectures. IEEE Transactions on

Parallel and Distributed Systems, 18(8):1055–1065, 2007.

[27] WCET Analysis Project. WCET Benchmark Programs. Malardalen Real-Time Re-

search Center, Vasteras, Sweden, 2006. [Online]. Available: http://www.mrtc.

mdh.se/projects/wcet/.

http://www.mrtc.mdh.se/projects/wcet/
http://www.mrtc.mdh.se/projects/wcet/

	Abstract
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	2 Related Work
	2.1 Partitioned Scheduling
	2.2 Task Migration
	2.3 Scheduling in Multicore and Multithreaded Systems

	3 System Model
	3.1 Real-Time Task Behavior
	3.2 Power-Aware Scheduler

	4 Partitioning Heuristics
	4.1 Single Option Migration Policies
	4.2 Multiple Option Migration Dynamic Partitioner

	5 Experimental Results
	5.1 Impact of Migrations at Specific Points of Time
	5.2 Comparing MOM versus SOM Variants

	6 Conclusions
	6.1 Current and Future Work
	6.2 Publications

	References

