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Numerical solutions of matrix differential

models using higher-order matrix splines

Emilio Defez, Antonio Hervás, J. Ibañez and Michael M. Tung

Abstract. This paper deals with the construction of approximate solution of

first-order matrix linear differential equations using higher-order matrix splines.

An estimation of the approximation error, an algorithm for its implementation

and some illustrative examples are included.

Keywords. Matrix linear differential equations, higher-order matrix splines.

1. Introduction

Matrix differential equations emerge frequently in a great variety of models in

physics and engineering [3, 10, 21]. Apart from problems where the mathemati-

cal framework is cast in matrix form, they also appear when special techniques to

solve scalar or vectorial problems are used. Examples of such situations are the

embedding methods for the study of linear boundary value problems [23], shoot-

ing methods for scalar or vectorial problems with boundary values conditions [19],

lines method for the numerical integration of partial differential equations [22] or

homotopic methods to solve non-linear systems equations [5].

The vectorization techniques to transform a matrix problem into a set of scalar

equations has several drawbacks [13]. Firstly, the physical sense of the magnitudes

is lost with vectorization techniques. Secondly, the computational cost increases.

Moreover, these vectorization techniques interfere with the advantages of symbolic

languages especially adapted to deal with matrix expressions.

In this work we will develop a method for the numerical integration of first-

order matrix differential linear equations given by

Y 0.x/ D A.x/Y.x/ C B.x/; a � x � b

Y.a/ D Ya

�

: (1)

Here, we assume Ya; Y 2 C
r�q , A W Œa; b� ! C

r�r , B W Œa; b� ! C
r�q with A; B 2

Cs .Œa; b�/, s � 1, which guarantees the existence of a unique and continuously

differentiable solution Y.x/ of (1), see [11, p.99].
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Problem (1) is not only used in the mathematical modelling of many differ-

ent technological applications [2], but also permits to deal with nonlinear problems,

such as Riccati equations [17, 15, 14], after employing some linearization tech-

niques. Numerical methods for the calculation of approximate solutions of problems

of the type (1) by means of linear multi-step methods with constant steps have been

studied in [16]. Although for these methods exist a priori errors bounds as function

of the problem data, these error bounds will be given in terms of an exponential

depending on the integration step h, and thus require in practice a very small value

for h. Therefore, these methods will involve some interpolation techniques in order

to obtain a continuous solution, [16]. Other methods, based on the developments

of Magnus and Fer [4], require the calculation of the matrix exponential at high

computational cost. Another alternative method would be the so-called B-splines

method, which combines linear multi-step methods and B-splines interpolation (see

[9] and references therein).

In the scalar case, cubic splines were used in for the resolution of ordinary

differential equations [18], obtaining approximations that, among other advantages,

were of class C 1 in the interval Œa; b�, and easily to evaluate with an error of the

order O.h4/. Recently, splines have also been used in the resolution of other scalar

problems [1]. For example, Ref. [20] develops an implicit spline method by means

of Hermite interpolation techniques to tackle vector problems.

The corresponding generalizations of the Loscalzo-Talbot method to the ma-

trix framework have been carried out in Refs. [7, 8]. Unfortunately, as already

detected by Loscalzo and Talbot in [18], their scalar procedure is divergent when

higher-order spline functions are used [18, p. 444–445]. Their numerical computa-

tions have explicitly shown that the system y0 D y; y.0/ D 1; contains significant

divergences for splines of order m > 3. However, our new method avoids these

problems with divergences for splines S.x/ of order m, provided they are of differ-

entiability class C1.

In this paper, we propose a method using higher-order matrix splines for the

numerical approximation to the solution of (1). The present work extends all impor-

tant advantages already obtained in [18] for the scalar case to the matrix framework.

This paper is organized as follows. In section 2 we develop the proposed

method including the study of the approximation error and formulate a construc-

tive algorithm. Finally, in section 3 we conclude with some illustrative examples of

the new method.

Along this work we will denote by C
p�q the set of rectangular p � q complex

matrices, and kAk denotes any induced norm of matrix A 2 C
p�q . Further, we will

denote by PnŒx� the set of matrix polynomials of degree n for the real variable x. If

a matrix function g W Œa; b� ! C
r�q is k-times differentiable, and its kth derivative

is continuous in Œa; b�, we will say that it is of class k � 0. We will represent it as

g 2 Ck .Œa; b�/. For the interval Œa; b� � R consider the partition

� D fa D x0 < x1 < : : : < xn D bg :
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Given an integer m � 0, we proceed to define the set of matrix splines of order m

and class Cn .Œa; b�/ as

M�C
r�r .�/m

1 D

8

ˆ

<

ˆ

:

Q W Œa; b� �! C
r�qI

8

ˆ

<

ˆ

:

Qˇ

ˇ

ˇŒxi�1;xi �
.x/ 2 PmŒx�; i 2 f1; : : : ; ng ;

Q 2 Cn .Œa; b�/

9

>

=

>

;

:

For m D 3; n D 2 these matrix splines are called matrix cubic splines [6].

2. Description of the method

Let us consider the following first-order matrix problem

Y 0.x/ D A.x/Y.x/ C B.x/

Y.a/ D Ya

�

a � x � b; (2)

where the unknown matrix is Y.x/ 2 R
r�q , and Ya 2 R

r�q is constant. The matrix

coefficients depend on the parameter x 2 Œa; b� such that A W Œa; b� ! R
r�r , B W

Œa; b� ! R
r�q . The condition A; B 2 Cs .Œa; b�/, s � 1, guarantees the uniqueness

of solution Y.x/ of problem (1), which is continuously differentiable [11, p.99].

The partition of the interval Œa; b� shall be given by

�Œa;b� D fa D x0 < x1 < : : : < xn D bg ; xk D a C kh; k D 0; 1; : : : ; n; (3)

where n is a positive integer with step size h D .b � a/=n. For each subinterval

Œa C kh; a C .k C 1/h� we will construct a matrix spline S.x/ of order m 2 N with

1 � m � s, where s is the order of differentiability. Then, the solution for problem

(2) can be approximated by the matrix spline S.x/ 2 C1 .Œa; b�/.

In the first interval Œa; a C h�, we define the matrix spline as

SjŒa;aCh�
.x/ D

m�1
X

j D0

1

j Š
Y .j /.a/.x � a/j C

1

mŠ
˛0.x � ˛/m; (4)

where ˛0 2 R
r�q is a matrix parameter to be determined. It is straightforward to

check

SjŒa;aCh�
.a/ D Y.a/; S 0

jŒa;aCh�
.a/ D Y 0.a/ D A.a/Y.a/ C B.a/;

and therefore the spline satisfies the differential equation Eq. (2) at x D a.

In order to determine the matrix spline (4), we still must obtain the values

Y 00.a/; Y .3/.a/; : : : ; Y .m�1/.a/, and A0. For the second-order derivative Y 00.x/, we

proceed to compute

Y 00.x/ D A0.x/Y.x/ C A.x/Y 0.x/ C B 0.x/

D g1.x; Y.x// ; (5)

where g1 2 Cs�1 .Œa; b�/. Using (5), we now can evaluate Y 00.a/ D g1 .a; Y.a//.

For the third derivative one continues in a similar manner:

Y .3/.x/ D A00.x/Y.x/ C 2A0.x/Y 0.x/ C A.x/Y 00.x/ C B 00.x/

D g2 .x; Y.x// 2 C
s�2 .Œa; b�/ ; (6)
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and evaluates Y .3/.a/ D g2 .a; Y.a// using (6). For the next higher-order deriva-

tives Y .4/.x/; : : : ; Y .m�1/.x/ we proceed similarly and calculate

Y .4/.x/ D g3 .x; Y.x// 2 Cs�3 .Œa; b�/
:::

Y .m�1/.x/ D gm�2 .x; Y.x// 2 Cs�.m�2/ .Œa; b�/

9

>

=

>

;

: (7)

Note that it is fairly easy to create a table summarizing all such derivatives by using

automatized programs on standard computer algebra systems. Substituting x D a in

(7), one obtains Y .4/.a/; : : : ; Y .m�1/.a/. All matrix parameters of the spline which

were to be determined are now known, except for ˛0. To determine ˛0, we suppose

that (4) is a solution of problem (2) at x D a C h, which gives

S 0

jŒa;aCh�
.a C h/ D A.a C h/SjŒa;aCh�

.a C h/ C B.a C h/: (8)

Next, we obtain from (8) the matrix equation with only one unknown ˛0:
�

I �
h

m
A.a C h/

�

˛0 D (9)

.m � 1/Š

hm�1

0

@A.a C h/

m�1
X

j D0

hj

j Š
Y .j /.a/ �

m�2
X

j D0

hj

j Š
Y .j C1/.a/ C B.a C h/

1

A

Assuming uniqueness of the solution ˛0 given by the matrix equation (9), the matrix

spline introduced in Eq. (4) is then totally determined in the interval Œa; a C h�.

In the subsequent interval Œa C h; a C 2h�, the matrix spline takes the form

SjŒaCh;aC2h�
.x/ D (10)

SjŒa;aCh�
.a C h/ C

m�1
X

j D1

1

j Š
Y .j /.a C h/.x � .a C h//j C

1

mŠ
˛1.x � .a C h//m;

where

Y 0.a C h/ D A.a C h/SjŒa;aCh�
.a C h/ C B.a C h/: (11)

The expressions Y 00.a C h/; : : : ; Y .m�1/.a C h/ are similar to the previous results,

obtained after evaluating the respective derivatives of Y.x/ using SjŒa;aCh�
.a C h/

in (5)–(7). In more compact form, we may write

Y 00.a C h/ D g1

�

a C h; SjŒa;aCh�
.a C h/

�

;

:::

Y .m�1/.a C h/ D gm�2

�

a C h; SjŒa;aCh�
.a C h/

�

:

(12)

Note that matrix spline S.x/ defined by (4) and (10) is of differentiability class

C1 .Œa; a C 2h�/, contrary to the splines introduced by Loscalzo and Talbot [18],

which were of class Cm�1 .Œa; a C 2h�/. In Ref. [7], our approach to obtain the co-

efficients of the approximation Y .k/.a C h/.x � .a C h//, for k > 2 was based on

the derivatives for each spline in the previous interval. Now our approach to obtain
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an estimate for theses coefficients consists in employing the functions defined in

Eq. (12).

By construction, the spline (10) satisfies the differential equation (2) at x D

a C h. All of its coefficients are determined with the exception of ˛1 2 R
r�q . To

obtain the value of ˛1 we only require the spline (10) to be a unique solution of (2)

at point x D a C 2h:

S 0

jŒaCh;aC2h�
.a C 2h/ D A.a C 2h/SjŒaCh;aC2h�

.a C 2h/ C B.a C 2h/:

An expansion yields the matrix equation with the only unknown A1:
�

I �
h

m
A.a C 2h/

�

˛1 D (13)

.m � 1/Š

hm�1

0

@A.a C 2h/

0

@SjŒa;aCh�
.a C h/ C

m�1
X

j D1

hj

j Š
Y .j /.a C h/

1

A

�

m�2
X

j D0

hj

j Š
Y .j C1/.a C h/ C B.a C h/

1

A :

Let us assume again that the matrix equation (13) has only one solution ˛1. This

way the spline is totally determined in the interval Œa C h; a C 2h�.

Iterating this process, we proceed to construct the matrix spline consecutively

up to the last subinterval Œa C .n � 1/h; b�. For example, the general subinterval

Œa C kh; a C .k C 1/h� will contain the matrix spline

SjŒaCkh;aC.kC1/h�
.x/ D (14)

SjŒaC.k�1/h;aCkh�
.aCkh/ C

m�1
X

j D1

1

j Š
Y .j /.aC kh/.x � .aC kh//j

C
1

mŠ
˛k.x � .a C kh//m;

where

Y 0.a C kh/ D A.a C kh/SjŒaC.k�1/h;aCkh�
.a C kh/ C B.a C kh/: (15)

In a similar manner as before, one abbreviates

Y 00.a C kh/ D g1

�

a C kh; SjŒaC.k�1/h;aCkh�
.a C kh/

�

;

:::

Y .m�1/.a C kh/ D gm�2

�

a C kh; SjŒaC.k�1/h;aCkh�
.a C kh/

�

:

(16)

With this definition, the matrix spline S.x/ 2 C1
�

Sk
j D0Œa C jh; a C .j C 1/h�

�

fulfills the differential equation (2) at point x D a C kh. Recall that Eq. (16) was

necessary to obtain the spline coefficients Y .k/ by using the known derivatives of the
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solution of the previous spline. Now we assume that SjŒaCkh;aC.kC1/h�
.x/ satisfies

(2) at point x D a C .k C 1/h, i.e.

S 0

jŒaCkh;aC.kC1/h�

�

a C .k C 1/
�

D

A
�

a C .k C 1/
�

SjŒaCkh;aC.kC1/h�

�

a C .k C 1/
�

C B
�

a C .k C 1/h
�

:

Expanding this expression yields
�

I �
h

m
A.a C .k C 1/h/

�

˛k D (17)

.m � 1/Š

hm�1

2

4A.a C .k C 1/h/

0

@SjŒaC.k�1/h;aCkh�
.a C kh/ C

m�1
X

j D1

hj

j Š
Y .j /.a C kh/

1

A

�

m�2
X

j D0

hj

j Š
Y .j C1/.a C kh/ C B.a C .k C 1/h/

3

5 :

Observe that the final result (17) relates directly to equations (9) and (13), when

setting k D 0 and k D 1. Note also that solubility of equation (17) is guaran-

teed by showing that the matrix
�

I � h
m

A.a C .k C 1/h/
�

is invertible, for k D

0; 1; : : : ; n � 1. To see this, let us denote

M D max fkA.x/k I a � x � bg ; (18)

where any induced norm applies. Then, one obtains












I �

�

I �
h

m
A.a C .k C 1/h/

�












D
h

m
kA.a C .k C 1/h/k �

h

m
M: (19)

If we take h � m=M , according to Lemma 2.3.3 in [12], it follows that matrix

I � .h=m/A.a C .k C 1/h/ is invertible, and therefore equation (17) has a unique

solution ˛k , for each k D 0; 1; : : : ; n�1. In summary, we have proved the following

theorem:

Theorem 2.1. For the first-order matrix differential equation (2), assume that A; B 2

Cs .Œa; b�/, s � 1. Let h > 0 so that h � m=M , where M is given by (18) and

0 < m � s C 1. We also consider the partition (3) with step size h < m=L. Then,

a matrix spline S.x/ of order m 2 N and differentiability class C1Œa; b� exists for

each subinterval Œa C kh; a C .k C 1/h�, k D 0; 1; : : : ; n�1, following the method

of construction detailed before.

It is important to observe that these splines have a local error of O.hm/. This

is a consequence of an analysis similar to Loscalzo and Talbot’s work [18].

The approximate solution of (2) can be computed by means of matrix splines

of order m in the interval Œa; b� with a local error of the order O.hm/ under the

conditions of Theorem 2.1. The procedure is as follows:

� Compute the functions g1.x; Y.x//; : : : ; gm�2.x; Y.x// given by Eqs. (5)–

(7) to determine constants Y 00.a/, : : :, Y .m�1/.a/. Compute constant M of

Eq. (18). Choose n > M.b � a/=m so that h D .b � a/=n, which produces

the partition �Œa;b� defined by Eq. (3).
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� Solve equation Eq. (9) to find ˛0, and determine SjŒa;aCh�
.x/ of Eq. (4).

� Solve Eq. (17) iteratively for k D 1; : : : ; n � 1 to determine all ˛k .

Then compute splines SjŒaCkh;aC.kC1/h�
.x/ according to Eq. (14).

3. Examples

In this section, we test our MATLAB implementations for the proposed spline method

with problems where the exact solution is known, using the same examples as in

Ref. [7]. All tests have been carried out on an Intel Core 2 Duo T5600 with 2 GB

main memory, using MATLAB version 7.9. For our programs we have developed

symbolic as well as numerical algorithms. The symbolic algorithm uses the Sym-

bolic Math Toolbox of MATLAB for computing the derivatives of matrices A and B

and for solving the implicit equations (17). In the numerical algorithm, the deriva-

tives are provided by a function that calculates the derivatives of the matrices A and

B for any value of x. The newly implemented algorithms based on our method have

been compared with the results produced by the corresponding MATLAB functions

solving ordinary differential equations (see Table 1). The values of RelTol and Ab-

sTol for these functions have been chosen such to obtain the maximum precision

with minimum execution time. These values are RelTol D 2:22045 � 10�14 and

AbsTol D 1:0 � 10�14.

Example 3.1. Let us consider the problem

Y 0.x/ D
1

x3�x�1

�

2x2 � 1 x2 � 2x � 1

�x � 1 x3 C x2 � x � 1

�

Y.x/; 0 � x � 1;

Y.0/ D

�

1

0

�

; Y.x/ 2 C
2:

9

>

>

>

>

=

>

>

>

>

;

(20)

This problem has the exact solution Y.x/ D

�

ex

x ex

�

, so that we will be able to

calculate the approximation error. Since max
x2Œ0;1�

kA.x/k � 3, we take m D 3 and

choose h � m=3. Conventional matrix cubic splines (m D 3), as introduced in

Ref. [7], produced the absolute errors listed in Table 2(a). The values in the error

column correspond to the maximum of the 2-norm for each subinterval.

What happens if we increase the order of the splines using the same technique

as in Ref. [7]? For fourth-order splines (m D 4), we obtain the results given in

Table 2(b). If we further increase the order of the splines, the result is worsening, as

shown in part (c) of Table 2 for spline order m D 5.

For the same problem, we now use the new algorithm proposed in this work

with fourth-order splines (m D 4). The results, obtained with MATHEMATICA ver-

sion 7.0, are shown in Table 3 together with their corresponding absolute errors.

We also present the results for fifth-order splines (m D 5) in Table 4. Figures 1 and

2 depict the approximation behavior for splines of fourth-order and fifth-order with

different step sizes h D 0:01 and h D 0:001, respectively. Tables 5 and 6 present
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the results of the proposed method, with h D 0:1 and h D 0:01, compared to the

results produced by MATLAB functions. The second column indicates the execution

time in seconds and the third column the relative errors at x D 10.

Example 3.2. Consider the matrix problem

Y 0.x/ D A.x/ Y.x/ C B.x/

Y.0/ D

�

3 0

1 1

�

; x 2 Œ0; 1�

9

>

>

=

>

>

;

(21)

where

A.x/ D

�

1 �1

1 ex

�

; B.x/ D

�

�3e�x � 1 2 � 2e�x

�3e�x � 2 1 � 2 cosh.x/

�

;

which has the exact solution

Y.x/ D

�

2e�x C 1 e�x � 1

e�x 1

�

:

which asymptotically converges to

lim
x!1

Y.x/ D

�

1 �1

0 1

�

:

Since max
x2Œ0;1�

kA.x/k � 6, we take M D 6 and choose h � M=6. Using conventional

matrix cubic splines [7], we obtain the errors given in Table 7(a). The absolute

errors are calculated as in Example 3.1.

What happens if we increase the order of the splines using the same technique

as in Ref. [7]? For fourth-order splines, we obtain the result given in Table 7(b).

If we increase the order of the spline, the quality of the approximation gets worse,

which is shown in Table 7(c) for splines of order m D 5.

We now use the algorithm proposed in this work for the same problem using

fourth-order splines. The results, obtained with MATHEMATICA 7, are shown in

Table 8(a) with absolute errors. Similarly, the results using fifth-order splines are

shown in Table 8(b).

Figures 3 and 4 illustrate the approximation behavior for splines of fourth

and fifth order for step sizes h D 0:01 and h D 0:001, respectively. In Figure 4 we

observe that h D 0:001 yields an accuracy very close to machine precision. Table 9

presents the results of the proposed method in the interval Œ0; 3� with step size h D

0:01 compared with the results produced by the MATLAB functions. The second

column indicates the execution time in seconds and the third column the relative

errors at x D 3. For the evaluation using MATLAB functions it was necessary to

vectorize problem (21). For x � 3 all solvers and splines presented convergence

problems.

4. Conclusions

This work proposes a method for the numerical integration of first-order matrix lin-

ear differential equations of the type Y 0.x/ D A.x/ Y.x/ C B.x/, x 2 Œa; b�, using
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higher-order matrix splines. Contrary to existing spline methods in the literature,

this new algorithm provides continuous spline approximations of the global order

O.hm�1/ by requiring only first-order derivatives—a significant advantage over ex-

isting approaches. Additionally, our method is well-suited for implementation on

numerical and/or symbolical computer systems.

For an explicit demonstration of our proposed method and its advantages over

existing conventional methods, we discussed two numerical test (the same examples

as chosen in [7]) with excellent results and considerable improvements compared to

the different methods implemented in MATLAB. Our approach excels not only in

speed but also in accuracy. One has to take into account that MATLAB’s solvers

strongly rely on adaptive algorithms, which still have to be included in the method

we propose and will certainly lead to further performance boosts.

In future works, we hope to develop a complete analysis of the stability for

B-splines following the scheme outlined in Ref. [9]. A closer focus on the behavior

of stiff problems should also be interesting.
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SOLVER PROBLEM METHOD

ode45 non-stiff differential equations Runge-Kutta

ode23 non-stiff differential equations Runge-Kutta

ode113 non-stiff differential equations Adams

ode15s stiff differential equations NDFs (BDFs)

ode23s stiff differential equations Rosenbrock

ode23t moderately stiff differential equations Trapezoidal rule

ode23tb stiff differential equations TR-BDF2

TABLE 1. MATLAB solvers used in the tests.

Œxi ; xiC1� ERRORS

Œ0; 0:1� 6:33721 � 10�6

Œ0:1; 0:2� 6:05558 � 10�6

Œ0:2; 0:3� 8:14626 � 10�6

Œ0:3; 0:4� 7:81749 � 10�6

Œ0:4; 0:5� 11:5296 � 10�6

Œ0:5; 0:6� 11:6396 � 10�6

Œ0:6; 0:7� 16:357 � 10�6

Œ0:7; 0:8� 17:359 � 10�6

Œ0:8; 0:9� 23:29 � 10�6

Œ0:9; 1� 24:6909 � 10�6

(a)

Œxi ; xiC1� ERRORS

Œ0; 0:1� 1:14628 � 10�7

Œ0:1; 0:2� 8:81776 � 10�7

Œ0:2; 0:3� 2:2721 � 10�6

Œ0:3; 0:4� 9:75288 � 10�6

Œ0:4; 0:5� 0:000033

Œ0:5; 0:6� 0:00012

Œ0:6; 0:7� 0:00045

Œ0:7; 0:8� 0:0016

Œ0:8; 0:9� 0:0060

Œ0:9; 1� 0:022

(b)

Œxi ; xiC1� ERRORS

Œ0; 0:1� 1:7956 � 10�9

Œ0:1; 0:2� 5:7101 � 10�8

Œ0:2; 0:3� 5:46782 � 10�7

Œ0:3; 0:4� 5:32517 � 10�6

Œ0:4; 0:5� 0:000051

Œ0:5; 0:6� 0:00049

Œ0:6; 0:7� 0:0048

Œ0:7; 0:8� 0:047

Œ0:8; 0:9� 0:45

Œ0:9; 1� 4:50

(c)
TABLE 2. Absolute errors using the matrix splines of order (a)

m D 3, (b) m D 4 and (c) m D 5 with the method given in [7]

with n D 10 and h D 0:1, for Example 3.1.
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Œxi ; xiC1� APPROXIMATION ERRORS

Œ0; 0:1�

�

1 C x C 0:5x2 C 0:1667x3 C 0:0428x4

x C x2 C 0:5x3 C 0:1720x4

�

1:14 � 10�7

Œ0:1; 0:2�

�

1 C 0:9991x C 0:5002x2 C 0:1653x3 C 0:0473x4

0:99995x C 1:0008x2 C 0:4931x3 C 0:1949x4

�

2:62 � 10�7

Œ0:2; 0:3�

�

1:0000 C 0:9999x C 0:5011x2 C 0:1618x3 C 0:0522x4

0:9994x C 1:0056x2 C 0:4750x3 C 0:2206x4

�

4:51 � 10�7

Œ0:3; 0:4�

�

1:0000 C 0:9994x C 0:5036x2 C 0:1557x3 C 0:0577x4

0:0002 C 0:9969x C 1:0189x2 C 0:4430x3 C 0:24953x4

�

6:89 � 10�7

Œ0:4; 0:5�

�

1:0002 C 0:9981x C 0:5088x2 C 0:1465x3 C 0:0638x4

0:0009 C 0:98995x C 1:0466x2 C 0:3939x3 C 0:2821x4

�

9:89 � 10�7

Œ0:5; 0:6�

�

1:0005 C 0:9952x C 0:5180x2 C 0:1338x3 C 0:0705x4

0:0028 C 0:9741x C 1:0966x2 C 0:3240x3 C 0:3189x4

�

1:36 � 10�6

Œ0:6; 0:7�

�

1:0013 C 0:9895x C 0:5328x2 C 0:1166x3 C 0:07794x4

0:0073 C 0:9424x C 1:1788x2 C 0:2289x3 C 0:3602x4

�

1:82 � 10�6

Œ0:7; 0:8�

�

1:0031 C 0:9793x C 0:5553x2 C 0:0944x3 C 0:0861x4

0:0171 C 0:8849x C 1:3063x2 C 0:1032x3 C 0:4067x4

�

2:37 � 10�6

Œ0:8; 0:9�

�

1:0064 C 0:9623x C 0:5882x2 C 0:0663x3 C 0:0952x4

0:0360 C 0:7871x C 1:4952x2 � 0:0590x3 C 0:4589x4

�

3:05 � 10�6

Œ0:9; 1�

�

1:0123 C 0:9352x C 0:6344x2 C 0:0311x3 C 0:1052x4

0:0707 C 0:6291x C 1:7657x2 � 0:2649x3 C 0:5177x4

�

3:86 � 10�6

TABLE 3. Absolute errors using the spline algorithm for problem

(20) with fourth-order splines (m D 4).
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Œxi ; xiC1� APPROXIMATION ERRORS

Œ0; 0:1�

�

1 C x C 0:5x2 C 0:1667x3 C 0:0417x4 C 0:0085x5

x C x2 C 0:5x3 C 0:1667x4 C 0:0427x5

�

1:80 � 10�9

Œ0:1; 0:2�

�

1 C x C 0:4996x2 C 0:1667x3 C 0:0413x4 C 0:0094x5

x C 0:99997x2 C 0:5003x3 C 0:1647x4 C 0:0481x5

�

4:09 � 10�9

Œ0:2; 0:3�

�

1 C x C 0:4999x2 C 0:1670x3 C 0:0405x4 C 0:0104x5

1:0000x C 0:9997x2 C 0:5021x3 C 0:1595x4 C 0:0542x5

�

7:00 � 10�9

Œ0:3; 0:4�

�

0:99998 C 1:0000x C 0:4997x2 C 0:1678x3 C 0:0390x4 C 0:0115x5

1:0002x C 0:9983x2 C 0:5072x3 C 0:1502x4 C 0:0611x5

�

1:07 � 10�8

Œ0:4; 0:5�

�

0:99998 C 1:0002x C 0:4991x2 C 0:1695x3 C 0:0368x4 C 0:0127x5

�0:0001 C 1:0010x C 0:9943x2 C 0:5178x3 C 0:1360x4 C 0:0688x5

�

1:53 � 10�8

Œ0:5; 0:6�

�

0:99996 C 1:0005x C 0:4977x2 C 0:1725x3 C 0:0336x4 C 0:0140x5

�0:0003 C 1:0031x C 0:9852x2 C 0:5370x3 C 0:1157x4 C 0:0774x5

�

2:10 � 10�8

Œ0:6; 0:7�

�

0:9999 C 1:0013x C 0:4949x2 C 0:1773x3 C 0:0294x4 C 0:0155x5

�0:0009 C 1:0083x C 0:9671x2 C 0:5686x3 C 0:0880x4 C 0:0871x5

�

2:80 � 10�8

Œ0:7; 0:8�

�

0:9996 C 1:0030x C 0:4900x2 C 0:1846x3 C 0:0239x4 C 0:0171x5

�0:0024 C 1:0194x C 0:9342x2 C 0:6176x3 C 0:0515x4 C 0:0980x5

�

3:65 � 10�8

Œ0:8; 0:9�

�

0:9991 C 1:0062x C 0:4817x2 C 0:1954x3 C 0:0170x4 C 0:0189x5

�0:0057 C 1:0410x C 0:8782x2 C 0:6901x3 C 0:0045x4 C 0:1101x5

�

4:67 � 10�8

Œ0:9; 1�

�

0:9981 C 1:0119x C 0:4685x2 C 0:2105x3 C 0:0083x4 C 0:0209x5

�0:0126 C 1:0805x C 0:7877x2 C 0:7939x3 � 0:0550x4 C 0:1238x5

�

5:90 � 10�8

TABLE 4. Absolute errors using the spline algorithm for problem

(20) with fifth-order splines (m D 5).
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FIGURE 1. Relative errors for the test problem (20) with fourth-

order splines (m D 4) using our proposed method with h D 0:01

and h D 0:001, respectively.

Method Time [s] Error

Spline of order m D 4 0:006679 6:825762e � 008

Spline of order m D 5 0:008287 8:749450e � 010

Spline of order m D 6 0:011020 1:015738e � 011

ode45 0:428922 3:438694e � 007

ode23 15:370957 4:448549e � 006

ode113 0:033385 6:488040e � 013

ode15s 0:548005 1:041483e � 011

ode23s 70:147383 1:737104e � 001

ode23t 64:297144 1:446478e � 009

ode23tb 291:413931 2:441626e � 007

TABLE 5. Relative errors for the test problem (20) with splines

(h D 0:1) and MATLAB solvers.
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FIGURE 2. Approximation error for problem (20) with fifth-order

splines (m D 5) using our proposed method with h D 0:01 and

h D 0:001, respectively.

Method Time [s] Error

Spline of order m D 4 0:055846 9:994253e � 013

Spline of order m D 5 0:075211 1:944154e � 013

Spline of order m D 6 0:097185 1:848712e � 013

ode45 0:428922 3:438694e � 007

ode23 15:370957 4:448549e � 006

ode113 0:033385 6:488040e � 013

ode15s 0:548005 1:041483e � 011

ode23s 70:147383 1:737104e � 001

ode23t 64:297144 1:446478e � 009

ode23tb 291:413931 2:441626e � 007

TABLE 6. Relative errors for the test problem (20) with splines

(h D 0:01) and MATLAB solvers.
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Œxi ; xiC1� ERRORS

Œ0; 0:1� 3:3824 � 10�6

Œ0:1; 0:2� 3:3824 � 10�6

Œ0:2; 0:3� 3:3704 � 10�6

Œ0:3; 0:4� 3:3704 � 10�6

Œ0:4; 0:5� 3:4512 � 10�6

Œ0:5; 0:6� 3:4512 � 10�6

Œ0:6; 0:7� 3:8211 � 10�6

Œ0:7; 0:8� 3:8211 � 10�6

Œ0:8; 0:9� 4:9777 � 10�6

Œ0:9; 1� 6:3207 � 10�6

(a)

Œxi ; xiC1� ERRORS

Œ0; 0:1� 5:0639 � 10�8

Œ0:1; 0:2� 3:9495 � 10�7

Œ0:2; 0:3� 1:0951 � 10�6

Œ0:3; 0:4� 4:4842 � 10�6

Œ0:4; 0:5� 0:000015

Œ0:5; 0:6� 0:000057

Œ0:6; 0:7� 0:00021

Œ0:7; 0:8� 0:00076

Œ0:8; 0:9� 0:0028

Œ0:9; 1� 0:01

(b)

Œxi ; xiC1� ERRORS

Œ0; 0:1� 6:7494 � 10�10

Œ0:1; 0:2� 2:1233 � 10�8

Œ0:2; 0:3� 2:0815 � 10�7

Œ0:3; 0:4� 2:0325 � 10�6

Œ0:4; 0:5� 0:00002

Œ0:5; 0:6� 0:00019

Œ0:6; 0:7� 0:0018

Œ0:7; 0:8� 0:018

Œ0:8; 0:9� 0:17

Œ0:9; 1� 1:68

(c)
TABLE 7. Absolute errors for Example 3.2 using the matrix

splines of order (a) m D 3, (b) m D 4 and (c) m D 5 with

the method given in [7] with n D 10 and h D 0:1.

Œxi ; xiC1� ERRORS

Œ0; 0:1� 5:0639 � 10�8

Œ0:1; 0:2� 1:01878 � 10�7

Œ0:2; 0:3� 1:5456 � 10�7

Œ0:3; 0:4� 2:0995 � 10�7

Œ0:4; 0:5� 2:7002 � 10�7

Œ0:5; 0:6� 3:3797 � 10�7

Œ0:6; 0:7� 4:1898 � 10�7

Œ0:7; 0:8� 5:2140 � 10�7

Œ0:8; 0:9� 6:5853 � 10�7

Œ0:9; 1� 8:5131 � 10�7

(a)

Œxi ; xiC1� ERRORS

Œ0; 0:1� 6:7494 � 10�10

Œ0:1; 0:2� 1:3578 � 10�9

Œ0:2; 0:3� 2:0596 � 10�9

Œ0:3; 0:4� 2:7970 � 10�9

Œ0:4; 0:5� 3:5963 � 10�9

Œ0:5; 0:6� 4:4994 � 10�9

Œ0:6; 0:7� 5:5749 � 10�9

Œ0:7; 0:8� 6:9335 � 10�9

Œ0:8; 0:9� 8:7516 � 10�9

Œ0:9; 1� 1:1307 � 10�8

(b)
TABLE 8. Absolute errors for problem (21) using the matrix

splines method of order (a) m D 4 and (b) m D 5, with n D 10

and h D 0:1.



Numerical solutions of matrix differential models 17

 1e-016

 1e-015

 1e-014

 1e-013

 0.001  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

E
rr

or

Interval

h=0.01
h=0.001

FIGURE 3. Approximation errors for problem (21) with fourth-

order splines (m D 4) using our proposed method with h D 0:01

and h D 0:001, respectively.

Method Time [s] Error

Spline of order m D 4 0:007799 4:093852e � 12

Spline of order m D 5 0:009094 1:539909e � 14

Spline of order m D 6 0:010771 3:070086e � 14

ode45 0:122250 6:402663e � 14

ode23 2:412271 1:610360e � 12

ode113 0:013974 8:550309e � 14

ode15s 0:098997 7:226276e � 12

ode23s 34:756489 2:618326e � 09

ode23t 7:692395 9:432798e � 10

ode23tb 7:580115 9:772905e � 10

TABLE 9. Approximation errors for problem (21) with splines of

several orders using MATLAB solvers and taking h D 0:02.
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FIGURE 4. Approximation errors for problem (21) with fifth-

order splines (m D 5) using our proposed method with h D 0:01

and h D 0:001, respectively.


