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Abstract. Nowadays, a key design issue in embedded systems is how to reduce
the power consumption, since batteries have a limited energy budget. For this
purpose, several techniques such as Dynamic Voltage Scaling (DVS) or task
migration can be used. DVS allows reducing power by selecting the optimal vol-
tage supply, while task migration achieves this effect by balancing the workload
among cores.
This paper first analyzes the impact on energy due to task migration in multicore
embedded systems with DVS capability and using the well-known Worst Fit
(WF) partitioning heuristic. To reduce overhead, migrations are only performed
at the time that a task arrives to and/or leaves the system and, in such a case, only
one migration is allowed.
The huge potential on energy saving due to task migration, leads us to propose a
new dynamic partitioner, namely DP, that migrates tasks in a more efficient way
than typical partitioners. Unlike WF, the proposed algorithm examines which is
the optimal target core before allowing a migration. Experimental results show
that DP can improve energy consumption in a factor up to 2.74 over the typical
WF algorithm.

1 Introduction

Embedded systems is an important segment of the microprocessor market since they are
becoming ubiquitous in our life. Systems like PDAs, smart phones, or automotive, pro-
vide an increasing number of functionalities such as voice communication, navigation,
or gaming, so that computational power is becoming more important every day. How-
ever, increasing computational power impacts on battery lifetime, so how to improve
power management is a major design concern.

To deal with both computational and power management requirements, many sys-
tems use multicore processors. These processors allow a better power management than
complex monolithic processors for the same level of performance. Moreover, many
manufacturers (Intel, IBM, Sun, etc.) deliver processors providing multithreading ca-
pabilities, that is, they provide support to run several threads simultaneously. Some
examples of current multithreaded processors are Intel’s Montecito [14] and IBM Power
5 [10]. Also, leading manufacturers of the embedded sector, like ARM, plan to include
multithreading technology in next-generation processors [16].

A power management technique that is being implemented in most current micro-
processors is Dynamic Voltage Scaling (DVS) [9]. This technique allows the system to



improve its energy consumption by reducing the frequency when the processor has a
low level of activity (e.g., a mobile phone that is not actively used). In a multicore sys-
tem, the DVS regulator can be shared among several cores, also referred to as global,
or private to each core. In the former case, all cores are forced to work at the same
speed but less regulators are required so it is a cheaper solution. The latter case, enables
more energy savings since each core frequency can be properly tuned to its applications
requirements but it is more expensive [15].

Energy consumption in systems with a global DVS regulator can be further im-
proved by properly balancing the workload [7,13]. To this end, a partitioner module is
in charge of distributing tasks according to a given algorithm (e.g., Worst Fit [1] or First
Fit) that selects the target core to run the task. Unfortunately, the nature of some work-
load mixes prevents the partitioner from achieving a good balancing. To deal with this
drawback some systems allow tasks to migrate (move their execution) from one core to
another, which results in energy saving improvements.

This work presents a dynamic power-aware partitioner, namely DP, for a multicore
multithreaded system that dynamically (at run-time) assigns tasks to cores and allows
task migration to improve energy consumption. Our focus is on tasks presenting real-
time constraints, that is, tasks must end their execution before a given deadline or run
during several periods before leaving the system. The proposed partitioner readjusts
possible dynamic imbalances (due to new arrivals or exits of tasks) by reallocating
tasks among cores. In this way, the workload can be more fairly balanced, so system
frequency -in many cases- can be reduced, thus enabling further energy consumption
improvements. In addition, the number of migrations has been limited in order to reduce
overhead.

Finally, as the aim of migration is to reduce imbalance, it makes sense to analyze
the benefits of applying migration when the workload changes. Three cases have been
analyzed: when a task arrives to the system, when a task leaves the system, and both
cases together. Experimental results show that enabling migration only on arrival in
the classical WF algorithm allows achieving energy improvements in a factor up to
2.18 with respect to the case where no migration is allowed, while in the proposed DP
algorithm these improvements can be up to 2.74.

The remaining of this paper is structured as follows. Section 2 discusses the related
research on energy management and task migration. Section 3 describes the modeled
system, including the partitioner and the power-aware scheduler. Section 4 presents the
proposed workload partitioning algorithms. Section 5 analyzes experimental results of
performance and energy. Finally, Section 6 presents some concluding remarks.

2 Related Work

Scheduling in multiprocessor systems can be performed in two main ways depending
on the task queue management: global scheduling, where a single task queue is shared
by all the processors, or partitioned scheduling, that uses a private task queue for each
processor. The former allows task migrations since all the processors share the same
task queue. In the latter case, the scheduling in each processor can be performed by
applying well-established uniprocessor theory algorithms such as EDF (Earliest Dead-



line First) or RMS (Rate Monotonic Scheduling). An example of global scheduling for
sporadic tasks can be found in [11].

In the partitioned scheduling case, research can focus either on the partitioner or the
scheduler. Acting in the partitioner, recent works have addressed the energy-aware task
allocation problem [19,2,1]. For instance, Wei et al. [19] reduce energy consumption by
exploiting parallelism of multimedia tasks on a multicore platform combining DVS with
switching-off cores. Aydin et al. [2] present a new algorithm that reserves a subset of
processors for the execution of tasks with utilization not exceeding a threshold. Unlike
our work, none of these techniques use task migration among cores.

Some proposals have been dealing with task migration. Brandenburg et al. [4] eval-
uate some scheduling algorithms (both global and partitioned) in terms of scalability,
although no power consumption were investigated. In [21] Zheng divides tasks into
fixed and migration tasks, allocating each of the latter to two cores, so they can migrate
from one to another. Unlike our work, in this paper there is no consideration about dy-
namic workload changes (tasks arriving to and leaving the system), instead, all tasks
are assumed to arrive at the same instant, so migrations can be scheduled off-line. Seo
et al. [15] present a dynamic repartitioning algorithm with migrations to balance the
workload and reduce consumption. In [5] Brião et al. analyze how soft tasks migra-
tion affects NoC-based MPSoCs in terms of deadline misses and energy consumption.
These two latter works focus on non-threaded architectures.

Regarding the scheduler, in [8] El-Haj-Mahmoud et al. virtualize a simultaneous
multithreaded (SMT) processor into multiple single-threaded superscalar processors
with the aim of combining high performance with real-time formalism. In order to im-
prove real-time tasks predictability, Cazorla et al. [6] devise an interaction technique
between the Operating System (OP) and an SMT processor. Notice that these works do
not tackle energy consumption.

3 System Model

Figure 1 shows a block diagram of the modeled system. When a task reaches the system,
a partitioner module allocates it into a task queue associated to a core, which contains
the tasks that are ready for execution in that core. These task queues are components of
the power-aware scheduler that communicates with a DVS regulator, in charge of ad-
justing the working frequency of the cores in order to satisfy the workload requirements.
To focus our research, experiments considered a two-core processor implementing three
hardware threads each.

Processor cores implement the coarse-grain multithreading paradigm that switches
the running thread when a long latency event occurs (i.e., a main memory access).
Thus, the running thread issues instructions to execute while the other threads access
memory, so overlapping their execution. In the modeled system, the issue slots are al-
ways assigned to the thread executing the task with the highest real-time priority. If this
thread stalls due to a long latency memory event, then the issue slots are temporarily
reassigned until the event is resolved.



3.1 Task Real-time behavior

The system workload executes periodic hard real-time tasks. There is no task depen-
dency and each task has its own period of computation. A task can be launched to
execute at the beginning of each active period, and it must end its execution before
reaching its deadline (hard real-time). The end of the period and the deadline of a task
are considered to be the same for a more tractable scheduling process. There are also
some periods where tasks do not execute since they are not active (i.e., inactive periods).
In short, a task arrives to the system, executes several times repeatedly, leaves the sys-
tem, remains out of the system for some periods, and then it enters the system again.
This sequence of consecutive active and inactive periods allows to model real systems
mode changes.

Besides its period and deadline, a task is also characterized by its Worst Case Execu-

tion Time (WCET). This parameter is used to obtain the task utilization: U =
WCET

Period
.

Different partitioning algorithms may use this value in the process of allocating incom-
ing tasks to a core, guaranteeing schedulability.

3.2 Power-Aware Scheduler

Once a task is allocated to a core, it is inserted into the task queue of that core, where
incoming tasks are ordered according to the EDF policy [3], which priorizes the tasks
with the closest deadlines. Thus, the three tasks with the closest deadlines will be always
mapped into the three hardware threads implemented in each core.

The scheduler is also in charge of calculating the target speed of each core according
to the tasks’s requirements. In this sense, in order to minimize power consumption,
each core will choose the minimum frequency that fulfills the temporal contraints of
its task set. This information is sent to the DVS regulator that selects the maximum
frequency/voltage level among the requested by the cores.

The target frequency is recalculated to check if it has to be updated, but only when
the workload changes, that is, when a task arrives to or/and leaves the system. In the

Fig. 1. Modeled system.



Table 1. Energy (E) used per frequency (F).

F[MHz] 500 400 300 200 100
E[pJ/cycle] 450 349.2 261.5 186.3 123.8

former case, a higher speed can be required because the workload increases. In the latter
case, it could happen that a lower frequency could satisfy the deadline requirements of
the remaining tasks.

Different speed values are considered for the power-aware scheduler, based on the
frequency levels of a Pentium M [18] that are shown in Table 1. The 5L configuration al-
lows the system to work at any of these five levels, whereas the 3L mode permits running
tasks at the highest, the lowest and the intermediate (300 Mhz) frequency. Futhermore,
the overhead of changing the frequency/voltage level has been modeled according to
the voltage transition rate in the Pentium M processor, that is approximately 1mv/1µs
[20].

4 Partitioning Heuristics with Task Migration

There are several partitioning heuristics that can be used to distribute tasks among cores
as they arrive to the system. The Worst Fit (WF) partitioning heuristic is considered one
of the best choices in order to balance the workload, thus improving energy savings
[1]. WF balances workload by assigning the incoming task to the least loaded core. If
more than one task arrives to the system at the same time, it arranges the incoming
tasks by decreasing utilization order and assigns them to the cores beginning with the
task with highest utilization. This algorithm was initially used in partitioned scheduling,
thus, it does not support task migration among cores by design. Therefore, once WF has
assigned an incoming task to a given core, the task remains in that core until it leaves
the system (i.e., it has executed all its active periods).

4.1 Extending Worst Fit to Support Task Migration

Figure 2 shows an example of how task migration could improve workload balancing.
At the beginning of the execution (time t0), task 0 and task 1 are the only tasks assigned
to core 0 and core 1, respectively. Task 0 presents an utilization around 25% (i.e., its
WCET occupies a quarter of its period), while the utilization of task 1 is around 33%.
At point t2, task 2, whose utilization is around 66%, arrives to the system, and the WF
algorithm assign it to core 0 (since it is the least loaded core). Consequently, the system
would exhibit a high workload imbalance since the global utilization of core 0 and core
1 would be 91% and 33%, respectively. To solve this imbalance, task 0 can be migrated
to core 1, so providing a better balance (66% in core 0 versus 58% in core 1).

The system can become unbalanced when the workload changes, that is, when a task
arrives to or leaves the system. Thus, migration policies should apply in these points in
order to be effective. This leads to three variants of the WF policy: WFin, WFout, and
WFin−out. WFin allows migration only when a new task arrives to the system, WFout



Fig. 2. Task periods and migrations.

when a task leaves the system, and WFin−out allows migration in both previous cases.
To avoid performing too much migrations, which could lead to excessive overhead, we
limit the number of migrations performed when a task arrives to or leaves the system to
only one.

Figure 3 shows the Migration Attempt (MA) algorithm. This routine calculates the
imbalance by subtracting the utilization of the least loaded core from the utilization of
the most loaded one. This result is divided by two (since there are two cores) to obtain
a theoretical utilization value that represents the amount of work that should migrate to
achieve a perfect balancing. Then, it searches the task in the most loaded core whose
utilization is the closest to this one. Notice that it could happen that by migrating that
task the workload balancing would not improve (e.g., consider a situation where only

1: imbalance← max core utilization−min core utilization
2: target utilization← imbalance/2
3: minimum difference←MAX V ALUE
4: for all task in most loaded core do
5: if |Utask − target utilization| < minimum difference then
6: minimum difference← |Utask − target utilization|
7: candidate← task
8: end if
9: end for

10: new max core utilization← max core utilization− Ucandidate

11: new min core utilization← min core utilization + Ucandidate

12: new imbalance← |new max core utilization− new min core utilization|
13: if new imbalance < imbalance then
14: migrate(candidate)
15: end if

Fig. 3. Migration Attempt algorithm.



one task is assigned to the most loaded core). Therefore, the algorithm performs the
migration only if it improves the workload balancing.

4.2 Dynamic Partitioner

This subsection presents the proposed Dynamic Partitioner (DP). As done by the WF
algorithm, DP also arranges the tasks arriving to the system by decreasing utilization
order. However, before assigning any incoming task to a given core, DP checks how
the workload balancing would become if the incoming task were assigned to the first
core. Then, it also calculates the effect of performing a migration attempt (as shown in
Figure 3). These testings are performed for each core in the system. Finally, the core
assignment that provides the best overall balance is applied. Two versions of DP are
considered: DPin and DPin−out. DPin refers to the described DP algorithm, where a
migration can be performed only when a task arrives to the system, while DPin−out

also performs a migration attempt when a task leaves the system.
Figure 4 depicts an example where the DPin heuristic improves the behavior of

WFin. The latter allocates the incoming task to core 0, and then performs a migration
attempt, but in this case, there is not any possible migration enabling a better workload
balancing. Thus, the final imbalance becomes 20% (i.e., 90%−70%). In contrast, when
DPin is applied, it also checks the result of allocating the new task to core 1 (DPin B
arrow) and then considering one migration. In this case, the migration enables a better
balance since both cores remain equally loaded with 80% of utilization, which will be
the distribution selected by DPin.

Fig. 4. WFin vs DPin.



To sum up, the main difference between WFin and DPin is that the former selects
only one core and performs a migration attempt, whereas the proposed heuristic checks
different cores, and choses the best option in terms of workload balance.

5 Experimental Results

Experimental evaluation has been conducted by extending the Multi2Sim simulation
framework [17], to model the system described in Section 3. As stated before, experi-
ments considered a two-core processor implementing three hardware threads each. In-
ternal core features have been modeled like an ARM11 MPCore based processor, but
modified to work as a coarse-grain multithreaded processor with in-order execution,
two-instruction issue width, and a 100-cycle memory latency.

Table 2 shows the benchmarks from the WCET analysis project [12] that were used
to prepare real-time workload mixes. These mixes have been designed taking into ac-
count aspects such as task utilization, number of repetitions (task periodicity), and the
sequence of active and inactive periods. The global system utilization varies in a sin-
gle execution from 35% to 95%, in order to test the algorithms behavior across a wide
range of situations. In addition, all results are presented and analyzed for a system im-
plementing three and five voltage levels.

5.1 Impact of Applying Migrations at Different Points of Time

This section analyzes the best points of time to carry out migrations focusing on the
standard WF algorithm (no migration is supported) and its variants supporting migra-
tion (WFout, WFin, WFin−out). Figure 5 shows the relative energy consumption com-
pared to the energy consumed by the system working always at the maximum speed for
diverse benchmark mixes and DVS configurations.

As observed, migration can provide huge energy savings with respect to no migra-
tion (WF) regardless when migration is applied. For instance, in the 5-level system with
task migration mixes 3 and 4 improve their energy consumption in a factor up to 1.33

Table 2. Benchmark description.

Name Function Description Name Function Description
adpcm Adaptive pulse code modulation algorithm insertsort Insertion sort on a reversed array of size 10
bs Binary search for a 15-element array janne complex Nested loop program
bsort100 Bubblesort program jfdctint Discrete-cosine transformation
cnt Counts non-negative numbers in a matrix lcdnum Read ten values, output half to LCD
compress Data compression program lms LMS adaptive signal enhancement
cover Program for testing many paths ludcmp LU decomposition algorithm
crc Cyclic redundancy check on 40-byte data matmult Matrix multiplication of two 20x20 matrices
duff Copy 43-byte array minver Inversion of floating point matrix
edn FIR filter calculations ns Search in a multi-dimensional array
expint Series expansion for integral function nsichneu Simulate an extended Petri Net
fac Factorial of a number qsort-exam Non-recursive version of quick sort algorithm
fdct Fast Discrete Cosine Transform qurt Root computation of quadratic equations
fft1 1024-point Fast Fourier Transform select Nth largest number in a floating point array
fibcall Simple iterative Fibonacci calculation sqrt Square root function
fir Finite impulse response filter statemate Automatically generated code



(a) 5L

(b) 3L

Fig. 5. Worst Fit variants comparison for different DVS levels.

and 2.18, respectively, when compared with their execution in the same system without
migrations. This trend is also followed, although to a lesser extent, in the 3-level system.

Comparing the three WF versions with task migration, it can be observed that if
migration can apply only each time a new task arrives instead of when a task terminates,
then much higher energy savings can be achieved. The main reason is that the inter-
arrival time standard deviation is higher than that of the inter-leaving time, since several
tasks reach the system at the same time. Inter-arrival standard deviation values of the
mixes are 3.87, 24.48, 43.98, and 14.65 Mcycles for mix 1, mix 2, mix 3, and mix 4,
respectively. On the other hand, the inter-leaving time is, on average, 3.65, 22.50, 36.40,
and 12.32 Mcycles. Finally, WFin−out offers scarce benefits over WFin since it only
adds a low number of extra migrations.

Notice that if the system implements more DVS frequency levels (5 levels in the
figure), then more energy savings can be obtained since the system can select a fre-
quency closer to the optimal estimated by the scheduler. However, despite this fact, an
interesting observation is that energy benefits due to migration in the 3-level system can
reach or even surpass the benefits of having the 5-level system without migrations. For
example, the energy consumption of WFout for mix 4 in the 3-level system is around
11% of the consumption of the baseline, whereas the same value of WF in the 5-level
system is 17%.



5.2 Comparing DP versus WF variants

This section analyzes the energy improvements of two variants of the proposed DP
algorithm (DPin and DPin−out) over the WF algorithm. For comparison purposes the
best variant of the WF (WFin−out) with migration has been also included in the plots.
Figure 6 shows the results.

Results show that, regardless the mix and system-level, both variants of DP always
consume less power than WFin−out. DPin−out achieves, for mixes 3 and 4, energy
improvements over WF in a factor up to 2.74 and 1.56, respectively. Moreover, for
mix 2, where WFin−out is only able to find scarce benefits over WF, the proposed DP
improves the energy consumption of WF around 1.51.

For a better understanding of the algorithms behavior, we define the migration rate
metric as the number of migrations performed by the algorithm divided by the number
of times that the migration algorithm is executed. For instance, regarding the in variant
of the WF and DP algorithms, the migration rates of WFin are 64%, 62%, 54%, 45%
for mix 1, mix 2, mix 3, and mix 4, respectively; while for DPin the corresponding
values are 64%, 76%, 68%, and 73%. This means that the proposal performs migrations
in some cases where the WF is not able to find any candidate to migrate at all.

(a) 5L

(b) 3L

Fig. 6. WF versus DP for different DVS levels.



6 Conclusions

Workload balancing has been already proved to be an efficient power technique in
multicore systems. Unfortunately, unexpected workload imbalances can rise at run-time
provided that the workload is dynamically changing since new tasks arrive to or leave
the system. To palliate this situation this paper has analyzed the impact on energy con-
sumption of task migration combined with workload balancing.

To prevent excessive overhead, task migration has been strategically applied at three
different execution times where the workload changes (at task arrival, at task termina-
tion, and in both cases). Results with respect to the WF algorithm showed that applying
migration at arrival time can save results in a factor up to around 2.18. This results can
be slightly improved if migration is also applied when tasks terminate.

Due to the potential of migration, this paper has proposed the DP algorithm, which
achieves much better energy improvements than classical partitioning algorithms like
WF. The proposal improves energy consumption in a factor of 1.51 in some workloads
where WF with migrations provides scarce benefits, and energy can be improved in a
factor up to 2.74 in the analyzed workloads.

Experimental results also showed that migration can provide energy consumption
improvements with respect to a more complex system with a higher number of fre-
quency/voltage levels. A final remark is that achieving a better workload balancing by
allowing task migrations not only results in energy savings, but also allows a wider set
of tasks to be scheduled.
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