
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

http://dx.doi.org/10.1016/j.advengsoft.2012.04.001

http://hdl.handle.net/10251/30405

ELSEVIER SCI LTD

Ginestar Peiro, D.; Thome Coppo, NJ.; Coll Aliaga, PDC.; Sánchez Juan, E. (2012). Drazin
inverse based numerical methods for singular linear differential systems. ADVANCES IN
ENGINEERING SOFTWARE. (50):37-43. doi:10.1016/j.advengsoft.2012.04.001.



Drazin inverse based numerical methods for

singular linear differential systems

C. Coll, D. Ginestar, E. Sánchez and N. Thome
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Abstract

In this paper, numerical methods for the solution of linear singu-

lar differential system are analysed. The numerical solution of initial

value problems by means of a finite difference approach and a possi-

ble implementation of the Drazin inverse vector product is discussed.

Examples of index-1 and index-2 differential algebraic equations have

been studied numerically.

Keywords: Singular systems, numerical methods, shuffle algorithm, Drazin

inverse.

1 Introduction

Singular differential systems are systems of ordinary differential equations

(ODEs) that cannot be expressed in their normal form. Special cases of

such systems defined by differential algebraic equations (DAEs) arise in the

mathematical modelling of problems from engineering and science such as

electrical circuit design, optimal control, incompressible fluids, molecular dy-
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namics, large-scale interconnected systems, etc [3]. Singular linear systems

are a particular class of these systems, which consist of a system of differen-

tial equations where the derivatives are pre-multiplied by a singular matrix.

For example, the spatial discretization of the Stokes equation describing the

flow of an incompressible fluid by finite differences on a uniform staggered

grid leads to a singular system. The vibration of a damped mass-spring

system with holonomic constraints is described by a singular system, etc.

[2]. The solution of singular systems has been studied by several authors.

For instance, in [5] an analytical solution for continuous systems using the

Drazin inverse was presented. In [19] a solution in the invariant-time case

is given using the Weierstrass form [7] and in [16] the solution of singular

systems was treated from a numerical point of view. Some surveys of this

kind of systems can be found in [3, 10]. In the analytical and numerical

treatments of a DAE, the index plays an important role [3] and it provides

useful information about the mathematical structure and potential compli-

cations in the solution of the DAE. The number of repetitions needed for

the transformation of the DAE into its related ODE is called the differential

index of the DAE. In general, initial value problems associated to a linear

constant coefficient singular system have no solution or the solution can not

be unique. Some conditions have to be fulfilled in order to get a unique

solution, namely regularity conditions.

The usual technique to solve singular systems satisfying the regularity

condition requires the computation of two Drazin inverses [5]. A numerical

method to provide information about the solvability of the singular system

is provided by Luenberger’ shuffle algorithm [12]. This method is based

on a process of triangularization of the system matrices which destroys the

possible sparsity of the matrices.
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In this paper, we investigate the use of numerical techniques to solve

singular systems based on the Drazin inverse formulation of the system so-

lution. Some computational aspects of the Drazin inverse are indicated in

[17]. However, the main operation used in the numerical methods proposed

is the Drazin inverse vector product. This product can be efficiently com-

puted by several algorithms based on the matrix vector product and the

Drazin inverse matrix is not explicitely constructed.

The outline of the paper is as follows. Section 2 presents some prelim-

inaries of singular systems and introduces the concept of admisible initial

conditions for a solvable singular system. In section 3 numerical methods for

the solution of an initial value problem associated with a singular system are

presented. A possible implementation of the Drazin inverse vector product

is also given. In section 4, numerical results are discussed for different linear

singular systems. Finally, the main conclusions of the paper are given in

section 5.

2 Singular systems

A linear singular system is given by

Ex?(t) = Ax(t) + f (t)

with E,A ∈ Rn×n, being E a singular matrix. If the singular system satisfies

the regularity condition, that is, det(λE − A) ?= 0 for at least one scalar

λ, then a unique solution of an initial value problem may be obtained by

specifying a suitable set of initial conditions.

If the matrix A is nonsingular, the regularity condition holds. By means

of linear algebra techniques, an explicit solution of a singular system can be
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obtained [5]. This solution involves Drazin inverses of the state matrices.

Recall that the Drazin inverse of a matrix A ∈ Rn×n is the matrix AD

satisfying:

(i) ADAAD = AD ,

(ii) AAD = ADA and

(iii) Ak+1AD = Ak, where k = ind(A) is the index of A, which is the

smallest nonnegative integer such that rank(Ak) = rank(Ak+1).

In this paper, we analyse the solution of the following initial value prob-

lem

Ex?(t) = Ax(t) + f (t), x(t0) = x0. (1)

Without loss of generality, we can consider t0 = 0.

The concept of index is useful to characterize DAEs. Intuitively, the

index is used for measuring the distance from a DAE to its related ordinary

differential equation. If the singular system is solvable, the index of the

matrix affecting the derivative is closely related to index of the system [3].

Naturally, the index of the DAE (1) is the same as the index of the matrix

E [8].

2.1 The homogeneous problem

Consider the following singular initial value problem

Ex?(t) = Ax(t) , x(0) = x0. (2)

The solution of this singular system is given by [5]

x(t) = eÊ
DÂtÊDÊx0, (3)
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where Ê = (λE − A)−1E, Â = (λE − A)−1A and the initial vector x0 is

admissible, that is, it fulfills the condition

(I − ÊDÊ)x0 = 0. (4)

The solution (3) is independent of the scalar λ used to construct Ê and

Â. To show this independence, we denote Êα = (αE − A)−1E, for α ∈ R,

and it is sufficient to prove that

ÊD
α Êα = ÊD

β Êβ and ÊD
α Âα = ÊD

β Âβ for all scalar α, β. In fact

ÊD
α Êα =

??
βE − A)−1(αE − A)

?−1 (βE − A)−1E
?D
Êα =

?
(αÊβ − Âβ)−1Êβ

?D
Êα = ÊD

β (βE − A)−1(αE − A)(αE − A)−1E = ÊD
β Êβ .

The proof of ÊD
α Âα = ÊD

β Âβ is similar.

If the matrix A is nonsingular, there exists at least λ = 0, such that

det(λE − A) ?= 0. In this case, without loss of generality, we can assume

that the solution of initial value problem (2) can be obtained using

x(t) = eĒ
DtĒDĒx0 . (5)

with Ē = A−1E. Since the solution is uniquely determined, we can use

the initial value problem of ODEs associated to the original problem (2)

obtained by differentiation of (5). This problem is given by

x?(t) = ĒDx(t), x(0) = x0. (6)
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2.2 The non-homogeneous problem

We now study the non-homogeneous case, that is, let us consider the singular

system

Ex?(t) = Ax(t) + f (t), (7)

with the initial condition x(0) = x0. When A is nonsingular, the solution of

this system is given by means of the same matrix Ē = A−1E as follows

x(t) = eĒ
DtĒDĒx0 + eĒ

DtĒD

? t

0
e−ĒDsf̄(s)ds

−(I − ĒDĒ)
k−1?

j=0

Ēj d
j

dtj
f̄ (t) , (8)

where f̄(t) = A−1f (t) and k = ind(Ē). Moreover, in order to satisfy x(0) =

x0, the initial condition must satisfy the following relation

(I − ĒDĒ)x0 = −(I − ĒDĒ)
k−1?

j=0

Ēj d
j

dtj
f̄ (0) , (9)

which is the admissibility condition for the non-homogeneous problem.

Note that, using ĒD(I − ĒDĒ) = O, we have that the solution (8)

satisfies

ĒDx(t) = ĒDeĒ
DtĒDĒx0 + ĒDeĒ

DtĒD

? t

0
eĒ

Dsf̄(s)ds.

Hence, (8) is also the solution of the following system of ODEs associated

to the singular system (7)

x?(t) = ĒDx(t) + ĒD f̄(t)− (I − ĒDĒ)
k−1?

j=0

Ēj d
j+1

dtj+1
f̄ (t). (10)
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3 Numerical methods for a singular system

In this section, we propose numerical methods for an initial value problem

associated with a singular system based on the Dazin inverse formulation

of its solution. Two different strategies are proposed. In (5) and (8), the

explicit solutions for a solvable singular system were given. Using these

expressions, we propose a method to approximate these solutions by using

standard explicit numerical techniques. An alternate way to solve the initial

value problem (1), is to use the associated ordinary differential problem (10)

and to apply a numerical algorithm by discretizing the derivative.

Let us consider the analytic solution (5) of the homogeneous singular

system (2) with an admissible initial condition x0. If the time is discretized

as tn = t0 + n∆t and we consider the first order approximation of the

exponential matrix

eĒ
D∆t = I + ĒD∆t+O

?
∆t2

?
, (11)

we obtain the first order explicit method

xn = (I +∆tĒD)ĒDĒxn−1, n ≥ 1.

In order to assure the consistency of the solution during the iteration

process we have to prove that xn satisfies the admissible initial condition

(4) for all n ≥ 1. In fact, using properties of the Drazin inverse we have that

(I − ĒDĒ)xn = (I − ĒDĒ)(I +∆tĒD)ĒDĒxn−1 = 0.

One difference between the numerical methods for an ODE and the corre-

sponding numerical method for a singular system is that a consistent initial
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value has to be computed to start the integration in each step.

If we now consider the system of ODEs (6) and we use the standard

forward Euler method, we obtain the numerical scheme

xn = (I +∆tĒD)xn−1, n ≥ 1 (12)

which is also a consistent numerical scheme.

For the non-homogeneous case, we consider the analytical solution (8)

and we use the approximation (11) for the matrix exponential. We also

consider a rectangular approximation for the integral and the approximation

for the derivative
dj f̄

dtj
(tn) = f̄ j

n ≈
f̄ j−1

n+1 − f̄ j−1
n

∆t
, (13)

being f̄(tn) = f̄ 0
n. We obtain the numerical scheme

xn = (I +∆tĒD)ĒĒDxn−1+ (I +∆tĒD)ĒD∆tf̄n−1− (I − ĒDĒ)
k−1?

j=0

Ēj f̄ j
n.

(14)

If we use the system of ODEs (10) and apply the forward Euler method,

we obtain the numerical scheme

xn = (I +∆tĒD)xn−1 +∆tĒDf̄n−1 − (I − ĒDĒ)
k−1?

j=0

Ēj(f̄ j
n − f̄ j

n−1). (15)

Both numerical schemes (14) and (15) satisfy the approximate consis-

tency condition

(I − ĒDĒ)xn = −(I − ĒDĒ)
k−1?

j=0

Ēj f̄ j
n.
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3.1 Computation of the Drazin inverse vector product

The numerical schemes proposed above can be easily implemented once we

have a suitable procedure to compute the Drazin inverse vector product.

Several methods can be applied to compute this operation, such as the

semi-iterative methods [6, 14], a Bi-CG type method [15] and the DGMRES

method [13]. We have used a Newton method proposed in [11] and [18] that

computes an approximation for the Drazin inverse of a matrix A with index

k, using the recurrence

A0 = αAl, α > 0, l ≥ k,

An = 2An−1 − An−1AAn−1, n ≥ 1.

To implement the product ADb, the following recurrence is used

y0 = αAlb, c0 = Ay0, z0 = A0c0

yn+1 = 2yn − zn, cn+1 = Ayn+1, zn+1 = An+1cn+1, n ≥ 0.

The convergence of the method is quadratic [11] and to use the method we

have selected the value α = 0.01.

4 Stability problem

In this section we study the stability of singular system (2) and the proposed

numerical methods. We recall that a singular system Ex?(t) = Ax(t) is

asymptotically stable iff all λ?s such that det(λE − A) = 0 have negative

real part.

Note that, the system (2) is asymptotically stable when det(A) ?= 0. In
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this case we use Ē = A−1E and the new system is given by

Ēx?(t) = x(t). (16)

System (16) is asymptotically stable iff all solutions of det(λĒ − I) = 0

have negative real part, that is, if we take λ = 1
α , α ?= 0 the equality

det(αI − Ē) = 0 gives the nonzero eigenvalues of matrix Ē and they have

to have negative real part.

In general, an arbitrary system is said to be bounded input-bounded out-

put (BIBO) stable if and only if every bounded input produces the bounded

output.

4.1 Stability of numerical methods

An asymptotic stability condition for numerical methods proposed for sys-

tem (2) is obtained if we consider the numerical scheme as a discrete system.

The discrete system

xn = Axn−1

is asymptotically stable iff the eigenvalues of matrix A are inside the unit

circle. In the same way as for the continuous case, a discrete system is said

to be BIBO stable if and only if every bounded input produces the bounded

output.

We now analyse the numerical schemes proposed for problem (10).

Case I: Using the first order approximation of the exponential matrix. For

this case the numerical scheme is given by

xn = (I +∆tĒD)ĒDĒxn−1, n ≥ 1.
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The above discrete system is asymptotically stable iff all λ such that

det(λI − (I +∆tĒD)ĒDĒ) = det(λI −∆tĒD − ĒDĒ) = 0

satisfy |λ| < 1. If |λ| = 1 then the system is stable. Note that, we

have to study the eigenvalues of the matrix ∆tĒD + ĒDĒ.

Case II: Using the standard forward Euler method. For the ordinary dif-

ferential equation (6) we obtain the numerical scheme is given by

xn = (I +∆tĒD)xn−1, n ≥ 1.

The above discrete system is asymptotically stable iff all λ such that

det(λI −∆tĒD − I) = 0,

satisfy |λ| < 1. If |λ| = 1 then the system is stable. Note that in this

case we have to study the eigenvalues of the matrix ∆tĒD + I.

Note that, the core-nilpotent decomposition of the matrix Ē is given by

Ē = S

⎛
⎜⎝
C O

O N

⎞
⎟⎠S−1,

where the matrices S and C are nonsingular and N is a nilpotent matrix

with ind(N ) = ind(E) [4]. Then,

ĒD = S

⎛
⎜⎝
C−1 O

O O

⎞
⎟⎠S−1, ∆tĒD+ĒDĒ = S

⎛
⎜⎝
∆tC−1 + I O

O O

⎞
⎟⎠S−1
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and

∆tĒD + I = S

⎛
⎜⎝
∆tC−1 + I O

O I

⎞
⎟⎠S−1.

It is now clear that the spectrum of the above matrices are related.

5 Numerical Results

5.1 First example

To test the performance of the numerical methods proposed, we will study

the singular system

⎛
⎜⎝

L1

√
L1L2

√
L1L2 L2

⎞
⎟⎠

⎛
⎜⎝
x?1

x?2

⎞
⎟⎠ = −

⎛
⎜⎝
R1 0

0 R2

⎞
⎟⎠

⎛
⎜⎝
x1

x2

⎞
⎟⎠+

⎛
⎜⎝
V sin(wt)

0

⎞
⎟⎠ ,

(17)

that models the electric circuit associated with an ideal transformer shown

in Figure 1. Where x = (x1, x2)T is the currents vector (I1, I2)T . This is a

singular system of index k = 1.

Figure 1: Electric circuit.

We consider the admissible initial condition x(0) = (0, 0)T , and for this

problem we have

Ē =

⎛
⎜⎝

−L1
R1

−
√

L1L2
R1

−
√

L1L2
R2

−L2
R2

⎞
⎟⎠ , f̄(t) =

⎛
⎜⎝

− V
R1
sin(wt)

0

⎞
⎟⎠ .
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Particularizing the numerical scheme (14) for this case we have

xn =
?
I +∆tĒD

?
ĒDĒxn−1 +

?
I +∆tĒD

?
ĒDf̄n−1∆t−

?
I − ĒDĒ

?
f̄n.

(18)

We will call S1 to this numerical scheme.

On the other hand, particularizing the numerical scheme (15) we have

xn = (I +∆tĒD)xn−1 +∆tĒDf̄n−1 − (I − ĒDĒ)(f̄n − f̄n−1). (19)

Similarly, we will call S2 to this numerical scheme.

The analytical solution of the initial value problem associated with sys-

tem (17) can be obtained by analytic shuffle method [1], and it is given

by

x1(t) =
V

D
(L1R

2
2w e

− R1R2t
L2R1+L1R2 − L1R

2
2w cos(wt) +

?
R1R

2
2 + L

2
2R1w

2 + L1L2R2w
2
?
sin(wt)),

x2(t) = −
√
L1L2 v w

D
(−R1R2e

− R1R2t
L2R1+L1R2 +R1R2 cos(wt)

+ (L2R1 + L1R2) w sin(wt)), (20)

where D = 2L1L2R1R2w
2 + L2

1R
2
2w

2 + R2
1

?
R2

2 + L
2
2w

2
?
.

We have considered the numerical values for the elements of the circuit

presented in Table 1.

L1 L2 R1 R2 V w

20 H 1 H 100 Ω 200 Ω 220 V 100 π

Table 1: Numerical values for the elements of the circuit.

In this example it is easy to see that the continuous system is BIBO

stable and the stability property for the numerical methods depends on ∆t.
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We now study the spectrum of the matrices of the two proposed numerical

schemes. For the scheme S1 the eigenvalues of matrix ∆tĒD + ĒDĒ are

{1− 4.878∆t, 0} then the system is BIBO if we take 0 < ∆t < 0.41. For the

scheme S2, the eigenvalues of matrix ∆tĒD + I are {1− 4.878∆t, 1}. Thus,

we obtain that both methods are BIBO if we take 0 < ∆t < 0.41.

In order to study the performance of the numerical schemes S1 and S2

we have computed the numerical solution of the system (17) with initial

condition x(0) = (0, 0)T using ∆t = 0.002, 0.001 and 0.0005 comparing the

obtained results with the analytical solutions (20). These results are shown

in Figures 2, 3 and 4.

0 0.005 0.01 0.015 0.02 0.025 0.03
−0.05
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analytic
S1
S2

0 0.005 0.01 0.015 0.02 0.025 0.03
−0.25
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0

0.05

0.1

0.15

0.2

0.25

Time (s)

I 2

∆ t=0.002

analytic
S1
S2

Figure 2: Numerical computation of I1 and I2 using ∆t = 0.002.

We observe that both schemes S1 and S2 provide very good results for

the evolution of I2 and the numerical results obtained for I1 converge to the

analytical results when ∆t approaches to zero.

5.2 Second example

It is important to remark that the numerical methods presented above are

general for any index of the singular system. They depend on the index of

matrix Ē. In the first example we have presented, matrix E has index 1 and
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Figure 3: Numerical computation of I1 and I2 using ∆t = 0.001.
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Figure 4: Numerical computation of I1 and I2 using ∆t = 0.0005 for the
first example.

the matrix Ē has also index 1, but, in general, it does not exist a relation

between those indices.

We consider a second example of a singular system of index 2. This
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system is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x?1

x?2

x?3

x?4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

1 0 0 0

−1 0 0 1

0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

sin(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

(21)

We consider the admissible initial condition x(0) = (0, 0, 0, 0)T , and for

this problem we have

Ē =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

1 0 0 0

−1 0 −1 0

0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, f̄(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

0

sin(t)

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Matrix Ē satisfies rank
?
Ē2

?
= rank

?
Ē

?
, then the index of Ē is 1. Since,

Ē has index 1, the numerical schemes (18) and (19) are also valid for this

second example.

The analytical solution of the initial value problem associated with sys-

tem (21) is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1(t)

x2(t)

x3(t)

x4(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− sin(t) + 2√
3
e−

t
2 sin

?√
3
2
t

?

− cos(t) + 1√
3
e−

t
2

?
√
3 cos

?√
3
2
t

?
− sin

?√
3
2
t

??

cos(t)− 1√
3
e−

t
2

?
√
3 cos

?√
3
2
t

?
+ sin

?√
3
2
t

??

− sin(t) + 2√
3
e−

t
2 sin

?√
3
2
t

?

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(22)
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In this example it is easy to see that the continuous system is BIBO

stable and the stability property for the numerical methods depends on ∆t.

Using the spectrum of the matrices of the numerical schemes S1 and S2 we

obtain that both methods are BIBO for 0 < ∆t < 1.

In order to study the performance of the numerical schemes S1 and S2

we have computed the numerical solution of the system (21) with initial

condition x(0) = (0, 0, 0, 0)T using ∆t = 0.2. The obtained results for x1

and x2 compared with the analytical solutions (22) are shown in Figure 5.

The behavior of components x3 and x4 is very similar to the behaviour of

x1 and x2.
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Figure 5: Numerical computation of x1 and x2 using ∆t = 0.2 for the second
example.

5.3 Third example

As we have already mentioned, in general, there is no relationship between

the indices of matrix E and matrix Ē, (see, for example, [9]). The third
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example we have studied is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x?1

x?2

x?3

x?4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

1 0 0 0

−1 0 0 1

0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

sin(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

(23)

In this new example, index of matrix E is 2, but matrix Ē satisfies

rank
?
Ē3

?
= rank

?
Ē2

?
, then the index of Ē = 2. Since the index of Ē is

equal to 2, the numerical scheme S1 is written as

xn =
?
I +∆tĒD

?
ĒDĒxn−1 +

?
I +∆tĒD

?
ĒDf̄n−1∆t

−
?
I − ĒDĒ

? ?
f̄n + Ē

?
f̄n+1 − f̄n

∆t

??
. (24)

The numerical scheme S2 is now

xn = (I +∆tĒD)xn−1 +∆tĒDf̄n−1 − (I − ĒDĒ)Gn (25)

where Gn = f̄n − f̄n−1 + Ē
?

f̄n+1−2f̄n+f̄n−1

∆t

?
.

We consider the admissible initial conditions x(0) = (0,−1, 0, 0)T and

for this problem we have

Ē =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

1 0 0 0

0 0 −1 0

0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, f̄(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

0

sin(t)

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

The analytical solution of the initial value problem associated with sys-

tem (23) is given by
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⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1(t)

x2(t)

x3(t)

x4(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
2e
−t − 1

2 cos(t)− 1
2 sin(t)

− 1
2e
−t − 1

2 cos(t) +
1
2 sin(t)

− 1
2e
−t + 1

2 cos(t)− 1
2 sin(t)

1
2e
−t − 1

2 cos(t)− 1
2 sin(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (26)

In this third example the continuous system is BIBO stable. Using the

spectrum of the matrices of the two proposed numerical schemes S1 and S2,

we obtain that both methods are BIBO stable for 0 < ∆t < 2.

In order to study the performance of the numerical schemes (24) and

(25) we have computed the numerical solution fo x1 and x2 of the system

(23) with initial condition x(0) = (0,−1, 0, 0)T using ∆t = 0.2. The obtained

results compared with the analytical solutions (26) are presented in Figure 6,

for components x1 and x2. The behaviour of components x3 and x4 is very

similar.
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Figure 6: Numerical computation of x1 and x2 using ∆t = 0.2 for the third
example.
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6 Conclusions

The usual approach to solve a singular system of differential equations con-

sists of converting the system into an ordinary system of differential equa-

tions using the shuffle algorithm.

Another possibility is to use implicit backward difference methods. In

this paper we study the possibility of developing numerical method for singu-

lar systems based on the expression of the analytical solution of a singular

linear system in terms of the Drazin inverse of a matrix. The numerical

methods proposed are based on the Drazin inverse vector product as the

main operation. This operation can be implemented numerically by itera-

tive methods based on the operation matrix vector product, which does not

affect the sparsity pattern of the matrices. This fact is very important when

DAEs of large dimension are considered. To perform the shuffle algorithm,

a triangularization process of the matrices of the system is carried out and

this triangularization destroys the possible sparsity pattern of the matrices

obtaining, in general, dense matrices, that can be difficult to store in the

memory of the computer. In this way the numerical methods proposed are

advantageous in terms of memory requirements. Two first order methods

are proposed and their performances are studied obtaining the numerical

solution of different examples of index 1 and index 2. The obtained results

show that the proposed methods work well for singular systems of different

indices and the same methodology can be applied to obtain higher order

numerical methods.
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