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Abstract. Remote Memory Access (RMA) hardware allow a given motherboard
in a cluster to directly access the memory installed in a remote motherbauel of
same cluster. In recent works, this characteristic has been used nhal éxéead-
dressable memory space of selected motherboards, which enaltferdbt&ance
of main memory resources among cluster applications. This way is moch m
cost-effective than than implementing a full-fledged shared memotgrays

In this context, the memory scheduler is in charge of finding a suitable distrib
tion of local and remote memory that maximizes the performance andmjeas

a minimum QoS among the applications. Note that since changing the memory
distribution is a slow process involving several motherboards, the nyesched-
uler needs to make sure that the target distribution provides better parioe
than the current one.

In this paper, a performance predictor is designed in order to find ttenteEm-
ory distribution for a given set of applications executing in a cluster mbtzed.
The predictor uses simple hardware counters to estimate the expected anpa
performance of the different memory distributions. The hardwatmiass pro-
vide the predictor with the information about the time spent in processaoname
access and network.

The performance model used by the predictor has been validated itaitede
microarchitectural simulator using real benchmarks. Results shovihtbaire-
diction accuracy never deviates more than 5% compared to the relsresing
less than 0.5% in most of the cases.

Keywords: cluster computers, memory scheduling, remote memory assignment,
performance estimation

1 Introduction

Since their introduction, cluster computers have beenawipg their performance and
lowering their implementation costs with respect to supenguters. Nowadays, it is
easy to find many of these type of computer organizationsdridp positions of high-
performance computer rankings such as TOP500 [1]. Thisitian has been possible
as advanced microarchitectural techniques and interationesolutions only available
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in supercomputers enter the consumer market (i.e., thegaanmoditized), which in
turn allow new ways to improve the performance of currensteludesigns while main-
taining or even lowering their expenses.

However, since cluster architectures are loosely coupjeddsign, there is not a
standard commodity framework supporting the access to memstalled on remote
nodes. Therefore, to cope with applications demandinglargounts of main memory
(e.g., enterprise level databases and services, largeutmmgpntensive parallel appli-
cations, etc.), cluster systems must rely on slower OSebsalations such as swapping
on remote RAM disks or implementing software-based sharechony. This, in turn,
reduces the competitivity advantages of this type of system

So far, Remote Memory Access (RMA) hardware [2], which afiaavgiven node
to directly access remote memory, has been only availabdapercomputer systems
like BlueGene/L [3], BlueGene/P [4], or Cray XT [5]. Nevesthss, commodity im-
plementations for cluster computers are already entehiegrarket. For example, the
HyperTransport consortium [6], which is composed by moamthi0 members from the
leading industry (AMD, HP, Dell, IBM, etc.) and universisieis extending the Hyper-
transport technology, enabling the development of clusgstems supporting remote
memaory accesses.

This work focuses on a cluster prototype that implementsafbeementioned Hy-
pertransport extensions and whose nodes are linked usiagt éanferconnection net-
work. In this context, we assume that the OS running in theegazffers inter-node
memory allocation capabilities that enable the assignroeréamote memaory portions
to local applications.

As these regions have different latencies, performanceivea application strongly
depends on how its assigned memory is distributed amongregbince each appli-
cation contributes with its performance to the global perfance, a memory scheduler
that maximizes the global performance is required. This orgnscheduler must be
aware not only of the characteristics (i.e., latency, badthy of the different mem-
ory regions but also of the executing applications’ memenguirements. For example,
allocating a 25% of the available remote memory to a memaigrisive application
could lead to worse performance results than allocatingivhele remote memory to
an application with good cache locality.

To decide how to distribute the different memory regions aghthe running ap-
plications, the scheduler needs information about the@rpegrerformance of a given
memory distribution. To obtain this information two soturis can be devised: i) to per-
form an off-line profiling of the benchmarks varying the megndistribution and ii)
to dynamically predict the performance of the benchmarksiegsuring during exe-
cution their utilization of the system resources. The fidugon has been developed
in a previous work [7], where we analyzed how the memory ithstion impacts on
the performance of applications with different memory liegments, and presented an
ideal memory allocation algorithm (referred to as SPP) thstributed the memory
space among applications to maximize global performanice.generalization of SSP
to any number of applications was published in [8], where we also presemfficient
heuristic algorithm that approximates the performancalteprovided by SPP while
reducing its complexity in a factor ¢fu — 1)!. Both algorithms consider a quality of ser-
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vice (QoS) parameter for each application in order to guaeaminimum performance
requirements.

In contrast to these works, this paper proposes a perforenaredictor that pro-
vides the information required by the memory scheduler. ifaén aim of proposed
predictor is to be used by the memory scheduler to maximigesyistem performance
while guaranteeing specific QoS requirements. To perfonptiedictions, 3 sample
executions for every benchmark are required, each onedmnirgj that the complete
working set of the benchmark is stored in a different memegijan (i.e., L, Lb or R).
Using these samples the performance of any other memonbdisbn is estimated.

The proposed predictor is driven by a novel performance rfeddoy simple hard-
ware counters (like those available in most current prams$that measure the distribu-
tion of execution time devoted to processor, memory, angdar&tresources. Although
the model can be implemented for any type of processor, thik wonsiders in-order
execution for simplicity reasons. The model has been viaitlay comparing its esti-
mations with the performance values obtained by the exatuti real benchmarks in
the Multi2Sim simulation framework [9]. The results shovatlthe dynamic predictor
is very accurate, since its deviation with respect to theresailts is always lower than
5%, and much lower in most of the cases.

The remaining of this paper is organized as follows. Sec®atescribes the sys-
tem prototype. Section 3 details our proposed performaragemSection 4 validates
the model by comparing its predictions with detailed cylmjeeycle simulation results.
Section 5 discusses previous research related to this aodkjnally, Section 6 presents
some concluding remarks.

2 Cluster Prototype

A cluster machine with the required hardware/software b#itias is being prototyped
in conjunction with researchers from the University of Haimkrg [2], which have de-
signed the RMA connection cards. The machine consists of@#erboards each one
including 4 quad-core 2.0GHz Opteron processors in a 4-hid&A system (1 pro-
cessor per node), and a 16GB RAM memory per motherboard. dimeection to re-
mote motherboards is implemented by a regular HyperTrah§p@] interface to the
local motherboard and a High Node Count HyperTransportifité}face to the remote
boards. This interface is attached to the motherboard bynsnebHTX compatible
cards [12].

When a processor issues a load or store instruction, the nyeoperation is for-
warded to the memory controller of the node handling that prgraddress. The RMA
connection cards include their own controller, which hasdhe accesses to remote
memory. Unlike typical memory controllers, the RMA conteslhas no memory banks
directly connected to it. Instead, it relies on the banktaiied in remote motherboards.
This controller can be reconfigured so that memory accessegiven memory address
are forwarded to the selected motherboard.

Since the prototype is still under construction, in ordecday out the experiments
and validate the proposed performance model, the clustehimahas been modeled
using Multi2Sim. Multi2Sim is a simulation framework forgerscalar, multithreaded,
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Local Board RMA

HyperTransporlIIn(ermnnectiun

Remote Board

Fig. 1. Block diagram of the 2-node NUMA system model and RMA

Table 1. Memory subsystem characteristics

Characteristic Description

# of processors 2 per motherboard

L1 cache: size, #ways, line size  64KB, 2, 64B

L1 cache latency 3

L2 cache: size, #ways, line size  1MB, 16, 64B

L2 cache latency 6

Memory address space 512MB, 256MB per motherboard
L Latency 100

Lb Latency 142

R Latency 410

and multicore processors. It is an application-only executliriven microarchitectural
simulator, which allows the execution of multiple applicat to be simulated without
booting a complete OS.

In addition, the whole system has been scaled down to hagemahle simulation
times. The scaled system consists of two motherboards, @aeltomposed of a 2-
node NUMA system as shown in Figure 1. Each node includes@epsor with private
caches, its memory controller and the associated RAM memory

Table 1 shows the memory subsystem characteristics, whemeony latencies and
cache organizations resemble those of the real prototype RMA connection cards
have been assumed with no internal storage capacity. Léele Multi2Sim coher-
ence protocol has been extended to model the RMA functignali
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A system whose running applications can be executed usffegeatit memory distri-
butions (L, Lb, R) needs a mechanism to determine which mgmhistribution should
be assigned to each application. This section presentsteodwbgy for predicting the
impact on performance of the different memory distribusicand then using the pre-
dictions to guide the assignment of memory regions to agfiins in order to meet
memory constraints and reduce performance loss.

This work assumes that the predictor evaluates seven possdmory distributions
(three samples and four estimated cases) since this nurilg@tao points is enough
to define sufficiently the performance of each applicatioromagnthe complete set of
possible memory distributions [8]. To predict the perfonoa (execution time) of a
running application A when having a memory assignmgnt X, Lb =Y, R= Z}, an
analytical method has been designed.

Existing processors implement performance counters faugiging purposes which
are readable by software. In this paper, these counterdibizediby an application-to-
memory assignment prediction mechanism. The counterssaetto track the number
of cycles spent for each considered event during a full adireglquantum.

3.1 Analytical Model

The execution time of a given application can be estimatau fwo main components,
as stated by equation 1.

Tew = CDispatch + Cmem,stalls (1)

Each(C, is the number of processor cycles spent on a type of acté&gythe dis-
patch width has been assumed ta bthe execution time can be expressed as the sum of
the number of dispatched instructions plus the number désyatalled due to memory
accesses.

In the devised system, stalls due to a full load-store queS&Y] are critical for
performance, mainly in those benchmarks having a high rfateeonory accesses. On
the other hand, dispatch stage remains stalled during theuggn of a load instruc-
tion. This includes both the accesses to private cached fi.and L2) and to the main
memory, with their respective access times as well as treydetlated to the network
or structural hazards.

To project the IPC, the performance model breaks down theaneoomponents
of the execution time into memory region-dependent and mgmegion-independent
components:

Cmem,stalls = C(L + C'Lb + CR + Cprivate,caches + CLSQ,iwidth (2)

C1, Cry, andCr refer to the cycles spent on each memory region, that is,lLoca
Local to Board, respectively. Each .40, includes the cycles due to several activi-
ties related to this memory region. In particular, stalle tuthe following reasons have
been taken into account:
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Main memory accesstime. This time includes both the cycles spent in the data read
from the main memory and the message traffic through the mensiwork.

Delayed hit. This type of stall occurs when the memory access cannot berperd
because the accessed block is already locked by another méamtruction, that
is, a new block is being brought.

Write concurrency. This type of stall happens because concurrent accessee to th
same block in a given cache are not allowed if one of them isite wr

Full LSQ. Dispatch stage is stalled because there is no free entrg ihSKQ.

The remaining components of the equation can be consideradcanstant for
every memory region. The region-independent componeattharfollowing:

Private caches accesstime. Number of cycles spent in accessing the first and second
level caches of the system. These accesses are regioreimtbsy since no memory
module is accessed.

L SQ issuewidth limitation. Only a load or a store can be issued at a given cycle. So,
if a load instruction is ready to be issued and there is anszocenflict between a
load and a store, they are issued in program order, and theggstinstruction will
retry the next cycle.

The final equation used by the performance predictor is 3:

Tem = CDv',sp(Ltch + CL + CLb + CR +k (3)

3.2 Estimating Performance

The model assumes that the implemented target machinedpsothe required per-
formance counters to obtain the values for the componengs|adition 3. Notice that
network traffic is taken into account, so congestion is alsngjfied.

The predictor requires to run each benchmark three timeatteegthe required val-
ues to project performance. Each sample will correspond theememory accesses in
one single region, that i$) all the accesses to local memory region (L€, 1.—100%).
ii) all the accesses to the other node in the local motherboardonyeregion (i.e.
Te Lb=100%), andiii) all the accesses to remote memory region {8, r—100%):

Sample 1 (L = 100%, Lb= 0%, R= 0%) Tew,L:lOO% = CL:L:lOO% +k
SampleZ (L = 0%, Lb= 100%, R= 00/0) Tea:,LbZIOO% = CLb:LbZlOO% +k
%mpleS (L = 0%, Lb= OOA), R= 100%) Tem,RZIOO% = CR:RZIOO% + k

To predict the execution time for a given memory distribatithe predictor calcu-
lates a weighted execution timg,, _,eignted, from the three samples. It takes each not
null memory region componew. 4.~ Of each of the samples and multiplies it by
the fractionf.,.4ion> Of accesses of the destination memory region:

Tex_weighted = Cr,1=100% * (/1) + CLb, Lo=100% - (fLb) + Cr R=100% - (fR) + k (4)
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Table 2. Performance predictor working example

l ‘C<r'egion> lf<7‘egiun> ‘C<region>,pond‘

Samplel 44687 0.5 22343.5
Sample2 62236 0.5 31118
Sample3 166757 0 0
k 2721346.3
tew_weighted 2774807.8
0.8

ax —

a

0.7
N
” — —

0.6
FFT_model
0.5 +FFT_sim
# Cholesky_model
-+-Cholesky_sim
8 0.4 +Radix_model
= Radix_sim
0.3 + Stream_model
’ Stream_sim
0.2
0.1
0.0
0 25 50 75 100

Remote (R) memory distribution

Fig. 2. Model Validation. Detailed cycle-by-cycle simulation vs model

For any given memory distribution, equation 4 can be usedddigt its execution
time given the gathered components for the three samplés pfévides a mechanism
to identify the optimal memory distribution at which to rugisen execution phase with
minimal performance loss. So this prediction will be an irfounthe memory scheduler.

Table 2 analyzes an example of prediction for the benchmiaik Where the execu-
tion time of the memory distributio(60%, 50%, 0) is obtained from the three samples.
The estimated execution time is equal to 2774807.8 and #heletailed cycle-by-cycle
simulation execution time is 2774931, so the model has bthan estimation which
deviates less than 0.005% with respect to the target value.

4 Validating the M odel

This section analyzes the prediction accuracy. We haveeprbdy making experi-
ments for the four benchmarks with the eight memory distidmns: i)(100%, 0%,
0%),i1)(50%, 50%, 0%)iii)(0%, 100%, 0%)iv)(75%, 0%, 25%)y)(50%, 25%, 25%),
vi)(50%, 0%, 50%)vii)(25%, 0%, 75%)yiii)(0%, 0%, 100%). Then, we have taken the
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components of the three samplési{:, andviii) and have applied the model to each
benchmark to obtain the execution time for each of the reimgimemory distributions.
Finally, the Instructions Per Cycle (IPC) has been caleddbr each case.

Figure 2 shows the comparison of the simulated performagmdts §m) against
the values calculated by the performance prediatadél). Both model and detailed
cycle-by-cycle simulation curves are overlapped, sineentiodel provides a deviation
lower than5% in the worst case, being near ®§; for some of the benchmarks, for
instance, FFT.

5 Reated work

Previous research works have addressed the problem ofperice prediction to char-
acterize and classify memory behavior of applications &aljot their performance.

Zhuravlev et al [13] estimated that factors like memory colfér, memory bus and
prefetching hardware contentions contribute more to divpesiformance degradation
than cache space contention. To alleviate these factoysnimemize the total number
of misses issued from each cache. To that end they develapedding algorithms
that distribute threads such that the miss rate is eventyitalised among the caches.

In [14] authors propose a classification algorithm for deiaing programs cache
sharing behaviors. Their scheme can be implemented directiardware to provide
dynamic classification of program behaviors. They proposerg simple dynamic
cache partitioning scheme that performs slightly bettantthe Utility-based Cache
Partitioning scheme while incurring a lower implementatomst.

In [15] a fast and accurate shared cache aware performandel fiow multi-core
processors is proposed. The model estimates the perfoendigcadation due to cache
contention of processes running on CMPs. It uses reusendestaistograms, cache
access frequencies, and the relationship between thegtpatiand cache miss rate of
each process to predict its effective cache size when rgrooncurrently and sharing
cache with other processes, allowing instruction througlgstimation. The average
throughput prediction error of the model was 1.57

In [16] the authors apply machine learning techniques taliptehe performance
on multi-core processors. The main contribution of the gia@numeration of solo-run
program attributes, which can be used to predict paireggeuformance. The paired run
involves the contention for shared resources betweenmoi#rg programs.

The previous research papers are focused on multicore or@btRessors however
the work proposed in this paper is focused on cluster comgpdialing with the prob-
lem of predicting the application behaviour using remotenogy in order to allow a
scheduler to improve system performance.

Other research papers found in the bibliography dealing weinote memory allo-
cation are mainly focused on memory swapping. Shuang eesigd a remote paging
system for remote memory utilization in InfiniBand clust§tg]. In [18], the use of
remote memory for virtual memory swapping in a cluster cotapis described. Mi-
dorikawa et al. propose the distributed large memory sy¢i@nM), which is an user-
level software-only solution that provides very large wat memory by using remote
memory distributed over the nodes in a cluster [19].
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These papers use the remote memory for swapping over chustiess and present
their system as an improvement of disk swapping. On the apntour research aims
at predicting system performance depending on differesigament configurations of
remote memory to applications. The predictions will be usgd memory scheduler to
decide dynamically which is the best configuration to enkaystem performance.

6 Conclusions

This paper has presented a performance predictor whiclieis@bstimate the execution
time for a given memory distribution of an application. Wesfficarried out a study to
determine the events considered by our model, and classifged as memory-region
dependent and independent. The model assumes that the mafroieles spent in each
considered event is obtained from some hardware count¢he édrget machine.

The devised predictor has been used to estimate the perfoentd different mem-
ory distributions for four benchmarks. The accuracy of thediction has been vali-
dated, since the deviation of the model with respect to theresults is always lower
than 5% and very close to 0% in several studied cases.

This study constitutes the first step of a deeper work in tloeigdl of memory
scheduling. The performances estimated by the predictbifegd a memory sched-
uler which will dynamically choose the optimum target meyndistribution for each
application concurrently running in the system in orderdbieve the best overall per-
formance of the system.
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