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Abstract. Remote Memory Access (RMA) hardware allow a given motherboard
in a cluster to directly access the memory installed in a remote motherboard ofthe
same cluster. In recent works, this characteristic has been used to extend the ad-
dressable memory space of selected motherboards, which enable a better balance
of main memory resources among cluster applications. This way is much more
cost-effective than than implementing a full-fledged shared memory system.
In this context, the memory scheduler is in charge of finding a suitable distribu-
tion of local and remote memory that maximizes the performance and guarantees
a minimum QoS among the applications. Note that since changing the memory
distribution is a slow process involving several motherboards, the memory sched-
uler needs to make sure that the target distribution provides better performance
than the current one.
In this paper, a performance predictor is designed in order to find the best mem-
ory distribution for a given set of applications executing in a cluster motherboard.
The predictor uses simple hardware counters to estimate the expected impact on
performance of the different memory distributions. The hardware counters pro-
vide the predictor with the information about the time spent in processor, memory
access and network.
The performance model used by the predictor has been validated in a detailed
microarchitectural simulator using real benchmarks. Results show thatthe pre-
diction accuracy never deviates more than 5% compared to the real results, being
less than 0.5% in most of the cases.

Keywords: cluster computers, memory scheduling, remote memory assignment,
performance estimation

1 Introduction

Since their introduction, cluster computers have been improving their performance and
lowering their implementation costs with respect to supercomputers. Nowadays, it is
easy to find many of these type of computer organizations in the top positions of high-
performance computer rankings such as TOP500 [1]. This transition has been possible
as advanced microarchitectural techniques and interconnection solutions only available
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in supercomputers enter the consumer market (i.e., they arecommoditized), which in
turn allow new ways to improve the performance of current cluster designs while main-
taining or even lowering their expenses.

However, since cluster architectures are loosely coupled by design, there is not a
standard commodity framework supporting the access to memory installed on remote
nodes. Therefore, to cope with applications demanding large amounts of main memory
(e.g., enterprise level databases and services, large computing intensive parallel appli-
cations, etc.), cluster systems must rely on slower OS-based solutions such as swapping
on remote RAM disks or implementing software-based shared memory. This, in turn,
reduces the competitivity advantages of this type of systems.

So far, Remote Memory Access (RMA) hardware [2], which allows a given node
to directly access remote memory, has been only available insupercomputer systems
like BlueGene/L [3], BlueGene/P [4], or Cray XT [5]. Nevertheless, commodity im-
plementations for cluster computers are already entering the market. For example, the
HyperTransport consortium [6], which is composed by more than 60 members from the
leading industry (AMD, HP, Dell, IBM, etc.) and universities, is extending the Hyper-
transport technology, enabling the development of clustersystems supporting remote
memory accesses.

This work focuses on a cluster prototype that implements theaforementioned Hy-
pertransport extensions and whose nodes are linked using a fast interconnection net-
work. In this context, we assume that the OS running in the nodes offers inter-node
memory allocation capabilities that enable the assignmentof remote memory portions
to local applications.

As these regions have different latencies, performance of agiven application strongly
depends on how its assigned memory is distributed among regions. Since each appli-
cation contributes with its performance to the global performance, a memory scheduler
that maximizes the global performance is required. This memory scheduler must be
aware not only of the characteristics (i.e., latency, bandwidth) of the different mem-
ory regions but also of the executing applications’ memory requirements. For example,
allocating a 25% of the available remote memory to a memory-intensive application
could lead to worse performance results than allocating thewhole remote memory to
an application with good cache locality.

To decide how to distribute the different memory regions among the running ap-
plications, the scheduler needs information about the expected performance of a given
memory distribution. To obtain this information two solutions can be devised: i) to per-
form an off-line profiling of the benchmarks varying the memory distribution and ii)
to dynamically predict the performance of the benchmarks bymeasuring during exe-
cution their utilization of the system resources. The first solution has been developed
in a previous work [7], where we analyzed how the memory distribution impacts on
the performance of applications with different memory requirements, and presented an
ideal memory allocation algorithm (referred to as SPP) thatdistributed the memory
space among applications to maximize global performance. The generalization of SSP
to any numbern of applications was published in [8], where we also present an efficient
heuristic algorithm that approximates the performance results provided by SPP while
reducing its complexity in a factor of(n−1)!. Both algorithms consider a quality of ser-
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vice (QoS) parameter for each application in order to guarantee minimum performance
requirements.

In contrast to these works, this paper proposes a performance predictor that pro-
vides the information required by the memory scheduler. Themain aim of proposed
predictor is to be used by the memory scheduler to maximize the system performance
while guaranteeing specific QoS requirements. To perform the predictions, 3 sample
executions for every benchmark are required, each one considering that the complete
working set of the benchmark is stored in a different memory region (i.e., L, Lb or R).
Using these samples the performance of any other memory distribution is estimated.

The proposed predictor is driven by a novel performance model fed by simple hard-
ware counters (like those available in most current processors) that measure the distribu-
tion of execution time devoted to processor, memory, and network resources. Although
the model can be implemented for any type of processor, this work considers in-order
execution for simplicity reasons. The model has been validated by comparing its esti-
mations with the performance values obtained by the execution of real benchmarks in
the Multi2Sim simulation framework [9]. The results show that the dynamic predictor
is very accurate, since its deviation with respect to the real results is always lower than
5%, and much lower in most of the cases.

The remaining of this paper is organized as follows. Section2 describes the sys-
tem prototype. Section 3 details our proposed performance model. Section 4 validates
the model by comparing its predictions with detailed cycle-by-cycle simulation results.
Section 5 discusses previous research related to this work,and finally, Section 6 presents
some concluding remarks.

2 Cluster Prototype

A cluster machine with the required hardware/software capabilities is being prototyped
in conjunction with researchers from the University of Heidelberg [2], which have de-
signed the RMA connection cards. The machine consists of 64 motherboards each one
including 4 quad-core 2.0GHz Opteron processors in a 4-nodeNUMA system (1 pro-
cessor per node), and a 16GB RAM memory per motherboard. The connection to re-
mote motherboards is implemented by a regular HyperTransport [10] interface to the
local motherboard and a High Node Count HyperTransport [11]interface to the remote
boards. This interface is attached to the motherboard by means of HTX compatible
cards [12].

When a processor issues a load or store instruction, the memory operation is for-
warded to the memory controller of the node handling that memory address. The RMA
connection cards include their own controller, which handles the accesses to remote
memory. Unlike typical memory controllers, the RMA controller has no memory banks
directly connected to it. Instead, it relies on the banks installed in remote motherboards.
This controller can be reconfigured so that memory accesses to a given memory address
are forwarded to the selected motherboard.

Since the prototype is still under construction, in order tocarry out the experiments
and validate the proposed performance model, the cluster machine has been modeled
using Multi2Sim. Multi2Sim is a simulation framework for superscalar, multithreaded,



4 Performance Prediction

Fig. 1. Block diagram of the 2-node NUMA system model and RMA

Table 1. Memory subsystem characteristics

Characteristic Description

# of processors 2 per motherboard
L1 cache: size, #ways, line size 64KB, 2, 64B
L1 cache latency 3
L2 cache: size, #ways, line size 1MB, 16, 64B
L2 cache latency 6
Memory address space 512MB, 256MB per motherboard
L Latency 100
Lb Latency 142
R Latency 410

and multicore processors. It is an application-only execution-driven microarchitectural
simulator, which allows the execution of multiple applications to be simulated without
booting a complete OS.

In addition, the whole system has been scaled down to have reasonable simulation
times. The scaled system consists of two motherboards, eachone composed of a 2-
node NUMA system as shown in Figure 1. Each node includes a processor with private
caches, its memory controller and the associated RAM memory.

Table 1 shows the memory subsystem characteristics, where memory latencies and
cache organizations resemble those of the real prototype. The RMA connection cards
have been assumed with no internal storage capacity. Likewise, the Multi2Sim coher-
ence protocol has been extended to model the RMA functionality.
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3 Performance Model

A system whose running applications can be executed using different memory distri-
butions (L, Lb, R) needs a mechanism to determine which memory distribution should
be assigned to each application. This section presents a methodology for predicting the
impact on performance of the different memory distributions, and then using the pre-
dictions to guide the assignment of memory regions to applications in order to meet
memory constraints and reduce performance loss.

This work assumes that the predictor evaluates seven possible memory distributions
(three samples and four estimated cases) since this number of data points is enough
to define sufficiently the performance of each application among the complete set of
possible memory distributions [8]. To predict the performance (execution time) of a
running application A when having a memory assignment{L = X, Lb = Y, R = Z}, an
analytical method has been designed.

Existing processors implement performance counters for debugging purposes which
are readable by software. In this paper, these counters are utilized by an application-to-
memory assignment prediction mechanism. The counters are used to track the number
of cycles spent for each considered event during a full scheduling quantum.

3.1 Analytical Model

The execution time of a given application can be estimated from two main components,
as stated by equation 1.

Tex = CDispatch + Cmem stalls (1)

EachCx is the number of processor cycles spent on a type of activity.As the dis-
patch width has been assumed to be1, the execution time can be expressed as the sum of
the number of dispatched instructions plus the number of cycles stalled due to memory
accesses.

In the devised system, stalls due to a full load-store queue (LSQ) are critical for
performance, mainly in those benchmarks having a high rate of memory accesses. On
the other hand, dispatch stage remains stalled during the execution of a load instruc-
tion. This includes both the accesses to private caches (i.e. L1 and L2) and to the main
memory, with their respective access times as well as the delays related to the network
or structural hazards.

To project the IPC, the performance model breaks down the memory components
of the execution time into memory region-dependent and memory region-independent
components:

Cmem stalls = CL + CLb + CR + Cprivate caches + CLSQ iwidth (2)

CL, CLb, andCR refer to the cycles spent on each memory region, that is, Local,
Local to Board, respectively. EachC<region> includes the cycles due to several activi-
ties related to this memory region. In particular, stalls due to the following reasons have
been taken into account:
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Main memory access time. This time includes both the cycles spent in the data read
from the main memory and the message traffic through the memory network.

Delayed hit. This type of stall occurs when the memory access cannot be performed
because the accessed block is already locked by another memory instruction, that
is, a new block is being brought.

Write concurrency. This type of stall happens because concurrent accesses to the
same block in a given cache are not allowed if one of them is a write.

Full LSQ. Dispatch stage is stalled because there is no free entry in the LSQ.

The remaining components of the equation can be considered as a constantk for
every memory region. The region-independent components are the following:

Private caches access time. Number of cycles spent in accessing the first and second
level caches of the system. These accesses are region-independent since no memory
module is accessed.

LSQ issue width limitation. Only a load or a store can be issued at a given cycle. So,
if a load instruction is ready to be issued and there is an access conflict between a
load and a store, they are issued in program order, and the youngest instruction will
retry the next cycle.

The final equation used by the performance predictor is 3:

Tex = CDispatch + CL + CLb + CR + k (3)

3.2 Estimating Performance

The model assumes that the implemented target machine provides the required per-
formance counters to obtain the values for the components ofequation 3. Notice that
network traffic is taken into account, so congestion is also quantified.

The predictor requires to run each benchmark three times to gather the required val-
ues to project performance. Each sample will correspond to all the memory accesses in
one single region, that is,i) all the accesses to local memory region (i.e.Tex,L=100%),
ii) all the accesses to the other node in the local motherboard memory region (i.e.
Tex,Lb=100%), andiii) all the accesses to remote memory region (i.e.Tex,R=100%):

Sample 1 (L = 100%, Lb = 0%, R = 0%): Tex,L=100% = CL:L=100% + k

Sample 2 (L = 0%, Lb = 100%, R = 0%): Tex,Lb=100% = CLb:Lb=100% + k

Sample 3 (L = 0%, Lb = 0%, R = 100%): Tex,R=100% = CR:R=100% + k

To predict the execution time for a given memory distribution, the predictor calcu-
lates a weighted execution time,Tex weighted, from the three samples. It takes each not
null memory region componentC<region> of each of the samples and multiplies it by
the fractionf<region> of accesses of the destination memory region:

Tex weighted = CL,L=100% · (fL)+CLb,Lb=100% · (fLb)+CR,R=100% · (fR)+ k (4)
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Table 2. Performance predictor working example

C<region> f<region> C<region> pond

Sample1 44687 0.5 22343.5
Sample2 62236 0.5 31118
Sample3 166757 0 0

k 2721346.3
tex weighted 2774807.8

Fig. 2. Model Validation. Detailed cycle-by-cycle simulation vs model

For any given memory distribution, equation 4 can be used to predict its execution
time given the gathered components for the three samples. This provides a mechanism
to identify the optimal memory distribution at which to run agiven execution phase with
minimal performance loss. So this prediction will be an input for the memory scheduler.

Table 2 analyzes an example of prediction for the benchmark FFT, where the execu-
tion time of the memory distribution(50%, 50%, 0) is obtained from the three samples.
The estimated execution time is equal to 2774807.8 and the real detailed cycle-by-cycle
simulation execution time is 2774931, so the model has obtained an estimation which
deviates less than 0.005% with respect to the target value.

4 Validating the Model

This section analyzes the prediction accuracy. We have proceed by making experi-
ments for the four benchmarks with the eight memory distributions: i)(100%, 0%,
0%), ii)(50%, 50%, 0%),iii)(0%, 100%, 0%),iv)(75%, 0%, 25%),v)(50%, 25%, 25%),
vi)(50%, 0%, 50%),vii)(25%, 0%, 75%),viii)(0%, 0%, 100%). Then, we have taken the
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components of the three samples (i, iii, andviii) and have applied the model to each
benchmark to obtain the execution time for each of the remaining memory distributions.
Finally, the Instructions Per Cycle (IPC) has been calculated for each case.

Figure 2 shows the comparison of the simulated performance results (sim) against
the values calculated by the performance predictor (model). Both model and detailed
cycle-by-cycle simulation curves are overlapped, since the model provides a deviation
lower than5% in the worst case, being near to0% for some of the benchmarks, for
instance, FFT.

5 Related work

Previous research works have addressed the problem of performance prediction to char-
acterize and classify memory behavior of applications to predict their performance.

Zhuravlev et al [13] estimated that factors like memory controller, memory bus and
prefetching hardware contentions contribute more to overall performance degradation
than cache space contention. To alleviate these factors they minimize the total number
of misses issued from each cache. To that end they developed scheduling algorithms
that distribute threads such that the miss rate is evenly distributed among the caches.

In [14] authors propose a classification algorithm for determining programs cache
sharing behaviors. Their scheme can be implemented directly in hardware to provide
dynamic classification of program behaviors. They propose avery simple dynamic
cache partitioning scheme that performs slightly better than the Utility-based Cache
Partitioning scheme while incurring a lower implementation cost.

In [15] a fast and accurate shared cache aware performance model for multi-core
processors is proposed. The model estimates the performance degradation due to cache
contention of processes running on CMPs. It uses reuse distance histograms, cache
access frequencies, and the relationship between the throughput and cache miss rate of
each process to predict its effective cache size when running concurrently and sharing
cache with other processes, allowing instruction throughput estimation. The average
throughput prediction error of the model was 1.57

In [16] the authors apply machine learning techniques to predict the performance
on multi-core processors. The main contribution of the study is enumeration of solo-run
program attributes, which can be used to predict paired-runperformance. The paired run
involves the contention for shared resources between co-running programs.

The previous research papers are focused on multicore or CMPprocessors however
the work proposed in this paper is focused on cluster computers dealing with the prob-
lem of predicting the application behaviour using remote memory in order to allow a
scheduler to improve system performance.

Other research papers found in the bibliography dealing with remote memory allo-
cation are mainly focused on memory swapping. Shuang et al. design a remote paging
system for remote memory utilization in InfiniBand clusters[17]. In [18], the use of
remote memory for virtual memory swapping in a cluster computer is described. Mi-
dorikawa et al. propose the distributed large memory system(DLM), which is an user-
level software-only solution that provides very large virtual memory by using remote
memory distributed over the nodes in a cluster [19].
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These papers use the remote memory for swapping over clusternodes and present
their system as an improvement of disk swapping. On the contrary, our research aims
at predicting system performance depending on different assignment configurations of
remote memory to applications. The predictions will be usedby a memory scheduler to
decide dynamically which is the best configuration to enhance system performance.

6 Conclusions

This paper has presented a performance predictor which is able to estimate the execution
time for a given memory distribution of an application. We first carried out a study to
determine the events considered by our model, and classifiedthem as memory-region
dependent and independent. The model assumes that the number of cycles spent in each
considered event is obtained from some hardware counters ofthe target machine.

The devised predictor has been used to estimate the performance of different mem-
ory distributions for four benchmarks. The accuracy of the prediction has been vali-
dated, since the deviation of the model with respect to the real results is always lower
than 5% and very close to 0% in several studied cases.

This study constitutes the first step of a deeper work in the ground of memory
scheduling. The performances estimated by the predictor will feed a memory sched-
uler which will dynamically choose the optimum target memory distribution for each
application concurrently running in the system in order to achieve the best overall per-
formance of the system.
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