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Resumen 
La neuropsicoterapia es una nueva filosofía adoptada en el 

tratamiento de trastornos mentales, que basa sus principios en la 

aplicación de la información conocida sobre las activaciones 

cerebrales y el funcionamiento del cerebro para ajustar la terapia, de 

cara a enfocar el proceso en función de cómo el cerebro evoluciona 

hacia activaciones consideradas normales. Las nuevas herramientas 

aparecidas en el campo de la neuroimagen han ayudado en este 

proceso, proveyendo de información detallada y precisa sobre el 

funcionamiento del cerebro de cada paciente en particular. De entre 

las muchas técnicas de neuroimagen disponibles hoy en día, la 

resonancia magnética funcional (fMRI) destaca por su alta resolución 

espacial, lo que permite un mayor conocimiento sobre qué áreas se 

activan ante cada estímulo o están envueltas en la realización de 

cada acción. Las desventajas que esta técnica presenta en términos 

de tamaño del escáner y restricción de movimiento dentro del mismo 

dan pie a la distinción de otra técnica, más apropiada en ciertos 

casos: la electroencefalografía (EEG), que permite una mayor libertad 

de movimientos y provee de una mayor resolución temporal. 

Para los intereses de esta Tesis, ambas técnicas serán comparadas, 

con el fin de obtener cuál de ellas ofrece mayores beneficios. Para 

ello, un nuevo factor será tenido en cuenta. Debido a las limitaciones 

de las técnicas de neuroimagen en torno a la presentación de los 

estímulos, hay ciertas situaciones de la vida real a las que no 

podemos exponer a los sujetos. Aquí es donde la realidad virtual (RV) 

entra en escena. Gracias a la RV somos capaces de trasladar al sujeto 

a un mundo virtual donde cualquier tipo de estímulo es posible. En el 

caso de la neuropsicoterapia, esto permitirá la exposición del 

paciente a situaciones relacionadas con su desorden, de un modo 

controlado y más seguro. 

De hecho, la realidad virtual ha sido ampliamente utilizada en el 

tratamiento de trastornos psicológicos; sin embargo, hasta ahora no 

ha sido aplicada durante la evaluación de la enfermedad. Para los 



 

objetivos de esta Tesis, los entornos virtuales serán usados para la 

evaluación de sujetos antes y después de pasar por un tratamiento 

psicológico para su trastorno específico, usando técnicas de 

neuroimagen como herramienta para obtener información útil que 

pueda ayudar en el proceso terapéutico. Como ejemplo de trastorno, 

se ha elegido la fobia a animales pequeños (en concreto, a arañas y 

cucarachas), aunque las conclusiones de este estudio son 

extrapolables a otro tipo de desordenes psicológicos.  

Antes de ser capaces de asegurar que las activaciones cerebrales 

obtenidas son debidas al trastorno y no a otras variables, es 

necesario medir el sentido de presencia que los sujetos sienten 

durante la experiencia virtual. Esta es la razón por la que se incluyó, 

previamente al estudio de la evaluación de un trastorno psicológico, 

un estudio del sentido de presencia en un entorno virtual. Dicho 

estudio también ayudó en la decisión de qué técnica de neuroimagen 

es más apropiada para llevar a cabo la segunda parte de la Tesis. 

Tanto EEG como fMRI fueron usadas para la medida de presencia en 

el mismo entorno virtual, y los resultados en términos de 

activaciones cerebrales fueron comparados. La presencia fue 

también medida por medio de cuestionarios, la forma subjetiva 

tradicional de medirla. Como resultado de este estudio, se esperaba 

comprobar si la RV podía efectivamente estimular el sentido de 

presencia y decidir qué técnica de neuroimagen era más apropiada 

para los objetivos de la Tesis. 

Para resumir, las hipótesis iniciales de esta Tesis fueron: 

1- Las nuevas técnicas de neuroimagen pueden proveer información 

útil para la neuropsicoterapia. 

2- La realidad virtual puede ayudar en la evaluación del trastorno, 

mejorando la exactitud con la que los sujetos son expuestos al 

estímulo. 



 

3- Los entornos usados serán lo suficientemente envolventes como 

para que el paciente se sienta presente en ellos y los considere 

“reales”. 

Para lograr dichos objetivos, cada una de las líneas de actuación 

planteadas (estudio de presencia y evaluación de un trastorno 

mental) se dividió a la vez en dos partes. En total, se desarrollaron 

cuatro estudios: 

1- Estudio del sentido de presencia en entorno virtual mediante fMRI: 

el objetivo de esta parte de la Tesis fue comprobar si los entornos 

eran capaces de estimular el sentido de presencia, correlando los 

resultados con los datos obtenidos por medio de cuestionarios.  

2- Estudio del sentido de presencia en entorno virtual mediante EEG: 

el objetivo aquí fue comparar las activaciones cerebrales obtenidas 

mediante EEG con aquellas obtenidas en el primer estudio, a la vez 

que comprobar que las respuestas a cuestionarios fueron 

equivalentes, a pesar de la menor intrusividad del escáner.  

Como resultado de estos dos estudios, se decidió que los entornos 

eran suficientemente envolventes como para inducir el sentido de 

presencia, y que la mejor técnica de neuroimagen a utilizar para la 

segunda parte de la Tesis era la fMRI, debido a su mayor resolución 

espacial.  

3- Evaluación de trastorno psicológico, pre-tratamiento: una vez 

decidido que el estudio se llevará a cabo usando fMRI, las áreas 

relacionadas con el trastorno mental escogido (fobia a animales 

pequeños) se estudiaron usando RV como estímulo. Hasta la fecha, la 

evaluación de dicho trastorno se había realizado usando imágenes o 

vídeos de animales reales como estímulo, pero no usando RV; lo que 

se hipotetiza que permitirá un mejor acercamiento a la experiencia 

fóbica. 

4- Evaluación del estado de sujetos con desorden psicológico, post-

tratamiento: una vez los pacientes han pasado por un tratamiento 



 

para curar la fobia, fueron evaluados otra vez para comprobar si las 

áreas cerebrales relativas a la fobia dejaban de activarse después de 

la terapia. 

Como resultado de esta segunda parte de la Tesis, se obtuvieron las 

áreas relativas a la fobia (que dejaban de activarse tras el 

tratamiento). Se espera que dicha información pueda ser útil en 

futuros trabajos de neuropsicoterapia para conseguir un mejor ajuste 

del trastorno. 

En conclusión, con esta tesis se han conseguido estudiar las ventajas 

que las nuevas técnicas de neuroimagen y la realidad virtual pueden 

proveer en el campo de la neuropsicoterapia. 

 

  



 

Abstract 
Neuropsychotherapy is a new philosophy in the treatment of mental 

disorders that bases its principles in the application of the 

information we have about the brain activations and brain 

functioning to adjust the therapy to them, in order to center the 

process in how the brain evolves to its normal activations.  New tools 

in the field of neuroimaging have helped in this process, providing 

accurate and detailed information about how the particular brain of 

each patient works. Between the many neuroimaging techniques 

available nowadays, the functional magnetic resonance (fMRI) stands 

out by its high spatial resolution, which allows a better knowledge of 

which brain area is activated before each stimulus or while 

performing each activity. The disadvantages this technique presents 

in terms of size of the scanner and restriction of movements give 

light to another technique, more suitable in certain domains: the 

electroencephalography (EEG), which provides a greater freedom of 

movement and higher temporal resolution.  

For the purposes of this PhD Thesis, both techniques will be 

compared, in order to find which one better suits our interests. For 

doing so, another factor will be taken into account. Due to the 

limitations the neuroimaging techniques have in terms of 

presentation of the stimuli, we are not able to expose the subject to 

certain kinds of real life situations. There is where the virtual reality 

(VR) enters the scene. With VR we are able to move the subject to a 

virtual world where any kind of stimulus is possible. In the case of 

neuropsychotherapy, it will allow the exposition of the patient to a 

situation related to his disorder, in a safer and more controlled 

environment.  

In fact, virtual reality has been widely used for the treatment of 

psychological disorders; but, until now, it has not been applied during 

the assessment of the disease. For the aims of this Thesis, virtual 

environments will be used for the assessment of subjects before and 

after undergoing a psychological treatment for a specific disorder, 



 

using neuroimaging techniques to find useful information that could 

help during the therapeutic process. As an example of disorder, the 

phobia to small animals (spiders and cockroaches) has been chosen, 

although the conclusions of this study could be extended to other 

kinds of psychological disorders.  

Before being able to assure that the brain activations obtained are 

related to the disorder and not to other issues, it is needed to 

measure the sense of presence the subjects felt during the virtual 

experience. This is why before the assessment of a psychological 

disorder, a study of the sense of presence in a virtual environment 

was introduced. This study also helped in the decision of which 

neuroimaging technique apply in the second part of the Thesis. EEG 

and fMRI were used for the measure of presence in the same virtual 

environments, and the results in terms of brain activations were 

compared. Presence was also measured by means of questionnaires, 

the traditional subjective way of measuring it. As a result of this study 

it is expected to check if VR could effectively stimulate presence and 

which neuroimaging technique is more appropriate for the targets of 

this Thesis.  

To sum up, the initial hypotheses of this Thesis are that: 

1- The new neuroimaging techniques can provide of useful 

information to use during neuropsychotherapy. 

2- Virtual reality would help in the assessment of the disorder, 

improving the accuracy in the way the subjects are exposed to the 

stimuli. 

3- The environments used would be immersive enough so the patient 

will feel present in them and feel them as real. 

For fulfilling these objectives, each of the two courses of work (study 

of presence and assessment of a mental disorder) was divided in two 

parts. In total, four studies were developed: 



 

1- Study of the sense of presence in a virtual environment using fMRI: 

the aim of this part of the Thesis was to check if the environments 

were able to stimulate the sense of presence, correlating the results 

with those given to questionnaires. 

2- Study of the sense of presence in a virtual environment using EEG: 

the aim here was to compare the brain activations obtained with EEG 

with those from the previous study, and if the responses of the 

questionnaires were equivalent despite being in a less intrusive 

scanner. 

As a result of these two studies, it was decided that the environments 

were immersive enough to induce the sense of presence, and that 

the best neuroimaging technique for the next part of the Thesis was 

the fMRI, due to the higher spatial resolution it brought.  

3- Assessment of a psychological disorder, pre-treatment: once 

decided the study will continue with fMRI, the areas related to a 

specific disorder (small animals’ phobia) were studied using VR as 

stimulus. Until now, the assessment has been done using real animals 

as stimuli but not using VR, which here is hypothesized to allow a 

better approach to the phobic experience than the view of 

photographs or videos of real animals. 

4- Assessment of the state of subjects with a psychological disorder, 

post-treatment: once the patients had underwent a treatment to 

cure the disorder, they were assessed again to check if the brain 

areas related to the phobia stopped being activated after it. 

As a result of this second part of the Thesis, the brain areas related to 

the phobia (that stopped being activated after the treatment) were 

obtained, and this information is hoped to be useful in future 

neuropsychotherapeutic works, for the better adjustment of the 

disorder. 



 

In conclusion, this PhD Thesis studies the advantages that the new 

neuroimaging techniques and virtual reality could bring to the study 

of neuropsychotherapy. 

 

  



 

Resum 
La neuropsicoteràpia es una nova filosofia que s’ha adoptat durant el 

tractament de malalties mentals, basada en l’aplicació de la 

informació coneguda sobre les activacions cerebrals i el 

funcionament del cervell per ajustar la teràpia, de cara a enfocar el 

procés en funció de com evoluciona el cervell cap a les activacions 

considerades normals. Les noves ferramentes aparegudes en el camp 

de la neuroimage han ajudat en aquest procés, proveint informació 

detallada i precisa del funcionament del cervell en cada pacient 

particular. Entre les moltes tècniques de neuroimagen disponibles 

hui en dia, la ressonància magnètica funcional (fMRI) destaca per la 

seua alta resolució espacial, que permet un major coneixement de 

què àrees s’activen amb cada estímul o estan envoltes en la 

realització de cada acció. Els desavantatges que aquesta tècnica 

presenta en termes de grandària de l’escàner i restricció del 

moviment dins del mateix donen peu a la distinció d’una altra 

tècnica, més apropiada en certs casos: l’electroencefalografia (EEG), 

que permet una major llibertat de moviment i té una major resolució 

temporal. 

Per als interessos de la Tesi, les dos tècniques es compararan, de cara 

a obtindre quina ofereix majors beneficis. A més, un altre factor serà 

tingut en compte. Les limitacions que les tècniques de neuroimage 

tenen al voltant de la presentació d’estímuls fa que hi hagen certes 

situacions de la vida real que no es poden mostrar als subjectes. En 

aquest punt es on la realitat virtual (RV) entra en joc. Gràcies a la RV 

som capaços de traslladar el subjecte a un món virtual on qualsevol 

tipus d’estímul és possible. En el cas de la neuropsicoteràpia, aquest 

ens permetrà l’exposició del pacient a situacions relacionades amb la 

seua malaltia, de un mode controlat i més segur.  

De fet, la realitat virtual ha sigut àmpliament utilitzada en el 

tractament de trastorns psicològics; no obstant, fins ara no ha sigut 

aplicada durant la avaluació de la malaltia.  Per als objectius 

d’aquesta Tesi, els entorns virtuals seran usats per a l’avaluació de 



 

subjectes abans i després de passar per un tractament psicològic per 

al trastorn específic, utilitzant tècniques de neuroimage com a 

ferramenta per obtindre informació útil que puga ajudar en el procés 

terapèutic. Com exemple de malaltia, es va elegir la fòbia a animals 

petits (en concret, a aranyes i paneroles), encara que les conclusions 

d’aquest estudi són extensibles a altres tipus de trastorns psicològics.  

Abans de ser capaços d'assegurar que les activacions cerebrals 

obtingudes son degudes a la malaltia i no a altres variables, es precís 

mesurar el sentit de presencia que els subjectes senten durant 

l’experiència virtual. Aquesta es la raó per la que es va incloure, 

prèviament al estudi de la avaluació d’un trastorn psicològic, el estudi 

del sentit de presencia en un entorn virtual. Dit estudi també va 

ajudar en la decisió de quina tècnica de neuroimagen era la més 

adequada per a la segona part de la Tesi. Tant EEG com fMRI van ser 

utilitzades per a la mesura de presencia en el mateix entorn virtual, i 

els resultats en termes de activacions cerebrals van ser comparats. La 

presencia va ser mesurada també mitjançant qüestionaris, que es la 

manera tradicional per a la seua mesura. Com a resultat de l’estudi, 

s’esperava comprovar si la RV podia efectivament estimular el sentit 

de presencia i decidir quina tècnica de neuroimage era la més 

adequada per als objectius de la Tesi.  

Com a resum, les hipòtesi inicials d’aquesta Tesi van ser:  

1- Les noves tècniques de neuroimagen poden proveir d’informació 

útil per a la neuropsicoteràpia.  

2- La realitat virtual pot ajudar en l’avaluació del trastorn, millorant 

l’exactitud amb la qual els subjectes són exposats a l’estímul. 

3- Els entorns utilitzats seran suficientment envoltants per aconseguir 

que el pacient es senta present en ells i els considere “reals”. 

Per a aconseguir aquests objectius, cadascuna de les dues línies 

d’actuació (estudi de presencia i avaluació d’una malaltia mental) es 



 

va dividir a la mateixa vegada en dues parts. En total, es van 

desenvolupar quatre estudis:   

1- Estudi del sentit de presencia en entorns virtual mitjançant fMRI: 

l’objectiu va ser comprovar si els entorns virtuals eren capaços 

d’estimular el sentit de presencia, correlant els resultats amb els 

obtinguts dels qüestionaris.  

2- Estudi del sentit de presencia en entorn virtual mitjançant EEG: 

l’objectiu en aquesta part de la Tesi va ser comparar les activacions 

cerebrals obtingudes amb EEG amb les obtingudes en el primer 

estudi, i al mateix temps comprovar que les respostes a qüestionaris 

eren equivalents, a pesar de la menor intrusivitat de l'escàner.  

Com a resultat d’aquests dos estudis, es va decidir que els entorns 

eren suficientment envoltants com per a induir el sentit de presencia, 

i que la millor tècnica de neuroimage a utilitzar per a la segona part 

de la Tesi era la fMRI, a causa de la seua millor resolució espacial.   

3- Avaluació de trastorn psicològic, pretractament: una vegada que 

s’ha decidit que l’estudi es desenvoluparà utilitzant fMRI, les àrees 

relacionades amb la malaltia triada (fòbia a animals petits) es van 

estudiar utilitzant RV com estímul. Fins ara, l'avaluació del dit 

trastorn s'havia realitzat usant imatges o vídeos d'animals reals com a 

estímul, però no usant RV; la qual cosa s'hipotetitza que permetrà un 

millor acostament a l'experiència fòbica.  

4- Avaluació de l'estat de subjectes amb trastorn psicològic, post-

tractament: una vegada els pacients han passat per un tractament 

per a curar la fòbia, van ser avaluats una altra vegada per comprovar 

si les àrees cerebrals relatives a la fòbia deixaven d'activar-se després 

de la teràpia. 

Com resultat d'aquesta segona part de la Tesi, les àrees relatives a la 

fòbia (que deixaven d'activar-se després del tractament) van ser 

obtingudes, i s'espera que la dita informació puga ser útil en futurs 

treballs de neuropsicoteràpia per un millor ajustament del trastorn. 



 

En conclusió, en aquesta Tesi s’han estudiat els avantatges que les 

noves tècniques de neuroimage i la realitat virtual poden proveir en 

el camp de la neuropsicoteràpia.   
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1 Introduction 
In the study of the brain, many are the efforts done to try to 

understand its precise function. The great development of the new 

neuroimaging techniques are an example of these efforts. Brain 

imaging methods such as fMRI, PET or EEG have improved their ways 

of capturing and processing the images in order to extract more 

relevant and useful information from the brain scans. More precisely, 

the functional magnetic resonance image technique (fMRI) is widely 

used due to its great spatial resolution (between 1 and 3 mm) and its 

good temporal resolution of about 1s (Baumann et al., 2003). 

However, the fMRI is highly invasive (when the participants are inside 

the fMRI they are completely limited, and all the stimuli that the 

subjects can receive are reproduced by adapted glasses or 

headphones); so when a higher freedom of movements is required, 

the electroencephalography (EEG) is the chosen one. Moreover, the 

EEG presents the additional advantage of having a temporal 

resolution of milliseconds. 

One tool that has helped in overcoming the disadvantages due to the 

limitations in movement during the scan is virtual reality (VR). With 

virtual environments, you can move the subject to any situation you 

want him to face, and still be able to measure his brain activity during 

tasks he would not be able to perform inside the fMRI in any other 

way. Moreover, the situations in which he is introduced are 

completely controlled, so there will be no risks for him (which is 

especially useful, for example, when applying VR for the treatment of 

psychological disorders).  

The present PhD Thesis was conducted in the LabHuman group 

(I3BH) inside the Universitat Politècnica de València (UPV), supported 

by the Generalitat Valenciana under a VALi+d Grant. The research 

was conducted in collaboration with the Labpsitec group and the 

Departamento de Psicología Básica, Clínica y Psicobiología from the 

Universitat Jaume I in Castellón. LabHuman has wide experience in 

the use of Virtual Reality for different purposes. Moreover, it has 
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previous experience in the study of the sense of presence using a 

brain activity technique, Transcraneal Doppler (TCD), for its measure 

(work developed in the PhD Thesis of Beatriz Rey directed by 

Mariano Alcañiz).  

In the present work, the main goal was to study the possibilities of 

the combined use of virtual reality with neuroimaging in the field of 

neuropsychotherapy. For this purpose, the course of action was 

divided into two main objectives: the study of the sense of presence 

inside a virtual environment and the assessment of the effects that a 

psychological treatment to cure a mental disorder (in particular, 

small animals’ phobia) has over the brain activations of the subjects, 

using virtual environments as stimuli. Before being able to assess or 

treat a mental disorder by means of virtual reality, it is needed to 

make sure that the environment elicits the sense of presence in the 

subject (Bush, 2008; Vincelli & Riva, 2002). That is why in the first 

place neuroimaging techniques were used to analyze the brain areas 

activated while feeling present in the virtual world. Moreover, the 

aim was to check by means of questionnaires if the subject felt 

present despite the interference introduced by the neuroimaging 

devices (the fMRI scanner or the EEG headset). Because the EEG 

device is clearly less invasive than the fMRI scanner, both 

neuroimaging techniques were compared to see if the virtual 

experience was influenced by that. In fact, fMRI results were 

compared with those obtained with a wireless portable EEG Emotiv 

EPOC, which allows an even higher freedom in the user and is easier 

to put on. With this the intention was to evaluate if the brain areas 

related to the sense of presence activated were equivalent whatever 

technique was used, and that the virtual experience was not 

influenced by the neuroimaging technique used. This also helped in 

the choice of the neuroimaging technique more appropriate for the 

second phase of the study, in which the effects of the psychological 

treatment were studied using virtual environments as stimuli. Finally, 

it was decided that the technique with the greater spatial resolution 

(the fMRI) was the most advisable for the interests of the Thesis.   
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1.1 Objectives 
To delve into the applications of virtual reality and neuroscience in 

the neuropsychotherapy, as aforementioned, the study was divided 

into two courses of action: the study of presence and the assessment 

of a psychological treatment (study of small animals’ phobia). 

Presence is the feeling the subject has of “being there”, inside the 

virtual environment, although his body is located elsewhere 

(Sheridan et al., 1992). Since the feeling of presence is fundamental 

in any study developed with VR, for measuring the brain areas 

related with the phobia while exposing the patient to a virtual 

environment, first it is needed to ensure that the subject feels the 

environment as real. So both courses of the research are closely 

related. Now there will be described the different achievements to 

reach in this work. 

1.1.1 Evaluating Presence in a Virtual Environment 

In this study the first objective will be to analyze the sense of 

presence the subject feels while navigating through a virtual 

environment. For this, three experimental conditions will be 

compared: view of photographs, view of a video of an automatic 

navigation and free navigation in the VE. In all parts of the study, the 

subjects will fulfill some presence questionnaires which will provide a 

subjective measure of their sense of presence that will be compared 

with the results obtained in terms of brain activation. The 

questionnaires used were the SUS questionnaires (Usoh et al., 2000), 

developed to evaluate the sense of presence a posteriori. Those tests 

consisted in six 7-point Likert type questions, to answer depending 

on the strength of the presence experienced (see Appendix 4).   

This study is first developed with fMRI to check if it is really possible 

for the subject to feel present while being laid down inside the 

scanner. To verify these results, they will be compared with those 

obtained in an equivalent EEG research. In this one, the subjects 

perform the same task, but this time with a less influential 
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neuroimaging machine such as the EEG helmet. The intention was to 

check if the results obtained with both techniques were comparable. 

Moreover, inside the EEG study another objective was considered. A 

new kind of EEG helmet has been recently released, which allows an 

easier placement of the electrodes and is portable and wireless. This 

helmet is much cheaper and easy to work with, so the activations 

obtained with this new helmet (Emotiv EPOC, Emotiv Systems, 

Eveleigh, Sydney, Australia) will be compared with those obtained 

with the fMRI scan, and check the usability of the device for scientific 

research.  

To summarize, the objectives in this section will be: 

 To check if the presence experience inside a virtual 

environment can be elicited, even inside a fMRI scan, where 

the subject has to remain laid down and the situation is 

uncomfortable to him. 

 

 To measure the differences in brain activation between the 

three navigation conditions: photographs, video and 

navigation. These comparisons will lead to three groups of 

results. The comparison between the navigation and video 

conditions obtains the brain activations due to the free 

movement through the environment, avoiding any other 

constituent. The comparison of the navigation and 

photographs conditions obtains the activations for the 

navigation condition, using as control still images which avoid 

activations due to visual stimuli, but still maintain those 

related to the visual movement through the VE. Lastly, the 

comparison of the video and photographs conditions only 

considers the guided movement in comparison with still 

photographs.  
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 To compare those fMRI results with the answers given by 

three post-scan presence questionnaires (one for each 

condition). This will lead to the measure of the correlations 

between the brain activations and the subjective ratings of 

presence. 

 

 To compare the results given to the presence questionnaires 

in the fMRI study with those obtained in a previous TCD 

research conducted by the Labhuman group (Alcañiz et al., 

2009). 

 

 To measure the differences in brain activation between the 

same three experimental conditions with a high temporal-

resolution technique such as EEG. For obtaining the brain 

activations out of the electrical signals of the scalp, sLORETA 

tool will be used. 

 

 To compare between the brain activations obtained from the 

EEG signals and those obtained with a high spatial-resolution 

technique such as fMRI. 

 

 To compare the results given to the presence questionnaires 

in the EEG study to those obtained in the fMRI study. 

 

 To evaluate the usefulness of the Emotiv EPOC for the 

research field. This headset, although designed for more 

commercial applications such as games, could save time and 

money if demonstrated its functioning in the research area. 

Not only this device costs far less than any other 

neuroimaging scan, but also its placement over the scalp 

takes only a few minutes, in comparison with the half an 

hour needed for other EEG devices.  

At the end of this study, the global objective would be to evaluate 

the usefulness of the neuroimaging techniques for the measure of 
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presence, giving more objective results than the traditional 

questionnaires; and allowing the monitoring of the sense of presence 

over time and in terms of brain activations.  

Moreover, the proof of the sense of presence being elicited inside a 

fMRI scan will allow the development of the second course of study 

of this PhD Thesis: the assessment of the effects of a psychological 

treatment over the brain activations, using fMRI. If it can be proved 

than the subjects feel presence inside the VE although being laid 

inside a fMRI scan, then it can be assured that the brain areas 

activated during the assessment are due to the phobia and not to 

other causes; because if the subject feels he is present in the fMRI 

setting, he would react to the phobic objects as he would do in the 

real world.  

1.1.2 Assessment of a psychological treatment 

The second curse of investigation will cover the contributions that 

the neuroimaging assessment of the effects of a psychological 

treatment over the brain activations may have over the 

neuropsychotherapeutical theory, and how the information obtained 

from this kind of studies can be used in the benefit of the treatment 

of a psychological disorder. All this was developed for one specific 

kind of disorder: the small animals’ phobia, more specifically, the 

spiders and cockroaches’ phobia. Until now, Virtual Reality has been 

widely used for the treatment of phobias, but not as stimuli for the 

assessment of the phobic subjects. In this study, entirely performed 

with fMRI, two scans will be applied to each subject. Each patient will 

be scanned before and after going on a psychological treatment to 

get over the phobia, and the brain areas activated in both scans will 

be compared.  

During the scan, the task the subjects have to perform is divided in 

three conditions: navigation through a clean room (clean), navigation 

through a dirty room but without spiders or cockroaches (dirty) and 

navigation through a dirty room with the phobic animals (phobic). So 

in the results’ analysis there will be three comparisons to analyze: in 
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the first one the phobic and dirty conditions will be compared, which 

will provide of information about the brain activations related to the 

fear without considering the anxiety level; in the second one a 

comparison between the phobic condition and the clean one will be 

done, taking into account all the brain activations related to the 

phobia (fear and anxiety); and finally the third one, the comparison 

between the dirty and the clean conditions, will measure the anxiety 

levels in the subject when he sees a room susceptible to have spiders 

and cockroaches, but without them (anxiety due to the dirtiness of 

the room).  

Altogether, the specific objectives of this curse of the research will 

be: 

 Analyze the brain areas related to the phobia in the three 

aforementioned comparisons. Those results correspond to 

those obtained in the pre-treatment fMRI scan conducted 

over the phobic subjects. 

 

 Compare the activations obtained in this study using VR as 

stimuli with those obtained in previous researches conducted 

by other groups, using images of real animals. 

 

 Obtain the brain areas activated in the phobic subjects after 

the psychological treatment has been applied. Compare 

those with the ones obtained before the treatment and 

evaluate if those activations that were identified as related to 

the phobia in the pre-scan are no longer activated.  

 

 Obtain the brain areas which had a restrained activation 

caused by the phobia, and after the treatment were 

reactivated. 

As a result of this study, the hypothesis of the usefulness of virtual 

reality to the phobia stimulation during the assessment of the 
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disorder will be analyzed. This would open the door for the use of 

virtual stimulus instead of real ones during the assessment of the 

phobias. This would help, for example, in the analysis of mild phobic 

subjects, whose fear is not activated with the simple use of pictures 

and need more stimulating stimuli such as virtual environments. 

What is more, those environments allow the personalization of the 

characteristics for adjusting the level of phobia of the subject, and 

always in a safe surrounding. In the case of small animals’ phobia, 

this allows the assessment of the patient in medical installations, 

where the introduction of real animals could need for special 

permissions. In other cases where the phobia-related anxiety is 

difficult to be elicited from a clinical environment, such as 

agoraphobia or fear of flying, the VR could allow the assessment 

avoiding the direct exposure of the patient to the real situation. 

As a more general goal, the information obtained in this section 

would show the possibilities that neuroimaging and virtual reality 

could bring to neuropsychotherapy. In the future, this could lead to 

the adaptation of the therapy to incorporate the information in 

terms of brain areas for the better treatment of the patient. 

1.2 Structure  
The present document is organized in the following chapters: 

 CHAPTER 1: Introduction. This current chapter covers the 

introduction to the study conducted in this PhD Thesis, as 

well as the objectives fulfilled. In the first section it has been 

described the motivation and content of the thesis, as well as 

the different studies conducted. In the second part the 

objectives were described. In this third part, a description of 

the different chapters of this document is being fulfilled.  

 

 CHAPTER 2: Neuropsychotherapy. In this theoretical chapter, 

the justification of this PhD in terms of the 

neuropsychotherapeutical theory will be presented, as well 
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as the previous knowledge needed for the better 

understanding of this work. First, there will be explained in 

detail the main characteristics of the brain, its functioning 

and structure. This will bring a better understanding of it 

before explaining what has been done in this PhD Thesis. 

Then, the two neuroimaging techniques used (fMRI and EEG) 

will be explained: its historical development, its functioning, 

its applications and the analysis of the data. Finally, the 

proposal of work for this thesis will be exposed, which will 

describe the underpinnings of the virtual reality and a little 

state of the art of the work previously done. 

 

 CHAPTER 3: Presence. In the third chapter, the study about 

measuring the sense of presence felt while navigating inside 

a virtual environment will be exposed. First, the definition of 

presence inside a virtual environment will be explained, and 

the different ways of measuring presence used until now 

presented. Once the theory has been exposed, there will be 

explained the two studies developed in this PhD Thesis for 

the measure of presence. First, there will be described the 

virtual environments used, that were the same for the two 

studies. Then, the fMRI study of the sense of presence will be 

presented, indicating the subjects that underwent the scans, 

the questionnaires they fulfilled, and the parameters used for 

acquiring the images (Materials and Methods section). Then, 

the results obtained for each of the experimental conditions 

will be presented, as well as the comparisons with the 

questionnaires (Results section). Finally, a discussion of those 

results will be done (Discussion of the Results section). 

 

After presenting the fMRI study, it will be exposed the work 

conducted using EEG to check if the results were equivalent 

to those obtained using fMRI. It will be explained the subjects 

that were analyzed, how the data were taken and the 
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questionnaires fulfilled. This study was developed with two 

different screens: a power wall and a desktop screen. These 

two devices will be described and, then, the results obtained 

with each one will be presented and discussed, comparing 

the data of the two studies and comparing them with the 

results obtained in the fMRI work.  

 

 CHAPTER 4: Assessment of a treatment: Small Animals’ 

Phobia. In this chapter, the study of small animals’ phobias 

will be exposed. First, an introduction to the phobia will be 

done: the spread and main characteristics of this mental 

disorder, the traditional ways of assessing the phobic 

subjects and how the use of neuroimaging techniques 

combined with VR could help, and the principal ways of 

treating the disorder. Then, the study conducted will be 

presented. First there will be introduced the Materials and 

Methods section, where there will be explained the subjects 

that were scanned, the environments used, the fMRI 

procedures developed and the analysis of the data. Next, the 

Results for the pre-treatment study will be presented and 

discussed. The same will be done for the comparison 

between the pre-treatment and the post-treatment results. 

Finally, the overall conclusions of the study will be explained 

and the limitations discussed. 

 

 CHAPTER 5: Conclusions. In this final chapter, the main 

conclusions of the two branches of study will be presented, 

and the future lines of work exposed. The conclusions of the 

presence study will cover the usefulness of neuroimaging 

techniques for the measure of the sense of presence, the 

advantages and disadvantages to use fMRI vs. EEG and the 

possibilities the low-resolution Emotiv EPOC EEG headset 

could offer. The conclusions of the assessment of a 

treatment study will include the correspondence between 
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the brain areas activated in this research and those obtained 

in previous works using real animals as stimuli and the 

possibilities the use of virtual reality for the assessment of 

small animals’ phobia could bring. Finally, all these specific 

conclusions from each branch of study will be taken into 

account together to originate the overall conclusions of this 

thesis and the contributions that neuroimaging and virtual 

reality could bring to neuropsychotherapy. 

 

In this chapter there will also be included the publications 

derived from the work developed in this PhD Thesis. Finally, 

the main future curses of investigation to lead and the 

possible future studies will be exposed. 

 

 APPENDIXES. Finally, 6 appendixes have been included: 

1. Appendix 1: The informed consent the subjects have 

to sign before entering the fMRI scan. 

 

2. Appendix 2: The informed consent the subjects have 

to sign before passing the EEG scan. 

 

3. Appendix 3: The “Edinburg Handedness Inventory” 

(Oldfield et al., 1971) questionnaire to measure the 

laterality over the participants of the study. 

 

4. Appendix 4: The SUS questionnaires (Usoh et al., 

2000) used for the subjective measure of presence, 

personalized for each of the experimental conditions: 

photographs, video and navigation. 

 

5. Appendix 5: The diagnostic criteria (DSM-IV) for 

300.29 specific phobia. 
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6. Appendix 6: The Anxiety Disorders Interview 

Schedule for DSM-IV (ADIS-IV) for the specific 

phobias, a semistructured model of interview for the 

assessment of the phobia.  
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2 Neuropsychotherapy  
Before presenting the studies that were conducted for this thesis, it is 

necessary to introduce the background in which the work was set. 

The main hypothesis of this Thesis recalls in the assessment of the 

changes produced in the brain due to a psychological treatment. 

More specifically, the comparison between the brain activations 

before and after the treatment will show the changes produced 

following a characteristic of the brain called neuroplasticity. Until 

now, many studies have been benefited by the goodness of the use 

of virtual reality during the treatment itself. However, this same 

virtual reality has not been applied for the assessment of the effects 

of this treatment.  

In the treatment of mental disorders, a new course of study has 

appeared that defends the hypothesis that psychological therapies 

could be improved by making use of the knowledge acquired about 

the brain functioning, changing the way in which the treatment is 

applied to match the brain activity patterns pursued. According to 

this, a more accurate knowledge of the patient’s specific brain 

functioning would help in modeling his treatment according to his 

needs. 

Before entering in more detail in the matter of the work developed in 

this Thesis, the theoretical basis in which it has been based will be 

introduced. First of all, a brief explanation of the brain and its 

structure will be made. Then, the principles of neuropsychotherapy 

will be exposed. For the better understanding of the brain 

functioning, some tools are needed to analyze it. This is where the 

neuroimaging techniques come into play. Finally, as aforementioned, 

the proposal of the use of virtual environments instead of real ones 

for the assessment of the treatment’s effects will be done, together 

with a brief introduction to the virtual reality. 
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2.1 The Brain 
Let’s situate the brain inside the body, as a fundamental part of the 

nervous system. The nervous system is the part of the body charged 

with the coordination of all the voluntary and involuntary actions, 

communicating all the areas of the body. The human nervous system 

is divided in two main areas: the central nervous system (CNS) and 

the peripheral nervous system (PNS). The peripheral nervous system 

is formed by all the nerves that go across the body, transmitting the 

senses and orders from/to the CNS. The CNS is formed by the 

encephalon and the spinal cord, and protected by the meninges. The 

encephalon is formed at the same time by the brain, the cerebellum 

(located below the brain, in its posterior area) and the brainstem 

(which connects the brain with the spinal cord), and protected by the 

skull.  

 

Figure 2.1 Human nervous system 

At the cellular level, the cells that transmit the signals from the CNS 

to the rest of the body through the nerves are called neurons. The 

signals are transmitted by differences of potential in the neurons, 

which cause at the synapses (junctions between cells) the release of 

chemicals called neurotransmitters.  

http://commons.wikimedia.org/wiki/File:TE-Nervous_system_diagram-la.svg
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Figure 2.2 Parts of the neuron 

The brain is the most important and bulky area of the nervous 

system. It is divided into two hemispheres (left and right) separated 

by the longitudinal fissure and communicated with the corpus 

callosum. The surface is what is called the cerebral cortex, formed by 

folds (gyrus) of grey matter, below which it is found the white matter. 

In deeper areas of the brain there are nucleus of grey matter, such as 

the thalamus, the caudate nucleus and the hypothalamus.  

 

Figure 2.3 Brain hemispheres 
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Each cerebral hemisphere is divided in four lobes; frontal, parietal, 

temporal and occipital; separated by the central, parieto-occipital, 

lateral and calcarine sulcus. The frontal lobe is located in the anterior 

area of the central sulcus, above the lateral sulcus. The parietal lobe 

is located posterior to the central sulcus, over the lateral sulcus. The 

occipital lobe is located below the parieto-occipital sulcus. Finally, the 

temporal lobe is located below the lateral sulcus.  

The frontal lobe is divided into six areas: the primary motor area, the 

pre-motor area, the supplementary motor area, the frontal ocular 

field, the Broca’s area and the pre-frontal cortex. It mainly controls 

the motor functions of the body and the formation of words in the 

language (Broca’s area). Moreover, the frontal lobe contains most of 

the dopamine-sensitive neurons in the cerebral cortex, associated 

with functions of reward, attention, short-term memory, planning 

and motivation. 

 

Figure 2.4 Frontal lobe 

The parietal lobe is divided in the primary somatosensorial area and 

the association somatosensorial area. Its function is mainly that of 

integrating sensory information from different modalities, 

particularly determining spatial sense and navigation. It also includes 

the processing of the information related to the sense of touch and 

the visuospatial processing. 
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Figure 2.5 Parietal lobe 

The occipital lobe contains the primary and secondary visual areas, 

related to the processing of the visual stimulus. The primary visual 

cortex is commonly called V1 or striate cortex, and the regions 

outside it called extrastriate cortex. Those extrastriate regions are 

specialized in different visual tasks, such as visuospatial processing, 

color discrimination and motion perception.  

 

Figure 2.6 Occipital lobe 

The temporal lobe consists in the primary and secondary auditory 

areas, and the Wernicke’s area. Between its many functions, apart 

from the auditory processing, there can be mentioned retention of 

visual memories, processing sensory input, comprehending language 

(Wernicke’s area, directly connected with the Broca’s area in the 

frontal lobe by the arcuate fasciculus), storing new memories, 

emotion, and deriving meaning.  
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Figure 2.7 Temporal lobe 

Apart from those four main lobes, the brain contains the limbic lobe 

and the insula. The limbic lobe is an arc-shaped region on the medial 

surface of each cerebral hemisphere, formed by parts of the frontal, 

parietal and temporal lobes. It is mainly formed by the cingulate and 

the parahippocampal gyri, and related to the sense of smell. 

However, more recently several studies have remarked the 

connection of the limbic lobe with emotion and behavior. The insula 

is an area of the cerebral cortex folded deep inside the lateral sulcus 

(in both hemispheres). It is believed to play a key role in 

consciousness and emotion and regulation of body’s homeostasis. 

These functions include perception, motor control, self-awareness, 

cognitive functioning, and interpersonal experience.  

 

Figure 2.8 a) Limbic lobe, b) Insula 
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2.2 Introduction to Neuropsychotherapy 
Traditional psychotherapy aims to treat the mental disorders 

following validated therapeutic processes based on the patient’s 

individual life experiences. In words of LeDoux (2002, p. 299), 

“psychotherapy is fundamentally a learning process for its patients, 

and as such is a way to rewire the brain. In this sense, psychotherapy 

ultimately uses biological mechanisms to treat mental illness”. 

According to this state, mental processes can be effectively and 

permanently altered through psychotherapy.  

However, new courses of research are demonstrating that this 

traditional way of treating the disorder could be improved using the 

information available about the brain and its plasticity. As Klaus 

Grawe remarked in his book Neuropsychotherapy (Grawe, 2007), all 

mental processes are based on neural processes; so a better 

understanding of the brain function may help to the higher success of 

the psychological therapy.  

It has been proved that psychotherapy, at the same time that it leads 

to behavioral change, achieves an effect through changes in the gene 

expression at the neuronal level (Kandel, 1996). Consequently, the 

success of a psychotherapeutic treatment relies on the structural 

changes in the neurons involved. From a neuroscientific point of 

view, the new neuroimaging methods could not only help in the 

diagnosis of mental illnesses, but also in the assurance of the 

effectiveness of psychotherapy (Kandel, 1996, p. 711). In words of 

Grawe (2007), “Such a neuroscientific explanation of already existing 

therapeutic strategies does not result in the creation of a new form 

of psychotherapy but instead yields a new perspective on 

psychotherapy”. 

Neuropsychotherapy is aimed to bring a new neuroscientific point of 

view to the problems that already exist over psychotherapy, helping 

to understand the mental disorder not only as a behavioral or 

emotional problem, but also as a change in the activation of the brain 
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areas involved in the illness and, consequently, in the neural 

connections that yield under them. Moreover, the neural system has 

demonstrated to present a high degree of plasticity, even during 

adulthood; so the brain continues to respond remarkably well to 

recurring stimulation of high intensity, retaining its ability to form 

new neural structures (Grawe, 2007). Psychotherapy could use this 

neural plasticity to design new courses of treatment based on new 

forms of stimulation, intense and frequent enough, to modulate the 

brain activations and change their functioning. 

So according to the neuropsychotherapy theory, a better 

understanding of brain functioning could lead to a better treatment 

of several mental diseases, and there is where the new neuroimaging 

techniques appear as a fundamental tool to achieve those goals. In 

this Thesis, neuroimaging will be used for the study of changes in 

brain activations before and after undergoing a psychological 

treatment. This knowledge would lead to a future change in the 

therapy itself, adapting it in order to model the brain activations in 

the patient to make them closer to those considered normal. 

2.3 Evaluation of the brain activity: Neuroimaging 

Techniques 
Once understood the importance that a deep understanding of the 

functioning and structure of the brain has for neuropsychotherapy, 

the main characteristics of the two neuroimaging techniques applied 

for its study in this Thesis will be exposed: fMRI and EEG. 

2.3.1 Introduction to the Magnetic Resonance 

The main neuroimaging technique applied for the study in this Thesis 

is the functional magnetic resonance, an specific type of magnetic 

resonance which analyses the functioning of the brain based on its 

consume of oxygen in the active areas of the brain. In this section 

there will be done a detailed exposition of the historical evolution of 

this technique, its functioning and applications. Finally, it will be 
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explained how the analysis of the fMRI data in this Thesis was done, 

by means of a developed software: the SPM8 for Matlab. 

2.3.1.1 Historical Introduction to the Magnetic Resonance 

To study the origins of the magnetic resonance, it is needed to go 

back to the beginning of the 20th century, when in the early 30s Isidor 

Isaac Rabi analyzed the magnetic properties of the atoms. Rabi was a 

physicist at the Columbia University, who won the Nobel Prize in 

1944 for his studies of the magnetic fields. He discovered that 

combining a magnetic field with radio waves he could make the 

nuclei of the atoms “flip”, the property nowadays known as magnetic 

resonance. He founded the Molecular Beam Laboratory, where he 

collaborated with other scientists such as Sidney Millman, Jerrold 

Zacharias or Polykarp Kusch. The team attempted the use of an 

oscillating field instead of a steady one, which became the basis of 

the nuclear magnetic resonance method.  

 

Figure 2.9 Isidor Isaac Rabi 

But the idea of using this concept for the development of a new 

diagnosis technique was not formed until the 1970s, when two 

scientists individually (Paul Lauterbur from the State University of 

New York and Peter Mansfield from the University of Nottingham) 

originated the magnetic resonance imaging. Until then, the magnetic 

resonance had only been used for studying the chemical structure of 

substances, but the introduction of gradients in the magnetic field 
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allowed Lauterbur to determine the origin of the radio waves emitted 

from the nuclei, creating two-dimensional images of the body. 

Mansfield used this discovery and took it a step further, developing a 

mathematical process to speed the image reading. Mansfield is also 

credited with developing the MRI protocol called echo-planar 

imaging, which allows T2* weighted images to be collected many 

times faster than it was previously possible, making functional MRI 

feasible.  

  

Figure 2.10 Paul Lauterbur (left) and Sir Peter Mansfield (right) 

While Lauterbur and Mansfield focused on animals and human limbs, 

another American medical practitioner (Raymond V. Damadian) built 

the first full-body MRI machine, producing the first full MRI scan of 

the human body in 1977. Damadian discovered that tumors and 

normal tissue can be distinguish in vivo using NMR because of their 

relaxation times, and invented an apparatus and method to use it 

safely to scan the human body and diagnose cancer. This first 

attempt led to the creation of the first commercial MRI scanner in 

1980. 
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Figure 2.11 a) Dr. Damadian explaining the function of the "live magnet" 
Indomitable in 1978, (b) Dr. Damadian years later posing with his prototype, c) 

Larry Minkoff testing the machine 

  

Figure 2.12 a) Prototype of the Indomitable included in the patent, (b) One of the 
first MRI commercial scanners (1983) 

The next step came in the 1990s, when Seiji Ogawa, from the Bell 

Laboratories in New Jersey, found that oxygen-poor hemoglobin was 

affected differently by a magnetic field than oxygen-rich hemoglobin, 

which could be used to map images of the brain activity on a normal 

MRI scan. This properties of the hemoglobin were not new, as they 

has been studied back in the 1930s by Linus Pauling, who found that 

the magnetic properties of this blood cell depended on whether it 

had an oxygen molecule (being zero magnetic moment with oxygen, 

and sizeable magnetic moment without). The introduction of this 

concept in the magnetic resonance imaging method supposed the 

discovery of the functional MRI (fMRI).  
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Figure 2.13 a) Seiji Ogawa, b) capture of some of the first MRI results with BOLD 
contrast, obtained by Ogawa et al. (1990) 

The first attempt to apply this regional brain activity using MRI was 

performed by Jack W. Belliveau and colleagues (Harvard University) 

using a ferromagnetic contrast agent (Magnevist) (Rosen et al., 

1991). However, this method is not popular in human fMRI because 

of the unsafe of the unnecessary injection and the short time the 

agent stays in the blood flow. In 1992, three studies were conducted 

to explore the BOLD contrast in humans. The first was performed by 

Kenneth K. Kwong and Jack W. Belliveau (between others) using 

gradient-echo EPI sequences at a magnetic field strength of 1.5T to 

study the brain activity related to the visual cortex (Kwong et al., 

1992). In the second, Seiji Ogawa and colleagues used a 4T field to 

show that the BOLD signal depends on T2* loss of magnetization 

(Ogawa et al., 1992). The third study was conducted by Peter A. 

Bandettini (Bandettini et al., 1992), who used EPI at 1.5T to show the 

activation in the primary motor cortex, which controls voluntary 

movement.  
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Figure 2.14 Capture of some of the results obtained by Belliveau et al. (1991) 

2.3.1.2 Functioning of the Magnetic Resonance 

Among the several brain image acquisition methods existing, the 

Magnetic Resonance is one of the most used due to the many 

advantages it presents when compared with other neuroimaging 

techniques. To begin with, it is a non invasive technique, which 

allows the measure of brain activation without any discomfort to the 

patient. Moreover, it has no secondary effects, so the experiments 

can be repeated several times without causing any damage to the 

subject. This allows, for example, the comparison between brain 

activations in different time moments (before and after passing a 

treatment, to put an example). This is because fMRI works in the 

range of no ionizing frequencies (10-100 MHz), which means the 

radiation it works with is harmless to people (unlike other image 

techniques such as Computed Tomography or X-rays).  

But the main advantage of fMRI is the great spatial resolution it 

provides (between 1 and 3 mm), in comparison with other 

techniques such as EEG (Baumann et al., 2003). This makes the 

technique suitable to observe specific brain areas and neural 

networks that are activated during the task. It also presents a decent 
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temporal resolution (of the order of 1s for the whole volume of the 

brain) (Baumann et al., 2003).  

Between the disadvantages, it should be mentioned the long 

exploration time it takes to have a complete scan of the brain. This, 

joined with the fact that the subject has to lay inside the machine and 

remain still all this time, makes the scan a bit uncomfortable to the 

subject (in some cases even provoking claustrophobia). Another 

disadvantage is the size and prize of the magnetic resonance scan, 

which reduces its use practically to hospital environments. Finally, 

metallic objects are not allowed inside the magnetic field, so the 

devices used inside the machinery have to be adapted for its use 

inside the fMRI. 

Its way of operating is probably the most complex to understand 

among the medical image techniques. It is based in three physic 

principles: the phenomenon of polarization (the nucleus 

magnetization tends to equilibrium in order to align with an extern 

magnetic field of high intensity), precession (the magnetization, out 

of the equilibrium state caused by an extern magnetic pulse, 

precesses around an axis) and relaxation (the magnetization returns 

to the equilibrium state once the external pulse disappears).  

To understand the polarization, first it has to be understood that any 

nucleus formed by an odd number of protons and/or neutrons has a 

spin (rotation around an axis) and an angular moment (amount of 

rotation movement). The rotation of an electric charge generates an 

electric current, which makes the spin behave as a magnetic dipole. 

Those dipoles, in absence of a magnetic field, are randomly 

orientated (Figure 2.1Figure 2.15(a)). When a constant magnetic field 

is applied (typical in MR of 1.5-3T), those spines align themselves 

with the parallel direction (minimum energy state) or the anti-parallel 

direction (maximum energy state) to this external magnetic field 

(that will be called B0), due to the increase of external temperature 

(Figure 2.15(b)).  
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Figure 2.15 (a) In absence of an external magnetic field, the spins are randomly 
oriented. (b) When an external B0 field is applied, every spin is aligned with the 

parallel or anti-parallel direction 

The population in both states is more or less the same (100,000 spins 

of maximum energy and 100,006 of minimum energy, 

approximately), but this small difference provokes the existence of a 

net magnetization parallel to B0 and null in the transversal direction. 

In reality, this alignment is not exactly parallel, but with certain 

degree of angulation, which makes the spin associated with the 

magnetic moment precess around an axis parallel to B0 (Figure 2.16). 

Precession is the rotation movement of the spin’s axis around 

another axis (the proton, besides rotating around its own axis, 

precesses around another axis). The speed of precession of those 

spins follows the formula: 

ω= γB0 

Equation 2.1 Speed of precession of the spins 

where ω is the angular precession frequency of M, γ is the 

gyromagnetic ratio and B0 is the extern magnetic field intensity.  



34 
 

 

Figure 2.16 The magnetization vector precesses around the longitudinal axis, which 
is the one parallel to the external magnetic field 

As the 60% of the human body is composed of water (H2O) and the 
1H nucleus has a molar concentration much higher than the rest of 

the nuclei (99 mol/l) with a sensibility higher than the other 

elements, this nucleus will be the one used. For a magnetic field of 

1.5T (typical in MR) and a gyromagnetic ratio for 1H of 42.57 MHz/T, 

it gives an ω=63.85 MHz, known as the Larmor frequency (frequency 

of resonance for the nuclei).  

When a new electromagnetic pulse B1 is emitted at the Larmor 

frequency, it will echo with the spines, moving them from their 

equilibrium position (those in the maximum energy state will change 

to the minimum energy state and vice versa until the populations of 

both states are equal), provoking in the resultant magnetization a 

precession effect around the longitudinal axis in which M follows a 

descent movement, resulting in a final magnetic moment null in the 

B0 direction and maximum in the perpendicular direction (Figure 

2.17). 
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Figure 2.17 Phases of the precession process that the magnetization vector follows 
around the longitudinal axis 

When the B1 pulse ends, the next process begins, known as the 

relaxation; where the magnetic moment will return to its original 

equilibrium position. Then, the longitudinal magnetization will be 

maximum again (Figure 2.18(a)) due to the spin-medium interactions 

(T1 decay); and the transversal magnetization will disappear (Figure 

2.18(b)), due to the loss of energy caused by the spin-medium 

interaction and the local and random phase difference between the 

spins (T2 decay). During this process some energy is emitted, which 

can be captured by several reels located on the perpendicular plane, 

where the magnetization induces an alternating current.  

 

Figure 2.18 (a) Return of the longitudinal magnetization component Mz to its relax 
state according to T1, (b) Transversal component Mxy decay to the null state 

according to T2 
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2.3.1.3 Functioning of the Functional Magnetic Resonance 

The functional magnetic resonance imaging (fMRI) technique is a 

relatively new method for using resonance images to measure the 

metabolic changes that occur in the active part of the brain. FMRI is 

more and more often the chosen method for the clinical diagnosis, 

allowing the study of the brain function; either it is a healthy, ill or 

damaged one; and helping in the evaluation of the existing risks in 

surgery and other treatments.  

The brain areas that perform each function are more or less well 

known, but their exact location and function depends on each 

person. Moreover, the brain functions cannot be considered in 

isolation for each cortical area but there are several of them involved 

in each function (for example, when we heard something, in addition 

to the auditory area, other functions are active simultaneously: 

words interpretation, language formation to elaborate a response, 

phonetics…).  Moreover, it has to be taken into account the effect of 

the vasodilatation in the arterial and venous vessels of the brain due 

to the higher oxygen consumption in the active areas, which 

produces a decrease in the amount of deoxyhemoglobin present, 

which has a magnetic effect (the hemoglobin molecule changes its 

magnetic proprieties depending on the union or no-union with the 

oxygen). That change in the oxygen concentration and the increase of 

dilatation is what it is measured inside the fMRI, being normally 

shown as a change in the color of the active areas over the gray 

background of the inactive areas. 

This magnetization change in the hemoglobin is used to calculate the 

BOLD signal (Blood Oxygenation Level Dependant), which measures 

the oxyhemoglobin/deoxyhemoglobin rate in order to discern 

between the active and the inactive areas. If those images are taken 

in a rate of 1 or 2 images per second, the contrast between the active 

and inactive areas can be represented; obtaining the patient’s 

cerebral map, functional and structural. More precisely, the blood 

that flows through the arteries comes from the heart and is 
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oxygenated, containing oxyhemoglobin (HbO2), that produces a 

diamagnetic effect (repulsion to the magnetic field). However, the 

blood in the veins has already waste its oxygen feeding the active 

brain areas and contains deoxyhemoglobin (Hb), producing a 

paramagnetic signal (attraction to the magnetic field).  

 

Figure 2.19 Oxyhemoglobin and deoxyhemoglobin concentrations in the capillary 
beds for the basal and activated states 

To sum up, the process goes as follows: the increase in the neuronal 

activity provokes the freeing of vasoactive substances by the 

neurons, which causes the vascular dilatation and the corresponding 

increase in the blood flow. This compensates the increase of 

deoxyhemoglobin caused by the increase in activity that had 

consumed the oxygen reserves. The increase in the oxygenate blood 

flow “cleans” the deoxygenate one, increasing the level of 

oxyhemoglobin present. The magnetic resonance signal that had 

been suppressed by the deoxygenate hemoglobin increases now, 

which allows the measure of the BOLD signal. The maximum BOLD 

signal amplitude is measured between 4 and 6 seconds after the 

event, which slows down the process.  

2.3.1.4 Capture of fMRI images 

When in the edge to design a fMRI system, the interaction of four 

elements is needed to capture the image: a high intensity magnetic 

field B0 in the longitudinal direction (produced by a superconductor 

electromagnet), several antennas to produce a transversal magnetic 

field that changes in time at the Larmor frequency (B1), a group of 

reception antennas (also in the transversal direction) that could be 

the same used for emitting B1, and three field gradients to produce 
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the spatial variation of the longitudinal magnetic field with respect to 

the three axis (Gx, Gy and Gz). Those gradients allow the caption of 

the image and its spatial differentiation.  

The first of the gradients to be emitted is the Gz, which changes with 

the longitudinal direction, allowing the selection of the slice to 

represent. This gradient will change with the position in the z axis, 

which is translated in the selection of the axial slice at certain high. 

For each gradient Gz, it will be emitted a Gy gradient, which will make 

the precessing spins change their speed. When this gradient ends the 

image rows will spin again at the same speed, with the phase 

between them changed due to the time they spun at different 

speeds. This process is known as the phase code: each row of the 

image (y axis) will have a different phase, allowing the spatial 

differentiation in this axis. At last, it is made the frequency coding by 

the emission of a new gradient Gx, at the same time as the data are 

captured. The process is similar to the previous one: when the Gx 

gradient is emitted, each column of the image precesses at a 

different speed (which means with a different frequency, distinct to 

the Larmor frequency). That is translated in a spatial differentiation in 

x (columns) and y (rows) for each slice z. During this last gradient the 

data are captured, because once the Gx gradient ends all the columns 

will return to the Larmor frequency, as it happened with the rows 

when ending Gy. The graphic representation of those three gradients 

can be seen in the following figure (Figure 2.20): 

 

Figure 2.20 Visual description of the three gradients applied 
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This process is known as selective excitement: the greater the 

bandwidth of the radiofrequency field, the thinner the selected slice. 

In the same way, the more intensity or less bandwidth of the field 

gradient, the minor will be the slice’s amplitude.  

 

Figure 2.21 (a) Gz gradient for the excitement of certain slice, (b) frequency profile 
obtained, (c) RF pulse, Fourier transform of the frequency profile 

2.3.1.5 Applications of the fMRI  

Several studies have been made in the fMRI field to analyze the 

activation maps obtained both in healthy and mentally ill people. A 

profound knowledge about the brain areas activated in each process 

can help in the understanding of some mental disorders and their 

precedence, and help to improve their treatment. For the fMRI 

measures, normally it is used the BOLD signal, which generates 

results more accurate of the brain areas active each moment.  

Once the patient has been placed inside the magnetic resonance, 

some kind of stimulus has to be applied to provoke the activation of 

the brain areas of interest. Between the possible stimuli available, 
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the most used are the visual ones (using compatible MR glasses), the 

auditory (using compatible headphones), sensitive (for example, heat 

application for the measure of pain reaction)… Because the MR is a 

big magnet and the introduction of any kind of metallic object inside 

the MR room is forbidden, several companies are specialized in the 

fabrication of MR compatible devices to allow the presentation of 

stimuli inside the fMRI. Between the possible applications of this 

technique, there can be highlighted the study and treatment of 

mental disorders (psychosis, phobias, neurosis…), the study of pain 

distractors, the search of malfunctions in the brain… 

Let’s analyze some examples of researches done with fMRI. In a study 

conducted by Sanjuan et al. (2005), they applied auditory stimuli to 

psychotic patients, using words the subjects were used to hear in 

chains of 13 emotional words (4 negative imperative words, 3 insults, 

2 imperatives, 2 emotional exclamations and 2 positive words) and 

13 neutral words with a similar syntactic complexity. In this case, 

blocks of emotional and neutral words were alternated each 20s, for 

the avoidance of habituation, exhaustion, saturation or surprise. In 

2007, the same group conducted a similar study, this time with 

schizophrenic patients, using as well auditory stimuli. The same 

methodology was used: alternated blocks of chains of words (20s 

each), first the neutral ones and then the emotional ones. 

 

(a)                                                        (b) 
Figure 2.22 Brain activations with neutral (a) and emotive (b) words, in the work of 

Sanjuan et al. (2005) 
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The fMRI techniques have also been applied for the study of 

emotions, which allows distinguishing between the brain areas 

activated for each kind of emotion. In a work developed by Canli et 

al. (2001) they analyzed women with two kinds of psychological 

behavior: some were extroverted women (optimistic people that 

enjoys the social treatment) and the other were neurotic (negative, 

anxious and apprehensive people). The shown stimuli were positive 

(couples, pets) and negative (guns, cemeteries) images, in 5 blocks of 

4 images each. Those blocks were alternated, with duration of 

7.5s/photograph. It was confirmed that the outgoing people showed 

greater activation in the cortical and subcortical areas, the cingulus 

and the amygdala when the positive stimuli were presented. On the 

other side, the neurotic people showed a greater activation in the left 

temporal lobe and frontal lobe for the negative stimuli. However, the 

outgoing people did not show any special activation for the negative 

stimuli, and vice versa. In the temporal cortex, it was proved the 

major reaction of the extroversion over the right hemisphere and of 

the neurosis over the left hemisphere. At last, they concluded that 

the negative images provoke a greater intensity of excitement than 

the positive ones. Women were used because they are supposed to 

show a greater emotional response, in comparison with the value 

judgments more typical of men. A study where they measured those 

differences was conducted by Lang et al. (1998), and they proved the 

greater activation in front of negative images than in front of positive 

ones over women, where men showed no difference. It was also 

measured the influence of the side where the stimuli were placed 

and its effect over the brain areas activated. Another study worth to 

mention is that of Ochner et al. (2002), who tried to modify the 

emotional response, voluntarily forcing a maintained, contained or 

strong emotional response; which allows regulating the brain 

activation.  

VR has also been applied combined with fMRI for the study of active 

brain areas during the performance of certain tasks (Astur et al., 

2005; Pine et al., 2002, Hoffman et al., 2003, 2004).  This field of 



42 
 

study will be presented in more detail in the part of this Thesis about 

VR (section 2.4.2).  

It is also worth to remark the part of fMRI studies related to the 

treatment of phobias, which is the aim of study of the second branch 

of research of this Thesis (Chapter 4). The phobia, and more precisely 

the spider’s phobia, is characterized by the irrational fear of the 

sufferer to any contact with the feared animal.  

Many experiments have been made about the treatment of spider’s 

phobias with VR. Between the possibilities this technique provides, 

the most used are the visual stimuli, be those photographs (Dilger et 

al., 2003; Schienle et al., 2005; Straube et al., 2007; Wendt et al., 

2008), videos (Paquette et al., 2003), immersive virtual environments 

(Baumann et al., 2003) or interpretation of words (Straube et al., 

2004). All those studies and others with similar characteristics will be 

discussed in the corresponding chapter. 

 

Figure 2.23 Example of brain activation results obtained studying phobic subjects 
(Paquette et al., 2003) 

2.3.1.6  Analysis of the fMRI 

The analysis of the fMRI images consists in three fundamental steps. 

First of all, the preprocessing of the data prepares the images 

(realigning and resizing them) to undergo the statistical analysis. 

Secondly, the data from each subject individually undergoes a first 
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level statistical analysis to obtain the comparisons between 

conditions. Finally, the data of all the subjects are compared in the 

second level analysis, to obtain the patterns of activation between 

subjects. In the following paragraphs these steps will be explained in 

more detail.  

To analyze the fMRI data there are several programs available. In this 

Thesis, the one we used was the Statistical Parametric Mapping 

software (SPM8, Wellcome Department of Imaging Neuroscience, 

London, UK), launched with Matlab Version 7.1 (MathWorks, Natick, 

Massachusetts, USA). The SPM is a program developed by Friston and 

Ashburner for Matlab, which allows the analysis of fMRI, PET, DTI and 

VBM images. As the developers describe it, “Statistical Parametric 

Mapping refers to the construction and assessment of spatially 

extended statistical processes used to test hypotheses about 

functional imaging data”. Here the explanation will be centered in 

the analysis of fMRI images, allowing to measure the differences in 

brain activation due to the different tasks performed. 

Before designing the protocol for the study, there are some issues to 

consider. First of all, it is important that the tasks to perform during 

the activation and rest periods were designed to be different only in 

the characteristics to measure, so the rest of the areas activated 

(visual, shape and word analysis, recognition…) are the same during 

both periods. For example, to analyze the brain activation due to the 

visualization of known shapes, during the rest period it should be 

performed the view of shapes without meaning. Doing so, the brain 

areas related to the visual area and the recognition of random shapes 

will be the same and only the areas related to recognition of known 

shapes will be activated. 

Another issue to consider is which kind of design to develop. It can be 

a block design (long periods of alternating blocks of task and rest) or 

event-related design (measure the brain activation in the exact 

moment it occurs). In the block design, the brain activations are 

averaged, obtaining the mean activation for each block. In the event-



44 
 

related design, there are considered the peak activations in each 

moment of time, taking into account that some actions have not an 

immediate brain response, but present a delay in the consequent 

activation.  

Before using the SPM software, it is also important to avoid complex 

names in the fMRI data files, since they could cause failures in the 

program. There are two data formats allowed for fMRI images: 

Analyze and Nifti. SPM works with nifty, so if the images are given in 

another format they will have to be converted (for example, using 

the function dicom2nifti available in the website of SPM). Any 

complementary tool needed has to be copied in the “toolbox” folder 

of the SPM.  

 

Figure 2.24 Capture of the SPM8 

Before analyzing the fMRI data, the first scans captured should be 

excluded, in order to eliminate the decay of the fMRI signal 

associated with the moment when magnetization reaches 

equilibrium. Because of this, it is advisable to design the protocol 

beginning with a few black screen seconds. In the studies of this 
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Thesis, for example, this period consisted on 14s (or 7 scans), that is 

the time the device used lasted in reaching equilibrium. Then, the 

first step was to align the images to the AC-PC line (Figure 2.25). This 

line goes from the anterior to the posterior commissure of the brain. 

This step improves the convergence in the iterative processes.  

 

Figure 2.25 AC-PC line 

The correct lateralization of the brain was also checked (the 

neurologic one, where the right side of the image is seen in the right 

part of the screen). Those two steps are conducted in SPM by 

opening the anatomical image using the option “Display” (Figure 

2.26) and centering the origin of coordinates on the anterior 

commissure (AC), checking that the AC-PC line fits with the horizontal 

axis (Figure 2.27(a)). Once done the changes needed, to save them 

you have to copy the numbers indicated in the pointer position in 

mm in the right, forward and up fields that appear below in the 

window, changing their sign, and press “Reorient Images” (Figure 

2.27(b)). To check if the orientation is correct, in the mm field the 

values have to be minor in the left than in the right part of the brain, 

and the opposite in the vx field.   
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Figure 2.26 Capture of the Display option (showing the anatomic image) 

(a) (b)  

Figure 2.27 a) Capture of the anatomic image centered in the AC, with the 
horizontal axis crossing the AC-PC line, b) capture of the reorientation process to 

centre the anatomic image to the AC-PC line 

Then the preprocess begins (Friston et al., 1995), which will consist in 

the realign of the images to the first scan, the coregistering of them 

to the structural one, the segmentation of the structural to obtain 
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the white matter, grey matter and cerebrospinal fluid images, the 

normalization of both the functional and the structural images and 

the smoothing with a Gaussian kernel. A schema of this process can 

be seen in the image below (Figure 2.28). 

 

Figure 2.28 Schema of the steps followed in the SPM8 analysis. The yellow box 
marks the preprocess steps. 

As aforementioned, the first step is the realignment of the functional 

images, which is achieved in SPM with the estimate and reslice 

option. This step resamples the images to rotate and translate them, 

in order to make them fit each other. In the case studied here, this 

option allows the correction of the movements the subject has 

committed during the scan, indicating when he has moved and if any 

data rejection is required. The option “Est & Res” (Figure 2.29), apart 

from estimating the register and saving it in the header of the image, 

creates a new registered image (renamed with the prefix r-). The 

most common option for the realignment is to do it towards the first 

scan, although it can also be made towards the most characteristic 

scan. In this study it was made towards the first scan. It should also 

be considered that movements greater than 2mm or 2⁰ should be 

rejected. 
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(a)   

(b) (c)  

Figure 2.29 Captures of a) the SPM8 panel for the spatial pre-processing section, b) 
the batch editor for the “Realign (Est&Res)” option, and c) results of the translation 

and rotation corrections for each image 

Once the functional images have been realigned, the next step is 

coregistering them to the structural images, using for this functions 

based on the Information Theory (entropy). The aim is to maximize 

what one image explains of the other (is is obtained a histogram of 

both images, showing the information about the levels of 

relationship between them). As a result, the corregistered images are 

obtained, saving the parameters in the header of the source image 

(Figure 2.30).  
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Figure 2.30 Capture of the batch editor for the “Coreg: Estimate” option and the 
results obtained 

When the coregistering is done, the segmentation of the result 

(“Segment”) is performed to obtain the gray matter, white matter 

and cerebrospinal fluid images (Figure 2.31 and Figure 2.32). 

Moreover, this step corrects the absence of uniformity in the 

intensity of the image (bias correction), to normalize it. Each of the 

images to segment corresponds to a different area of the histogram, 

selecting it by means of Gaussian filters, in order to be later 

normalized using the Discrete Cosine Transforms. 
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Figure 2.31 Capture of the Segment batch editor 

 

Figure 2.32 Captures of the a) Grey Matter, b) White Matter, and c) Cerebrospinal 
Fluid images 
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Then the normalization of the resliced functional volumes is made 

with the normalization parameters extracted after the segmentation 

and normalization of the anatomical volumes for each subject 

separately (template provided by the Montreal Neurological 

Institute). With this step it is obtained a between-subject register 

which allows the extrapolation of the findings obtained to a whole 

population, raise the statistical power and show the activations in 

coordinates of a reference brain (template). There exist two types of 

normalizations: based on tags (deforming the image until certain 

markers fit each other) or based on intensity (deforming to maximize 

a measure of likeliness between voxels). The aim is to obtain a low 

resolution image (blurred) which allows the average of the 

population. The normalization is made to a template of the same 

modality. First a related transform was made to adjust the position 

and size, and then a non-linear register to adjust the local differences 

(using Discrete Cosine Transforms). At last, a regularization is done to 

penalize the solutions that deform too much (more than 1.25). As a 

result, new images with the prefix w- are obtained for the structural 

as well as for the functional images, all of them situated in the 

standard stereotaxic space MNI (Figure 2.33). 

(a)  (b)  

Figure 2.33 a) Capture of the Normalization batch editor, b) comparison of the 
structural image before (top) and after (bottom) normalization 
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Finally, the smooth of the images is performed (Figure 2.34) using an 

isotropic Gaussian kernel or three-dimensional Gauss Bell (FWHM of 

8 x 8 x 8 mm). This step erases the noise (high frequency, the shiny 

points in the image) to decrease the anatomic differences (images 

from different subjects are more similar when blurred). It also helps 

in the overlap, because the pixels that did not fit when mixed with 

their neighbors would be more similar (Figure 2.35). The full-width at 

half maximum (FWHM) of the Gaussian kernel is set to approximately 

the double of the voxel size. The filtering is made first in the 

horizontal direction and later in the vertical direction for 

mathematical efficiency.  

 

Figure 2.34 Caption of the Smooth batch editor 

 

Figure 2.35 Comparison between a functional fMRI image before (left) and after 
(right) the smoothing 
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A capture of the SPM8 program for the preprocess block can be seen 

in the figure below (Figure 2.36). 

 

Figure 2.36 Capture of the preprocess group of the SPM8 

Once the preprocessing has been made, the next step is to conduct a 

first level fixed-effect analysis (with the aim of detecting changes in 

the BOLD signal between conditions in a single subject), where the 

individual contrasts comparing between the different experimental 

conditions are obtained. For doing this, the hemodynamic response 

produced before any stimulus is used. In order to obtain it, the 

reconstruction of the whole brain volume each TR seconds (in the 

case studied here, each 2s) is made, composed of evenly spaced 

slices of TE seconds (Figure 2.37). That TE depends on the spatial 

resolution looked for: the greater the resolution, the longer the 

acquisition time and lower the signal to noise relation.  

 

Figure 2.37 Relation between TR and TE 
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What it is understood as a first level analysis is to detect the changes 

in the BOLD signal between the different experimental conditions 

studied in an only subject. According to the general lineal model, the 

BOLD signal (which will be called Y) can be explained in the different 

time spots for each voxel, as the product of the design matrix (which 

will be called X) by the β parameters plus an error that measures the 

difference between the observed data and the data predicted by the 

model.  

Y=X* β+ ε 

Equation 2.2 Equation of the BOLD signal in terms of the design matrix 

Where the design matrix contains the components which explain the 

observed data and β how much each component contributes to the 

value of Y. In practice, Y contains one column for each voxel with its 

gray levels through time, X contains the mathematic description of 

the experiment (a vector for each influential parameter, with value 0 

if it is not activated and 1 if it is) and β are the regressors (one for 

each of the X components, which can be of interest – there is done 

statistic over them – or of non-interest – that explain what happened 

over the signal, for example, the head movements).  

The first step was to construct the X matrix, pointing out all that 

happened during the experiment (design of the experimental model). 

In that way, there were estimated the β parameters to minimize the 

minimum square error. 

  

Equation 2.3 Estimation of the β parameters 

As a result, the X matrix appears as in the figure below (Figure 2.38), 

composed by the interest regressors (that were introduced in the 

design), followed by the base line (a column of ones to model the 

mean value or constant component, which SPM automatically 

includes) and the non-interest regressors (which normally contain the 
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movement corrections in rotation and translation, obtained during 

the preprocess).  

 

Figure 2.38 Design Matrix 

As a result, the contrasts for the comparisons between conditions for 

each subject are obtained. It was also applied a high pass filter to 

eliminate the low frequency components in the signal caused by 

scanner motion and warming (at number of scans in a complete 

cycle*TR seconds). Once obtained the results for the first level 

analysis, there were estimated the model parameters (voxel-to-voxel 

analysis); that is, for each voxel it is studied if its temporal activation 

series fits the pattern specified by any of the regressors of the 

general lineal model. 

 

Figure 2.39 Caption of the first level analysis batch editor 
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Figure 2.40 Caption of an example of a Design matrix 

Group tests are performed at second level random effect analysis, 

where the group of subjects is taken into account. There can be 

distinguished two types of variables: the response ones or dependent 

(what it is measured, in this case the voxel intensity) and the 

predictor ones or independent (the factors used to measure the 

response). There exist, at the same time, two kinds of group analysis: 

fixed or FFX (only consider the intra-subject variability and work with 

preprocessed images) and the mixed or RFX (which take into account 

the variability intra- and between-subjects, and work with the con 

files generated in the first level analysis). In this work it was done a 

RFX study to compare all the subjects of the random effect sample 

(Figure 2.41). 
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Figure 2.41 Caption of the second level analysis batch editor 

Here is where the analysis changes depending on the study. In the 

sections describing each of the work lines there will be explained the 

analysis followed in more detail. Here, it will be just described the 

different second level analysis that can be performed: 

- One Sample: analyze if in mean the activation level is 
significantly different of zero. 

- Two Sample: study if the activation pattern is different 
between two independent populations (for example, 
between control subjects and patients).  

- Paired Sample: study if the activation pattern is different 
between two related populations (for example, the same 
subject in different temporal moments). 

- Multiple Regressions: allows the comparison between the 
activation pattern and some quantitative variable (for 
example, for including subjective test results passed after the 
scan and compare their results with the brain activations). 
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- Full factorial: to compare between the principal effects and 
the interactions from the ANOVA (for example, with three 
kinds of drugs, in different doses and over different 
populations). 

- Flexible factorial: similar to the previous, but this one allows 
the selection of which principal effects and interactions are 
wanted to analyze.  
 

Once chosen the second level analysis that better fits the specific 

design and introduced the parameters, the estimation of the results 

is obtained and begins the search for brain activations for each of the 

contrasts comparing the different experimental conditions. To obtain 

the specific brain areas that are activated in each contrast, it has 

been used the xjView (http://www.alivelearn.net/xjview8/) software 

utility for SPM that uses the MNI coordinates system (Figure 2.42). 

 

Figure 2.42 Capture of the xjView program 
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2.3.2 Introduction to EEG 

The electroencephalography or EEG is a technique that measures the 
spontaneous electric activity of the brain along the scalp; more 
specifically, it measures the synaptic potentials resulting from ionic 
flows within the neurons in the cerebral cortex. EEG signals show the 
difference in potential between two electrodes, an active one and a 
reference one. It has been widely used, due to the freedom of 
movement it gives to the subject once the electrodes are placed. 
Moreover, the time resolution of the technique is of the order of 
milliseconds, allowing the measure of the fluctuations in the EEG 
signal due to the tasks developed. This level of time resolution is 
impossible to achieve with other neuroimaging techniques such as 
fMRI or CT. However, the spatial resolution is quite inferior to the 
one achieved with the later.  
 
There are two techniques derived from the EEG: the EP (evoked 

potentials), and the ERP (event-related potentials). The EP averages 

the EEG activity time-locked to the presentation of a stimulus (may it 

be visual, somatosensory or auditory); while the ERP averages the 

EEG responses that are time-locked to more complex processing of 

the stimuli.  

The applications of the EEG are very varied. In neurology, for 

example, it has been widely used for the diagnosis of epilepsy, 

because subjects with this illness present abnormalities in their brain 

activity. It also helps in the diagnosis of coma, encephalopathies and 

brain death. It helps in the study of brain tumors and strokes, as well 

as other brain disorders. Finally, in the study of sleep and sleep 

disorders EEG is used to measure the brain activity during the 

different states of sleep in all night studies.  

In the research field of presence, EEG has also been used. For 

example, Baumgartner et al. (2006) evaluated the cerebral activity 

related to the sense of presence using a multichannel EEG, applying 

the low-resolution brain electromagnetic tomography (LORETA) 

method to study the cortical structures that produce the 

neurophysiologic activation.  
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EEG has also been combined with virtual reality for different 

purposes. For example, Bayliss and Ballard (2000) used the EEG 

signals as brain-computer interface for the manipulation of a simple 

VR task. In another work, Lin et al. (2007) assessed the cognitive 

responses in drivers while undergoing a traffic-light’s experiment 

inside a virtual reality dynamic driving environment, using EEG.  

Now the EEG technique will be analyzed in more detail, describing its 

functioning, historical development and main characteristics. 

2.3.2.1 Historical evolution of the EEG 

The first human EEG data were collected by Hans Berger in 1924. 

However, several previous events lead to this achievement. In 1875, 

Richard Caton published his results about electrical phenomena of 

the exposed cerebral hemispheres of rabbits and monkeys. This 

discovery was crucial, revealing the electrical nature of the brain. 

Years later, in 1890, Adolf Beck published his investigations over the 

spontaneous electrical activity of the brain, conducted over rabbits 

and dogs.  

The first animal EEG was performed by physiologist Vladimir 

Vladimirovich Pravdich-Neminsky in 1912. However, as 

aforementioned, the first human EEG recording was not performed 

until 1924 by Hans Berger. In fact, Berger was who invented the 

electroencephalogram and gave the device its name. He continued 

with his investigations about brain electric activity, especially 

interested in the alpha wave (neural oscillations in the frequency 

range of 8–12 Hz arising from synchronous and coherent electrical 

activity of thalamic pacemaker cells in humans) which he published in 

1931. He was especially interested in the "alpha blockage", the 

process by which alpha waves decrease and beta waves increase 

upon a subject opening their eyes. This distinction earned the alpha 

wave the alternate title of "Berger's Wave".  

The 1930s lead to several investigations about possible clinical uses 

of the EEG, mostly related to epilepsy. The epileptic abnormalities in 
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the brain electric waves were first studied by Fisher and Lowenback 

in 1934. Also in the 1930s, Franklin Offner incorporated the inkwriter 

to the EEG device. The first sleep studies did not arrive until 1953.  

 

Figure 2.43 a) Hans Berger, b) One of Berger’s patients and c) Recordings of EEG 
made by Berger 

2.3.2.2 Functioning of EEG  

The nervous system captures all the signals that arrive from the 

senses (external) and the organs (internal) and transmits them to the 

brain for its processing. It is done by means of the neurons. A 

neurotransmitter is a molecule in transition state, with a deficit or an 

excess of charge. It is transmitted through the myelin, which is the 

responsible of the neuronal synapses. Although the synapse is of a 

chemical nature, it has collateral electric effects, which is what is 

measured in EEG. The measurement can be done “in situ” with 

needle electrodes or in the scalp with superficial electrodes, less 

accurate but also less invasive. In the case of the EEG the superficial 

electrodes are the most commonly used. 

(a) (b)  

Figure 2.44 a) Surface electrodes, b) needle electrodes 

http://en.wikipedia.org/wiki/File:HansBerger_Univ_Jena.jpeg
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An electroencephalogram consists of the electrodes, a pre-treatment 

block with an amplifier, a band pass filter and a receptor of the signal. 

The electrodes are re-covered with gold or silver and need of a 

conductor gel to improve the interface. The pre-treatment consists of 

a high input impedance, a high Common Mode Rejection Ratio and a 

low noise. The band pass filter restrains the signal between 0.5 and 

100 Hz.  

 

Figure 2.45 Schema of the system 

The location of each electrode in the brain is fundamental, since the 

amplitude, phase and frequency of the signal will depend on it. For 

determining each position, first four key points of the head must be 

located: the nasion (between the eyes, over the nose), the inion (just 

opposite to the last, where the skull ends), and the pre-auricular 

points (left and right). Once measured the distance nasion-inion, 

there are marked the positions at 10%, 20%, 20%, 20%, 20%, 10% (as 

can be seen in the first picture below, Figure 2.46 left). The middle 

point of both distances nasion-inion and pre-auricular left-right is the 

vertex Cz (Figure 2.46, right). Apart from the signal electrodes, it is 

needed a ground electrode to work as reference.  
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Figure 2.46 Location of the Nasion and Inion in the head (left), and location of the 
electrodes, with Cz in the center position (right) 

Regarding the frequency spectrum, it can be divided in 6 bands: 

- Alpha band: covers from 8-13 Hz and has normally an 
amplitude between 20-60 µV, although 100-200 µV are still 
considered normal.  

- Beta band: above 13 Hz, normally between 18-25 Hz. The 
common amplitude is of 5-10 µV, almost never exceeding 30 
µV. It comprises the fast waves. 

- Theta band: between 4-7.5 Hz, and of low amplitude. 
- Delta band: below 3.5 Hz. The theta and delta bands are 

considered the slow waves. 
- Mu band: also known as alphoid because is contained also in 

7-12 Hz (normally 8-10 Hz), with amplitudes between 20-60 
µV. It consists in trains of few seconds of duration. 

- Gamma band: is a pattern of neural oscillation in humans 
with a frequency between 25 and 100 Hz (typically 40 Hz). 
Gamma waves may be implicated in creating the unity of 
conscious perception. 

- Lambda band: between 60 and 120 Hz, is a band contained in 
the occipital area of the scalp, related with the visual activity.  
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Figure 2.47 Power spectrum of the EEG 

Once described the frequency bands, we will now analyze the 

rhythms associated to them that appear in the temporal EEG signal: 

- Alpha Rhythm: is the most dominant rhythm in a normal EEG, 
mostly located symmetrically in the occipital and parietal 
areas (being especially evident while in relax with closed 
eyes).  
 

 

Figure 2.48 Alpha Rhythm in the posterior areas of the brain, remarked in red the 
period with the eyes closed 
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- Beta Rhythm: appears in nearly 20% of the healthy people, 
being thought that its significance is related to the 
sensorimotor function.  
 

 

Figure 2.49 Beta Rhythm 

- Mu Rhythm: is the less frequent to find, being in just the 10% 
of the healthy subjects. Mainly located in central areas, is 
recognizable for its morphology in arch shape. It is related 
(contralaterally) to the motor and sensorial systems.  
 

 

Figure 2.50 Mu Rhythm 
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- Lambda Rhythm: they are triangular, normally biphasic, sharp 
waves; 100-250 ms long and with low amplitude (less than 50 
µV). They appear in occipital areas of the scalp and are 
related to the search movement of the eyes (that is why they 
are preceded by a potential in the frontal areas due to the 
eye movement). 
 

 

Figure 2.51 Lambda Rhythm in posterior areas while blinking 

2.3.2.3 Advantages and disadvantages of the EEG 

When comparing the EEG with other neuroimaging techniques, such 

as the fMRI presented before, it presents several advantages: 

- Freedom of movement: in other neuroimaging techniques, 
such as fMRI or PET, the subject has to lay still, with the 
head’s movement restrained by a special helmet, and trying 
to move any part of the body as little as possible. However, 
the EEG gives the subject more freedom in its movements 
and position, allowing him to remain sit or even stand. 
Although the movements are still restrained, a little more of 
movement is allowed. This makes the experience more 
natural to the user, so the brain activations are more specific 
to the task. Moreover, there are portable devices which 
allow measuring EEG in any location you want and in any 
position. 
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- High time resolution: the time resolution of the EEG is of the 
order of milliseconds, far better than those of other 
neuroimaging techniques (such as fMRI). This makes possible 
the continuous control of the electrical activity in the brain 
over time. 

- Cheap: another important advantage of the technique is the 
prize, that is lower than most of the other neuroimaging 
techniques (far lower than fMRI, for example). Moreover, in 
the market there can be found several low-cost devices that 
allow to measure low-resolution EEG and which have a price 
that does not exceed the 200 €.  

- Non-invasive to the patient: as well as in fMRI, EEG has no 
secondary effects over the subject and is non-invasive; which 
allows, between other things, the repetition of the scan (for 
example for pre-post treatment studies).  
 

Despite the advantages of the EEG, there must be also pointed out 

some disadvantages. The most important is the bad spatial resolution 

this technique presents, compared to others such as fMRI. It is due to 

the fact that electric signals are measured through the scalp. If using 

needle electrodes, this disadvantage decreases, but it cannot be 

applied in non-clinical subjects. Moreover, the spatial resolution 

depends on the number of electrodes placed over the scalp (the 

more electrodes are placed, the better the spatial resolution acquired 

will be). The other big disadvantage is that the technique measures 

cortical activations, not being reliable in more internal areas of the 

brain. However, there are several tools (such as the sLORETA) which 

process the signals obtained from the EEG and approximate with 

good precision the brain activations in the internal areas.  

2.3.2.4 EEG Devices 

There are different kinds of EEG devices, from the classical clinical 

electroencephalogram to the new designed-for-games wireless 

headsets. For this study, it has been employed a cheap wireless 

portable device (the Emotiv EPOC). Now its main characteristics will 

be discussed. 
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The Emotiv EPOC is a design-for-games device, which means it is 

originally conceived for detecting player thoughts and feelings and 

used them to control the game. However, its usefulness in the 

research field has been already proven, and many studies are using it 

for EEG measures (Campbell et al., 2010; Khushaba et al., 2012, 

2013). The Emotiv EPOC is a multichannel wireless portable headset, 

which has 14 data-collecting electrodes and 2 reference ones. It 

transmits the EEG data wirelessly to the computer. In the following 

table (Table 2.1) there are displayed some of the characteristics of 

this device. 

Number of channels  14 data collecting and 2 reference ones 
(CMS and DRL)  

Channel names (Int. 10-
20 locations) 

AF3, AF4, F3, F4, F7, F8, FC5, FC6, P3 
(CMS), P4 (DRL), P7, P8, T7, T8, O1, O2  

Sampling method Sequential sampling, Single ADC  

Sampling rate ~128Hz (2048Hz internal)  

Resolution 16 bits (14 bits effective) 1 LSB = 0.51µV  

Bandwidth 0.2 - 45Hz, digital notch filters at 50Hz 
and 60Hz  

Dynamic range (input 
referred) 

256mVpp  

Coupling mode AC coupled  

Connectivity Proprietary wireless, 2.4GHz band  

Battery type Li-poly  

Battery life (typical) 12 hrs  

Impedance 
measurement 

Contact quality using patented system  

Table 2.1 Characteristics of the Emotiv EPOC headset 
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Figure 2.52 Image of the Emotiv EPOC 

Recently, several studies have been developed using the Emotiv 

EPOC headset, trying to demonstrate its usefulness and practical 

applications. Given its portability and its low-cost in comparison with 

other EEG devices, it is widely being used (especially in BCI 

applications) due to its high temporal resolution compared to other 

non-invasive techniques such as MEG, fMRI or the traditional EEG 

(Duvinage et al., 2012). For example, Campbell et al. (2010) used it as 

an interface to communicate the brain with a mobile phone 

application, in order to command it just with mental orders. More 

precisely a sequence of photos of contacts appears in the phone and 

when the showed photo matches that of the contact the user wants 

to dial, a P300 brain potential is elicited. In another study, Khushaba 

et al. (2012) explored the brain activations elicited while performing 

a task where decision making is involved. They used an Emotiv EPOC 

headset to measure the brain activity, as well as a Tobii-Studio eye 

tracker system to capture the participants’ choice based on their 

preference in looking at. In a posterior study, the same group 

(Khushaba et al., 2013) explored the commercial applications of this 

decision making measures for the guidance to choose the marketing 

that better fits the consumer preferences. In this concrete study, 

they used again the Emotiv EPOC headset to measure brain activity 

while performing a choice task to choose among the user’s preferred 

shape, flavor and topping in biscuits.  
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In the field of emotional induction, Rodríguez et al. (2013a) used 

virtual environments to provoke a negative mood (sadness) in the 

subjects. They measured the brain activation changes before and 

after the negative induction by means of an Emotiv EPOC headset. 

They also validated the use of this low-cost EEG device (Rodríguez et 

al., 2013b), by monitoring brain activity during a positive emotional 

induction (view of validated images from the IAPS system). 

2.3.2.5 Analysis of EEG 

The first step in the analysis of EEG is the preprocessing of the 

signals, which can be made by means of the EEGLAB program 

(Delorme and Makeig, 2004), launched with Matlab Version 7.1 

(MathWorks, Natick, Massachusetts, USA). First, the data from EDF 

have to be imported and the data wanted from the sensors selected.  

 

Figure 2.53 Capture of the EEGLAB launched with Matlab 

Then, the baseline is removed and all the recorded EEG epochs have 

to be checked for artifacts. First of all, data have to be digitally 

filtered using a linear FIR band pass filter (0.5-45 Hz). This step is 

performed in two steps: first a high pass filter at 0.5Hz and then a low 

pass filter at 45Hz.   
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(a)  

(b) (c)  

Figure 2.54 (a) Filter of the data with a basic FIR filter, (b) first the high pass filter at 
0.5Hz and then (c) the low pass filter at 45Hz 

Then, the electrooculographic (EOG) artifacts are removed by the 

application of the Blind Source Separation (BSS) method, using a 

window length of 10s, with 5s between windows. The 

electromyographic (EMG) artifacts are removed using also the BSS 

method.  

 

(a)                                              (b) 

Figure 2.55 Correction of the (a) EOG and (b) EMG artifacts using BSS 

For the analysis of the activated brain areas, the sLORETA 

(standardized low-resolution electromagnetic tomography) tool is 

used (Pascual-Marqui, 1999; Pascual-Marqui et al., 1994, 1999; Frei 
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et al., 2001). The whole brain is analyzed using voxel-wise t-tests for 

examining the conditions of interest for the six frequency bands.  

 

Figure 2.56 Capture of the sLORETA 

2.4 Virtual Reality and Neuropsychotherapy 
Once understood the main theoretical principles in which this Thesis 

is based (neuropsychotherapy, brain function and the main 

neuroimaging techniques for its study), a proposal will be formulated 

for improvement in the field. The hypothesis is that the use of virtual 

reality would help in the better assessment of the brain of subjects 

undergoing a psychological treatment. In this section, the principles 

of the virtual reality will be exposed, as well as a small introduction to 

what has already been done with VR in the field of 

Neuropsychotherapy. 

2.4.1 Virtual Reality 

2.4.1.1 Introduction to the Virtual Reality 

Virtual reality is a technological system by means of which the real 

world can be emulated or it can be created a new imaginary one, 

using computer-developed environments that allow the user to see, 
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hear, sense and interact with the graphic three dimensional new-

created worlds. The lived experience is called “virtual” because the 

stimuli applied to the subject are generated by a computer system. 

The novelty virtual reality provides as technology is the ability of 

immersion and interaction. The immersion is produced thanks to the 

use of special devices. This way, the user has the feeling of physically 

being present in the virtual environment. The interaction is produced 

because virtual reality is not a passive visualization of the graphic 

representation, but an interaction between the user and the virtual 

world in real time. 

There are a lot of VR systems, from videogames consoles available to 

the general public to more advanced visualization systems available 

just for big companies and research institutions.  

Apart from the visual component, it is important to incorporate 

devices that allow the interaction in real time with the environment, 

in order to increase the virtual emotion. 

Regarding the devices needed for the virtual experience, they can be 

distinguished in input and output devices. Input devices are those 

that allow the user to communicate with the VE; they can be as 

simple as a joystick or more complicated as a data globe which 

captures each movement of the fingers or a tracker which captures 

the body movement. In case of use VR inside a MR machine, the 

devices must be adapted to their use inside a magnetic field (they 

cannot have any metallic piece in them). Between the output 

devices, the most important are those which show the environment 

to the user (visual devices), and can be less immersive such as a 

computer’s monitor, or highly immersive such as a VR helmet (“Head 

Mounted Display”) or a CAVE system. Working with MR, the devices 

have to be adapted to the magnetic field, just like the input devices. 

There are a lot of advantages in the use of virtual reality as stimuli, 

instead of using real ones. One of the more important is that virtual 
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environments allow the recreation of certain experiences that would 

be impossible to reproduce with real stimulus. To put some 

examples, in phobic treatments the researcher could make the 

patient interact with the feared animal in a gradual way, depending 

on the person’s evolution. In cases of motor rehabilitation, VR games 

allow making the task more amusing, which improves significantly 

the results obtained in the subject in less time and with less 

psychological effort of the person. Moreover, there are the studies 

conducted with augmented reality (AR), a variation of VR that allows 

the user to see the real world at the same time that it is “augmented” 

by virtual elements. As those, there are lots of other examples of 

applications in which the virtual reality makes the work of the 

researchers easier.  

2.4.1.2 History of the Virtual Reality 

Although there are previous examples of works leading to the 

development of virtual reality, the first clear example of it is the 

Sensorama, designed by the cinematographer Morton Heiling in 

1962. This prototype was the materialization of his “Experience 

Theatre” described in the mid 1950s as a new way of seeing theater 

as an activity that could encompass all the senses in an effective 

manner, thus drawing the viewer into the onscreen activity. 

However, the term “virtual reality” is a bit older than that, and was 

introduced first also referring to the theatre by the playwright, poet, 

actor and director Antonin Artaud in his book The theatre and its 

double (1938).  

The Sensorama included stereoscopic display, fans, or emitters, 

stereo speakers and a moving chair; along with five short films to be 

displayed in it. In it the user was able to experience how it felt to ride 

a motorcycle on the streets of Brooklyn, while feeling the wind on 

the face, the vibration of the motorcycle seat, a 3D view, and even 

smells of the city. However, it was too expensive to develop and the 

idea was rejected from the film industry. 
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Figure 2.57 (a) Drawing of the Sensorama from its patent, (b) Image of the 
sensorama 

The first head mounted display (HMD) was called Headsight and was 

developed by Philco Corporation engineers in 1961. It was thought to 

be used by helicopter pilots while flying at night. It consisted on a 

video screen and a tracking device, linked to a closed circuit camera 

system. Later, in 1968, Ivan Sutherland built the “Ultimate Display”, a 

HMD attached to a computer which allows the view of a virtual 

environment. However, the mechanism was still to be improved, 

being too heavy to be carried without a suspension device.  

 

Figure 2.58 The “Ultimate Display” of Ivan Sutherland 
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The first interactive map was developed in the MIT in the 1970s, and 

consisted on a map of Aspen (the Aspen Movie Map) which enabled 

the user to walk through the town in three modes: summer, winter 

and polygons. While the first two consisted on photographs of the 

city, the third was a basic 3D model of it.  

 

Figure 2.59 The Aspen Movie Map 

Later in the 1980s, Jaron Lanier and Tom Zimmerman developed 

some of the first goggles and gloves systems to interact with the 

virtual environments. In 1991, Antonio Medina designed a virtual 

reality system to pretend the driving of Mars rovers from Earth in real 

time. After the 1990s, the popularity of the virtual reality systems 

decreased, although it is still widely used, normally referred to as 

“virtual environment” instead of “virtual reality” because of its 

negative connotations. More recently, the world of the videogames 

has re-launched the popularity of the VE and many enterprises have 

focused their developments in the improvement of the devices used 

for its control. For example, there can be mentioned the Oculus Rift, 

developed by Oculus VR, a new Head-Mounted Display which offers 

low latency and a wider field of view. This kind of devices can be 

combined, for example, with Razer Hydra sensors (developed by 

Sixense Entertainment and Razer USA), a kind of game controller with 

motion and orientation detection by means of a weak magnetic field, 
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which gives a precision for detecting the movements of 1mm and 1⁰, 

and which wireless version is in development. 

 

Figure 2.60 Images of data gloves and goggles designed by Jaron Lanier 

2.4.1.3 Devices 

There are lots of devices available for their use in VR, which can be 

divided into two main groups: input and output devices. The input 

devices, as aforementioned, allow the user to communicate with the 

environment; while the output devices present the stimulus to the 

subject. Now the main of them will be discussed in more detail. 

 Input devices 

- Keyboard: it is a desktop input device, which allows the 

subject introduce simple discrete orders to the environment. 

They are cheap and easy to use, although they cannot be 

used in more immersive environments. 

 

Figure 2.61 Example of a keyboard 
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- Mouse and trackball: like the keyboard, is a desktop input 

device, but this one allows the continuous introduction of 

data from the user (as well as discrete events from the 

buttons). The 2D mouse cannot be integrated in immersive 

environments, although the trackball can; they are cheap as 

well, and its use quite intuitive. Similar to the 2D mouse are 

the digital pads, which in its small format can be integrated in 

immersive VE.  

(a) (b) (c)  

Figure 2.62 Examples of (a) a trackball, (b) a mouse and (c) a digital pad 

- Joystick: one of the most used in VR for navigation and 

playing, they allow continuous and discrete movements, and 

are easy to use in 2D and 3D simulators.  

 

Figure 2.63 Joystick 

- Spaceball: they are similar to a mouse, but those tack 3D 

movements, following the translations and turns of the hand. 

The 3D is real, and not a translation from the 2D orders, but 

their use is more complex and difficult to learn.  
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Figure 2.64 Spaceballs 

- Trackers: the trackers are input devices that follow the user’s 

movements in the real world and translate them into 

movements in the virtual world. There are many kinds of 

tracker technologies: electromagnetic, mechanic, optic, 

ultrasonic, inertial, hybrids and even the eye-tracking which 

follows the movement of the eyes to locate the point where 

you look most.  

 

Figure 2.65 Examples of different trackers 
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- Data Gloves: are a spetial kind of tracking devices that follow 

the movements of the hand and fingers of the user. There 

are two kinds of data gloves: bend-sensing gloves or pinch 

gloves. The bend-sensing gloves detect postures of the hand 

and certain gestures, while the pinch gloves detect when two 

or more fingers get into contact.  

(a) (b)  

Figure 2.66 Data gloves: (a) bend-sensing gloves, (b) pinch gloves 

- 3D mouse: despite the 2D mouse, it follows the movement in 

3D. It can be used with the hand, consisting on a joystick 

which position is tracked; or with just one finger, following its 

movement. 

(a) (b)  

Figure 2.67 3D mouse for being used with (a) the hand, and (b) one finger  

- ShapeTape: there are optic fiber ribbons which allow 

controlling the movement of different parts of the body in a 

more flexible way.  
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Figure 2.68 ShapeTapes 

- Biosignals: apart from the different mechanisms 

aforementioned to catch the movement, the orders can be 

given by voice using voice recognition systems and 

microphones or by bioelectrical signals from the body, such 

as BCI which catch the brain electric signals using EEG to 

command the environment.  

 

Output devices 

- Visual devices: 

o Desktop screen: the VR can be reproduced in a 

screen-based system, where the environment is 

shown in a common PC screen. For the 3D effect 

there can be used special goggles or 3D desktop 

screens. The main advantage of this system is that 

you can use computer devices such as mouse and 

keyboard, and is cheaper.  

 

Figure 2.69 Desktop Screen 
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o Projection screens: the environments are projected 

in several screens, which size can vary depending of 

the design. The main advantage of those systems is 

the high immersive level achieved by them, 

especially in CAVE designs where you are surrounded 

by screens.  

 

Figure 2.70 Projection Screens 

o Workstations: similar to the projection screens, those 

normally use just one screen and it is mounted over a 

desktop or a wall. The main advantage is that they 

can be used by several people at the same time.  

 

Figure 2.71 Workstation 

o Head Mounted Displays: the device consists of two 

screens located near the eyes of the user; giving him 

a stereoscopic vision of the virtual world (the real 

world cannot be seen).  There are bigger versions of 
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the same technology, but supported on the ground 

instead than over the head. 

 

Figure 2.72 Head Mounted Display 

- Auditory devices: 

o Headphones: are the most common and easy to use, 

allow reproducing different information in each ear, 

although they can be annoying and interfere with 

other devices.  

 

Figure 2.73 Headphones 

o Speakers: they are strategically located in the room 

and the user does not precise to wear any other 

additional device, although they may attenuate the 

sound level with the objects of the room.  
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Figure 2.74 Speakers 

- Haptic devices: they stimulate the touch sense and force 

models in the user. Can be referred to the ground or to the 

body, and stimulate the touch feeling, kinesthetic models or 

a combination of both.  

 

Figure 2.75 Examples of haptic devices 

2.4.2 Combining Virtual Reality with Neuroimaging 

The studies that combine VR with some neuroimaging technique are 

diverse. Especially with fMRI, lots of studies have taken advantage of 

the benefits that VR can bring to the research. In the first studies, VR 

devices started to be adapted to allow their use inside the MR. For 

example, Baumann et al. (2003) developed a very advanced graphic 

environment which could be modified depending on the targets of 

the study developed each time, as well as the interaction of the 

subject with the VE and the use of a virtual map. They developed 

some devices specially designed for their use inside the MR to show 

the environment. In their study, they observed an increase in the 

activity of the motor areas (SMC, SMA and cerebellum), the attention 

areas (ACC), the areas related to memory (frontal, PFC and parietal) 

and vision areas (occipital and calcarine). A similar experiment was 
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conducted by Mraz et al. (2003), using data globes for the navigation. 

They developed two tasks: the first one using a common joystick and 

the second with the data globe. The introduction of the globes 

produced the activation of the primary sensorimotor contralateral 

cortex, as well as the motor areas, SMA and parietal regions. If it also 

included the possibility of watching the globe, the activation was 

even higher, especially in the ipsilateral parietal lobe. 

Other studies have used fMRI to analyze the different brain 

activations achieved when real or virtual stimuli are applied. In this 

field, Han et al. (2005) studied 12 subjects using fMRI while they were 

exposed to photographs of: real people, drawings of people, 

drawings of robots and real animals. They concluded that the real 

stimuli activated the middle prefrontal cortex and the cerebellum, 

while the virtual stimuli activated the parietal cortex. In a similar 

study, this time developed with PET images, Perani et al. (2001) 

exposed the subjects to three tasks (first with 2D and then with 3D 

images): view of the movement of a real hand, view of the same 

movement but with a high-resolution virtual hand and view of the 

same movement with a low-resolution virtual hand. In 2D, the higher 

activation was achieved in the bilateral V5, cuneus and lingual gyrus; 

while in 3D the occipital cortex was the most activated area while 

seeing the virtual hands, not being activated during the task with the 

real one.  

Some investigations have used VR as stimuli to analyze the brain 

activation during the performance of some specific tasks in the fMRI. 

Some studies have analyzed navigation and spatial memory. For 

example, Astur et al. (2005) made a research over the spatial 

memory, using as stimuli a virtual maze. There they found a decrease 

in the activation of the bilateral hippocampus during the spatial 

memory task, involved in the study of a radial-arms maze. Another 

remarkable example is that conducted by Pine et al. (2002) over the 

neural correlates of the spatial navigation using a VR environment as 

stimuli with different navigation conditions. Calhoun et al. (2005) 
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analyzed the influence of alcohol in driving, using a simulated drive in 

a virtual environment as stimuli. In another example, Lee et al. (2005) 

analyzed the reaction of smokers to tobacco-related stimulus, also 

using VE along which the users had to navigate. 

 Other studies have applied VR for different purposes, and have used 

fMRI to validate their results. You et al. (2005) analyzed the effects of 

the use of VR in the cortical reorganization and motor recovery 

associated to stroke patients, finding differences in the laterality 

index in the primary sensorimotor cortex between the control group 

and the VR group. Hoffman et al. (2003, 2004) investigated the 

neuronal correlates observed during the use of VR as pain distractor. 

Their results showed decreased activation levels in the pain-related 

brain areas when the VR stimuli where shown (Figure 2.76). This kind 

of therapy helps, for example, with burned patients, showing them 

environments to induce the sensation of cold. What’s more, this 

study concluded that thanks to the low conscious attention of the 

human being, the distraction can be made by a simple environment, 

keeping the pain in a second plane. 

 

Figure 2.76 Results for the study of Hoffman et al. for some brain areas, before and 
after the VR application 

2.4.3 Virtual Reality Exposure Therapy (VRET) 

In the field of psychological treatment, the exposure therapy is 

widely used. It involves confronting stimuli that provokes fear or 

anxiety in the patient. The addition of the virtual reality to this setting 

allows the creation of a safe virtual world where the patient can 
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experience new realities without feeling threatened, allowing him to 

approach situations in a gradual way (Baños et al., 2011), which 

attenuates the anxiety felt (Riva, 2010). If the patient avoids the 

situation or the feared object, the phobia is reinforced. However, 

each successive exposure to the situation reduces the anxiety by 

means of habituation processes. So the VR acts as an intermediate 

step between the therapist’s office and the real world (Botella et al., 

2006). 

 

Figure 2.77 Example of Virtual Environment that can be used for exposure therapy 
in patients with acrophobia 

According to this, VR can be seen as an advanced imagination system 

(Riva, 2010), which means that it is a medium as effective as reality to 

generate emotional responses. And what makes this possible is the 

sense of presence, which will be studied in the next chapter.  

The idea of using VR for the treatment of psychological disorders was 

conceived in 1992 in the Human-Computer Interaction Group of the 

Clark Atlanta University (North et al., 1997b, 1998), and, since then 

has evolved quickly. The technique has been successfully applied for 

the treatment of different anxiety disorders, such as specific phobias 

(Parsons and Rizzo, 2008), anxiety disorders, mood disorders, or 

substance abuse disorders (Emmelkamp, 2000). One of the first 

disorders to be treated with VR was acrophobia (Rothbaum et al., 

1995a, 1995b; North and North, 1996), in the Clark Atlanta 

University. They used a scenario consisted of a building with an 
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exterior elevator that could reach different heights from which the 

patient could go to a balcony and have a look. They found that after 

eight sessions with this environment, the patient began to feel more 

relaxed, even in a height equivalent to a 15th floor. 

In the field of phobias, VR has been widely used, for the treatment of 

phobias as varied as flying phobia (Rothbaum et al., 1996; North et 

al., 1997c), small animals’ phobia (Garcia-Palacios et al., 2002) and 

social phobia (Slater et al., 1999; Pertaub et al., 2002), including also 

telepsychology treatments (Botella et al., 2000).  

Other disorders in which VR based treatments have been applied 

include panic disorder, agoraphobia, post-traumatic stress disorder 

(PTSD) and eating disorders.  

The objective when designing an environment for the treatment of 

agoraphobia is to expose the patient to his most feared situations 

(Jang et al., 2000; Moore et al., 2002). Environments that also 

simulated physical sensations of patients during panic attacks have 

also been evaluated, showing that the use of this technique can be 

useful both in short and long term results (Botella et al., 2007). 

Regarding the use of VR for PTSD treatment, most of the 

environments designed up to now have been developed for a specific 

kind of traumatic event, similarly to what happens with phobias. For 

example, Rothbaum et al. (2001) designed environments for war 

veterans from Vietnam, Difede and Hoffman (2002) for 11th 

September victims and Rizzo et al. (2006) for Iraq combatants.  

However, another approach has been evaluated, consisting on the 

use of a generic environment that admits a personalization 

depending on the specific trauma the patient suffers. Technically, 

that supposes a great advantage, because it is not necessary to 

develop a new environment for each patient. This approach was 

started in the European Project named EMMA (Engaging Media for 

Mental Health Applications). The EMMA World used symbols and 
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personalized objects with the goal of provoking and evoking 

emotional reactions in the patients which could help them in the 

emotional processing of the trauma, in the context of a secure and 

protected environment (Rey et al., 2005). The results of the 

validation of the system showed that the behavioral-cognitive 

therapy with EMMA was as effective as the standard behavioral-

cognitive therapy for treating these disorders. Better results in 

depression measures, social interference and relaxation intensity 

were obtained in the case of the EMMA world (Baños et al., 2011). 

An example of two appearances that the EMMA world can adopt 

during the experimental sessions under the therapist control is 

shown in Figure 2.78. 

 

Figure 2.78 a) Beach of the EMMA World, b) Meadows of the EMMA World 

Finally, eating disorders are a complex category that includes 

anorexia, bulimia and binge eating disorder. One of the most serious 

problems in this kind of disorders is the distorted perception of the 

own corporal image, which has a great influence on the rehabilitation 

process. This aspect is difficult to evaluate with traditional 

techniques. However, several proposes with VR have been presented 

to help in the evaluation and changing of this perception (Riva et al., 

1998, 2006; Alcañiz et al., 2000; Perpiñá et al., 1999), with 

encouraging results. 
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2.4.4 Proposal of the combined use of VR and 

Neuropsychotherapy 

As was stated in the introduction to this section, the hypothesis in 

this Thesis is that the use of virtual reality during the assessment of 

subjects with a psychological disorder would help in the better 

evaluation of the brain activation’ patterns, and that this information 

could be used later to adjust the treatment to the specific needs of 

each patient. As aforementioned, VR has been widely used in the 

treatment itself, but not as a tool for the better assessment of the 

brain activations before and after the therapeutic process.  

VR allows a better and more accurate approach of the subject to the 

stimulus we want him to face. This kind of approach would be almost 

impossible with real stimuli, due to the impossibility of measuring the 

brain activations in real life (for example, the inability to interact with 

real stimuli inside a fMRI device, or the movements that would bring 

noise to the EEG signal). Moreover, we have commented the security 

that VR brings to the environment, allowing the gradual exposure of 

the subject and the control of every characteristic of the virtual 

world. This would help during the assessment to activate the brain 

areas related to a specific stimulus, distinguishing them from the rest. 

The information extracted would help in the better treatment of the 

subject, according to the neuropsychotherapeutical theory. 

For this Thesis, the proposal is to use virtual environments in the 

assessment of subjects with small animals’ phobia (more precisely, 

spiders and cockroaches phobia), to check in the brain areas 

activated are the ones that have been previously related to the 

phobia. Moreover, the extra information due to the interaction of the 

subject with the environment would lead to the better understanding 

of the disorder and could help in the better development of the 

treatment.  

2.5 Overall Conclusions 
In order to summarize what has been exposed in this Chapter, there 

will be made some overall conclusions. As aforementioned, the main 
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goal of this PhD Thesis is the study of how virtual reality can help in 

the assessment of the brain functioning, in order to provide useful 

information for the adjustment of the proper psychological 

treatment, in what is known as neuropsychotherapy.  

Until now, there have been presented the main characteristics of the 

different actors involved in the setting of this Thesis: the brain and its 

structure, the neuroimaging techniques that will be used, the 

principles in which neuropsychotherapy is based and the basis of 

virtual reality. Hereafter, the works that have been conducted will be 

presented, grounded in the knowledge aforesaid. 

Before being able to pursue this goal, two questions have to be 

answered: 

1- Which neuroimaging technique is better for what is looked for in 

this Thesis? 

2- Do the virtual environments developed really stimulate the brain 

areas related to the phobia? Or what is the same, are the VE felt as 

present so the phobia is stimulated? 

For answering the first question, there have been proposed (as 

exposed previously in this section) the use of two techniques: fMRI 

for a better spatial resolution of the brain areas involved, and EEG for 

a simpler setting, less intrusive to the subject in order to not distract 

his attention from the virtual environment. 

As a response for the second question, it was concluded that a study 

of the sense of presence induced in the virtual environment will be 

necessary before analyzing the phobia.  

Moreover, this same presence study will serve as an indicator of the 

intrusion caused by the neuroimaging technique used. That means 

that if the environment is felt as immersive enough, the 

neuroimaging technique chosen will not affect to the final brain 

activation results. For this, the sense of presence will be studied by 
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means of the two neuroimaging techniques proposed: fMRI and EEG; 

and depending on the results it will be decided which one is better 

for the phobia study.  
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3 Presence 
As it has been stated in the previous section, before being able to 

connect the brain areas activated during the phobic task to the fear 

itself, there is a need to evaluate if the subject feels the virtual 

environment as real. This is what in virtual reality is known as 

presence. The traditional way for measuring this parameter is by 

means of validated questionnaires or physiologic measures such as 

the skin conductivity and the heart rate; more advanced 

neuroimaging techniques are rarely used for this purpose, despite 

the great advantage they would carry to the analysis of the brain 

areas activated when the subject feels he is present in the virtual 

environment. In this part of the thesis, the main theory about 

presence and virtual reality will be described as well as the main 

previous studies that have been developed in this area. Then, there 

will be presented the two studies conducted to measure the sense of 

presence with two different neuroimaging techniques: first with fMRI 

and then with EEG. Finally, the results from both studies will be 

discussed and some overall conclusions made. 

3.1 Concept of presence 
The sense of presence inside a virtual environment can be described 

as the feeling of being there, inside the environment, instead of in 

the room where the experiment is taking place (Sheridan, 1992; 

Baños et al., 2000; Sadowski et al., 2002; Slater et al., 1997). Presence 

refers to the process of discerning and validation of the existence of 

oneself in the natural world; a process that, according to Heeter 

(1992), is learned by the human beings since their birth.  

Other definitions avoid the need of a subjective sense of presence, 

suggesting that the effectiveness of the couple perception-action 

between the user and the environment is enough to define presence. 

Sanchez-Vives and Slater (2005) also pointed out that inside the 

virtual experience, you are at the same time conscious of the “place” 

and the “events” and simultaneously conscious of that there are no 
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such place or events; however, you still behave and think as if the 

place were real and the events were happening. As your 

consciousness of the differences between the real and virtual place 

and events blurs, the barrier between your mind and the VE 

diminishes, improving your interaction with the computer-generated 

world. And that is because, as Loomis (1992) remarked, “presence is 

a fundamental property of consciousness”. Therefore, it is unlikely to 

be unidimensional (Kim & Biocca, 2006). The International Society for 

Presence Research (2000) proposed that presence could be 

considered from several major dimensions, based on the findings of 

different studies in the matter. The first dimension is spatial 

presence, the subject’s belief that they are really inside the virtual 

environment. The second is sensory presence, which is related to the 

subject’s perception of the Virtual Environment (VE) as they would 

perceive the real world, divided into visual, auditory and tactile 

perception. Social realism refers to the subject’s perception that 

objects, events and people that appear in the virtual environment 

could exist in the real world.  Engagement occurs when the subject 

feels the virtual environment to be involving. Finally, social presence 

refers to communication with other people or entities inside the VE. 

Inside Virtual Reality, there are two concepts to consider: presence 

and immersion. Presence refers to the feeling of being in the virtual 

environment, while your body is physically located elsewhere. 

However, the immersion concept refers to the technical ability of the 

system to offer a convincing and involving environment with which 

the subject can interact (Schubert et al., 2001; Biocca and Delaney, 

1995).  

The concept of presence is also important from the point of view of 

Human-Computer Interaction (HCI), helping in the improvement of 

the virtual environment’s design as well as in the measure of the 

influence those improvements have over the subject. If the sense of 

presence inside the VR increases, it means that the interaction 

between the computer-generated virtual world and the subject has 
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improved. In words of Riva et al. (2003), “as media becomes 

increasingly interactive, perceptually realistic and immersive, the 

experience of presence becomes more convincing”. What’s more, as 

Sjölie et al. (2010) remarked, “measuring brain activity while 

interacting naturally with a system makes it possible to correlate 

activity in specific brain areas, or patterns of activation in distributed 

networks, to hidden cognitive states, such as mental workload, and in 

turn relate these hidden states to aspects of the interface and the 

interaction”. The final aim of the HCI is the development of systems 

able to minimize the barrier between the human cognitive model of 

what the user wants to achieve and the computer’s understanding of 

the task performed by the user (Sharp et al., 2007). If those neural 

correlates hidden behind the sense of presence can be found, it may 

be possible to develop adaptative Brain-Computer Interfaces (BCI) 

which allow the changing in the environment depending on the 

needs of the users, vanishing the technology from the subjects’ 

awareness (disappearance of mediation), one of the main 

characteristics the virtual environment has to accomplish to make 

the experience satisfactory (Riva et al., 2003).  

This “vanish” of the technology from the subject’s awareness is what 

will help in the development of environments able to stimulate the 

targeted psychological disorder as if it were presented a real 

stimulus, and guide the therapist in the underpinning of the brain 

areas related to the disorder. In the specific case developed for this 

Thesis, before being able to measure the brain areas related to the 

phobia inside a virtual environment, it is needed to verify that the 

subjects actually feel present inside the virtual world. If the subject 

feels that he is present in the environment, during the view of the 

phobic stimuli he will react as he would in a real situation and the 

brain activations would be considered as related to the phobia.  

3.1.1 Measure of presence 

There exist several ways of measuring presence in a virtual 

environment; however, not all are good. For being able to consider a 
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presence measure correct, it has to be (Sadowski and Stanney, 2002; 

Hendrix and Barfield, 1996):  

- Relevant, having a direct link with the sense of presence 

- Reliable, allowing the repeatability of the results 

- Sensible to the changes occurred over the presence level 

- Non intrusive, avoiding that its inclusion in the protocol 

degrades the sense of presence 

- Portable, low cost and easy to learn and use 

The measure of presence has been made traditionally using 

subjective techniques based on questionnaires (for example, Usoh et 

al., 2000; Witmer and Singer, 1998; Lessiter et al., 2001; Baños et al., 

2000). To avoid the inherent problems of these kinds of measures, 

some objective measures have been proposed, mainly based on 

psychophysiological measures. For example, the skin conductivity or 

the heart rate are related to the anxiety level experienced by the 

subject, and can operate as a good indicator for the level of presence 

experienced in the environment (Dillon et al., 2000; Meehan et al., 

2001). What’s more, recent works have analyzed the sense of 

presence from a neuroscientific point of view, concluding that VR is 

not only a tool for neuroscience, but that the sense of presence in a 

VE is the object of study of neuroscientifics (Sanchez-Vives and Slater, 

2005). In the subsequent sections there will be detailed the main 

characteristics of the most commonly used techniques for the 

measure of the sense of presence: questionnaires, physiological 

measures and brain image techniques (Transcraneal Doppler, EEG, 

PET, fMRI…).  

3.1.1.1 Questionnaires 

Questionnaires are the subjective way that has been traditionally 

used for the measure of presence (Usoh et al., 2000; Witmer and 

Singer, 1998; Lessiter et al., 2001; Baños et al., 2000). They are 

considered subjective because they analyze the level of presence 

experienced as a result of the exposure to a virtual environment once 

it has finished, mediating several tests the subjects have to fulfilled a 
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posteriori. Because of that, the personal opinion and the character of 

the person influence the answers (the person can, for example, grade 

the questions higher in order to answer what they think the 

researcher wants them to). For this reason, the questionnaires have 

been often criticized. For example, Freeman et al. (1999) showed 

how instable they were. What’s more, the presence questionnaires 

can only be used after the exposure to the virtual environments, so 

data of the temporal evolution of the sense of presence are not 

available.  

Several solutions have been proposed to avoid the aforementioned 

limitations of the technique, allowing monitoring several variables 

during the virtual experience. For example, IJsselsteijn and Ridder 

(1998) made a continuous register of the measures during the VE 

exposition; on screen it was shown a control that subjects could 

move in real time to indicate their level of presence. In another 

example, Slater and Steed (2000) used a virtual counter that 

measured the transitions between virtual and real environments. 

Moreover, other qualitative measures such as out-loud thinking, 

interviews or group discussions were proposed to improve the 

results.  

There exist numerous questionnaire models proposed to obtain 

better results, more accurate with the real measures. One of the 

most commonly used is the SUS questionnaire (Usoh et al. (2000) (an 

example of this questionnaire can be seen in Appendix 4). This 

questionnaire is based on several elements to grade according to a 

Likert scale between 1 and 7. The questions are variations of three 

aspects (Slater et al., 1995): the sense of being there of the subject, 

the level in which the environments become more real than reality 

itself to the subject, and the grade in which the environment is 

considered as a place visited more than as a group of images. The 

value of the sense of presence is measured as a mean of all the 

answers (“SUS mean”) or as the number of answers with high 

punctuation (“SUS count”). 
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3.1.1.2 Physiological measures 

Another kind of measures, more objective and widely used in 

presence, are the physiological measures (Dillon et al., 2000; Meehan 

et al., 2001). There exist two kinds of objective measures: the 

behavioral and the physiological, but here there will be explained the 

second ones. The major advantage of the objective measures is that 

they are taken during the virtual experience and not at the end of it, 

so they can be used as real time monitoring during the task. What’s 

more, instead of measuring directly the level of presence, they relate 

this with the grade of change produced over several parameters 

obtained during the physiological measures or during the behavioral 

observation.  

The physiological measures are the objective measures more used. 

According to Dillon et al. (2000), in comparison with the traditional 

techniques, the more immersive experiences produce higher 

subjective rates of presence and more intense physiological 

responses. Following some of the more applied physiological 

measures will be cited: 

- Cardiovascular parameters and skin conductance: On one 

hand, the skin conductance is measured using two electrodes 

located over the surface of the skin that measure a little 

current that passes through them, obtaining the skin 

resistance (using the Ohm’s law, R=V/I), that is connected 

with the activity of the sympathetic system. On the other 

hand, the cardiovascular system is controlled by branches of 

the sympathetic and parasympathetic systems of the 

autonomic nervous system; normally measured by 

electrocardiography (ECG).  

- Tracking of the eye movement: assuming the level of 

attention people have to a continuous flew of stimuli is 

related with the sense of presence.  

- Surface electromyography to measure the muscular activity: 

it is based on the premise that if the user feels present in the 
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virtual environment, the physiologic response will be similar 

to that observed in an equivalent situation lived in the real 

life.  

3.1.1.3 Neurologic measures: brain image techniques 

Virtual reality, as aforementioned, has opened a wide new branch of 

applications and possibilities in the field of the neuroscience, the 

cognitive science and the psychology (Tarr and Warren, 2002). 

However, the concept of presence is in itself object of study using 

brain image techniques. The fMRI, despite being widely used with VR 

stimuli for the neuroscience research, has scarcely been used for the 

measure of presence. In the following sections the principal 

neuroimaging techniques to be used for that goal will be discussed. 

TCD 

One of the most recently applied techniques for the study of 

presence is Transcraneal Doppler (TCD). It consists in a non-invasive 

technique for the measure of the blood flow and pressure in the 

brain, by means of the transmission of high frequency waves 

(ultrasounds) and the reception of its echoes from the red globes in 

the blood. Two recent studies (Alcañiz et al., 2009; Rey et al., 2010a) 

used Transcraneal Doppler for the measure of presence during the 

navigation through a virtual environment. Their results showed 

changes in the blood flow speed during the moments associated with 

different levels of presence. In another work conducted by the same 

research group (Rey et al., 2010b), they took advantage of the high 

temporal resolution of the TCD for the study of the temporal 

evolution of the blood flow velocity signal (BFV), monitoring the 

greatest BFV value in the posterior arteries during a perception task.   
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Figure 3.1 Photograph of a subject navigating through a virtual environment while 
the blood flow velocity is measured by TCD, from the study of Alcañiz et al. (2009) 

EEG 

Another technique for the measure of presence is the 

electroencephalography (EEG). As aforementioned in Chapter 2, the 

EEG measures the electric activity in the brain, more particularly the 

synaptic potentials in the cerebral cortex. The EEG signals represent 

potential differences between two electrodes, one active and 

another of reference. This technique has a temporal resolution of 

milliseconds, allowing the analysis of the EEG fluctuations depending 

on the task to accomplish. In this sense, it is worth to remark the 

work of Baumgartner et al. (2006), who evaluated the cerebral 

activity associated to the sense of presence using multichannel EEG, 

applying the low-resolution electromagnetic tomography technique 

(LORETA) for the study of the cortical structures that generate 

neurophysiologic activation. They compared the activation in children 

and teenagers during the view of a video of a roller coaster, and 

concluded that it stimulated the activation of the parietal areas of the 

brain, and that children have a higher sense of spatial presence than 

teenagers (less activation in the frontal area).  
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More recently, other studies were developed in interactive 

environments where the navigation through the virtual environments 

was allowed, in order to increase the sense of “being there”. Kober et 

al. (2012) analyzed spatial presence in an interactive virtual world, 

comparing two systems for the presentation of the virtual stimuli: 

one based on a high-immersive VR wall (3D) and another based on a 

low-immersive 2D desktop screen. The 3D screen system showed a 

greater sense of presence associated with an increase in the Alpha 

band for the parietal TRPD (“Task-related power decrease”), related 

to the parietal activations. The lower presence experience in the 2D 

screen was accompanied by a strong functional connectivity between 

the frontal and parietal areas of the brain, pointing out that the 

communication between those areas is crucial for the experience of 

presence. 

In another study, Kober and Neuper (2012) studied the Event-Related 

brain Potentials (ERP) of the EEG signal, which were elicited by tones 

that were not related with the VR experience and were used in the 

experimental design to obtain an objective indicator of the 

experience of presence in the virtual environment. They found a 

correlation between the increase in the presence experience and the 

decrease in the late negative slow wave amplitudes, related to the 

central stimulus processing and the allocation of the attentional 

resources. According to this conclusion, an increase in presence is 

related to a greater pay of attention to the virtual environment, 

which leads to a decrease in the attention paid to the irrelevant 

stimulus of the VR (decrease in the ERP components due to the 

tones). 

fMRI 

Combining presence with Virtual Reality and fMRI, there is the study 

of Baumgartner et al. (2008), who compared brain activation 

between children and adults while watching a video of a roller 

coaster, to identify the areas related to the sense of presence and the 

differences with the age due to the maturity of the brain. Despite 
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being only videos, they distinguished between the environments of 

high (Figure 3.2 left) and low (Figure 3.2 right) arousal, so the sense 

of presence was equally stimulated. The sense of presence was also 

measured by means of questionnaires. They concluded that some 

brain areas continue their maturation during the whole life, some of 

those related to the sense of presence. They explored the differences 

in activation between children and adults, in high and low arousal 

environments, to evaluate the previous results. As a result, they 

remarked the activation of the parietal lobe as one of the most 

important areas related to presence and to the egocentric spatial 

processing. Moreover, they obtained especially important activations 

in areas such as the cuneus, the middle occipital gyrus and the insula. 

Lastly, they remarked the existence of a negative correlation 

between the answers to the presence questionnaires and the brain 

activation in the dorsolateral prefrontal cortex (DLPFC). 

 

Figure 3.2 Captures of the environments for the high (left) and low (right) arousal 
situations, used in the study of Baumgartner et al. (2008) for the measure of the 

sense of presence 

3.2 Experimental Study: Study of the sense of 

Presence in a Virtual Environment using 

different Neuroimaging Techniques 
Once the theoretical framework of the sense of presence has been 

exposed, there will be explained the design of the study conducted 

for the measure of presence inside a VE. Both the fMRI and the EEG 

studies are based on the same experimental design, so the 
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explanation would be the same. Moreover, the common goals and 

methods for both studies will be presented. 

 The common target for both the fMRI and the EEG studies was to 

obtain the brain areas activated during the exposure to a VR 

environment, comparing different experimental conditions in order 

to obtain the areas related to the sense of presence. For this 

purpose, the task has been divided in three experimental conditions 

repeated in a counterbalanced order: view of photographs of the VE, 

view of a video of an automatic navigation along the same 

environment, and free navigation. The hypothesis is that the free 

navigation will generate a higher sense of presence over the subject 

than the other two conditions, using the comparison with the view of 

videos and photographs to remove those areas related to the mere 

stimulation of the visual areas. 

In the present course of research, the main goal was to evaluate 

using brain imaging techniques if the sense of presence is stimulated 

when the interaction between the computer-generated environment 

and the subject is good. For this purpose, the brain areas that were 

activated in relation to the sense of presence during a virtual reality 

paradigm were studied.  

It is known from previous studies that the sense of presence is 

influenced by the possibility of self-controlling the navigation (Welch 

et al., 1996; Alcañiz et al., 2009). In order to analyze the brain 

activation associated to changes in the level of presence, different 

navigation paradigms will be compared in the experimental design. 

Specifically, the brain activations during an experimental condition 

where the participants could navigate freely, will be compared with 

less immersive configurations (visualization of still images of the 

environment, and visualization of an automatic navigation – video – 

through the same environment). The selection of the three 

experimental conditions has been made based on the definition of 

Sanchez-Vives and Slater (2005) of the concept of presence as the 

ability to “do” inside the virtual reality, so the more you do inside the 
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virtual environment, the more presence you will feel. Comparing the 

conditions of free and guided navigation (video) it is expected to 

measure the differences in the level of presence due to the self-

control of the movement; while the still-photographs condition will 

act as baseline condition. From this point of view, the increase of 

activity between the three experimental conditions would be 

translated to an increase in the sense of presence, losing the 

consciousness of the existing barrier between the real and the virtual 

world.  

In order to ensure that there were differences in the level of 

presence between the different experimental conditions, the sense 

of “being there” was evaluated by means of a validated 

questionnaire (Usoh et al., 2000), that has been applied to obtain a 

subjective measure of the spatial dimension of presence in the 

different conditions and subjects. The main hypothesis of this 

research was that brain activation would be higher during a 

navigation task than during a video or photograph task in areas such 

as the cuneus and the parietal lobe, which are known to be related to 

presence from previous studies. Taking into account the results of 

Baumgartner et al. (2008), it was also expected to find negative 

correlations between the activation in the dorsolateral prefrontal 

cortex (DLPFC) and self-reported presence scores. 

3.2.1 Virtual Environments  

The virtual environments were programmed using GameStudio 

software (Conitec Datensysteme GmbH, Germany), which allowed 

the development of 3D objects and virtual worlds with which the 

user could interact and navigate. The virtual environment (VE) 

consisted of an everyday, clean bedroom (with a bed, a closet, and a 

desk with some books on it) where participants could navigate freely.  

To allow the identification of the specific areas of the brain that were 

activated for each task, the paradigm was divided into three 

conditions developed with the same virtual environment: in the first, 

only photographs of the room could be visualized (4 photographs 
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displayed for 4.5 seconds each with 0.5 seconds of black screen 

between them); in the second, a video of an automatic navigation 

through the same room could be observed (with a duration of 20 

seconds); and in the last one, the participant could navigate freely for 

20 seconds in the VE. 

 

Figure 3.3 Captures of the environments used during the task 

In order to prevent the subjects from staying still during the 

navigation period, they were instructed to perform a search task 

which forced them to move through the environment and kept them 

engaged with the stimuli. This task consisted in searching for some 

red keys that randomly appeared and disappeared in the 

environment, and counting the number of them that they had seen 

(maximum of 4, remaining in the VE for 5 seconds). They were not 

encouraged to find them all, or to find them as quickly as possible, 

they were only told to continue searching for them during each 

period. To prevent differences between the different phases of the 

experiment, this counting task was also performed during the other 

two conditions. During the photograph period, some of the images 
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showed featured keys and some did not, and the subjects had to 

count the number of keys they saw. During the video task, the keys 

appeared randomly in the environment as the camera moved 

through it. After each task, subjects were questioned about the 

number of keys they had found (they had to answer in a short period 

of 4 seconds). While they were conducting the tasks, the researcher 

checked that they had answered properly. The number of keys 

counted is not relevant, it was just included to avoid the subjects to 

remain still during the experimental conditions.  Between  phases, a 

black screen appeared to give subjects a rest period during which 

brain activation could decay to its baseline values (6 seconds) before 

the label indicating the next task appeared (2 seconds). The total 

time between tasks was 12 seconds. At the beginning of the 

experiment there were 14 seconds of black screen to compensate for 

T1 saturation effects. Each of the three experimental conditions was 

repeated six times in a counterbalanced order to prevent effects 

produced by the order in which they were presented. The total time 

of the complete experiment was 12 minutes 52 seconds. A scheme of 

the protocol can be seen in Figure 3.4. 

 

Figure 3.4 Diagram of the experimental design 

To learn about the tasks that had to be performed inside the scanner 

room, subjects underwent a prior training session where they were 

introduced to the VR navigation and to the tasks. They were also 
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shown the differences between the photographs, videos and 

navigation, and practiced the hand movement using the joystick as it 

was going to be done during the scanner session. This training 

session was conducted in a supplementary virtual environment to 

prevent habituation.  

 

Figure 3.5 Captures of the training environment 

In order to prevent differences in activation caused by the motor 

task, subjects were instructed to move the joystick continuously 

during the video and photograph tasks in the same way as they did 

during the navigation period. The joystick movement was made just 

to compensate the brain activations caused by motor tasks between 

the different conditions. During the fMRI scan, the VR application 

checked the total time that they spent moving the joystick in each 

condition to guarantee that the motor movements had been 

continuous in all the cases. 

3.2.2 Study of the Sense of Presence in a VE with fMRI 

3.2.2.1 Materials and Methods 

3.2.2.1.1 Subjects 

For this study, there were recruited 14 right-handed women, none of 

them with any medical or psychological disorders, aged between 19 

and 25 (mean age 21.64). They were chosen women because they 

are more expressive with their feelings and their brain activation is, 

therefore, greater (Canli et al., 2001; Lang et al., 1998). The 
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participants’ hand dominance was tested using the Edinburgh 

Handedness Inventory (Oldfield, 1971), which can be seen in the 

Appendix 3. All these women were Spanish-speaking students, were 

paid for their participation in the study and were recruited from the 

Universitat Jaume I in Castellón and the Universitat Politècnica de 

València. Each subject signed a written informed consent prior to 

participation. None of them had to be excluded due to movements or 

distortion during the fMRI scan. 

3.2.2.1.2 Post-fMRI questionnaires 

In order to obtain numeric values to correlate with the results from 

the fMRI scan, after the scanner session the subjects had to answer 

several questionnaires. Questionnaires, as aforementioned, are the 

traditional method for the measure of presence inside VR. The 

questionnaires the subjects had to fulfill in this study were SUS 

questionnaires (Usoh et al., 2000), which evaluate the level of 

presence that they felt during each task. The questionnaire consisted 

in six, 7-point Likert type questions that had to be answered 

depending on the strength of the “being there” sensation 

experienced, where 1 corresponded to not feeling there at all and 7 

to the highest sense of being there (as experienced in the real world). 

A midscale value of 4 would correspond to an intermediate level of 

being there, experienced by the subject as the midpoint between the 

feeling in the real world and not feeling there at all. Subjects had to 

complete 3 questionnaires, one for each task, all containing the same 

questions. An example of these questionnaires can be seen in 

Appendix 4. 

3.2.2.1.3 fMRI Procedures 

All subjects were scanned in a 1.5 Tesla Siemens Avanto Magnetic 

Resonance scanning device (Figure 3.6(a)) located in the General 

Hospital of Castellón, Spain. In order to prevent the movement of the 

head during the scan, an adapted magnetic resonance (MR) helmet 

(Figure 3.6(b)) was used. To display the environments, MRI-

compatible video goggles we used, specifically, VisualStim Digital 
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(Resonance Technology Inc., Los Angeles, USA), an image of which 

can be seen in Figure 3.6(c); and, for the navigation, an adapted 

joystick was used (Resonance Technology Inc., Los Angeles, USA), 

that can be seen in Figure 3.6(d).  

 

                           (a)                                                 (b) 

 

                            (c)                                                 (d) 

Figure 3.6 Photographs of (a) the magnetic resonance room with the Siemens 
Avanto 1.5T device, (b) an example of a helmet for the fixation of the head inside 
the resonance, (c) the goggles used for the view of the environments and (d) the 

joystick used for the navigation. 

The followed protocol consisted on one first step were all the 

subjects were interviewed by phone to assure they all were right-

handed and were suitable for the performance of a fMRI scan. Then 

they were given a date for the scan. When they arrived, they were 

conducted to a separate room where they performed the training 

session and were given the instructions to understand the task they 

had to perform. They also fulfilled a questionnaire to assure their 
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hand dominance (Edinburgh Handedness Inventory questionnaire 

(Oldfield et al., 1971), see Appendix 3). Once they had understood 

everything and signed the informed consent, they were conducted to 

a room where they could change their clothes before they entered 

the magnetic resonance room. Inside the device room, they were lain 

down inside the scan, where some technicians put the goggles, the 

helmet and the joystick on them. Once everything was all right, the 

scan began. 

First, as is indicated for fMRI studies (Amaro and Barker, 2006), there 

were acquired the sagittal T1-weighted structural images of the brain 

(224 x 256 matrix covering the brain with 176 contiguous 1 mm 

slices, repetition time (TR) = 11 ms, echo time (TE) = 4.94 ms, flip 

angle (FA) = 15⁰, voxel size = 1.04 x 1.04 mm). Then the functional 

scanning was launched, synchronized with the virtual environments. 

Functional images were obtained using a T2* single-shot echo-planar 

imaging (EPI) sequence. There were used 30 contiguous 4.2 mm 

interleaved axial slices (parallel to the line between the anterior and 

the posterior commissures or AC-PC line) covering the entire volume 

of the brain with a 64 x 64 matrix (TR = 2000 ms, TE = 30 ms, FA = 

90⁰, voxel size = 3.5 x 3.5 mm). 

3.2.2.1.4 Data Analysis 

3.2.2.1.4.1 Questionnaire Analysis 

First of all, the data obtained from the SUS questionnaires were 

analyzed, using the program SPSS 17.0 (IBM Corporation, Somers, 

New York, USA). Apart from the individual responses to the six 

questions associated with each of the periods (photographs, video 

and navigation), it was calculated an additional measurement: SUS 

mean. This is the mean score across the six questions, that has 

already been described in previous studies (Usoh et al., 2000). A non-

parametric Friedman Test was applied to compare SUS responses 

(dependent variables: questions 1-6 and SUS mean) for the different 

experimental conditions: photographs, video and navigation. After 

that, two by two comparisons between the three experimental 
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conditions were made. The post-hoc tests were made with a 

Wilcoxon Signed-Rank test with Bonferroni correction. 

 

Figure 3.7 Captures of the SPSS program 

For a greater robustness of the questionnaire results, a comparison 

was made, using a repeated measures test, between our results and 

those obtained in a previous work with similar experimental 

conditions conducted using TCD by the LabHuman group. In that 

study (Alcañiz et al., 2009), the level of presence was measured 

during two conditions: free and guided navigation. With this 

comparison it was evaluated the influence of the dependent variable 

(SUS mean) over the intra-subjects factor (experimental condition: 

navigation vs. video) and the between-subjects factor (fMRI vs. TCD). 

For the evaluation of the homocedasticity, the Levene’s statistics 

were used.  

3.2.2.1.4.2 fMRI Analysis 

To analyze the fMRI data it was used the Statistical Parametric 

Mapping software (SPM8, Wellcome Department of Imaging 

Neuroscience, London, UK), launched with Matlab Version 7.1 

(MathWorks, Natick, Massachusetts, USA). The first 7 scans were 

excluded from the analysis to eliminate the decay of the fMRI signal 

associated with the moment when magnetization reaches 

equilibrium. The first step was to align the images to the AC-PC line.  

Then the preprocessing began (Friston et al., 1995), realigning the 

functional images (estimate and reslice option). Once the realigned 
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functional images were obtained, the next step was coregistering 

them to the structural images, using for this functions based on the 

Information Theory (entropy).  

When the coregistering was done, it was performed the 

segmentation of the result (“Segment”) to obtain the gray matter, 

white matter and cerebrospinal fluid images. Then the resliced 

functional volumes and anatomical volumes for each subject were 

normalized separately with the normalization parameters extracted 

after segmentation. Finally, the images were smoothed using an 

isotropic Gaussian kernel or three-dimensional Gauss Bell (FWHM of 

8 x 8 x 8 mm).  

Once the preprocessing had been done, the next step was to conduct 

a first level fixed-effect analysis (with the aim of detecting changes in 

the BOLD signal between conditions in a single subject), where the 

individual contrasts comparing between the different experimental 

conditions were obtained. As a result, the “navigation>video”, 

“navigation>photographs” and “video>photographs” contrasts for 

each subject were obtained. A 128 s high pass filter was also applied 

to eliminate the low frequency components in the signal caused by 

scanner motion and warming.  

Group tests were performed at second level random effect analysis, 

where the group of subjects is taken into account. In accordance with 

the results obtained in previous similar studies (Pine et al., 2002; 

Baumgartner et al., 2008), the data were tested for task related 

activation by performing a one-sample t-test including contrast 

images of estimated parameters from all the subjects for the 

differences of interest between conditions. In total, three one-sample 

t-test were performed, for the contrasts “navigation>video”, 

“navigation>photographs” and “video>photographs”. Results from 

statistical tests at group level were considered significant if 10 or 

more adjacent voxels passed the statistical threshold of p < 0.001 

(uncorrected). 
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Figure 3.8 Capture of an example of brain activation for the “navigation>video” 
contrast and the design matrix 

The aim was to look for activations in areas related to presence and 

navigation, such as the parietal lobe, the cuneus or the precuneus. To 

obtain the specific brain areas that were activated in each contrast, 

the xjView (http://www.alivelearn.net/xjview8/) software utility for 

SPM was used, which uses the MNI coordinates system. 

 

Figure 3.9 Capture of the results obtained with the xjView program 

Once the brain activation maps for each group level contrast were 

obtained, a second-level multiple regression analysis was conducted 

to evaluate the relation between brain activation between conditions 

of interest and the subjective scores from the questionnaires. Three 

new group level analysis (for the three contrasts of interest: 
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“navigation>video”, “navigation>photographs” and 

“video>photographs”) were performed, where the differences 

between the SUS mean results for the experimental conditions 

compared in the contrast (see Baumgartner et al., 2008) were used 

as covariate. The covariate then was a vector of 14 components, one 

for each subject. The value of the component of each subject was 

obtained subtracting the value of the SUS mean for the second 

condition of the contrast compared from the value of the SUS mean 

of the first condition of the contrast. For example, the main interest 

in this study lay in the “navigation>video” contrast, where it was 

obtained the correlation analysis between the “navigation>video” 

contrast and the responses from the SUS questionnaires for the 

“navigation SUS mean score – video SUS mean score”.  

Finally, the brain areas that showed a linear parametric modulation 

of the activation levels and their associated subjective level of 

presence (SUS mean of each condition minus the global SUS mean) 

for the three experimental conditions (navigation, videos and 

photographs) were studied, according to increased sense of presence 

(following a procedure described in previous studies, such as Scheibe 

et al., 2006; Geake & Hansen, 2005; Smith, 2004).  

3.2.2.2 Results 

3.2.2.2.1 Questionnaire Results 

As aforementioned, the subjects were asked to fulfil three 

questionnaires after the fMRI scan, one for each of the experimental 

conditions. The answers to the SUS questionnaire showed between 

subject variations. As sense of presence is subjective, each person 

can experience the conditions with a different grade of affectation. 

Some subjects found the environments quite immersive, while 

another did not believe the virtual illusion, and all this was reflected 

on the questionnaires. Some of the volunteers experienced the sense 

of presence as expected in the experiment design, with a lower sense 

of presence during the photographs task, medium in the video task, 

and higher during the navigation. However, some other subjects 
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found the video and navigation tasks quite similar, because the 

movement of the camera during the video fits the movement of the 

joystick, as will be explained later. There were also subjects that did 

not found the environments realistic at all, and scored the three tasks 

with low values. Mean values in each condition are shown in Table 

3.1. There can be seen the mean values and the standard error for 

each question, as well as the SUS mean.  

 Photographs  Video  Navigation  

Question 1 SUS 3.1429±0.39023 3.7857±0.44695 4.4286±0.42857 

Question 2 SUS 2.7857±0.48242 3.1429±0.47875 3.5000±0.50000 

Question 3 SUS  2.0000±0.31449 2.5000±0.41603 3.1429±0.49009 

Question 4 SUS  3.1429±0.37588 3.1429±0.49009 4.0714±0.45045 

Question 5 SUS 3.4286±0.44121 3.5000±0.41603 4.0000±0.45694 

Question 6 SUS  2.7143±0.36956 3.0000±0.50274 3.5000±0.53195 

SUS Mean  2.8693±0.33034 3.1788±0.40368 3.7733±0.42555 

Table 3.1 SUS responses of the questionnaires for each task (mean and standard 
error of the mean for the 14 subjects) 

As it can be observed from the Table 3.1, the mean value of all the 

answers for the photographs task is 2.87, having all the individual 

answers a value bigger than 2. For the video task, the total mean is 

greater that the former (3.18) and all the questions have values over 

2.5. At last, during the navigation the total mean is 3.77, even greater 

than in the other two tasks, with individual values for each question 

over 3.1. Those values agree with the former expectative of a 

growing sense of presence between the three experimental 

conditions. The results for the SUS mean can be graphically seen in 

the Figure 3.10. 
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Figure 3.10 Results of the SUS mean for the photographs, video and navigation 
tasks (mean value and standard error of the mean) 

Using SPSS, a non-parametric Friedman Test was applied to each 

question and the SUS mean for the three experimental conditions, 

obtaining significant differences between the three experimental 

conditions for all the questions except question 5 (results can be 

observed in Table 3.2). As can be observed from the results for each 

question, the greatest Chi-square value (χ2 = 16, p < 0.001) is 

observed for question 1. 

 χ
2
  p 

Question 1 SUS 16.000 <0.001 

Question 2 SUS 6.750 0.034 

Question 3 SUS 10.903 0.004 

Question 4 SUS 6.450 0.004 

Question 5 SUS 5.250 0.072 

Question 6 SUS 6.067 0.048 

SUS Mean 12.293 0.002 
Table 3.2 Results for the Friedman test for each question and the SUS mean 

Post-hoc analyses based on Wilcoxon Signed-Rank Tests were 

conducted on the SUS mean results with Bonferroni correction, 

resulting in a significance level set at p < 0.05/3=0.0167 (the 

signification level is divided by the three experimental conditions). As 

can be seen in Table 3.3, there were no significant differences 

between the photograph and the video tasks (Z = 1.174, p = 0.241 > 
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0.0167). However, there was a statistically significant increment in 

the SUS mean in the navigation vs. photographs (Z = 2.805, p = 0.005 

< 0.0167) and the navigation vs. video comparisons (Z = 2.550, p = 

0.011 < 0.0167).  

 χ
2
  p 

Photographs - Video -1.174 0.241 

Photographs – Navigation -2.805 0.005 

Video - Navigation -2.550 0.011 
Table 3.3 Results of the Wilcoxon test for the SUS mean 

Regarding the comparison between the presence results obtained 

here and those obtained in a previous research conducted by people 

of the LabHuman group (Alcañiz et al., 2009) using TCD, there were 

taken into account just the data from those subjects who were 

women (9 out of the 32), to maintain the homogeneity in the results 

(SUS mean results can be seen in Table 3.4). In Alcañiz et al. (2009), 

the visualization of the virtual environments was done by means of a 

CAVE system, during two experimental conditions: free navigation 

and guided navigation (video). Applying the repeated measures 

analysis, with the SUS mean values as dependent variable, it was 

measured its influence over the intra-subjects factors (experimental 

condition) and between-subjects factors (image technique). As 

aforementioned in the Data Analysis section, to evaluate the 

homocedasticity Levene’s statistic was used. 

 

Subject SUS mean navigation SUS mean video 

Subject 1 5.50 5.33 

Subject 2 3.67 3.83 

Subject 3 3.83 2.83 

Subject 4 5.50 4.83 

Subject 5 5.67 4.33 

Subject 6 4.17 4.17 

Subject 7 1.50 2.00 

Subject 8 6.33 6.00 

Subject 9 6.00 5.67 
Table 3.4 Results for the SUS mean for each task in the Alcañiz et al. (2009) study 
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As a result, no significant differences were obtained with the inter-

subject factor (F(1,21)=2.701, p=0.115). However, there were 

significant differences for the navigation factor (F(1,21)=11.598, 

p=0.003<0.005). At last, there was no interaction effect between 

navigation and the visualization technique (F(1,21)=0.751, p=0.396). 

A power analysis using the G*power3 program (Faul et al., 2007) 

showed that a total sample of 42 subjects would have been required 

to obtain the recommended 80% power in a t test comparison 

between fMRI and TCD, with alpha set at 0.05 and Cohen’s d at 0.8 

(large effect size). 

3.2.2.2.2 Imaging Results 

3.2.2.2.2.1 Contrast Results 

The fMRI paradigm was divided into three different tasks 

(photographs, videos and navigation) that were compared to obtain 

the contrasting brain activations. The results for the three contrasts 

between tasks were obtained, the most relevant for the purposes of 

this study being those concerning the differences in activation 

between the free navigation and the guided navigation (video).  

 

Results for the “navigation>video” contrast 

 

The contrast “navigation > video” was selected and looked for the 

main activated brain regions. The results for the brain activated areas 

can be seen in Table 3.5. As observed, activations were found in the 

right cuneus (t=5.32, x=10, y=-91, z=26) and left parietal lobe (t=5.78, 

x=-47, y=-18, z=59) among others. Other brain regions activated in 

the “navigation>video” contrast were the right calcarine (t=5, x=24, 

y=-98, z=0), the right sub-lobar (t=5.28, x=27, y=-42, z=13) and the 

right insula (t=5.5, x=34, y=0, z=17).  
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Figure 3.11 Captures of the brain activations for the “navigation>video” contrast; 
obtained with the xjView tool. (a) The image is centred over the right cuneus, (b) 

the image is centred over the left parietal lobe. 

 

Anatomic 
Region 

Hemisphere x(mm) y(mm) z(mm)  t value Cluster 
Size 

Calcarine/ 
Middle  
occipital gyrus/ 
Occipital Lobe 

R 24 -98 0 5.0042 22 

Extra-
nuclear/Sub-
lobar 

R 27 -42 13 5.2809 16 

BA13/ Insula R 34 0 17 5.4986 10 

Cuneus/ 
Occipital Lobe 

R 10 -91 26 5.3162 10 

Postcentral/ 
Parietal Lobe 

L -47 -18 59 5.7771 19 

Table 3.5 Results of the activated areas for the “navigation>video” contrast in MNI 
(Montreal Neurological Institute) space coordinates 

 

Results for the “navigation>photographs” contrast 

 

Regarding the “navigation > photographs” contrast, new activations 

were seen in the left cerebellum, both in the anterior (t=5.04, x=-43, 

y=-49, z=-37) and posterior (t=5.81, x=-8, y=-74, z=-25) lobes, and in 

the superior frontal lobe (t=9.82, x=24, y=0, z=55). There were 

activations in some areas of the occipital lobe, such as the cuneus 

(t=10.92, x=-22, y=-84, z=21), the left (t=9.95, x-26, y=-81, z=17) and 

right (t=7.60, x=31, y=-74, z=30) middle occipital lobe, and the right 
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lingual gyrus (t=6.80, x=3, y=-70, z=-5). Finally, activations were also 

found in areas of the parietal lobe, such as the precuneus (t=9.23, x=-

22, y=-81, z=26). All these activations can be seen in Figure 3.12.  

 
Figure 3.12 Capture of the brain activations for the “navigation>photographs” 

contrast, obtained with the xjView tool 

Anatomic 
Region 

Hemisphere x(mm) y(mm) z(mm)  t value Cluster 
Size 

Cerebellum 
Anterior Lobe 

L -43 -49 -37 5.0356 56 

Cerebellum 
Posterior Lobe 

L -8 -74 -25 5.8061 17 

Superior and 
Middle 
Occipital Lobe 
/ Cuneus 

L -22 -84 21 10.919 1085 

Lingual/ 
Occipital Lobe 

R 3 -70 5 6.7976 83 

Superior 
Frontal Lobe 

R 24 0 55 9.8225 143 

Table 3.6 Results of the activated areas for the “navigation>photographs” contrast 
in MNI (Montreal Neurological Institute) space coordinates 

Results for the “video>photographs” contrast  

 

For the “video > photographs” contrast, activations were found in the 

right inferior temporal lobe (t=9.57, x=48, y=-70, z=-4), the right 

lingual gyrus (t=5.28, x=3, y=-74, z=0), the right inferior frontal lobe 

(t=5.99, x=41, y=11, z=21), the right supramarginal gyrus (t=4.83, 
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x=55, y=-39, z=30) and the right (t=5.91, x=27, y=0, z=51) and left 

(t=4.22, x=-29, y=4, z=51) middle frontal lobe.  

 
Figure 3.13 Captures for the brain activations for the “video>photographs” 

contrast, obtained with the xjView tool 

 

Anatomic 
Region 

Hemisphere x(mm) y(mm) z(mm)  t 
value 

Cluster 
Size 

Inferior 
Temporal 
Lobe/ BA37 

R 48 -70 -4 9.57 1147 

Lingual Gyrus/ 
Inter-
Hemispheric 

R 3 -74 0 5.28 38 

Inferior Frontal 
Operculum/ 
Sub-Gyral/ 
Frontal Lobe 

R 41 11 21 5.99 44 

Supramarginal 
Gyrus/ Inferior 
Parietal Lobe 

R 55 -39 30 4.83 13 

Middle Frontal 
Gyrus/ Frontal 
Lobe 

R 27 0 51 5.91 73 

Middle Frontal 
Gyrus / Frontal 
Lobe 

L -29 4 51 4.22 10 

Table 3.7 Results of the activated areas for the “video>photographs” contrast in 
MNI (Montreal Neurological Institute) space coordinates 



122 
 

It is important to mention that with the inverse contrasts (“video > 

navigation”, “photographs > navigation” and “photographs > video”) 

no significant activation results were obtained. 

3.2.2.2.2.2 Results for the correlations with the presence 

questionnaires 

Regarding the correlation results, a second-level multiple regressions 

analysis was applied, where the correlations between the fMRI 

results and the questionnaire answers were obtained. For the 

“navigation>video” contrast, the results showed the existence of a 

negative correlation (Table 3.8) between the activation of the 

dorsolateral prefrontal cortex (DLPFC) of the right frontal lobe and 

the difference between the SUS mean values between navigation and 

video. In Figure 3.14 it can be seen a graphic that shows the 

correlation for the coordinates (48, 25, 17), corresponding to the 

right DLPFC.  

Anatomic 
Region 

Hemisphere x(mm) y(mm) z(mm) t value  Cluster 
size 

Sub-gyral / 
Frontal Lobe 

R 45 21 17 4.8747 21 

Table 3.8 Results of the activated areas for the negative correlation in the 
“navigation>video” contrast 
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Figure 3.14 Graph of results for the “navigation > video” contrast, showing the 
negative correlation between the activation in the in the DLPFC (contrast estimates 
difference) and the questionnaire results (navigation SUS mean – video SUS mean). 

The color bar represents statistical t-values 

 

Figure 3.15 Image of the results of the negative correlation in the right DLPFC  

On the other side, positive correlations were found in the left lingual 

gyrus, the left anterior lobe of the cerebellum, the left middle inferior 

temporal lobe, the left sub-gyral area, the left calcarine, the left 

superior temporal lobe, the left middle temporal gyrus and the left 
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cuneus. All these results can be seen in the Table 3.9. The Figure 3.16 

shows the graphic of this positive correlation for the coordinates (-

19, -53, 0), corresponding to the left lingual gyrus. 

Anatomic 
Region 

Hemisphere x(mm) y(mm) z(mm) t value  Cluster 
size 

Lingual/ BA30/ 

Parahippocampal 

Gyrus/ Limbic 

Lobe 

L -19 -53 0 6.1862 114 

Cerebellum_4_5/ 

Culmen/ 

Cerebellar Lobe 

Anterior 

L -19 -35 -21 5.763 18 

Temporal_Mid/ 
Inferior Temporal 
Gyrus / Temporal 
Lobe 

L -61 -14 -21 5.9193 25 

Sub-Gyral/ 
Temporal Lobe 

L -36 -11 -12 5.1038 14 

Calcarine/ BA18/ 

Cuneus/ Occipital 

Lobe 

L -1 -91 9 5.044 13 

Temporal_Sup/ 
BA42/ Superior 
Temporal Gyrus/ 
Temporal Lobe 

L -68 -28 9 5.3975 21 

Middle Temporal 
Gyrus/ Temporal 
Lobe 

L -29 -74 17 4.6807 10 

Cuneus/ 
Precuneus/ 
Parietal Lobe 

L -12 -74 38 5.7275 23 

Table 3.9 Results in the areas activated for the positive correlation between the 
“navigation>video” contrast and the questionnaire results (SUS mean in navigation 

– SUS mean in video) 
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Figure 3.16 Graph of results for the “navigation > video” contrast, showing the 
positive correlation between the activation in the lingual gyrus (contrast estimates 
difference) and the questionnaire results (navigation SUS mean – video SUS mean). 

The color bar represents statistical t-values 

 

Figure 3.17 Image of the results of the positive correlation 
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3.2.2.2.2.3 Results for the parametric contrast 

Finally, it was tested the possible existence of an increasing linear 

trend [-1, 0, 1] in the activation corresponding to the three reported 

levels of presence (SUS mean of each condition minus the global SUS 

mean values) according to the experimental conditions. The results 

showed that an increasing linear trend for the different presence-

related conditions (photographs, videos and navigation) was 

observed in the activations in the right insula (x = 41, y = -14, z = 13; t 

= 4.22, p < 0.001, 10 cluster size) and the left postcentral parietal 

gyrus (x = -47, y = -18, z = 59, t = 6.67, p < 0.001, 10 cluster size) for 

the three experimental conditions (see Figure 3.18). 

 

Figure 3.18 BOLD signal change in response to the different experimental 
conditions around MNI coordinates (-46, -18, 59), corresponding to the left parietal 

lobe. Observe the increase in signal between experimental conditions 

3.2.2.2.2.4 Summary of the Imaging Results 

In the following table (Table 3.10), a summary of all the results that 

have been presented in this section is presented. The first three 

columns correspond to the contrast results between the three 

experimental conditions; the fourth and fifth columns contains the 

results for the negative and positive correlations between the 
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“navigation>video” contrast and the questionnaire results; finally, the 

last column shows the parametric contrast’s results. 

Nav>vid  Nav>photo  Vid>photo  Neg. 
Corr. 

Pos. Corr.  Param.  

Calcarine 
R  

   Calcarine L   

Extra-
nuclear R 

     

Insula R      Insula R  

Cuneus R  Cuneus  L    Cuneus L   

Parietal L  Parietal 
(precuneus) 
L  

   Parietal 
L  

 Cerebellum 
L  

  Cerebellum 
L  

 

 Frontal 
(sup) R  

Frontal (inf 
& med) L & 
R  

Frontal 
(DLPFC) 
R  

  

 Occipital 
(med) L & R  

    

 Lingual 
sulcus R  

Lingual 
sulcus R  

 Lingual 
sulcus L  

 

  Temporal R   Temporal L   

  Supramarg. 
R  

   

Table 3.10 Summary of the results for the fMRI study of presence 

As can be observed in the Table 3.10, both the insula and the parietal 

lobe present a lineal increase of their activation between the three 

experimental conditions and are significantly activated for the 

“navigation>video” contrasts (the parietal lobe appears also in the 

activations of the “navigation>photographs” contrast). Moreover, the 

Calcarine and Cuneus, that are activated for the “navigation>video” 

contrasts, present a positive correlation with the questionnaire 

results.  

3.2.2.3 Discussion of the Results 

The principal aim of the present study was to analyze if subjects 
could feel presence while navigating in a virtual environment, 
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analyzing the results using fMRI. As aforementioned, if this is so, this 
would mean that the interaction between the computer-generated 
world and the subject is naturally performed and the barrier between 
technology and reality has been reduced. As mentioned previously, it 
was tried to generate an increase in the sense of presence between 
the different experimental conditions by means of the increase in the 
actions the user has to perform in the virtual environment. Presence 
was then especially motivated by the free navigation condition, 
where it is the user who controls the movement along the 
environment. This free navigation in a virtual environment was 
shown to induce a higher feeling of presence in the participants than 
a guided navigation condition (that in a comparison would act as the 
low presence condition). Contrasting the functional activation seen 
during these two conditions (“navigation > video”), results showed a 
higher activation of the parietal and occipital brain regions, including 
the cuneus, during the navigation condition, as hypothesized, but 
also activation of the right insula. These areas are included in the 
distributed network activated by presence that was described by 
Jäncke et al. (2009). Moreover, the differential subjective sense of 
presence reported by participants in the questionnaires between the 
navigation and video conditions, was shown to be inversely 
correlated to the activation of the dorsolateral prefrontal cortex, and 
directly correlated to the activation of the lingual gyrus and cuneus 
and other occipital and temporal regions. Finally, it was observed a 
linear increase in the activation of the right insula and left postcentral 
parietal regions according to the subjective sense of presence 
reported for each condition (SUS mean of each condition minus the 
global SUS mean values). Among the multiple brain areas activated 
by the “navigation > video” contrast, the cuneus and the post-central 
parietal lobe, which have been related to working memory and 
navigation tasks (Haldane et al., 2008; Mishkin & Ungerleider, 1982), 
can be highlighted. These results are comparable to those obtained in 
other presence studies that have been conducted using fMRI 
(Baumgartner et al., 2008), or can be extrapolated to the results 
obtained with other techniques such as TCD (Alcañiz et al., 2009) or 
EEG (Baumgartner et al., 2006), always considering the limited spatial 
resolution of these techniques. Regarding the “navigation > 
photographs” and “video > photographs” contrasts, they showed 
some similar activations, such as the lingual gyrus, the cuneus, the 
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frontal lobe or the occipital lobe.  In this section, all these items will 
be discussed in more detail.  
 
The subjects answered three SUS questionnaires (one for each 
experimental condition) where they evaluated the level of presence 
they felt. In each question, they value between 1 (not feeling there at 
all) and 7 (highest sense of “being there”) the presence experience. 
The results confirmed that a higher level of presence was induced 
during the free navigation than during the photograph and guided 
navigation conditions. Furthermore, it was observed how the mean 
value for subjective sense of presence increased for each condition, 
observing the lowest score for the photographs and the highest score 
for navigation. Specifically, the Friedman Test showed significant 
differences between the experimental conditions for all the 
questions and the SUS mean except for question 5, which evaluated 
how the user remembered the experience in comparison to a real 
one. The largest difference between experimental conditions in 
response to the questionnaire was found in Question 1, which asked 
directly about the sense of being in the virtual world. Finally, post-
hoc analysis based on the Wilcoxon Signed-Rank tests showed no 
significant differences in the comparison of the photograph and the 
video tasks, but that there were significant differences for the other 
two comparisons: photographs vs. navigation and video vs. 
navigation. Therefore, as hypothesized, there were significant 
differences between the level of presence experienced during the 
navigation condition and that experienced during the other two 
conditions. As indicated, a previous study by Welch et al. (1996) 
analyzed this connection between presence and navigation and their 
results are in accordance with the present study. They used two 
levels of interaction, the subject as an active or a passive driver, and 
observed that the interactivity increased the sense of presence the 
subject experienced. When comparing the results from this work 
with those obtained in a previous research about presence using TCD 
(Alcañiz et al., 2009), there were found similar presence levels in both 
studies, presenting a similar trend between both tasks. In fact, there 
were found significant differences between the conditions for both 
groups, but no differences between the groups were observed. There 
is only a trend (that does not reach significance) to higher presence 
ratings in the TCD research, probably due to the more immersive 
environment (the CAVE-like configuration) and the less intrusive 
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machine (the TCD probes). The magnetic resonance is noisy, requires 
you to be still and laid and makes difficult the feeling of “being 
there”. 
 
One purpose of this research was to test the hypothesis that 
functional magnetic resonance imaging is a good way to explore 
brain activation related to presence in a virtual environment when 
comparing between different experimental conditions, allowing to 
obtain objective differences in brain activation associated with the 
different levels of presence that the subjects have experienced. The 
main contrast that was analyzed was the “navigation > video” 
contrast, to evaluate the differences in brain activation between two 
conditions which induced different levels of presence, as measured 
with the SUS questionnaire. In the following paragraphs the results 
from this principal contrast will be analyzed in detail. As explained in 
the Results section, one of the most significant activated areas is the 
cuneus, part of the occipital lobe. This area has been related in 
previous works to the visual processing (Perani et al., 2001). The 
cuneus is known to receive visual information from the contralateral 
superior retina, and the processing which occurs in the area is 
modulated by other effects, such as attention, working memory or 
reward expectation (Haldane et al., 2008; Vanni et al., 2001). In this 
study, the cuneus activation is related to the subjective sense of 
presence experienced during free navigation in a virtual 
environment. Another region included in the results is the calcarine 
sulcus, also part of the occipital lobe where the primary visual cortex 
is concentrated (Le Bihan et al., 1993; Belliveau et al., 1991).  
 
Another brain region which showed significant activation during the 
task was the post-central parietal lobe. Between the usual areas 
considered to be part of the presence network, the parietal lobe is 
involved in determining spatial sense and navigation, directly 
associated with the navigation in the virtual environment (Mishkin & 
Ungerleider, 1982; Johnson et al., 1996).  Moreover, Mellet et al. 
(2010) found that left activation of the parietal lobe was higher while 
navigating through a virtual environment than while navigating 
through a real one. Activation was also found in the insula, usually 
related to emotion and the regulation of the body’s homeostasis, 
including perception, motor control of hand and eye movements, 
self-awareness, cognitive functioning and interpersonal experience 
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(Karnath et al., 2005; Craig, 2009). As pointed out in the Introduction 
section, the most important of these items for this study are self-
awareness, sense of agency and sense of body ownership, because 
they are closely related to the sense of presence experienced inside 
the virtual environment. The sense of body ownership allows you to 
discriminate your individual’s own body and perceptions; forming the 
“body schema” which covers the dynamic distributed network of 
procedures aimed to guide your behavior (Haans and IJsselsteijn, 
2012). The results of this study showed a parametric increase in the 
activation of the right insula according to the sense of presence 
experience in the conditions. Recent studies (Dodds et al., 2011) have 
found evidence that the right insula may be activated by a 
combination of attentional and response control demands, playing a 
role in the processing of sensory stimuli that are relevant to current 
goals. During navigation in a virtual world, decisions are constantly 
made based on evaluation of the sensory stimuli guiding our behavior 
in the virtual environment. The results in this study suggest that the 
insula may play a key role in guiding behavior in the virtual 
environment based on the presented stimuli and the sense of 
presence. Moreover, according to Sjölie et al. (2012), attention and 
behavior are essential to develop the sense of presence, increasing 
the precision in the predictions about the environment and the 
synchronization with it, and avoiding prediction errors from sources 
outside the VE. 
 
All these results are consistent with those obtained in the 
Baumgartner et al. (2008) research. They generated different levels 
of presence by means of two different types of environment, one 
that induced a high arousal experience and another that induced a 
low arousal experience. They placed particular emphasis on the 
parietal lobe as one of the most important areas related to presence 
and egocentric spatial processing, something which was also 
observed in the results presented here. They also mentioned 
significant activations in the cuneus, middle occipital gyrus and areas 
involved in emotional processing, such as the insula; activations in 
these brain regions were also observed in this study and associated 
with the condition which induced the higher level of presence. 
 
Although the results obtained in this study can be compared with 
those obtained in previous presence studies, those comparisons 
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should be done carefully. Each brain area is involved in several other 
functions not related with presence, and the network described 
before is not a closed one to the study of presence. The activation of 
those areas does not necessarily imply stimulation of the sense of 
presence. As Jäncke et al. (2009) explained, it is a network involved in 
the control of many other psychological functions, and “the 
psychological specificity cannot be inferred simply by identifying the 
activated brain structures”.  Moreover, the primary aim was to 
demonstrate the validity of fMRI as a tool to evaluate presence; not 
to map the brain network involved in its stimulation. The fMRI is a 
great tool to measure brain activity, but the size and characteristics 
of the machine makes impossible to use it in real situations. If it can 
be proved that the subject can feel presence inside a virtual 
environment visualized in the magnetic resonance, this could lead to 
the use of virtual reality to approach the subject to the equivalent 
real situation while being scanned. Moreover, as aforementioned, 
demonstrating that the sense of presence can be stimulated proves 
that the interaction between the computer-generated environment 
and the subject is performed naturally, making the technology 
“invisible” to the user. Obtaining activation in brain areas which have 
been previously related to presence is remarkable in the sense of 
showing that these results are not random, and that the initial 
hypothesis has been accomplished. The main objective of this fMRI 
research is then to bring into agreement with previous presence 
theories, not to show new results on the matter. 
 
In a more theoretical perspective, the degree of presence in a virtual 
environment may be considered as the degree of synchronization 
between the environment and the subject’s mental reality. In this 
case, the subjects view the VE for the first time in their lives during 
the scan, but due to the increasing familiarity of humans with virtual 
phenomena, this should lead to the internalization of mental 
simulations of the VEs, which matches with the activity theory so 
popular in the HCI circles (Sjölie, 2012). So the fact that the subjects 
are not familiarized with the environments should not prevent the 
sense of presence. Moreover, the central nervous system is capable 
to incorporate the new tools and technological artifacts that are used 
in the virtual experiences to its representation of the body schema, 
integrating them in a functional unity with our biological limbs and 
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sensory receptors (Haans and IJsselsteijn, 2012), helping the interface 
transparency or “disappearance of mediation” (Riva et al., 2003).   
 
Referring to the search task the subjects had to perform inside the 
environment, it was designed to avoid them staying still during the 
experiences, but the fact of identifying an objective to perform inside 
the virtual world enhances a major sense of presence in the subjects 
(Riva et al., 2011). In fact, if the performer becomes “emotionally and 
intellectually engaged” by the task developed, higher levels of 
presence can be achieved (Waterworth et al., 2002); which leads to a 
state of loss of self-consciousness (Riva et al., 2011), as has been 
previously discussed.  
 
The other contrasts evaluated in this study will now be discussed. As 
it has been previously stated, the results for the “navigation > 
photographs” contrast showed the activation of the cuneus and the 
parietal lobe, two of the most important results obtained in the 
“navigation > video” contrast, which were highlighted as having been 
previously related to presence during the navigation task. Moreover, 
the activation of the cuneus may reflect an increase in the visual 
processing due to the change in the optical flow between both 
conditions. It has also been found activations in the cerebellum and 
the frontal lobe, results that coincide with those obtained by Pine et 
al. (2002), who also evaluated differences between free and guided 
navigation. The cerebellum may have been activated because of its 
role in the control of movement (Wolf et al., 2009; Willshaw, 1999). 
The frontal lobe is related to the planning of the navigation task 
(Baumgartner et al., 2006; Owen et al., 1990). It is also important to 
remark that the cuneus, precuneus, middle occipital lobe and frontal 
lobes are areas which were also activated in the research by 
Baumgartner et al. (2008). 
 
Regarding the “video > photographs” results, there are coincidences 
with the study by Pine et al. (2002) in the temporal and frontal lobes. 
The results from this study only agree with those from Baumgartner 
et al. (2008) in the middle frontal lobe, which is often referred as 
being involved in various executive functions as, for example, the 
planning of movement (Baumgartner et al., 2006; Owen et al., 1990). 
The fact that there are no other coincidences between the results 
may be explained by the lower sense of presence stimulated during 
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the two conditions (video and photographs) compared here. 
Moreover, inside the temporo-occipital cluster, it is worthy to remark 
the bilateral activation of the V5/MT area, part of the extrastriate 
visual cortex, which plays a main role in the perception of movement 
(Born and Bradley, 2005), due to the addition of visual movement in 
the video condition. 
 
With regard to the correlation analysis comparing brain activation 
and responses to questionnaires, it was found a negative correlation 
in the prefrontal cortex, more specifically in the dorsolateral area, 
which agrees with the result obtained by Baumgartner et al. (2008) 
for the measurement of presence in video tasks, although at an 
inferior location within the DLPFC. This area is related to executive 
processing within working memory (Petrides, 2000) and controls the 
visual information that comes from the visualization of the virtual 
environment, being involved in the decrease of the sense of presence 
(Koechlin et al., 2003). Moreover, Jäncke et al. (2009) also remarked 
its importance in modulating and generating the activity of the 
network associated with the experience of presence. Regarding the 
positive correlations, there were obtained significant activations in 
the lingual gyrus, cerebellum; middle, sub-gyral and superior 
temporal lobe; calcarine and cuneus. All of these areas are related to 
sense of presence, which explains why their activation gets higher 
along with the increase of the questionnaires scores. Particularly 
remarkable is the result for the lingual parahippocampal gyrus, more 
specifically the activation of the parahippocampal area, a sub-region 
of the parahippocampal cortex related to spatial orientation and 
encoding and recognition of scenes (Aguirre et al., 1996; Epstein & 
Kanwisher, 1998). 
 
Referring to the parametric analysis, it showed a lineal trend 
between the three tasks associated with an increased feeling of 
presence in the insula and parietal lobe, two of the most significant 
areas that were emphasized for the “navigation > video” contrast, 
and which are related to self-awareness (Karnath et al., 2005; Craig, 
2009) and navigation sense in a virtual environment (Mishkin & 
Ungerleider, 1982; Johnson et al., 1996), respectively. The fact that 
these two areas showed a positive correlation with questionnaire 
scores, and in the parametric analysis, is an indicator of their relation 
to sense of presence. 
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To finish this discussion, some of the limitations of this study will be 
addressed. The study was conducted using a specific group of 
participants, namely 14 right-handed women. They were all right-
handed to prevent noise effects of manual lateralization on brain 
activation in virtual/spatial processing. The subjects were all women 
to reduce variability generated by gender differences. There are 
some previous studies which show that women present a higher 
activation in the presence of emotional stimuli than men. In fact, 
Canli et al. (2001) indicated that they chose women because they 
respond more intensely to sensitive stimuli. They also maintained 
that women show a greater psychological reaction according to their 
value judgment than men. Some other studies concerning emotional 
arousal have also concluded that women demonstrate higher 
activation when shown disgusting images than when shown pleasant 
ones, while men do not demonstrate any difference (Lang et al., 
1998).  A great deal of previous studies concerning visual stimuli has 
been conducted with women (e.g., Dilger et al., 2003; Ochsner et al., 
2002). Another limitation of this study was the small sample size, 
which restricts the statistical power to detect changes in the BOLD 
signal. 
 
In this study, the continuous movement of the joystick was added to 
compensate the differences between experimental conditions in the 
activations caused by the motor tasks. However, there were 
differences in the active planning between the free navigation 
condition and the other two tasks, and these differences could not be 
prevented because they are one of the causes of the differences in 
the feeling of presence between experimental conditions. It should 
be also remarked as limitation the low significance level that was 
used for the statistical analysis of the fMRI data (p<0.001 
(uncorrected) may be a liberal threshold). Maybe the use of a 3T 
scanner could improve the results obtained here. 
 
In conclusion, the activation of the cuneus, the insula and parietal 
areas should be noted, especially the latter, due to its relationship 
with the navigational aspects of the VR experience. As has been 
shown in this section, the final results obtained are consistent with 
those from other studies concerning navigation in VR, presence in VR 
studied with other brain imaging techniques and presence during an 
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automatic navigation in a virtual environment studied with fMRI. 
Moreover, insula activation in VR and its parametric association with 
the sense of presence experienced in each of the conditions raises 
questions regarding its role in the virtual experience. However, the 
brain activation results may be seen just as a proof of the utility of 
fMRI as a tool to evaluate presence, and the important consequences 
that this could have in the field of the Human-Computer Interaction. 
Although in this study differences in presence have been generated 
with changing navigation conditions, possible future research could 
involve more arousing environments, with different content, to 
analyze other factors that can induce presence. Moreover, the 
demonstration that presence is related to measurable differences in 
brain activity, even inside an unfriendly environment as it is a 
magnetic resonance machine, opens the door to future studies 
combining virtual reality with fMRI for psychological treatments and 
psychopathological applications. 

3.2.3 Study of the Sense of Presence in a VE with EEG 

3.2.3.1 Materials and Methods 

3.2.3.1.1 Subjects 

For this study, 20 subjects have been recruited and equally 

distributed in two groups. The groups differed in the kind of screen 

used to display the environments: the first group viewed the 

environments on a common PC desktop screen (DS) and the second 

on a high resolution Power Wall screen (PW).  

All the subjects were recruited from the Universitat Politècnica de 

València, were Spanish-speakers and were right handed. The 

participants’ hand dominance was tested using the Edinburgh 

Handedness Inventory (Oldfield, 1971), which can be seen in the 

Appendix 3. For the first group (DS), 6 men and 4 women were 

evaluated, with ages between 22-29 years old. For the second group 

(PW), 5 men and 5 women underwent the study, with ages between 

21 and 29 years old. They received economical compensation for 

their participation in the study. 
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Ethical approval was obtained from the authors’ institution. All of the 

subjects provided signed consent for allowing their data being used 

in this study (see Appendix 2).  One subject (a woman) from the DS 

group had to be excluded due to movement during the scan. The 

experiments were conducted in a laboratory inside the LabHuman 

group. The EEG signal was monitored by means of a multichannel 

wireless portable EEG device (Emotiv EPOC) (Rey et al., 2012), which 

has 14 data-collecting electrodes and 2 reference ones. The handset 

transmits wirelessly the EEG data to the computer. 

 DS-Emotiv EPOC PW-Emotiv EPOC 

Ages 22-29 years old 21-29 years old 

Men/Women 6 men/4 women 5 men/5 women 

Excluded  1 woman None 
Table 3.11 Summary of the participants’ data 

3.2.3.1.2 Post-EEG Questionnaires 

After the EEG session the subjects had to answer several 

questionnaires to measure the subjective level of presence they 

experienced.  As in the fMRI scans, the questionnaires the subjects 

had to fulfill were SUS questionnaires (Usoh et al., 2000), which 

evaluate the level of presence that they felt during each task. 

Subjects had to complete 3 questionnaires, one for each task, all 

containing the same questions (see Appendix 4). 

3.2.3.1.3 EEG Procedures 

All the subjects were scanned in a laboratory inside the LabHuman 

group (I3BH Institute, UPV, Valencia, Spain). For the navigation, they 

used a common joystick. The DS group saw the environments in a 

common PC desktop screen located over a desk. The PW group 

viewed the environments in a 6m wide power wall screen located in 

front of them (separation of 3m). They were also sat in front of a 

desk, where the joystick was placed. All the subjects were instructed 

to sit comfortably and try not to move. If they wore glasses, they 

were asked to carry them instead of lenses, to avoid the greater dry 

of the eyes. They were also asked to try not to blink too much. The 



138 
 

researchers that conducted the studies were sit behind the subject 

(so he were not distracted by their presence) with the computer 

where the EEG signals were captured. Regarding the EEG device, it 

was a low-resolution multichannel wireless portable Emotiv EPOC 

headset, with 14 data-collecting electrodes and 2 reference ones. The 

handset transmits wirelessly the EEG data to the computer.  

 

Figure 3.19 Image of a subject in front of the power wall wearing the Emotiv EPOC 

All the subjects were recruited by announces at the University or the 

word-of-mouth. They were students of the UPV or members of the 

staff. When they arrived, they were taken to an auxiliary room where 

they were introduced to the tasks they would have to perform. All 

the experiment was explained to them and they passed through a 

training session where they practiced the tasks and the joystick 

movement (as well as the subjects did in the fMRI study). They also 

fulfilled a questionnaire to assure their hand dominance. Once they 

had understood everything and signed the informed consent, they 

were conducted to the room where the scans took place. There, they 

were instructed to sit behind the desk and the EEG device was 

placed. Once everything was all right, the lights were turned off and 

the scan began. 
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For placing the EEG headset, the electrodes were dampened with 

cleansing solution and the device was placed over the head, leaving a 

distance of 3cm between the eyebrows and the frontopolar 

electrodes. Then the rest of the electrodes were checked to assure 

they were in the correct position and the headset was turned on, 

transmitting the electrical signals of the brain wirelessly to the 

computer. If everything was ok, the 14 signals were received 

correctly, and the software in the computer will display all the 

electrodes in green color. The simplicity and low number of 

electrodes of this device makes it easy to place, taking just a few 

minutes to adjust everything. 

3.2.3.1.4 Data Analysis 

3.2.3.1.4.1 Questionnaire Analysis 

Similarly to what was done in the fMRI study, SPSS 17.0 (IBM 

Corporation, Somers, New York, USA) was used for the analysis of the 

questionnaire results. The responses to the six questions and the SUS 

mean (mean of those six responses) for the three experimental 

conditions (photographs, video and navigation) were considered for 

the analysis. A non-parametric Friedman Test was applied to 

compare SUS responses (dependent variables: questions 1-6 and SUS 

mean) for the different experimental conditions: photographs, video 

and navigation. The post-hoc tests were made with a Wilcoxon 

Signed-Rank test with Bonferroni correction. 

 

Figure 3.20 Captures of the SPSS 
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3.2.3.1.4.2 EEG Analysis 

The preprocessing of the signals was made by means of the EEGLAB 

program (Delorme and Makeig, 2004), launched with Matlab Version 

7.1 (MathWorks, Natick, Massachusetts, USA). The data were 

imported from EDF and the sensors from which information was 

wanted were selected.  

The baseline was removed and all recorded EEG epochs were 

checked for artifacts. First of all, data were digitally filtered using a 

linear FIR band pass filter (0.5-45 Hz). Then, the electrooculographic 

(EOG) artifacts were removed applying Blind Source Separation (BSS), 

using a window length of 10s, with 5s between windows. The 

electromyographic (EMG) artifacts were removed using also the BSS 

method.  

For the analysis of the activated brain areas, the sLORETA tool was 

used (Pascual-Marqui, 1999; Pascual-Marqui et al., 1994, 1999; Frei 

et al., 2001). The whole brain was analyzed using voxel-wise t-tests 

for examining the navigation vs. video and navigation vs. 

photographs conditions in the six frequency bands. Moreover, the 

same voxel-wise t-tests were used for comparing between the 

navigation conditions for the two groups (DS vs. PW) in the six 

frequency bands. 

3.2.3.2 Results 

3.2.3.2.1 Questionnaire Results 

The answers to the SUS questionnaire showed variations between 

the different experimental conditions. Mean values in each condition 

are shown in Table 3.12. Results from applying the non-parametric 

Friedman Test showed that there were significant differences 

between the three experimental conditions for all the questions and 

the SUS mean (results can be observed in Table 3.12, columns 5 and 

6). If observed the results for each question, there can be seen that 

for the DS group, the greatest Chi-square value (χ2 = 16.222, p < 

0.001) was observed for questions 1 and SUS mean; while for the PW 
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group, the greatest Chi-square value (χ2 = 13.556, p < 0.001) was 

observed for questions 1 and 3. 

  Photograph Video Navigation χ2 P 

SUS question 1: 
feeling of 
“being there”  

DS 1.89±0.35 3.11±0.31 4.89±0.39 16.222 0.000 

P
W 

2.90±0.33 3.80±0.26 4.80±0.41 13.556 0.001 

SUS question 2: 
feeling that the 
room is real 

DS 2.22±0.43 3.00±0.33 4.78±0.40 12.400 0.002 

P
W 

2.40±0.23 3.70±0.35 4.30±0.39 12.286 0.002 

SUS question 3: 
how real do 
you remember 
the room? 

DS 1.56±0.24 2.67±0.24 4.11±0.39 15.548 0.000 

P
W 

2.20±0.34 3.40±0.32 4.50±0.39 13.556 0.001 

SUS question 4: 
feeling of being 
inside the room 
or observing it 

DS 2.00±0.37 2.89±0.51 4.78±0.49 14.813 0.001 

P
W 

2.50±0.28 3.40±0.28 4.80±0.44 12.600 0.002 

SUS question 5: 
memory of the 
room as similar 
to being in 
other places 

DS 2.89±0.42 2.89±0.39 3.78±0.49 10.800 0.005 

P
W 

2.90±0.46 3.70±0.32 4.70±0.39 9.680 0.008 

SUS question 6: 
did you think 
you were really 
in the room? 

DS 2.33±0.37 3.22±0.28 4.78±0.47 9.800 0.007 

P
W 

2.60±0.48 3.40±0.36 4.40±0.48 10.000 0.007 

SUS mean DS 2.15±0.28 2.96±0.24 4.52±0.35 16.222 0.000 

P
W 

2.58±0.27 3.57±0.23 4.59±0.36 12.839 0.002 

Table 3.12 SUS responses to questionnaires for each task (mean score and standard 
error of the mean) and results of the Friedman Test for each question and the 

mean score 

Post-hoc analyses based on Wilcoxon Signed-Rank Tests were 

conducted on the SUS mean results with Bonferroni correction, 

resulting in a significance level set at p < 0.0167. For the DS group, 

there were no significant differences between the photograph and 

video tasks (Z=2.082, p=0.037>0.0167), but there were for the 

comparisons navigation vs. video (Z=2.668, p=0.008<0.0167) and 

navigation vs. photograph (Z=2.668, p=0.008<0.0167). For the PW 

group, there were no significant differences between the photograph 

and the video tasks (Z =2.380, p = 0.017 > 0.0167) and between the 

photographs and navigation tasks (Z=2.366, p=0.018>0.0167). 

However, there was a statistically significant increment in the SUS 
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mean in the navigation condition compared with the video condition 

(Z =2.521, p = 0.012 < 0.0167). Those results are contained in Table 

3.13. Finally, it should be mentioned that no significant difference 

was found for the questionnaire answers between groups (DS vs. PW) 

for any of the three experimental conditions. 

 DS PW 
SUS mean Z P Z P 

Navigation>Video 2.668 0.008 2.521 0.012 

Navigation>Photographs 2.668 0.008 2.366 0.018 

Video>Photographs 2.082 0.037 2.380 0.017 
Table 3.13 Results of the Wilcoxon Signed-Rank Test for the comparison of the SUS 

mean results between experimental conditions 

3.2.3.2.2 EEG Results 

For the DS group, the comparison between the Navigation and Video 
conditions using voxel-wise t-test for all the frequency bands 
revealed significant differences in the Alpha-band (8-12 Hz) and 
Theta-band (4-7 Hz), for p<0.05. Alpha and Theta band power was 
decreased in the Navigation condition in the right Insula (BA 13), 
indicating increased activity in this region during the free navigation 
task.  

 
Figure 3.21 Results for the navigation>video contrast for both experimental groups. 

Captures of sLORETA activation for the navigation>video contrast in the Theta 
band for: a) DS group, b) PW group 

For the PW group, the same comparison between the Navigation and 

Video conditions, again using voxel-wise t-test for all frequency 
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bands, revealed significant differences in the Theta-band (4-7 Hz), for 

p<0.05. Theta band power was decreased in the Navigation condition 

in the right Insula (BA 13), indicating increased activity in this region 

during the free navigation task. There has also been found a trend 

(p<0.1) to increased activity in the Insula (BA 13) and in the Parietal 

Lobe (BA 40) for the Alpha-band. A comparison between the results 

for the navigation>video contrast in the theta band can be seen in 

Figure 3.21. All the results for this contrast are contained in Table 

3.14. 

Group Brain Area Band Hemisphere p 

DS Sub-Lobar, Insula (BA13) Theta Right <0.05 

DS Sub-Lobar, Insula (BA13) Alpha Right <0.05 

PW Sub-Lobar, Insula (BA13) Theta Right <0.05 

PW Parietal Lobe, Inferior 
Parietal Lobule (BA40, 39, 
7) 

Alpha Right <0.1 

PW Parietal Lobe, Precuneus 
(BA19) 

Alpha Right <0.1 

PW Parietal Lobe, Angular 
Gyrus (BA39) 

Alpha Right <0.1 

PW Parietal Lobe, Superior 
Parietal Lobule (BA7) 

Alpha Right <0.1 

PW Sub-Lobar, Insula (BA13) Alpha Right <0.1 
Table 3.14 Comparison of the results for the DS and PW groups for the 

navigation>video contrast 

Regarding the results for the comparison between the conditions of 

Navigation and Photographs, no significant results were found for 

any group, but several areas with tendency to significance were 

found in the PW group. For the Alpha band, the DS group presented a 

trend to activation for p>0.1 in several frontal and temporal areas, as 

well as in the parahippocampal gyrus. For the PW group, also in the 

Alpha band, it was found the major significance result in the Uncus of 

the parahippocampal gyrus, part of the Limbic Lobe; and tendency to 

significance in other areas of the temporal and frontal areas. The 

complete results for this contrast are contained in Table 3.15. The 



144 
 

comparison between the video and photographs conditions did not 

give any significant results. 

Group Brain Area Band Hemisphere p 

DS Sub-Lobar, Insula (BA13) Alpha Right >0.1 

DS Frontal Lobe, Subcallosal Gyrus 
(BA34, 13) 

Alpha Right >0.1 

DS Frontal Lobe, Inferior Frontal 
Gyrus (BA47, 13, 11) 

Alpha Right >0.1 

DS Frontal Lobe, Orbital Gyrus 
(BA47) 

Alpha Right >0.1 

DS Frontal Lobe, Middle Frontal 
Gyrus (BA11) 

Alpha Right >0.1 

DS Frontal Lobe, Medial Frontal 
Gyrus (BA25) 

Alpha Right >0.1 

DS Limbic Lobe, Uncus (BA20, 28, 
34) 

Alpha Right >0.1 

DS Limbic Lobe, Parahippocampal 
Gyrus (BA36, 35, 34, 28, 27) 

Alpha Right >0.1 

DS Temporal Lobe, Fusiform Gyrus 
(BA20) 

Alpha Right >0.1 

DS Temporal Lobe, Inferior 
Temporal Gyrus (BA20) 

Alpha Right >0.1 

DS Temporal Lobe, Superior 
Temporal Gyrus (BA38) 

Alpha Right >0.1 

DS Occipital Lobe, Lingual Gyrus 
(BA18) 

Alpha Left >0.1 

PW Limbic Lobe, Uncus (BA28) Alpha Right >0.05 

PW Limbic Lobe, Uncus (BA28, 36, 
34, 20, 38) 

Alpha Right <0.1 

PW Limbic Lobe, Parahippocampal 
Gyrus (BA34, 35, 28) 

Alpha Right <0.1 

PW Temporal Lobe, Superior 
Temporal Gyrus (BA38) 

Alpha Right <0.1 

PW Temporal Lobe, Inferior 
Temporal Gyrus (BA20) 

Alpha Right <0.1 

PW Temporal Lobe, Middle Temporal 
Gyrus (BA38) 

Alpha Right <0.1 

PW Frontal Lobe, Subcallosal Gyrus 
(BA34) 

Alpha Right <0.1 

PW Frontal Lobe, Inferior Frontal 
Gyrus (BA47) 

Alpha Right <0.1 

Table 3.15 Comparison of the results for the DS and PW groups for the 
navigation>photographs contrast 
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Finally, using voxel-wise t-test for all frequency bands, significant 

differences were found when comparing the Navigation condition 

between both experimental groups (DS vs. PW) for the Theta and 

Alpha bands. For the Theta band, activations were found in the 

insula, the parahippocampal gyrus and several areas from the 

temporal and frontal lobes in the left hemisphere; and in the 

subcallosal gyrus of the frontal lobe in the right hemisphere.  For the 

Alpha band, similar activations were found in the Insula, 

parahippocampal gyrus and several temporal and frontal areas, all of 

them in the left hemisphere of the brain. A comparison for the 

navigation condition between the brain activations for DS and PW 

groups is shown in Figure 3.22. The complete results are contained in 

Table 3.16. 

 

Figure 3.22 Results for the navigation condition between groups. Captures of 
sLORETA activation for the navigation condition in the DS vs. PW comparison for: 

a) Alpha band, b) Theta band 
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Brain Area Band Hemisphere p 

Sub-Lobar, Insula (BA13) Theta Left <0.05 

Sub-Lobar, Extra-Nuclear (BA13, 47) Theta Left <0.05 

Limbic Lobe, Uncus (BA34, 28, 36, 38, 20) Theta Left <0.05 

Limbic Lobe, Parahippocampal Gyrus 
(BA28, 34, 35, 36) 

Theta Left <0.05 

Temporal Lobe, Inferior Temporal Gyrus 
(BA13) 

Theta Left <0.05 

Temporal Lobe, Superior Temporal Gyrus 
(BA38) 

Theta Left <0.05 

Frontal Lobe, Subcallosal Gyrus (BA34, 13, 
25) 

Theta Left <0.05 

Frontal Lobe, Inferior Frontal Gyrus 
(BA47, 13, 11) 

Theta Left <0.05 

Frontal Lobe, Orbital Gyrus (BA47) Theta Left <0.05 

Frontal Lobe, Middle Frontal Gyrus (BA11) Theta Left <0.05 

Frontal Lobe, Medial Frontal Gyrus (BA25) Theta Left <0.05 

Frontal Lobe, Rectal Gyrus (BA11) Theta Left <0.05 

Frontal Lobe, Subcallosal Gyrus (BA25) Theta Right <0.05 

Sub-Lobar, Insula (BA13) Alpha Left <0.05 

Sub-Lobar, Extra-Nuclear (BA13) Alpha Left <0.05 

Limbic Lobe, Uncus (BA28, 34) Alpha Left <0.05 

Limbic Lobe, Parahippocampal Gyrus 
(BA28, 34, 35, 27) 

Alpha Left <0.05 

Temporal Lobe, Superior Temporal Gyrus 
(BA38) 

Alpha Left  <0.05 

Frontal Lobe, Subcallosal Gyrus (BA34) Alpha Left <0.05 

Frontal Lobe, Medial Frontal Gyrus (BA25) Alpha Left <0.05 

Frontal Lobe, Inferior Frontal Gyrus 
(BA47, 13) 

Alpha Left <0.05 

Table 3.16 Comparison of the results for the navigation condition between DS and 
PW groups 

3.2.3.3 Discussion of the results 

In the present study, an Emotiv EPOC headset was used to evaluate 

the level of presence experienced while navigating in a virtual 

environment, in comparison with two other experimental conditions 

(view of photographs and videos of the virtual environment). Several 

theories have related the sense of presence with the capability “to 

do” inside the virtual environment, so a higher immersive and 

commanding task should enhance the sense of presence. The 

subjects were divided into two groups, depending on the screen used 

to display the environments. The first group performed the task in a 
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common PC desktop screen (DS) while the second group performed it 

in a power wall screen (PW). According to the literature (Ijsselsteijn 

et al., 2001; Slater et al., 1995; Kober et al., 2012), a larger and more 

realistic screen should enhance a major sense of “being there” in the 

subject; so higher levels of presence are expected in the PW group 

than in the DS group. As Kober et al. (2012) pointed out, “the screen 

size enhances the psychological impact of motion stimuli, because a 

larger portion of peripheral vision is being stimulated”. So, in 

conclusion, the signals will be analyzed looking for differences in the 

sense of presence due to two conditions: the possibility of “doing” 

inside the virtual environment (comparison between experimental 

conditions) and the influence of the kind of screen used for the 

display of the environments (comparison between groups, DS vs. 

PW). 

First, the results related to the “to do” theory will be analyzed. Both 

for the DS and PW groups, it was found activation in the insula while 

comparing the navigation and video conditions. What is more, 

significant differences were also found in the questionnaire results 

(Wilcoxon Signed-Rank test) between the SUS mean values for both 

conditions; so the greater sense of presence is experienced during 

the navigation condition. 

The insula is related to emotion and regulation of the body’s 

homeostasis, which includes among other functions self-awareness 

or the sense of agency and body ownership (Karnath et al., 2005). 

The sense of body ownership is the property which allows you to 

discriminate your own body and perceptions; forming the “body 

schema” which guides your behavior (Haans and IJsselsteijn, 2012). 

Recent works (Dodds et al., 2011) have found evidence that the right 

insula may be activated by a combination of attentional and response 

control demands, playing a role in the processing of sensory stimuli 

that are relevant to the current goals. While navigating in a VE, you 

make decisions all the time, based on the evaluation of the sensory 

stimuli that guides our behavior in the VE. The findings of this work 
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suggest that the insula may play a key role in guiding behavior in the 

virtual environment based on the presented stimuli and the sense of 

presence. Moreover, according to Sjölie (2012), attention and 

behavior are essential to develop the sense of presence, increasing 

the precision in the predictions about the environment and the 

synchronization with it, and avoiding prediction errors from sources 

outside the VE. 

In the study of Baumgartner et al. (2006), they also found activation 

in the insula while evaluating the sense of presence experienced 

while watching a video of high and low arousing VEs using EEG. The 

subjects under study were divided in two groups, one of children and 

another of adolescents. They found activation in the insula for both 

groups while comparing the high arousal condition with the control 

one. As they concluded, the insula “receives homeostatic afferents 

from several modalities, including temperature, pain, proprioception, 

and the viscera and, thus, is involved in the mapping of body related 

sensations”. 

Regarding the study of Kober and Neuper (2012) using event-related 

brain potentials of the EEG to indicate the level of presence 

experienced in a VE, they found an increased presence experience 

associated with a decrease in the late negative slow wave amplitude, 

related to the central stimulus processing and the allocation of 

attentional resources. In concordance with what has already been 

exposed, they found a direct relation between the attention to the 

VR and the increase in the sense of presence.  

In another previous study about presence with EEG (Kober et al., 

2012), they compared the presence-related activations while 

navigating through a VR world in two conditions: visualization in a 

Desktop-VR-condition and in a Single-Wall-VR-condition. They found 

a more intense presence experience in the Single-Wall-VR-condition 

than in the Desktop-VR-condition, accompanied by an increased 

parietal TRPD in the Alpha band. Moreover, they found a stronger 

functional connectivity between the frontal and parietal regions 
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during the Desktop-VR-condition. The activation in the parietal area 

is close to some of the results presented here (it was also found 

activation in this area for the PW group when comparing between 

the navigation and video conditions). 

In the previous study conducted using fMRI to measure presence 

while navigating in the same virtual environments (Clemente et al., in 

press), activation in the insula (among other areas) was also found 

when comparing the conditions of navigation and video. Moreover, 

the results showed a parametric increase in the right insula activation 

among the three experimental conditions. 

Apart from that result, for the navigation>video comparison the PW 

group also showed a tendency to significance for the Alpha band in 

the right parietal lobe. More precisely activations were found in the 

superior and inferior parietal lobules, precuneus and the angular 

gyrus. The superior parietal lobule is mainly involved with spatial 

orientation (Karnath, 1997; Corbetta et al., 1995), which makes sense 

due to the increased necessity of orientation while navigating than 

while viewing a video. The inferior parietal lobule has been involved 

in the interpretation of sensory information (Radua et al., 2010), 

which the subject receives in a higher amount while navigating. The 

precuneus has been widely related to presence and navigation, being 

involved in directing attention in space (Cavanna and Trimble, 2006). 

At last, the result of the angular gyrus is quite interesting. This area is 

related to the sense of self-awareness and the developing of Out-of-

body experiences (Arzy et al., 2006). Several studies have been 

conducted to study this phenomenon (Blanke et al., 2002; Arzy et al., 

2006), concluding that it is attributed to a discrepancy between the 

actual position of the body and the mind's perceived location of the 

body. This statement agrees with the theory of presence.  

Regarding the results for the navigation vs. photographs comparison, 

it was only found significant results for the alpha band in the right 

uncus (part of the limbic lobe) for the PW group. This is an important 

result, because this area plays an important role in the generation of 
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the sense of presence. The uncus is the extreme area of the 

parahippocampal gyrus. The activation of the parahippocampal gyrus 

is related to memory encoding and retrieval (Epstein and Kanwisher, 

1998). A subsection of this area is the parahippocampal place area 

(PPA), corresponding to the BA35, which plays a role in the encoding 

and recognition of scenes over faces and objects. That means that 

this area is activated while the subject is seeing a topographical 

scene, as it can be a room (Epstein and Kanwisher, 1998; Aguirre et 

al., 1996). The activation of this area during the navigation condition 

and not during the view of photographs means that there is a higher 

identification of place while navigating through a room than when 

you only see a picture of it. This area has been described as related to 

the view of real places and its activation while viewing a virtual place 

confirms that the subject feels the experience as real.  

Apart from the limbic lobe, it was also found tendency to activation 

in the temporal and frontal areas. Regarding the activations in the 

temporal areas, the inferior temporal gyrus is normally related to the 

visual processing associated to complex objects and shape (Chao et 

al., 1999), while the superior temporal gyrus is more related to the 

perception of emotions (Radua et al., 2010). Although the function of 

the middle temporal gyrus is unknown, it has been connected with 

several functions, such as the view of distance (De Luca et al., 2006). 

Regarding the activations in the frontal areas, the subcallosal gyrus is 

related to the parahippocampal activation, and both areas work 

together in the periarcheocortex; while the BA47 of the inferior 

frontal gyrus has been implicated in the processing of syntax in oral, 

sign and musical languages (Levitin and Menon, 2003). 

Finally, the results from the comparison between both experimental 

groups for the navigation condition will be discussed. Here 

activations were found in some of the areas related before, although 

this time on the left side of the brain. The only significant difference 

obtained in the right side was in the subcallosal gyrus of the frontal 

lobe for the Theta band (and for both Theta and Alpha bands in the 
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left side), related to the parahippocampal activation, which as 

aforementioned plays a role in the encoding and recognition of 

scenes over faces and objects (Epstein and Kanwisher, 1998; Aguirre 

et al., 1996). The parahippocampal gyrus also presents a significant 

activation for the left hemisphere in both Theta and Alpha bands.  

There is a close activation in the superior temporal gyrus, related to 

the perception of emotions (Radua et al., 2010).  

Another remarkable result was the activation of the left insula for the 

Theta and Alpha bands, involved in self-awareness or the sense of 

agency and body ownership (Karnath et al., 2005). Apart from these 

areas, other significant activations were found in different parts of 

the frontal lobe.  

Regarding the questionnaire results, they confirmed that a higher 

level of presence was induced during the free navigation than during 

the automatic navigation and the photographs conditions. 

Specifically, the Friedman Test showed significant differences 

between the experimental conditions for all the questions and the 

SUS mean with higher presence values for the navigation condition. 

Moreover, the Wilcoxon Test showed the existence of significant 

differences between the navigation and video conditions for both 

groups (DS and PW). On the other hand, there were no significant 

differences for each condition between groups. Because each subject 

only performed the task in one kind of screen, they were not able to 

compare the changes between the DS and the PW. This is in 

accordance with the lack of sensibility of the subjective 

questionnaires, being unable to differentiate between groups, field 

where the EEG was successful. The answers given to the 

questionnaires were subjective and relative to what they had 

experienced, that is to say, they scored the sense of presence in the 

navigation condition in comparison with the sense experienced in the 

other two conditions; and not being able to compare between 

screens, the DS group scored the experience similarly to how the PW 

group did. However, those changes in the sense of presence were 
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detected by the EEG signals, finding clear significant differences 

between groups. 

In this part of the presence study, one important goal was to show 

the usability of the Emotiv EPOC headset in presence research. It has 

been used to measure brain activations related to presence in 

different experimental conditions, obtaining similar results to those 

obtained in previous works. Moreover, it was a goal of the study to 

analyze whether a bigger and more immersive screen would enhance 

a sense of presence and show differences in brain activation with less 

immersive configurations, as postulated by Kober et al. (2012). The 

EEG results showed significant differences while comparing both 

conditions in areas related to presence (such as the aforementioned 

insula). However, those results were not obtained with the 

questionnaires, which may be explained by the greater sensibility of 

the EEG measures. 

However, the main goal was to obtain using EEG the brain areas 

related to the sense of presence in order to compare them with 

those obtained in the previous fMRI study (Clemente et al., in press) 

and decide which neuroimaging technique is better for the objectives 

of this Thesis. In the fMRI, as mentioned in the previous section 

(Section 3.2.2), activations were found in the insula and the parietal 

lobe (between others) related to a greater sense of presence while 

navigating in a virtual environment, result that have been also 

obtained in this work. In the following section (Section 3.2.4) this 

comparison will be described in detail. 

3.2.4 Comparison of the fMRI and EEG presence studies  

Once both the fMRI and the EEG presence studies have been 

presented, it will be done a comparison of the results obtained in 

each one, and then some overall conclusions will be extracted. First, 

the comparison of the questionnaire results will be made. Then, the 

brain activations from both researches will be contrasted.  
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3.2.4.1 Methods 

The results from the SUS questionnaires of the fMRI and EEG studies 

have been compared. For this comparison, there are three groups of 

contrast: the fMRI group, consisting in 14 subjects; the EEG DS group, 

formed by 9 subjects; and the EG PW group, composed by 10 

subjects. The results to compare belong to the three experimental 

conditions: navigation, video and photographs. For this it has been 

applied a repeated measures ANOVA to evaluate the influence on the 

dependent variable (SUS mean) of the within-subjects factor 

(experimental condition: photographs, video or navigation) and the 

between-subjects factor (group: fMRI, EEG DS or EEG PW). The 

homocedasticy was evaluated with the Levene statistic. 

3.2.4.2 Comparison of the questionnaire results 

As it has been already found separately for each study, there were 

significant differences between the experimental conditions 

(photographs, video and navigation) when comparing the three 

groups (F(1,31)=46.328, p<0.005). Moreover, as expected, there were 

no significant differences between the different groups 

(F(1,31)=0.393, p=0.678). That means that the presence results do 

not vary significantly with the neuroimaging technique applied. The 

subjects subjectively felt equally real the virtual experiences, 

independently of if they were laid inside a fMRI scan or if they were 

sit in a more comfortable chair with the screen in front of them; what 

is more, there were also no significant differences regarding the size 

of the screen used. On the other side, there were significant 

differences for the interaction factor between the experimental 

condition and the monitoring technique used (F(1,31)=3.356, 

p=0.036<0.05). A power analysis using the G*power3 program (Faul 

et al., 2007) showed that a total sample of 42 subjects would have 

been required to obtain the recommended 80% power in a t test 

comparison between fMRI and EEG, with alpha set at 0.05 and 

Cohen’s d at 0.8 (large effect size). 
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Regarding the interaction between groups and experimental 

conditions two-by-two, the results obtained are shown in the 

following table (Table 3.17). 

F(1,31) Photographs Video Navigation 

EEG PW vs DS 0.434, p=1.000 0.604, 
p=0.756 

0.068, p=1.000 

fMRI vs EEG 
DS 

0.719, p=0.331 0.217, 
p=1.000 

-0.743, p=0.592 

fMRI vs EEG 
PW 

0.285, p=1.000 -0.387, 
p=1.000 

-0.812, p=0.443 

 

F(1,31) video vs. 
photographs 

navigation vs. 
photographs 

Navigation vs. 
video 

EEG DS 0.812, p=0.024 2.367, p<0.005 1.554, p<0.005 

EEG PW 0.982, p=0.003 2.001, p<0.005 1.019, p=0.001 

fMRI 0.310, p=0.562 0.904, p=0.061 0.595, p=0.021 
Table 3.17 Comparison of the results for the interactions between the groups and 

the experimental conditions 

As can be seen in Table 3.17, there were no significant differences 

between groups for the three experimental conditions (as it was 

expected). However, there were significant differences for each 

group separately for the comparisons between experimental 

conditions (unless in the case of the comparisons 

navigation>photographs and video > photographs for the fMRI data, 

result in accordance to what we saw in the fMRI study).  

3.2.4.3 Comparison of the brain activations 

When comparing the brain activations between the fMRI and EEG 

results, it is found an added difficulty in the different spatial 

resolution of both techniques, which makes the fMRI results more 

precise and located, and the EEG results more spread and imprecise 

(it must be remembered that this is because the EEG does not 

measure brain activations directly but approximates it by means of 

the sLORETA tool). However, some overall comparisons can still be 

made.  
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First of all, let’s focus on the principal contrast of both results: the 

“navigation>video” contrast. There is only one cerebral region that is 

activated in the three experimental groups (fMRI, EEG DS and EEG 

PW), however, this area is of principal interest in the study of 

presence: the Insula. The right Insula (BA 13) is significantly activated 

for the fMRI groups as well as for both EEG groups in the alpha and 

theta bands (which are the areas commonly related to in the 

presence studies). As aforementioned, this area is related to the 

sense of self-awareness and agency of body ownership (Karnath et 

al., 2005). In both discussions of the corresponding studies it was 

justified the direct relation of this area with the sense of presence. 

Moreover, most of previous works in the matter have obtained this 

same activation.  

Apart from the Insula, the EEG DS group did not get any other 

significant result, but for the EEG PW there was activation in several 

areas of the Parietal lobe. For the fMRI group activation was found in 

the postcentral parietal lobe. Although these activations are not 

exactly located on the same place, they are close and (considering 

again the low accuracy of the EEG) may refer to the same brain 

function. And what is more important, those exact two activations 

were the same that in the fMRI study showed a pattern of linear 

increase with the sense of presence between experimental 

conditions.  

Secondly, regarding the “navigation>photographs” contrast, there 

were some equivalent activations in the frontal and occipital (lingual 

gyrus) lobes. However, for this contrast it must be remembered that 

the significance of the activations for the EEG studies was not good, 

so those results are not to take in account thoroughly.  

Finally, for the “video>photographs” contrast in the EEG studies 

there were not found significant results neither; thing that makes 

sense due to the lower resolution of the device and the little sense of 

presence stimulated by those two conditions. 
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3.2.5 Overall conclusions of the presence study 

So, in conclusion, the main comparisons between the two 

neuroimaging devices will be done for the “navigation>video” 

contrast, that is the one which showed significant results for both 

EEG groups. Moreover, this contrast, as remarked before, is the one 

really interesting for the purposes of this study, because it was the 

one that measured the differences in the sense of presence between 

two really involving conditions (automatic vs. free navigation).  

As pointed out in the previous section, for both EEG groups it was 

found significant activation for the alpha and theta bands in the 

Insula, the same result found for the fMRI group. Moreover, this and 

the Parietal lobe (also activated for the EEG PW group) were the 

areas which activation increased between experimental conditions. 

So both neuroimaging techniques obtained similar brain activation 

result. As remarked in Section 3.2.4.2, for the questionnaire results 

there were no significant differences in the sense of presence 

reported between groups, although it was between experimental 

conditions. The sample size was not enough to obtain the required 

statistical power for the comparison between groups, but both 

studies’ questionnaire results showed similar patterns of increase of 

the sense of presence with the experimental experience (see Figure 

3.23). For both studies there were significant differences between 

conditions and in both the value of the SUS mean for the navigation 

condition was higher than 3.7. So, in conclusion, with both 

techniques it was possible to stimulate the sense of presence, which 

was not significantly influenced by the neuroimaging technique 

chosen. 
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Figure 3.23 Comparison of the patterns of increase of the sense of presence for the 
questionnaire results (SUS mean), where EEG DS is group 1,  EEG PW is group 2 and 

fMRI is group 3 

That means that the virtual experience was strong enough to elicit 

the sense of presence, even while the subject was laid inside a fMRI 

scanner, with all the noise and uncomfortable features that this 

implies. This encouraged the continuation of the second part of the 

study (the assessment of subjects before and after undergoing a 

psychological treatment), knowing that the environment was felt as 

real enough to stimulate the brain areas required (in this case, those 

related to fear). 

Once checked that both neuroimaging techniques were able to 

measure brain areas with similar results, a choice had to be made 

about which one to employ for the next study. The chosen one was 

the fMRI due to its better spatial resolution, because it is more 

interesting for the purposes of this study the precision of the brain 

activity locations than the temporal evolution or less intrusion of the 

device. 

In the next chapter (Section 4) the results for the study of the 

changes in the brain areas activated before and after undergoing a 

psychological treatment with fMRI will be presented.  
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4 Assessment of a treatment: Small Animals’ 

Phobia 
At this point of the Thesis, the two questions that arose when 

outlining the principles of the study have already been answered. On 

the one hand, the stimulation of the sense of presence in the 

subjects during the virtual experience was checked, both by means of 

the two neuroimaging techniques proposed and by the use of 

subjective questionnaires. On the other hand, no significant 

differences have been found between the questionnaire answers 

given by the subjects from the three groups (fMRI, EEG DS and EEG 

PW), finding equivalent brain activations with both neuroimaging 

techniques (although with less spatial accuracy in the EEG results 

than in the fMRI images), what means that the intrusion of the scan 

does not affect to the effectiveness of the environments. According 

to this, it has been resolved that the best neuroimaging technique for 

the assessment of a psychological treatment in the context of the 

present work would be the fMRI, due to its better spatial resolution, 

not based on an approximation done with a standardized tool (the 

sLORETA in the EEG study) but on real functional data. 

So, once it has been stated that the subjects feel present while 

navigating through the virtual environment and once it has been 

decided the best tool to scan the brain, everything is ready to study 

how neuroimaging combined with VR can help in the assessment of 

the patient’s response to a psychological treatment, analyzing his 

state before and after undergoing the therapy. For this, the research 

has been focused on a specific disorder: the small animals’ phobia; 

and the brain activations related to the fear and anxiety the subject 

feels while exposed to phobic stimuli will be measured.  

Phobias are one of the most spread and common disorders of the 

modern life, affecting one person in 10 at some point of their lives 

(American Psychiatric Association, 2000; Magee et al., 1996; Kessler 

et al., 2005). More specifically, small animals’ phobia is one of the 

most disabling ones, due to the possibility of facing the animal that is 
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the focus of the phobia in daily life. In fact, 40% of specific phobias 

belong to the category of small animals, including bugs, mice, snakes 

and bats (Chapman, 1997). 

In order to evaluate the state and evolution of the phobia, many 

studies have been conducted using brain imaging techniques, such as 

fMRI, PET or EEG. Until now, most of those studies have used 

photographs or videos of real animals as stimulus to provoke the 

reaction of the subject. However, the advantages of Virtual Reality 

have not been used to explore the brain activations while navigating 

through a virtual environment that would represent a more realistic 

and interactive representation of the phobic situation. Until now, the 

VR has been used for the treatment of the phobia, but not for the 

assessment of the disorder while analyzing the brain using 

neuroimaging. In this section of the PhD, fMRI will be used to 

evaluate the brain activations related to the small animals’ phobia. 

Moreover, the phobic subjects were treated with a psychological 

treatment for the phobia, after which the fMRI scan was repeated. 

Then the activations before and after the treatment will be compared 

to assure that the brain areas related to the phobia stopped being 

activated after it.  

4.1 Theoretical aspects of phobias 
When you are in danger, you experiment a feeling of fear that awares 

you and keeps you in an alert state. This fear helps you to realize the 

importance of the situation, like a mental advisory of the existing risk. 

However, in the case of phobias, this fear is awakened by an unreal 

situation, not as threatening as it is thought by the subject. It can be 

described as “an abnormally fearful response to a danger that is 

imagined or is irrationally exaggerated” (American Psychiatric 

Association, 2000). 

The phobia can be stimulated by different kinds of stimulus, such as 

animals (spiders, snakes, birds…), activities (like flying) or social 

situations (e.g. agoraphobia, social phobia…). This Thesis is focused 



160 
 

on small animals’ phobia, a category that involves mice, bugs, snakes 

and bats (Chapman, 1997).  

This phobia consists in an irrational fear before any possible contact 

with the animal in question. This fear is joined to a continuous state 

of anxiety before the possibility of finding it, a repulsion response 

before any representation of it and a defensive reaction in case of 

contact. It must also be considered that there are no limitations in 

phobias by age, gender, geographic location or way of life. 

Talking about statistics, phobia affects approximately one person in 

23, which is nearly the 4.25% of the world’s population. Just in the 

US, it is estimated that about 10-11% of the population experiences 

specific phobia at some point of their lives (American Psychiatric 

Association, 2000). Regarding the way of acquisition of the phobia 

Ost and Hugdahl (1981) found that the majority of phobic subjects 

reported acquiring their fear via conditioning (58%), and between the 

rest, it was because of an external instruction (10%), in a vicarious 

way (15%); or they just couldn’t remember (10%). 

Specific phobias tend to be considered less important than other 

psychological problems by clinics and sufferers. In fact, patients of 

specific phobias are the less frequent in seeking treatment. This is 

normally because the fear associated with specific phobias is limited 

to the phobic stimuli, and does not cause pervasive anxiety to the 

subject outside the phobic situation (Hood and Anthony, 2012). 

However, individuals with specific phobia are sufferers of serious life 

impairments, such as the interference of the fear with their social 

lives, reduced productivity at work or failure to seek medical care. 

This eventually can lead to a complex symptom profile, including 

physiological symptoms, extensive coping and avoidance behaviors, 

and unhelpful or distorted cognitions (Hood and Anthony, 2012).  

Specific phobias are divided in four groups (American Psychiatric 

Association, 2000): animal type (where the small animal’s phobia 

would be included, together with dogs, snakes, mice or birds), 
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natural environment type (such as heights, storms, water…), blood-

injection-injury type (as the group name points out, fear to the vision 

of blood, receiving an injection or to pain) and situation type (e.g., 

airplanes, elevators, enclosed places). The DSM-IV also describes a 

category called others, which includes other types of specific phobias 

such as fear of choking, vomiting, or contracting an illness; or, in 

children, fear of loud sounds or costumed characters. The diagnostic 

criteria (DSM-IV) for 300.29 specific phobia can be seen in Appendix 

5. 

For the assessment of the specific phobia, normally three basic 

procedures are developed: a clinical interview, the behavioral 

assessment of the patient and the fulfillment of standard self-

reported scales (Grös and Antony, 2006). The clinical interview 

consists in the assessment of the subject’s phobia and the gravity of 

this phobia. During the interview, the patient is asked about his fears 

(etiology, origin, course…), the kind of reactions he experiments 

when exposed to it (panic attacks, fainting…), his beliefs about the 

object of the phobia (predictions, belief in unreal responses from the 

phobic situation, such as thinking a spider is going to attack you…), 

avoidance responses (e.g. places you do not go because you think the 

feared animal will be there), variables that increases his fear (for 

example, the weather in cases of driving phobia),… In the same 

interview, the patient is confronted to the phobic stimuli or situation 

(behavioral assessment), so the interviewer can assess the presence 

of the phobia and the level of discomfort caused in the subject. There 

are some models of semistructured interviews which help the 

clinician during the process, such as the Anxiety Disorders Interview 

Schedule for DSM-IV (ADIS-IV; Brown et al., 1994), the Structured 

Clinical Interview for DSM-IV (SCID-IV; First et al., 2007) or the Mini 

International Neuropsychatric Interview (MINI; Sheehan et al., 1998). 

For example, in the experimental study exposed in this chapter, the 

adult version of the ADIS-IV, which consists in a series of questions to 

rate between 0 (none) and 8 (very severe) fear, was used. This scale 

can be seen in Appendix 6. 
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For the behavioral assessment, tests such as the Behavioral Approach 

Test (BAT) are used. It involves measuring the patient’s responses 

during the exposure to the phobic object or situation (distance to the 

stimuli, rating of the fear experienced…). It is normally conducted 

during the clinical interview, and gives the clinician a more accurate 

and objective idea of the state of the subject. In some occasions, the 

subject has been avoiding the object of his fear for years, and there 

are details about his answer before it that he cannot recall, or that he 

exaggerates while remembering it. The direct observation of these 

reactions from the clinician helps in the better assessment of the 

patient’s state. 

There exist two BAT types: progressive and selective BAT. In the 

progressive BAT, the subject is gradually exposed to the stimuli while 

the clinician studies his response step-by-step. For the selective BAT, 

the clinician chooses challenges for the subject to fulfill, in order to 

provoke the phobic response. During the test, subjects are asked to 

provide at regular periods ratings of their state, using scales such as 

the Subjective Units of Distress Scale (SUDS; Wolpe and Lazarus, 

1966). The SUDS is composed by questions to rate between 0 (no 

fear) and 100 (worst fear you can imagine). These measures are 

joined with the evaluations taken by the clinician in contextual 

variables (conditions of the room), physical sensations (sweating, 

shaking, heart rate…), reactions of the patient (escape, avoidance…), 

proximity to the feared object…  

However, the ecological validity of the BAT is not complete, because 

there are some factors that make it differ from the real reaction of 

the subject in his normal life. The clinical environment, for example, 

normally makes the subject force himself and try to approach the 

phobic stimuli closer than he would do in real life. For avoiding this, 

clinicians should work with the subject and try to personalize the task 

so the answers are closer to the real reactions.  

Despite BAT is the most common test for behavioral assessment, 

some clinicians prefer the self-monitoring diaries. Those are 
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notebooks the patients use where they record any encounter they 

recall or observation about their fear they make. About each 

experience, they have to point out the intensity of the fear, the 

physical sensations, thoughts they have meanwhile… However, this 

kind of evaluation has been considered more as a following tool 

during the treatment than as a real objective measure during the 

assessment (Hood and Anthony, 2012). 

Finally, the self-reported scales are instruments and measures 

designed to assess the severity of the particular phobia (Grös and 

Antony, 2006). Among the scales available, it can be mentioned the 

Fear Survey Schedule (FSS-II; Bernstein and Allen, 1969) which lists 51 

items about which the subject must rate  his phobia between 0 

(none) and 6 (terror). The list of items includes DSM-IV related 

specific phobias (heights, dogs…) and questions associated to the 

diagnostic criteria (fear of angry people, to criticism, to crowds…). 

Another scale available is the Phobic Stimuli Response Scale (PSRS; 

Cutshall and Watson, 2004). This one consists in a 46-item self-report 

questionnaire for the assessment of one of five fears: social, animal, 

physical confinement, bodily harm and blood-injection. However, the 

scales do not correspond with the criteria from the DSM-IV and 

sometimes are not considered appropriate (Hood and Anthony, 

2012).  

Finally, several specific tests exist to assess the spider phobia that 

concerns this Thesis. For example, the Fear of Spiders Questionnaire 

(FSQ; Szymanski and O’Donohue, 1995) is a reliable measure, more 

sensitive for the assessment in the nonphobic range. The Spider 

Phobia Questionnaire (SBQ; Arntz et al., 1993) is a reliable test to 

assess fearful beliefs and reactions of the subject. The Spider 

Questionnaire (SPQ; Klorman et al., 1974) assesses the verbal-

cognitive component of the fear, and its value has been probed. 

Lastly, the Watts and Sharrock Spider Phobia Questionnaire (WS-SPQ; 

Watts and Sharrock, 1984) evaluates the state of vigilance, 

preoccupation and avoidance of spiders in the subject. 
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4.1.1 Use of neuroimaging techniques for the assessment of 

phobias 

As aforementioned, many studies have taken advantage of the 

goodness that neuroimaging brings to analyze the brain areas related 

to the phobia. Those studies, however, mostly used images of real 

animals (pictures or videos) as stimuli during the scans. For example, 

Paquette et al. (2003) used film excerpts of real spiders as stimulus 

and excerpts of real butterflies as control. They tested 12 spider 

phobic subjects before and after being treated with an effective 

cognitive-behavioral therapy (CBT) using an emotional activation 

paradigm. As control, they used normal subjects with no phobia. The 

brain areas related to the phobia were analyzed comparing the 

results of the phobic subjects and the control ones before the CBT; 

and then, those results were compared with those obtained after the 

treatment, concluding that the areas that were considered related to 

the phobia had stopped their activation after the CBT.   

The most used stimulus in previous studies has been pictures. One 

example is the research conducted by Schienle et al. (2007), to study 

the effect of a one-session cognitive therapy. In this case, they used 

pictures of spiders, comparing them with images that provoked fear, 

disgust and neutral ones. They studied phobic subjects in comparison 

with non-phobics. The phobics were divided in two groups: a therapy 

group and a waiting list group. Then comparisons were made 

between the patients groups, and between the patients and the 

controls.  

Larson et al. (2006) also used pictures as stimulus in an fMRI study 

over phobic and non-phobic subjects to evaluate the activation of the 

amygdala. The special characteristic of the activation of the amygdala 

with phobic exposition is that it is produced early in the stimulation 

and then disappears. They found differences in brain activation 

between phobic and non phobic subjects, and between phobogenic 

and nonphobogenic stimuli over the phobic subjects. The differences 

in the amygdalar activation were found to be brief but strong over 
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the phobic subjects. In another study, Alpers et al. (2009) studied the 

amygdala activation and its relationship with attention over spider-

phobic women, employing superimposed images of spiders and birds 

during the task. They concluded that the amygdala activation is 

related to attention.  

Other studies that used pictures as stimuli did not focus on the 

analysis of the amygdala activation. It can be emphasized the work 

conducted by Straube et al. (2007) to analyze the anticipatory 

anxiety, which refers to the fear you feel when you are expecting to 

find the animal object of your phobia. In this study, they studied 

phobic and non-phobic subjects, who were exposed to blocks of 

pictures of spiders (fear condition) and mushrooms (control 

condition). The anticipatory anxiety was measured preceding each 

group with an anticipatory period where a symbol (% or #) was 

presented, which previously had been related to the specific group it 

represented (spiders or mushrooms). In another study, Wendt et al. 

(2008) analyzed the defensive response the subject experiments 

before the object of fear appears. They applied fMRI to analyze it, 

using a sustained exposure to phobia relevant stimuli. The stimuli 

consisted in blocks of pictures divided in 5 categories: spiders (phobia 

relevant), mushrooms (neutral for the contrast with the spiders), 

pleasant content, unpleasant content and complex neutral pictures. 

Although it has been already decided the use of fMRI for this part of 

the Thesis instead of EEG or any other neuroimaging technique, it 

may be interesting to point out some previous works developed with 

those other techniques. For example, on one hand Scharmüller et al. 

(2011) used EEG to investigate the symptoms of spider phobia, using 

pictures as stimulus. Phobic and non-phobic subjects were exposed 

to phobia-relevant, generally fear-inducing, disgust-inducing and 

neutral pictures while their brain electrical signals were measured via 

an EEG headset. They used the sLORETA tool to locate the specific 

brain areas activated from the EEG results. On the other hand, 

Furmark et al. (2002) analyzed the effects of Citalopram and CBT 
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therapy over phobic subjects using PET images, but in this case for 

the study of the social phobia. They assessed the regional cerebral 

blood flow (rCBF) in 18 untreated patients during an anxiogenic 

public speaking task. The subjects were divided in three groups: the 

first was treated with citalopram medication, the second with CBT 

and the third was not treated at all. Then they repeated the scanner 

after 9 weeks of treatment or waiting-list. They found similar 

significant improvements in the citalopram and CBT groups, while the 

waiting-list group remained unchanged. 

4.1.2 Treatment of specific phobia 

For the treatment of phobias, different methods have been used over 

the years, from schedules consisting in intensive exposure sessions of 

three or four hours to step-by-step approaches which last several 

weeks. More recently, the introduction of Virtual Reality in the 

treatment of phobias has widen the possibilities of this treatments, 

allowing not only the interaction between the patient and the feared 

object in a more controlled space, but also the personalization of the 

virtual world according to the subject’s phobia. In this section, a 

review of the traditional treatments used until now as well as of the 

new branches of the treatment using VR will be made. 

4.1.2.1 Traditional treatment of specific phobias 

The most commonly applied method for the treatment of phobias 

has been until now the in vivo exposure, although other exposure-

based methods and cognitive approaches are also used. As 

aforementioned, the duration of these treatments is changeable, and 

could vary from few hours to several weeks. However, what is 

demonstrated is that after two or three hours of treatment, the first 

advances can be observed (Choy et al., 2007). Following, the most 

commonly used methods for the treatment of specific phobias will be 

exposed. 

Exposure-based treatment 
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It has been proved to be the best way of approaching a specific 

phobia, with results observable from the first session (Choy et al., 

2007). The exposure therapy consists in the gradual exposure to the 

feared object or situation, always in a controlled environment and 

with a progression dependent on the patient’s response, while 

preventing behavioral and cognitive avoidance. Depending on the 

nature of the fear, it can involve exposure to the feared object or 

situation, interoceptive cues (such as internal physical sensations), or 

a combination of both (Hood and Anthony, 2012).  

Although the final aim is always the same (the total approach to the 

feared object or situation), the pacing of the exposure and the timing 

between sessions varies between treatments. Some therapists 

perform one-session treatments in which the subject is overexposed 

to their fear and in a few hours they are able to deal with it (for 

example, to interact with their feared animal). Others prefer a more 

spaced method where two or three one-hour sessions are performed 

every week, and where the exposure is increased progressively 

according to the subject’s reactions. Those methods normally begin 

with a low-arousal stimulus like pictures or videos, and increase the 

intensity until the arrival to the in vivo exposure. However, the final 

aim is always the same: to make the patient remain in the situation 

enough time to learn about the real consequences of the stimuli 

(contrary to their believed feared responses; for example, a spider 

does not persecute you and more likely, it will try to run from you) 

and to reduce the fear and anxiety felt to a tolerable level.   

The in vivo exposure has demonstrated to produce the greater 

improvements between the specific phobia’s treatments, normally 

outperforming the other active treatments; including imaginal 

exposure, relaxation and cognitive therapy (Wolitzky-Taylor et al., 

2008). 

There are several variables to take into account while designing the 

in vivo method to use with a particular patient. As aforementioned, 

the duration of the exposure and the pacing between sessions is 
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important; however, there are more issues to keep in mind. The 

intensity of the exposure is one of them. It is thought that moderate 

intensity fear is needed to provoke the extinction of the fear by 

learning its real consequences; however, if it is better the gradual 

approach to the fear or the flooding into the fearful situation 

depends on the subject’s reaction. What is known is that the 

progressive exposure is more tolerable, and may be recommended in 

cases of patients reluctant to complete the therapy or with high 

levels of phobia (Craske et al., 2008). It has been also recommended 

to adapt the duration of the exposure to the subject’s progression, 

instead of stating a fixed time. This would allow the patient to take 

the time he needs to disconfirm any false beliefs he had about the 

feared object or situation. Finally, another important variable to take 

into account is the contextualization of the stimuli. Although the 

subject may have successfully completed the extinction learning 

inside one context, this may not be extended to other settings or 

stimuli. Therefore, it is important to extend the exposure therapy to 

different environments and stimuli (for example, spiders with 

different sizes, shapes and activity levels), in order to generalize the 

gains of the therapy to real world encounters (Rowe and Craske, 

1998). 

Cognitive Therapy 

The cognitive therapy consists in challenging the subject’s beliefs, 

expectations or predictions about the likelihood or consequences of 

harm related to the encounter with the feared object or situation, in 

order to reduce the anxiety and avoidance behavior (Hood and 

Anthony, 2012). Cognition plays an important role in the 

maintenance of the phobia, so a treatment centered in its 

modification may be a powerful tool in the extinction of the fear. 

However, although proved to be more effective than not doing 

anything, the cognitive therapy is less effective than the in vivo 

exposure for the treatment of specific phobias, and its use should be 
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considered as a complement to the former more than as a substitute 

to it.  

Pharmacotherapy  

The third kind of treatment used in specific phobias is the 

pharmacotherapy or use of anxiolytic medications for the reduction 

of the phobia’s symptoms to improve the results of the treatment. 

However, the efficacy of this technique has not been proved; and 

several studies evidence that their use may not be beneficial to the 

treatment and that the patients may relate the gains obtained by the 

therapy to the medication, relapsing in the phobia once the 

pharmacotherapy is finished. This leads to an increase in the relapse 

in the follow-ups (Choy et al., 2007). 

However, there appears to be an exception in the use of d-

cycloserine (DCS), a partial agonist of the N-methyl-D-aspartate 

(NMDA) glutamatergic receptor, which has been proved to accelerate 

the fear reduction during the in vivo exposure (Norberg et al., 2008). 

The benefits of DCS do not rely on its anxiolytic properties, but in the 

reinforcement of the memory consolidation after the treatment 

period (Hood and Anthony, 2012). 

4.1.2.2 Virtual Reality in the treatment of phobias 

In the field of phobias, Virtual Reality (VR) has been repeatedly used 

to treat the disorder, up to now has not been used for the 

assessment of the disturbance yet. One of the more common 

treatments for mental disorders are the cognitive-behavioural 

treatments (CBT), based on the exposure of the subject to the object 

of their fear, to make them adapt progressively to the stimulus 

(Frueh et al., 1995; Olatunji et al., 2009). However, these direct-

exposing techniques sometimes are considered “dangerous and 

ethically reprehensible” (Olatunji et al., 2009; Feeney et al., 2003; 

Prochaska and Norcross, 1999), because of the impact that the direct 

exposure can have over the subject. In this sense, VR allows to 

expose the subject to the feared stimuli in a controlled environment 
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that is considered safer and more ethically acceptable (Richard and 

Gloster, 2007). Botella et al. (2006) gave a list of the advantages that 

VR has in psychotherapy; of which it can be first emphasized the 

aforementioned allowance of running the therapy in a protected 

environment close to reality, where the patient can act without 

feeling threatened (from a “safe base”). Furthermore, in VR the 

patient can interact with the context and the psychotherapist can 

grade the situation according to the patients’ state. Moreover, in a 

more technical way, VR is an excellent source of information in 

performance achievements and allows an accurate control of the 

situation. At last, it can be mentioned the ecological validity of the 

stimuli presentation.  

One of the main advantages of VR is that it allows the patient to 

interact with the phobic object or situation, as if they were real and 

he were there with the feared animals. If the VR is successful, it will 

activate the feeling of presence in the subject, as aforementioned in 

the previous section; and that is why it was performed the presence 

study before this one. As Schuemie and van der Mast (2001) stated, if 

the user can perceive the virtual world as the real one, it will evoke 

similar responses from the user as the real world, making it possible 

to treat the phobias in VR with the same effectiveness as in the real 

world. However, this is not easy to achieve, because systems for 

treating phobias have unique requirements. One interesting study in 

this field is the one conducted by Juan and Calatrava (2011), who 

tested an augmented reality (AR) system for the treatment of small 

animals’ phobia using an optical see-through (OST) head mounted 

display (HMD), and comparing it with a similar video see-through 

(VST) HMD. They tested non-phobic population and measured their 

sense of presence and anxiety with both systems. They found that 

when considered all the participants together, the VST induced a 

greater sense of presence, while when analyzing only the subjects 

with more fear, the two systems induced the same sense of 

presence. In terms of anxiety, both systems provoke similar levels.  
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The VR exposure therapy (VRET) has been widely used in the 

treatment of specific phobias (Krijn et al., 2004), such as acrophobia 

(Rothbaum et al., 1995a), claustrophobia (Botella et al., 1998), spider 

phobia (Carlin et al., 1997), fear of driving (Wald and Taylor, 2000), 

and fear of flying (North et al., 1997a). In VRET, the subject is 

gradually exposed to a negative stimulus, in order to reduce the 

anxiety provoked, which makes the experience less intimidating and 

less expensive than traditional treatments (Bush, 2008). One example 

of this kind of treatment in the field of small animals phobia is that 

developed by Garcia-Palacios et al. (2002), using VR over spider 

phobic subjects. They compared the answers given to phobia 

questionnaires by two groups: one that was treated with a VR 

exposure therapy (four one-hour sessions) and another which was 

not treated at all. They found a clear improvement in the VR group, 

showing the 83% of the patients a significant improvement. Botella et 

al. (2010) have also applied augmented reality for treating 

cockroaches’ phobic subjects. They tried to demonstrate that AR 

could be an effective alternative to the in vivo exposure, which is 

sometimes considered too aggressive and ineffective. They applied 

one-session AR exposure therapy over 6 subjects, testing the results 

in the short and long term. They found that all participants improved 

significantly in all the outcome measures after the treatment, results 

which were maintained in the long term tests. However, until now VR 

has not yet been used inside the fMRI as a stimulus to assess the 

responses of phobic subjects in the presence of the feared elements.  

Here the proposal is that the use of VR as stimulus in fMRI 

environments will entail the same advantages to the phobia 

evaluation that it brought to the phobia treatment. It will make 

possible to place patients in virtual situations related to the object of 

their phobia, where they will be able to interact. VR can make the 

user feel present in the environment, helping the patient to 

experience it in a more similar way to the real situation than when 

you see videos or photographs (Krijn et al., 2004). Consequently, it is 

expected that the activated brain areas will be more similar to those 
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activated in the real experience. This is the main improvement of the 

use of VR with respect to other kinds of stimuli such as images or 

videos. Furthermore, the experimenter will have the possibility of 

controlling the exposure to the virtual situations in the most 

convenient way, grading it in different levels, if it is required. Finally, 

behavioral evaluations about the responses of the participants inside 

the virtual environment may be easily monitored with this kind of 

systems.  

In order to validate this proposal, the target in the present course of 

work is to examine if VR can be used for the assessment of the 

phobia, provoking a more realistic and immersive situation than the 

view of a still photograph, that can be manipulated by the 

psychologist.  Virtual environments where the subject can navigate 

freely, which should induce a higher sense of presence due to the 

self-control of the navigation route (Alcañiz et al., 2009), have been 

used. The main hypothesis is that the brain areas activated with 

these environments will be coherent with results from previous 

studies based on pictures or videos of real animals. The validation of 

this proposal would fulfilled at the same time the hypothesis of this 

PhD Thesis, demonstrating whether or not VR combined with 

neuroimaging can help in the assessment of the patient’s state during 

the undergoing of a psychological treatment, providing valuable 

information that could help in the adjustment of the therapy itself to 

the patient’s brain activation patterns, in accordance with the new 

neuropsychotherapy theory. 

4.2 Materials and Methods 

4.2.1 Subjects 

For this study, there were recruited 11 right-handed phobic women, 

aged between 20 and 35 (mean age 24.64). They passed through two 

fMRI scans, one before the treatment and another one month after 

completing it. None of them had any other medical or psychological 

disorders, apart from the phobia. The participants’ hand dominance 
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was tested using the Edinburgh Handedness Inventory (Oldfield et al., 

1971) (see Appendix 3).  

The diagnosis and assessment phase was conducted by expert 

clinicians who were also the therapists for the participants. In order 

to be included in the study, the following inclusion criteria were 

considered: meeting DSM-IV (American Psychiatric Association, 2000) 

criteria for Specific Phobia animal type (see Appendix 5), specifically 

Cockroach and Spider Phobia, having scores over 4 in phobic 

avoidance (on a scale of 0 to 8), having no current alcohol or drug 

dependency, having no diagnosis of major depression or psychosis, 

not having been or being treated with a similar program and having a 

minimum of 1 year of duration for the problem. The Anxiety 

Disorders Interview Schedule (ADIS-IV; DiNardo et al., 1994) specific 

phobia section was used to conduct the differential diagnosis of the 

anxiety disorders included in the DSM (see Appendix 6). 

These women were students, were paid for their participation in the 

study and were recruited from the Universitat Jaume I in Castellón. 

Each subject signed a written informed consent prior to participation. 

4.2.2 Environments 

The virtual environments used during the task were programmed 

using GameStudio software (Conitec Datensysteme GmbH, 

Germany), which allowed the development of 3D objects and virtual 

worlds with which participants could interact and navigate. The 

environments were the same for both scans (pre- and post-

treatment). For this study the task was divided into three 

experimental conditions, all of them involving a room where the 

subject could navigate freely: 

- In the first of these conditions (‘CLEAN’), the patient navigates 

through a common clean bedroom (with a bed, a closet, and a desk 

with some books on it).  
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Figure 4.1 Capture of the “CLEAN” environment 

- In the second condition (‘DIRTY’), the navigation is performed 

through the same room, but this time dirty and darker, giving the 

subject the feeling that the feared animal could appear in any 

moment; this room pretends to stimulate the anxiety in the user.  

 

Figure 4.2 Capture of the “DIRTY” environment 
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- In the last condition (‘PHOBIC’), the subject navigates through the 

same dirty room, but this time there appeared spiders and 

cockroaches.  

 

Figure 4.3 Capture of the “PHOBIC” environment 

Each of these experimental conditions lasted 20 seconds.  

To prevent the subjects from staying still during the navigation 

periods, a search task was included in order to force them to move 

through the environment and confront the phobic stimulus in the 

correspondent experimental condition. This task consisted on 

searching and counting the number of red keys that appeared and 

disappeared in the environment. However, they were not 

encouraged to find them all, or to find them as quickly as possible, 

they were only told to continue searching for them during each 

period. After each task, subjects were questioned about the number 

of keys they had found (they had to answer in a short period of 4 

seconds). While they were conducting the tasks, the researcher 

checked in the computer that they had answered properly. The 

number of keys that they counted was not relevant, it was just 

included to avoid that the subjects remained still during the 

experimental conditions.  
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(a)                                               (b)     

Figure 4.4 (a) Capture of one red key inside the environment, (b) capture of one of 
the signs asking for the number of keys seen 

A black screen was included between phases to give subjects a rest 

period during which brain activation could decay to its baseline 

values (6 seconds). After this, the label indicating the next task 

appeared (2 seconds). The total time between tasks was 12 seconds. 

Each of the three experimental conditions was repeated six times in a 

counterbalanced order to prevent effects produced by the order in 

which they were presented. At the beginning of the experiment there 

were 14 seconds of black screen to compensate for T1 saturation 

effects. The total time of the complete experiment was 9 minutes 40 

seconds. A scheme of the protocol can be seen in Figure 4.5. 

 

Figure 4.5 Scheme of the protocol 
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Before entering the scanner, subjects underwent a short training 

session where they were introduced to the VR navigation task. This 

training session was conducted in a supplementary virtual 

environment, without any kind of phobic stimuli, to avoid habituation 

(the VE used were the same used in the presence study, and a 

capture of them can be seen in Figure 3.5). During the fMRI scan, the 

VR application checked the total time that they spent moving the 

joystick in each condition to guarantee that they did not remain still 

during the phobic stimulation. 

4.2.3 fMRI procedures 

The fMRI procedures used for all the subjects were the same for both 

scans (the pre-treatment and the post-treatment). All subjects were 

scanned in a 1.5 Tesla Siemens Avanto Magnetic Resonance scanning 

device (Erlangen, Germany). An adapted magnetic resonance (MR) 

helmet was used to prevent head movement. To display the 

environments, MRI-compatible video goggles, VisualStim Digital 

(Resonance Technology Inc., Los Angeles, USA) were used; and, for 

the navigation, an adapted joystick (Resonance Technology Inc., Los 

Angeles, USA). First, sagittal T1-weighted structural images were 

acquired (224 x 256 matrix covering the brain with 176 contiguous 1 

mm slices, TR = 11 ms, TE = 4.94 ms, FA = 15⁰, voxel size = 1.04 x 1.04 

mm). Then, the functional scanning was launched, synchronized with 

the virtual environments. Functional images were obtained using a 

T2* single-shot echo-planar imaging (EPI) sequence. There were 30 

contiguous 4.2 mm interleaved axial slices (parallel to the AC-PC line) 

covering the entire volume of the brain with a 64 x 64 matrix (TR = 

2000 ms, TE = 30 ms, flip angle = 90⁰, voxel size = 3.5 x 3.5 mm). 

4.2.4 Data Analysis 

Similarly to what was done in the presence study, the Statistical 

Parametric Mapping software (SPM8, Wellcome Department of 

Imaging Neuroscience, London, UK) was used for the analysis of the 

fMRI data, launched with the 7.1 version of Matlab (MathWorks, 

Natick, Massachusetts, USA). The first 7 scans were excluded from 
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the analysis to eliminate the decay of the fMRI signal that is 

associated with the moment when magnetization reaches 

equilibrium. The first step taken was to align the images to the AC-PC 

line. Once it was done, the preprocessing of the data began, 

realigning the functional images (estimate and reslice option), 

coregistering them to the structural images and segmenting this 

latter anatomical scan. Then it was performed the normalization of 

the resliced functional volumes with the normalization parameters 

extracted after segmentation and normalization of the anatomical 

volumes for each subject separately (the template was provided by 

the Montreal Neurological Institute). None of the volunteers had to 

be excluded due to movements or distortions during the fMRI. 

Finally, the images were smoothed using a Gaussian kernel (FWHM of 

8 x 8 x 8 mm).  

In a first fixed-effect level analysis, the functional time series for each 

subject and for each condition were modeled with a box-car function 

convolved with the hemodynamic response function. The parameters 

for the motion correction were employed as regressors of non-

interest. To eliminate the low frequency components in the signal, 

caused by the scanner motion and warming, a 96 s high pass filter 

was applied. 

Until now the analysis has been the same for all the subjects and 

scans. Now it will be distinguished between the analysis for the pre-

treatment scans and the analysis for the comparison pre-post 

treatment.  

For the pre-treatment scans, once done the preprocessing and the 

first level analysis, group tests at a second level random effect 

analysis were performed. The data was looked for task related 

activation by performing a one-sample t-test including contrast 

images of estimated parameters for the differences of interest 

between conditions. As aforementioned, the fMRI paradigm was 

divided into three different navigation tasks (clean room, dirty room 

and phobic-stimulus room) that will be compared in order to obtain 
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the contrasting brain activations. Although the results for the three 

contrasts have been obtained, the results that show the brain 

activations for the phobic stimulus are contained in the 

“phobic>clean” contrast. The “phobic>dirty” contrast shows phobic 

activations avoiding the anxiety feeling caused by the dirtiness of the 

room, and the “dirty>clean” contrast contains the anxiety related 

activations. 

 

Figure 4.6 Capture of the batch editor for the second level analysis 

All contrasts at group level were considered if more than 10 adjacent 

voxels passed the statistical threshold of p < 0.005 (uncorrected). 

These results were corrected at p<0.05 using AlphaSim correction 

(combined height threshold p<0.005 and a minimum cluster size= 25) 

(Song et al., 2011).  

AlphaSim is a tool that allows you to calculate, depending on the 

mask used during the fMRI images analysis, the minimum number of 

voxels that a cluster should have to consider it corrected by the 

Monte Carlo correction. For doing so, the Rest application from 

Matlab was launched, and when the window appeared, selected the 

Utilities button. 
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Figure 4.7 Captures of the REST tool 

The REST AlphaSim button opens the AlphaSim application. In it, it is 

indicated: the FWHM (smooth used in SPM, 8mm), rmm or number 

of neighbors to consider (typically 1.5xvoxel size), p threshold (voxel 

statistical threshold used in SPM, 0.005), number of iterations to 

make, mask (the file “mask” generated by SPM when the analysis was 

performed), output dir (where the output file will be saved) and 

output name for this file. When clicked the Run button, the process 

begins.  

 

Figure 4.8 Capture of the REST AlphaSim window 
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The output file was opened using WordPad and searched for the 

information looked for. 

 

Figure 4.9 Capture of the AlphaSim results, opened with WordPad 

In the last column of the file can be seen the value of the corrected 

alpha. For a value of p<0.05 corrected, it is looked for in the last 

column, and check the cluster size needed to meet it in the first 

column. In this case, any cluster with 25 or more voxels will be 

considered corrected at p<0.05. 

 

Figure 4.10 Capture of the AlphaSim results, with the one chosen remarked in blue. 
For a p<0.05 it is needed a cluster of 25 voxels or more 

For the pre-post treatment comparison, again after the preprocessing 

and the first level analysis for the post-treatment scans (the pre-



182 
 

treatment scans were already processed in this step from the 

previous part) group tests at a second level random effect analysis 

were performed, testing for task related activation by performing a 

two-sample t-test including contrast images of estimated parameters 

for both groups of images (the parameters obtained from the pre-

treatment images and those obtained in the post-treatment images) 

for the differences of interest between conditions. More exactly, the 

results for the “phobic>clean” contrast, that show the results of brain 

activations for the phobic stimulus in comparison with the control 

condition, were obtained for the comparisons “pre-treatment>post-

treatment” and “post-treatment>pre-treatment”. 

 

Figure 4.11 Capture of the batch editor for the second level analysis in the pre-post 
study 

In this case, all contrasts at group level were considered if more than 

10 adjacent voxels passed the statistical threshold of p < 0.005 

(uncorrected). It was used the xjView 

(http://www.alivelearn.net/xjview8/) software utility for SPM (that 

uses the MNI coordinates system) to obtain the specific brain areas 

that were activated in each contrast. 
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4.3 Results  

4.3.1 Results for the pre-treatment fMRI scan 

First, the contrast “phobic > clean” was selected and looked for the 

main activated brain regions. Activations were found in the left 

occipital inferior lobe and middle occipital gyrus bilaterally among 

others (see Table 4.1 and Figure 4.12). Other brain regions which 

displayed significant activations during the task were the cuneus 

bilaterally, the superior frontal gyrus and the precuneus.  

Anatomical 

region 

Hemisphere x 

(mm) 

y 

(mm) 

z 

(mm) 

t score Cluster 

size 

p 

Occipital 

Inferior 

Lobe 

L -22 -98 -12 4.19 36 p<0.05 

corrected 

Middle 

Occipital 

Gyrus 

(BA19) 

L -54 -77 -4 5.21 29 p<0.05 

corrected 

Middle 

Occipital 

Gyrus 

R 31 -77 0 4.76 175 p<0.05 

corrected 

Cuneus R 20 -91 9 4.01 36 p<0.05 

corrected 

BA18 R 26 -96 6 -11.64 28 p<0.05 

corrected 

Cuneus L -8 -95 30 5.82 55 p<0.05 

corrected 

Superior 

Frontal 

Gyrus 

R 20 49 42 4.52 13 p<0.005 

uncorrected 

Precuneus L -1 -46 68 4.59 31 p<0.05 

corrected 

Table 4.1 Brain area activation results for the “phobic > clean” contrast 
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Figure 4.12 Brain activations for the “phobic>clean” contrast 

In Table 4.2, the results obtained for the “phobic > dirty” contrast, 

which include activations in the inferior occipital lobe and superior 

and middle frontal lobe, can be observed. Those results can also be 

seen in Figure 4.13. 

Anatomical 

region 

Hemisphere x 

(mm) 

y 

(mm) 

z 

(mm) 

t 

score 

Cluster 

size 

p 

Inferior 

Occipital 

Lobe 

L -26 -98 -12 5.52 54 p<0.05 

corrected 

Inferior 

Occipital 

Lobe 

R 48 -84 -8 4.43 22 p<0.005 

uncorrected 

Superior 

Frontal 

Lobe 

L -22 56 34 4.51 18 p<0.005 

uncorrected 

Middle 

Frontal 

Lobe 

L -26 14 63 5.25 18 p<0.005 

uncorrected 

Table 4.2 Brain area activation results for the “phobic > dirty” contrast 
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Figure 4.13 Brain activations for the “phobic>dirty” contrast 

Finally, in Table 4.3, there can be observed the results obtained for 

the “dirty > clean” contrast, with activations in the occipital and 

frontal lobes and the cingulated gyrus. Those results can also be seen 

in Figure 4.14. 

Anatomical 

region 

Hemisphere x 

(mm) 

y 

(mm) 

z 

(mm) 

t 

score 

Cluster 

size 

p 

Superior 

Occipital 

Lobe 

L -15 -91 30 5.69 201 p<0.05 

corrected 

Middle 

Frontal 

Gyrus 

R 24 53 -8 5.23 39 p<0.05 

corrected 

Middle 

Occipital 

Gyrus 

R 27 -84 13 6.81 184 p<0.05 

corrected 

Cingulate 

Gyrus 

R 17 -35 30 7.40 14 p<0.005 

uncorrected 

Table 4.3 Brain area activation results for the “dirty > clean” contrast 
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Figure 4.14 Brain activations for the “dirty>clean” contrast. 

4.3.2 Results for the pre-post comparison 

For the “pre-treatment>post-treatment” contrast, activations were 

found in the right superior frontal gyrus and the left supplementary 

motor area (see Table 4.4 and Figure 4.15).  

Anatomical 
region 

Hemisphere X(mm) Y(mm) Z(mm) T score Cluster 
size 

Superior 
Frontal gyrus  

R 20 46 47 4.11 10 

Supplementar
y motor area 

L -5 25 63 3.69 6 

Table 4.4 Brain activations for the “phobic>clean” contrast, for the comparison 
“pre-treatment>post-treatment” 
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Figure 4.15 Brain activations for the “phobic > clean” contrast, for the comparison 
“pre-treatment>post-treatment”. The image on the left (a) shows the brain 

activation centered on the supplementary motor area, and the image on the right 
(b) centered on the superior frontal gyrus. 

For the “post-treatment>pre-treatment” contrast, activations were 

found in the right cerebellum, left sub-gyral temporal lobe, left 

thalamus, right inferior frontal gyrus, left inferior parietal lobe, left 

sub-gyral frontal lobe and right middle cingulum (see Table 4.5 and 

Figure 4.16).  

Anatomical 
region 

Hemisphere X(mm) Y(mm) Z(mm) T 
score 

Cluster 
size 

Cerebellum  R 13 -49 -16 4.57 16 

Sub-gyral 
temporal lobe  

L -43 -49 0 3.21 6 

Thalamus  L -22 -28 13 4.03 15 

Inferior 
frontal gyrus  

R 48 0 21 4.84 13 

Inferior 
parietal lobe 
(BA 40) 

L -40 -46 38 3.75 25 

Sub-gyral 
frontal lobe  

L -22 4 42 3.27 13 

Middle 
Cingulum 

R 17 -21 47 3.69 8 

Table 4.5 Brain activations for the “phobic>clean” contrast, for the comparison 
“post-treatment>pre-treatment” 



188 
 

 

  

 

Figure 4.16 Brain activations for the “phobic > clean” contrast, for the comparison 
“post-treatment>pre-treatment”. The captures are centered in the: a) right 

cerebellum, b) right inferior frontal gyrus, c) left thalamus, d) left inferior parietal 
lobe and e) left sub-gyral frontal lobe. 

4.4 Discussion  
In this section, the discussion of the results for both the phobia 

studies will be presented. Later, in the next section (4.5) those 
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arguments given to the phobia studies will be translated in terms of 

the objectives fulfilled from the Thesis goals.  

4.4.1 Discussion of the results for the pre-treatment fMRI 

scan 

The main goal of the present phobia study was to analyze the brain 

areas activated due to phobic stimulus during navigation through a 

virtual environment in the three different experimental conditions 

previously described (CLEAN, DIRTY and PHOBIC). One of the main 

results for the purposes of the study are those obtained when 

comparing brain activations between phobic and clean conditions 

(“phobic>clean”), which are those that reflect the fear and anxiety 

felt by the subjects due to the phobic stimulus when compared with 

a emotionally neutral situation. Both the phobic and dirty situations 

may generate anxiety in the participant. However, in the dirty 

condition the anxiety is generated by the fact of being in a 

threatening room (because of the dirtiness of the room, the 

participant may feel that is a dangerous place to be in) and in the 

phobic condition, apart from the dirtiness of the room, there are 

phobic stimuli, spiders and cockroaches that will generate a phobic 

specific activation in the brain. In the “phobic>clean” comparison the 

activations may be caused by both factors. The activations obtained 

in the “phobic>dirty” contrast would be directly related to the phobia 

itself, and not to the anxiety feeling.  

In the following paragraphs, the results of the “phobic>clean” 

contrast will be commented in comparison with results obtained in 

other studies about phobia. After that, the results obtained in the 

other two contrasts will be briefly discussed. Finally, some overall 

conclusions will be made. 

One of the most important activated areas in the “phobic>clean” 

contrast is the occipital lobe, more specifically, activated in its left 

inferior area and in the middle lobe bilaterally. Other important 

result is that obtained in the superior frontal gyrus. At last, 

activations were found in the cuneus and precuneus. 
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The occipital lobe mainly controls the visual areas, which are 

necessary for the performance of a navigation task. In the inferior 

area of the occipital lobe, it has been found activation in the lingual 

gyrus, believed to play a role in dreaming as well as in vision, 

especially in the recognition of words (Poza and Martí, 2006). In this 

area, it was also found activation in the Brodmann area 18, part of 

the extrastriate visual cortex. This encompasses multiple functional 

areas, including V3, V4, V5/MT, which is sensitive to motion or the 

extrastriate body area (EBA) used in the perception of human bodies 

(Orban, 2008; Astafiev et al., 2004). 

In a similar study conducted by Paquette et al. (2003), using film 

excerpts of spiders as the phobic stimulus and film excerpts of 

butterflies as neutral condition, they found a similar activation in this 

area when subtracting spiders’ minus butterflies’ contrasts. They 

concluded that this activation was related with enhanced visual 

attention to the phobic stimuli, and support vigilance functions in 

anxiety (Fredrikson et al., 1993, 1995). Moreover, those results are 

consistent with others obtained in other similar studies (O’Craven et 

al., 1997; Büchel et al., 1998; Chawla et al., 1999).  More recently, 

there have been several fMRI (Schienle et al., 2007; Alpers et al., 

2009; Straube et al., 2007) and PET (Scharmüller et al., 2011) studies 

among phobic and non-phobic subjects that have also found 

activation in the visual cortex. In fact, Straube et al. (2007) justified it 

as likely to be caused by the attention subjects put on the visual input 

that reflect an “increase in the processing of the cue but also the 

expectation of behaviorally relevant sensory input”. Moreover, 

several studies have pointed out the spread of the amygdala 

activation to the occipital areas due to the emotional relevance of 

the stimulus (Aggleton, 1993; Krolak-Salmon et al., 2004).  

The other important activation is found in the superior frontal gyrus. 

This area is related to the feeling of self-awareness (Goldberg et al., 

2006), which is increased when the phobic subject watches the 

animal that provokes his fear. During a resting situation, the subject 
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relaxes and is less conscious of himself. But, when the phobic person 

finds himself in a fearful situation, his alert state increases, trying to 

inhibit his reaction in front of the phobic stimulus (Paquete et al., 

2003). The natural reply to this stimulus is to avoid the fear response 

it provokes over him, and to do so he controls his mind and body, 

increasing the consciousness he has of himself. That is why it is 

considered the activation of the superior frontal gyrus essential in the 

reaction of a phobic situation. According to du Boisgueheneuc et al. 

(2006), the superior frontal gyrus is related to higher cognitive 

functions and working memory. Although Paquette et al. (2003) did 

not find activation in it, they discussed the relation of the frontal 

activations with the voluntary self-regulation of emotion. More 

exactly, they exposed the results obtained in a PET study conducted 

by Johanson et al. (1998), who observed an increase in the frontal 

rCBF (regional Cerebral Blood Flow) correlated with the use of 

cognitive strategies to cope with the phobic situation. Paquette et al. 

(2003) pointed out that the phobic subjects activated their prefrontal 

areas when attempting to control their fear before the film excerpts 

of spiders. Another explanation is given by Goldberg et al. (2006), 

who analyzed the subjective awareness feeling and its relation with 

the frontal areas of the brain. They remarked how when watching an 

absorbing movie or being involved in a highly demanding sensory 

task (as is in this case the virtual navigation through an immersive 

environment) the strong subjective feeling is of “losing the self”, or, 

as they explained, of disengaging from self-related reflective 

processes. Accepting this state, the increase in the self-awareness 

feeling during a highly demanding navigation task in the visualization 

of phobic stimulus is clearly related to the higher feeling of yourself 

when “fighting” the fear. In words of Scharmüller et al. (2011), 

increased activation in the superior frontal cortex might reflect 

patients’ urge to flee during the confrontation with the feared object; 

and this link between the sensorimotor system and the 

affective/cognitive function is in line with the theory about embodied 

cognition (Garbarini and Adenzato, 2004). In conclusion, it can be 

considered this activation essentially related to the phobia. 
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Activity was also found in the cuneus and the precuneus. Regarding 

the cuneus, it is related to visual processing, which is directly 

associated with the sense of presence that the subject feels while 

navigating through a virtual environment (Perani et al., 2001). On the 

other side, the precuneus is related to self-consciousness, such as 

reflective self-awareness, that involves rating your own personality 

traits (Kjaer et al., 2002; Lou et al., 2004). This information continues 

with the idea of an increase in the consciousness of yourself while 

you are exposed to a phobic stimulus, trying to reduce your reaction 

before it. It is also involved in directing attention in space when 

planning or performing a movement (Cavanna and Trimble, 2006; 

Kawashima et al., 1995), which is directly related with navigation 

through a virtual environment.  

Although one of the areas most commonly related to phobias is the 

amygdala, it is not activated in the results of this study. However, this 

lack of activation is supported by several previous studies that have 

analyzed the pattern of activation of this area (Larson et al., 2006; 

Alpers et al., 2009; Paquette et al., 2003), concluding that the 

amygdala suffers habituation over time (Larson et al., 2006). 

Paquette et al. (2003) also pointed out that this suggests that the 

amygdala may not be related to the phobic expression or experience, 

but to the fear conditioning (LeDoux, 1993; Paquette et al., 2003). 

Straube et al. (2007) also discussed that the amygdala activation may 

occur during brief presentations of the phobogenic stimuli and in the 

induction of rapid behavioral responses more than in the sustained 

and explicit processing of the threatening stimuli. Alpers et al. (2009) 

also pointed out that their activation in the amygdala was helped by 

the brief stimulus they used (200ms). In the case of this Thesis, the 

use of periods of navigation as stimulus instead of pictures may be 

the cause of not detecting activation in this area (a block design was 

used for the protocol instead of an event-related). In fact, most of the 

studies around the amygdala have reported its activation during the 

very early stages of the stimulus (Larson et al., 2006; Schienle et al., 

2007; Alpers et al., 2009).  
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Having exposed the main results for the “phobic>clean” contrast, 

there will be briefly discussed the results for the remaining contrasts. 

Regarding the “phobic>dirty” comparison, it was found that the 

inferior occipital lobe played a major role in the fear response to the 

phobic stimulus, bilaterally. This is in concordance with the results 

obtained for the “phobic>clean” contrast, where it was pointed out 

the relation of this area with the phobic response. As aforesaid, the 

occipital lobe is related to enhanced visual attention to the phobic 

stimuli (Fredrikson et al., 1993, 1995). The other important activation 

is located in the superior and middle frontal lobe, result also 

contained in the previous results, due to its relation with the feeling 

of self-awareness and the action of the sensory system (Goldberg et 

al., 2006). As can be seen, the main results that were highlighted as 

related to the phobia are still activated when the conditions of the 

contrast are restricted to avoid the anxiety results. 

Regarding the “dirty>clean” contrast,  the self-awareness is still high, 

due to the greater fear of finding a spider or cockroach when 

navigating through a dark and dirty environment than when 

navigating through a clean one, which results in the activation of the 

middle frontal gyrus. The activation of the occipital lobe is 

maintained here due to the higher visual processing when expecting 

the appearance of a feared animal. The last activation was located in 

the cingulate gyrus, which Paquette et al. (2003) pointed out to be 

mainly associated with the cognitive/internal generation of 

emotional state by evoking visual imagery or memories. As 

aforementioned, the activations in this contrast are due to the 

evocation of the fear, not to the exposition to it; so the meaning of 

the activation in the cingulate gyrus is clear as a generator of 

emotional evocations. 

In conclusion, similar results in terms of fMRI brain activations have 

been obtained with VR to those obtained using real stimuli. In fact, 

the main activations found in the occipital and frontal areas are 

coherent with those found in previous studies conducted with spider 
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phobic subjects using pictures or videos of real animals as stimuli. 

Moreover, the activation in the cuneus could be related to the sense 

of presence elicited in the subjects because of the navigation through 

the virtual environment. This finding opens the door to deeper 

investigations over the phobias, due to the fact that VR allows 

recreation of normal life scenes in a more realistic and interactive 

way, that are impossible to achieve with other techniques. This kind 

of situations could allow, for example, the study over subjects with a 

mild phobia, whose fear can’t be excited only by the use of 

photographs.  

4.4.2 Discussion of the results for the pre-post comparison 

In this second part of the phobia study, the main goal was to 

compare brain activations before and after the phobic subjects 

passed through a psychological therapy to overcome their fear. For 

this purpose, two experimental conditions were compared: CLEAN 

and PHOBIC. It was analyzed the contrast “phobic>clean” over phobic 

subjects for the “pre-treatment>post-treatment” and “post-

treatment>pre-treatment” conditions. In the following paragraphs, 

those results will be commented. After that, a comparison between 

them and similar results obtained in other groups’ work using images 

or videos as stimulus will be done. Finally, there will be made some 

overall conclusions. 

Firstly, the results from the “pre-treatment>post-treatment” 

condition will be presented. As aforementioned, the main brain 

activation in this condition is set in the superior frontal lobe. That 

means that this is an area that was activated before the therapy (as 

remarked in the pre-treatment results, section 4.3.1), and this 

activation disappears after it. It has been discussed previously that 

this area is related to the feeling of self-awareness, which increases 

when the phobic subject watches the feared animal (Goldberg et al., 

2006). The fact of this activation disappearing after the treatment 

supports the theory of being involved in self-awareness and proves 

the effectiveness of the therapy. 
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It has been also mentioned in the corresponding results section 

(section 4.3.2) the activation of the supplementary motor area 

(SMA), related with the control of movement. Previous works about 

phobias have already explained this activation due to the patients’ 

urge to flee during a confrontation with the feared animal 

(Scharmüller et al., 2011). As aforementioned in the previous section, 

this activation accords with the embodied cognition theory (Garbarini 

and Adenzato, 2004), which says that observing an object activates 

the neural system as if you were interacting with it. So due to the fact 

that in this study the subjects are navigating through an 

environment, it makes sense that they activate the motor areas as if 

they were really moving. The bigger activation when a feared 

stimulus is present is reflected in the fact of this area not being 

activated after the treatment. Another group who remarked specific 

phobia-related activation in the supplementary motor area was 

Schienle et al. (2005). They studied the fear and disgust in spider 

phobic subjects using fMRI while alternating blocks of phobia, fear, 

disgust and neutral pictures. They found activation in this area while 

comparing the conditions “phobia>fear” and “phobia>disgust” over 

the phobic subjects. 

Once there have been analyzed the results for this contrast, the 

results obtained in the “post-treatment>pre-treatment” condition 

will be evaluated. There were found activations in the right 

cerebellum, left sub-gyral temporal lobe, left thalamus, right inferior 

frontal gyrus, left inferior parietal lobe, left sub-gyral frontal lobe and 

right middle cingulum. 

The main role of the cerebellum is the motor control (Grodd et al., 

2001). However, it is also related with cognitive functions such as the 

attention and the processing of language or learning (Wolf et al., 

2009). This last may be the cause of its activation, due to the learning 

done over the environment, which was already seen in the previous 

scan.  
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The temporal lobe is most commonly known by its relation with the 

auditory perception and language (Rice University, 2011). The sub-

gyral activation is near the middle temporal gyrus, connected with 

processing of language, visual perception and multimodal sensory 

integration (Onitsuka et al., 2004). According to Kosslyn et al. (1996), 

this area is related to the vision of emotionally laden negative stimuli, 

result that is also coherent with the findings of Paquette et al. (2003) 

over control subjects. This is in accordance with the results presented 

here, as it was found activation in this area after the treatment, when 

the subject is exposed to an environment that is emotionally 

negative, but that does not scare him anymore. 

The activation in the thalamus is related to the relay of sensory and 

motor signals to the cerebral cortex (Sherman, 2006). More 

specifically, the pulvinar area of the thalamus is associated with the 

sensorial stimulus integration, and has been reported to respond to 

visual stimulus proprieties such as orientation or direction of the 

movement (Petersen et al., 1985; Kastner et al., 2004). Thalamic 

activation has also been related with phobogenic situations 

previously (Straube et al., 2006; 2007). Porro et al. (2003) explained 

that this activation may be due to unspecific arousal response “since 

the midbrain reticular formation extends into the intra-laminar nuclei 

of the thalamus”.  

The thalamus was activated after the treatment and not before, and 

this hypoactivation corroborates the hypothesis of Etkin et al. (2007), 

who stated that this may be related to a decrease in the processing 

of sensory information, which leads to a decrease in the experience 

of negative emotion. The subjects may inhibit the activation of this 

area to avoid the fear in the first scan, and once got over of the 

phobia, the activation normalizes to that of a non-phobic subject. 

The right inferior frontal gyrus has been related to risk aversion 

responses (Christopoulos et al., 2009) and inhibition (cancel an 

intended movement) responses (Aron et al., 2004).  This activation 

after the treatment is also coherent with the results obtained in 
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Paquette et al. (2003), where they discussed the relation of the right 

inferior frontal gyrus with the guidance of attention in visual space, 

provoking a state of “visual vigilance” devoid of emotion. Johanson et 

al. (2006) also found activation in the prefrontal area in panicking 

spiders phobic subjects after the therapy, that didn’t appeared 

before. However, they found the contrary (increased activation 

before the treatment that disappeared after it) in a group of phobic 

subjects controlling their fear that was also included in the study. It is 

coherent with what has been aforementioned of this area related to 

inhibition responses, due to the fact that in this study it is activated 

when the phobic subjects are controlling their fear, that is, after the 

treatment.  

The inferior parietal lobe has been said to play a role in the 

interpretation of sensory information (Radua et al., 2010). It is 

related to visuospatial processing and mental coordination (Purcell et 

al., 1998; Zielinski et al., 1991). In a study conducted by Nakao et al. 

(2005) using the Stroop task in fMRI with obsessive-compulsive 

patients before and after symptom improvement, they found parietal 

activation in relation to cognitive performance improvement after 

the treatment. The subjects from the present study would be more 

focused in the task and their cognitive performance would improve 

once the distraction caused by the fear disappears after the 

treatment, which would justify the observed activation in this area. 

It has been also mentioned activation in the sub-gyral area of the 

frontal lobe, adjacent with the limbic lobe. The frontal lobe is related 

to executive functions like the recognition of future consequences 

from the current actions or to distinguish between good and bad 

actions; which means higher mental functions (Kimberg & Farah, 

1993). Its function is related to the limbic system, involved in the 

emotional behavior (Papez, 1937). At last, activation was found in the 

right middle cingulum; that is also integrated in the limbic system, 

and allows the communication between its components. After the 

treatment the subjects are not afraid and their executive functions 
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are not affected by the fear, so the related areas’ activation 

increases. 

In conclusion, in this part of the study the possibilities of VR in the 

evaluation of phobic subjects are shown, comparing the brain 

activations before and after a psychological treatment to cure it. The 

results obtained are coherent with those from works conducted by 

other groups over phobic subjects using pictures or videos of real 

animals to elicit the fear. This finding opens the door to deeper 

investigations over the phobias, due to the fact that VR allows 

recreation of normal life scenes in a more realistic and interactive 

way, that are impossible to achieve with other techniques.  

4.5 Overall conclusions and limitations of the 

study 
As has been just exposed, in this study it was checked the usefulness 

of virtual reality in the assessment of the state and evolution of a 

mental distress, more specifically, in subjects with small animals’ 

phobia. The belief was that brain areas related to the phobia that 

were activated before the treatment to cure the phobia, will stop 

being activated after that treatment. As aforementioned, one of the 

most important areas activated previously to the treatment was the 

superior frontal gyrus, related with the state of self-awareness 

experienced while in presence of the feared animal. This area, which 

was activated in the pre-treatment scan, effectively stopped being 

activated after the treatment.  

The other area which followed this pattern of activation was the 

supplementary motor area. Although it did not have a significant 

activation in the pre-treatment scan, the difference in activation 

between the pre- and post-scans was significant. This area is related 

to the control of movement, and as Scharmüller et al. (2011) and 

Schienle et al. (2005) pointed out, is due to the patient’s urge to flee 

due to the phobic stimuli; which explains the deactivation of it after 

the treatment. 
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It is also important to remark that these results are coherent with 

those obtained in previous studies developed using pictures of real 

animals as stimuli. The main activations during the pre-treatment 

scan were obtained in the occipital and frontal areas. In the study of 

Paquette et al. (2003), they found a similar activation in the former, 

while explained the relation of the later with the phobia (although 

they did not find activation in the frontal lobe, they explained this 

relation due to its importance in the phobia study). Apart from those, 

it was found activation for the “phobic>clean” contrast in the cuneus 

(visual processing functions) and precuneus (self-conciousness and 

planning of the movement). As exposed in the previous chapter 

(study of presence, in Chapter 3), the cuneus is an important area 

related to the sense of presence experienced in the virtual world. 

Regarding the precuneus, its activation is enhanced by the navigation 

in a VE.  

Although the activation of the amygdala is not achieved in this study, 

this also goes with the conclusions obtained in previous works. As 

aforementioned, the amygdala suffers habituation over time (Larson 

et al., 2006), so its activation is only observed when studying brief 

periods of time (in the order of milliseconds). The use of blocks of 20s 

in this study may prevent us from finding activation in this area. 

Moreover, during the pre-treatment scan, the activations for the 

“phobic>dirty” and “dirty>clean” contrasts were coherent with those 

obtained for the “phobic>clean”. It has been already explained the 

choice as reference of the later contrast because it considered the 

results for both fear and anxiety during the virtual experience. 

However, it was corroborated that the results obtained in this 

contrast were still active when restricting the condition to avoid brain 

areas related to anxiety produced by the dirtiness of the room. 

Because the phobia maintains the patient in an alert state, the same 

areas are still activated when comparing the DIRTY condition with the 

control one (CLEAN), although this activation is less intense. In 

conclusion, the brain activations in the occipital and frontal areas 
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follow a linear trend over the experimental conditions, with a higher 

intensity during the PHOBIC condition and a lower but still significant 

activation in the DIRTY period, when comparing it with the CLEAN 

one. 

The comparison between these three experimental conditions is also 

a novelty introduced by this study. Until now, for the assessment of 

small animals’ phobias only blocks of pictures or videos of real 

animals had been used. The use of virtual reality allows the study of 

the patients’ reactions in more complex situations (navigating 

through an environment) and in different conditions (in this case, in a 

dirty room with and without spiders and cockroaches). This opens 

the door to the study, as in this case, of patients with mild phobias, 

which could not be stimulated with other kind of stimuli.  

Despite all the benefits that have been remarked from this study, 

there have also to be addressed some limitations it presents. First of 

all, it was conducted using a specific group of participants, namely 11 

right-handed women. This constitutes a small sample size, which 

restricts the statistical power of the study to detect changes in the 

BOLD signal. All the subjects were right-handed in order to prevent 

noise effects due to manual lateralization on brain activation in 

virtual/spatial processing. Moreover, all of them were chosen women 

to reduce the variability generated by gender differences. In fact, 

some previous studies have pointed out the importance of choosing 

only women, due to their higher activation in presence of emotional 

stimuli. Canli et al. (2001) indicated that they chose women because 

“they report more intense emotional experiences and show more 

physiological reactivity in concordance with valence judgments than 

men”. Most of the studies aforementioned have been conducted 

with female subjects (e.g. Paquette et al., 2003; Schienle et al., 2007; 

Straube et al., 2007; Scharmüller et al., 2011). Scharmüller et al. 

(2011) pointed out that they restricted their study to use only female 

subjects since the prevalence of spider phobia is higher in them. 

Moreover, Schienle et al. (2007) remarked that most of the spiders’ 
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phobia sufferers were females. Another limitation could be the 

absence of control subjects to compare with, which could constitute 

a future extension of the current work. However, the use of the same 

group of subjects for the pre- and post- treatment scans allows the 

comparison between two time moments, so the same patients work 

as their own reference to compare with. 

Because the fMRI requires the subjects to remain still, the patients to 

analyze were chosen with mild phobia levels, in order to avoid the 

possibility of them panicking during the task. This also decreases the 

levels of brain activation found in the study, so another future work 

could be the assessment of patients with higher levels of phobia, in 

order to corroborate the results achieved in this study. 

But, what does all this mean in terms of neuropsychotherapy? This 

specific study was designed to validate a bigger hypothesis: that 

neuroimaging and VR could be combined for the benefit of the 

assessment process during the treatment of a patient suffering from 

some kind of psychological disorder. This would give the therapist 

wider information about his brain state and help to adjust the 

treatment according to this information. 

In the particular example of the study of small animals’ phobic 

subjects, the combination of neuroimaging (in this case, fMRI) and VE 

has given information about the brain areas that were activated 

related to the phobia, and how the activation patterns changed due 

to the treatment undergone. This information could help the 

psychologists that treated the subjects in further studies for the 

improvement of the psychological treatment according to the brain 

areas activated in each case. In other words, the underpinning of the 

areas related to a specific disorder could lead the psychologists in a 

better understanding of the problem and a better adjustment of its 

treatment.  

In this case, virtual reality allows a more accurate representation of 

the stimuli inside the scanner, which helps in the stimulation of the 
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proper areas of the brain. The use of fMRI as the neuroimaging 

technique gives precise spatial information of the brain areas 

involved in the phobia, and the comparison of three experimental 

conditions helps in the discrimination of which brain area is related 

to which brain function. Combining all these, the result is a useful 

tool for the accurate study of the brain reaction before the small 

animals’ phobia that will help the therapists in the better application 

of the psychological treatment.  
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5 Overall conclusions and future work 
In this last chapter, the main hypothesis of this PhD Thesis will be 

summarized and the objectives fulfilled resumed. First, the main 

goals achieved in each of the two branches of study will be 

presented: Presence and Assessment of a treatment (small animals’ 

phobia). Second, the publications done within the framework of this 

work will be presented. Finally, the future work with which the 

research here presented will continue will be commented. 

5.1 Contributions of the present PhD Thesis 
The main goal of this PhD Thesis was centered on the study of how 

virtual reality could be used as stimuli during neuroimaging studies to 

help in the underpinning of the brain areas related to specific 

psychological disorders, in order to use this information during the 

performance of the psychological treatment to improve its results 

(what is known as neuropsychotherapy). For this, our efforts have 

been centered in a specific kind of disorder (small animals’ phobia) 

and virtual environments have been developed which can stimulate 

the fear in the patients. The use of VR will allow the reach of levels of 

exposure unable to be obtained using real stimuli. However, before 

being able to assure that the results here presented were related to 

the phobia and not to other factors that could have introduced noise 

in the study, it was needed to check that the subject effectively felt 

present inside the environments. For this, the presence study 

preceding to the phobia analysis was introduced. Moreover, this 

study helped in the decision of which neuroimaging technique (fMRI 

or EEG) was more suitable for accomplishing the aims of the 

research. According to the results from the presence study, it was 

chosen that the phobia study would be conducted using fMRI (see 

Section 3.2.5, Overall conclusions of the presence study). 

From a closer point of view, both specific courses of study present 

novelties in their designs for their ambits of research. On the one 

side, the use of VR as stimuli inside the fMRI scan to assess the fear 

and anxiety levels in phobic subjects is a new concept that has not 
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yet been applied. Brain areas related to different kinds of phobias 

have been evaluated using fMRI, but never using virtual stimuli. The 

introduction of virtual environments allows the free navigation of the 

subject through a world more similar to the real experience than the 

pictures or videos normally used for this kind of researches. 

Moreover, it allows the modulation of the fear experience in terms of 

the patient’s particular state, making it more suitable for his personal 

condition. 

On the other side, the study of the sense of presence with fMRI using 

virtual environments through which the subject can navigate freely is 

something that has not been studied yet. Presence has been 

measured using fMRI by means of automatic navigations (videos) 

through virtual environments, but not allowing the subject to freely 

move as he would do in a real world experience. Presence during a 

free navigation has only been assessed using other neuroimaging 

technique (TCD) less precise (with a worse spatial resolution), that 

does not give information about the brain areas activated. In this 

study, the fMRI results during the presence experience were 

compared with those obtained using EEG, in order to provide useful 

information about the best technique for the measure of presence 

and the influence of the intrusion of the scanner in the strength of 

the virtual experience, in terms of brain activations.  

Apart from the specific advantages that both studies present from 

what has been made since now regarding the research fields of 

presence and phobias, the thesis as a whole brings a new perspective 

to the assessment of the patient’s brain state during the treatment of 

a mental disorder from a neuropsychotherapeutical point of view. In 

the following sections, the conclusions of both studies will be 

presented separately, to end with some final overall conclusions. 

5.1.1 Study of Presence 

In the introduction, the main hypothesis to demonstrate in this part 

of the study was stated. Now, each point will be analyzed separately, 

indicating the conclusions obtained for each one: 
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 Mainly, the objective was to check if the presence experience 

in a VE could be elicited inside a neuroimaging scan, despite 

the adverse conditions (such as the laid position in which the 

subject has to remain, or the noise emitted by the scan in the 

fMRI). For this, the measures acquired with two different 

techniques were compared: a highly intrusive one (fMRI) and 

a low intrusive one (portable EEG). For the fMRI study, the 

results obtained were in accordance with those obtained in 

previous works, and the areas activated were discussed as 

effectively being related to the presence experience. 

Moreover, the results of the EEG study corroborated those 

activations. 

 

 In the fMRI study, the brain activations obtained for three 

experimental conditions were compared: photographs, video 

and navigation. The aim was to analyze the differences 

obtained when comparing situations which elicited different 

levels of presence. If the hypothesis stated was correct, the 

presence experience should be greater during the free 

navigation through the environment than during the video, 

and both greater than the visualization of photographs of the 

environment. As presented in the results section of the fMRI 

study in Chapter 3 (section 3.2.2.2.2, Imaging Results) 

activations were found in the cuneus, the parietal lobe and 

the insula (among others) for the contrast 

“navigation>video”. Moreover, it was found an increasing 

linear trend in the activation between the three experimental 

conditions in the insula and the postcentral parietal gyrus. 

That means that the presence experience grows with the 

increase of the brain activation in these areas. 

 

 As it was also measured the sense of presence by means of a 

SUS questionnaire, the fMRI results were compared with the 

answers given in them. It was found a negative correlation 
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between the presence ratings in the questionnaires and the 

brain activation in the DLPFC, result in accordance with those 

obtained in the work of Baumgartner et al. (2008). 

 

 Then, the same study of presence was repeated using a low 

intrusion technique such as EEG. The aim was to measure the 

differences in brain activation between the same three 

experimental conditions. For more precision, there were 

compared the activations of two groups that watched the 

environments in two different screens: the first in a high 

definition Power Wall screen (EEG PW group) and the second 

in a PC desktop screen (EEG DS group). As detailed in the 

corresponding section (3.2.3.2.2, EEG Results), it was also 

found activation in the Insula for the alpha and theta bands 

for both groups, and activation in the parietal lobe for the 

EEG PW group. 

 

 Then brain activations obtained from both techniques were 

compared, concluding that they were similar (despite the 

differences in spatial resolution between the techniques). 

With this, it was agreed that the sense of presence was 

excited with both neuroimaging techniques and that the 

virtual experience was strong enough to be used to measure 

phobias in the next part of the study. 

 

 Thanks to the questionnaire results, it was checked that the 

subjective ratings of the presence experience were in fact 

similar, and no significant differences were found between 

techniques, while there were between experimental 

conditions.  

 

 As an extra objective, the usefulness of the Emotiv EPOC for 

the research field was studied. This headset, although 

designed for more commercial applications such as games, 
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could save time and money if demonstrated its functioning in 

the research area. Not only this device costs far less than any 

other neuroimaging scan, but also its placement over the 

scalp takes only a few minutes, in comparison with the half 

an hour needed for other EEG devices. The good results 

obtained in this work encourage the belief that the Emotiv 

EPOC can be a suitable alternative to more expensive and 

complicated techniques when the situation requires it.  

 

 Finally, all this information allowed the choice of the 

neuroimaging technique to use in the second part of the 

work. All the facts considered, it was decided the use of fMRI 

in the “assessment of a treatment” study, due to its better 

spatial resolution. 

In addition to the hypothesis presented in the Introduction, which 

have all been proved, the results of the study validated the 

hypothesis of the Human Computer Interaction theory: the 

interaction between the computer-generated world and the subject 

is naturally performed, and that leads to the reduction of the barrier 

existing between technology and reality. As aforementioned, finding 

the neural correlates hidden behind the sense of presence will help in 

the development of adaptative Brain-Computer Interfaces. The 

future of virtual reality will be the control of the environments using 

the brain signals directly, if you are able to distinguish among the 

brain areas involved in the virtual experience. For that, it is necessary 

the vanishing of technology from the user’s awareness, what Riva et 

al. (2003) call “disappearance of mediation”. This study is a small step 

towards this objective, showing the usefulness of neuroimaging 

techniques for the distinction of the brain areas related to the sense 

of presence and the possibility of differentiating the presence 

experienced under different experimental conditions. 
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5.1.2 Study Assessment of a Treatment: Small Animals’ 

Phobia 

In this section the objectives established for this part of the Thesis 

and the level of accomplishment of them will be reviewed. 

 First of all, the objective was to obtain the brain areas related 

to the small animals’ phobia during three conditions: clean, 

dirty and phobic. Those results correspond to those obtained 

in the pre-treatment fMRI scan. As explained in the Chapter 4 

(section 4.3.1), activation was found mainly in the inferior 

occipital lobe and superior frontal gyrus for the 

“phobic>clean” contrast. The activations in the occipital and 

frontal lobes were still present during the dirty condition, 

although in a milder level, because of the anxiety caused by 

the dirtiness of the room. 

 

 Those activations were compared with the ones obtained in 

previous researches conducted by other groups, using real 

animals as stimulus. As explained in the corresponding 

discussion (section 4.4.1), the activation in the occipital lobe 

is related to enhanced visual attention to the phobic stimuli 

(Paquette et al., 2003) and the superior frontal gyrus is 

related to self-awareness (Goldberg et al., 2006), which is 

increased when the phobic subject watches the animal that 

provokes his fear. Effectively, those results are in accordance 

with those obtained in previous works. Moreover, the no 

activation in the amygdala is due to the habituation over 

time (Larson et al., 2006). Because of the use in this work of 

periods of time to study the phobia instead of event-related 

fMRI, this area did not appear in the results; but this result is 

also in coherence with what previous researches stated. 

 

 The third goal was to obtain the brain areas activated in the 

subjects after the psychological treatment, once their phobia 

was gone (contrast “phobic>clean”). For the “pre-treatment 
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> post-treatment” contrast, it was obtained that the superior 

frontal gyrus, that was activated before the treatment, 

stopped being activated after it (section 4.3.2 of the Chapter 

4).  

 

 Finally, there were areas which activation was inhibited 

because of the phobia, and once it was cured, their activation 

was restored (“post-treatment>pre-treatment” contrast’s 

results). 

In conclusion, the results obtained were in concordance with those 

from previous researches developed using real animals as stimuli, 

and fulfilled the initial objectives that had been established. The 

activations of the brain areas related to the phobia disappeared after 

the treatment (specially the activation in the superior frontal gyrus), 

and the areas with activity that was inhibited because of the phobia 

returned to their normal working once the therapy was completed.  

5.1.3 Final Overall Conclusions 

Despite all that has been stated before, the main goal of this whole 

study was to analyze if VR could be used as a stimuli during a 

neuroimaging scan for the assessment of the mental state of a 

patient undergoing a psychological treatment, and if this could bring 

useful information for the modulation of the therapeutic process.  

The presence study allowed measuring the strength of the virtual 

experience, at the same time as it helped in the choice of the more 

suitable neuroimaging technique. The Assessment of a treatment 

study informed about the possibilities of using neuroimaging and VR 

for the study of the neuroplasticity of the brain. All this considered, it 

was concluded that the combination of both techniques could bring 

important information in the assessment of patients with mental 

disorders. 

Effectively, the results are encouraging and show that VR and 

neuroimaging can be important allies in the underpinning of the 
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brain areas related to each specific disorder. This could lead in the 

future to important progresses in the neuropsychotherapy science. 

5.2 Publications  
In this section, the publications derived from this PhD Thesis will be 

presented. In total, there are 2 papers accepted in journals in the JCR 

Science Edition, four presentations in international conferences (3 

oral presentations and one poster) and 3 posters presented in 

national conferences. Two of the oral presentations were also 

published in the form of book chapters and from the other a full 

length article was derived. The poster presented in an international 

conference was a Core A. Finally, the PhD Project won the Valencia 

IDEA award. 

5.2.1 Publications in journals included in the JCR Science 

Edition 

 Miriam Clemente, Beatriz Rey, Aina Rodríguez-Pujadas, 

Alfonso Barros-Loscertales, Rosa M. Baños, Cristina Botella, 

Mariano Alcañiz, and César Ávila. (2013). An fMRI Study to 

Analyze Neural Correlates of Presence during Virtual Reality 

Experiences. Interacting with Computers. 

DOI: 10.1093/iwc/iwt037 

 

In this work, the results of the presence study using fMRI 

were presented. The journal had an impact factor of 1.158 in 

2012 and was indexed in the second quartile of the 

Computer Science, Cybernetics category.  

 

 Miriam Clemente, Alejandro Rodríguez, Beatriz Rey, and 

Mariano Alcañiz. (2013). Assessment of the influence of 

navigation control and screen size on the sense of presence 

in virtual reality using EEG. Expert Systems with Applications. 

DOI: http://dx.doi.org/10.1016/j.eswa.2013.08.055 

 

http://dx.doi.org/10.1016/j.eswa.2013.08.055
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In this work, the results of the presence study using EEG for 

the comparison between the brain activations obtained 

when comparing different navigation conditions and screen 

sizes with the Emotiv EPOC headset were presented. The 

journal had an impact factor of 1.854 in 2012 and was 

indexed in the first quartile of the categories Engineering, 

Electrical & Electronic and Operations Research & 

Management Science, and in the second quartile of the 

Computer Science, Artificial Intelligence category. 

Apart from those papers, a third one has been sent about the results 

regarding the comparison pre-post in the phobia study, the 

resolution of which has not been released yet. 

5.2.2 Book chapters - Conference proceedings 

 Miriam Clemente, Beatriz Rey, Mariano Alcañiz, Juani Bretón-

López, Inés Moragrega, Rosa M. Baños, Cristina Botella, and 

César Ávila. (2010). Contributions of functional Magnetic 

Resonance in the field of Psychological Treatments with 

Virtual Reality. Studies in Health Technology and Informatics 

154, pp. 197-201. 

DOI: 10.3233/978-1-60750-561-7-197 

 

This work was presented as an oral communication in the 

15th annual CyberPsychology and CyberTherapy 2010 

Conference, held in Seoul (Korea), 13-15th June 2010. It 

introduced the experimental design of the phobia branch of 

study of this PhD Thesis. 

 

  Miriam Clemente, Alejandro Rodríguez, Beatriz Rey, Aina 

Rodríguez, Rosa M. Baños, Cristina Botella, Mariano Alcañiz, 

and César Ávila. (2011). Analyzing the Level of Presence 

While Navigating in a Virtual Environment during an fMRI 

Scan. INTERACT 2011, Part IV, LNCS 6949, pp. 475–478.  
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This work was presented as a poster in the 2011 Conference 

on Human-Computer Interaction, held in Lisbon (Portugal), 5-

9 September 2011. This congress is included in the 

Computing Research and Education Association of Australasia 

(CORE) list in the A category. It presented the preliminary 

results of the presence study using fMRI and the 

questionnaire results’ comparison with the TCD study.  

 

 Miriam Clemente, Beatriz Rey, Mariano Alcañiz, Juani Bretón-

López, Cristina Botella, Aina Rodríguez-Pujadas, Alfonso 

Barros-Loscertales, César Ávila and Rosa M. Baños. (2013). 

fMRI assessment of small animals’ phobia using virtual reality 

as stimulus.  

 

This work was presented as an oral presentation in the 1st 

Patients Rehabilitation Research Techniques Workshop 

(REHAB 2013), held in Venice (Italy), the 5th of May of 2013. It 

presented the results for the pre-treatment brain activations 

obtained in the phobia study using fMRI. The extended 

results of this part of the study were sent to the special issue 

derived from the conference; the resolution has not been 

released yet. 

 

 Miriam Clemente, Alejandro Rodríguez, Beatriz Rey, and 

Mariano Alcañiz. (2013). Measuring presence during the 

navigation in a Virtual Environment using EEG. Studies in 

Health Technology and Informatics 191, pp. 136-140.  
DOI: 10.3233/978-1-61499-282-0-136. 

 

This work was presented as an oral presentation in the 18th 

annual CyberPsychology and CyberTherapy 2013 Conference, 

held in Brussels (Belgium), 30th June- 2nd July 2013. It 

presented the preliminary results for the EEG study of 
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presence using the Emotiv EPOC headset with a PC desktop 

screen. 

5.2.3 Other conference presentations 

 Miriam Clemente, Beatriz Rey, Mariano Alcañiz, Rosa M. 

Baños, Cristina Botella and César Ávila. (2010). Uso de la 

resonancia magnética funcional y estímulos de realidad 

virtual para evaluación de fobia a animales pequeños.  

 

This work was presented as a poster in the XI Congreso 

Multimodalidad ADIRM 2010 - Trastornos psiquiátricos: 

relaciones, conexiones y alteraciones, held in Valencia 

(Spain), 14th of December of 2010.  

 

 Miriam Clemente, Beatriz Rey, and Mariano Alcañiz. (2011). 

Analyzing spatial memory with fMRI using a virtual reality 

version of a real city. 

 

This work was presented as a poster in the International 

Symposium on Learning, Memory and Cognitive Function 

2011, held in Valencia (Spain), 1st - 3rd December 2011. 

 

 Miriam Clemente, Beatriz Rey, and Mariano Alcañiz. (2011). 

Aplicaciones del uso combinado de neuroimagen con 

realidad virtual. 

 

This work was presented as a poster in the VIII Congreso de 

la Sociedad Española de Psicofisiología y Neurociencia 

Cognitiva y Afectiva (SEPNECA), held in Barcelona (Spain), 3 – 

6th July 2012. 
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5.2.4 Awards 

The project in which this PhD Thesis is based won the first prize in the 

category “Biotecnología y Biomedicina” of the 5th Valencia IDEA 

award in 2011. 

5.3 Future work 
After the good results obtained using EEG for the measure of brain 

activity, the corresponding part of the thesis will be augmented. The 

idea is, on one side, increase the number of subjects in both groups 

studies with the Emotiv EPOC headset for the study of presence, in 

order to increase the significance of the results. On the other side, it 

is intended to replicate the study using a more precise EEG devise, a 

little more invasive but at the same time with a better resolution 

(such as the TMSi headset (TMS International BV, Oldenzaal, The 

Netherlands)). Moreover, another study will be developed for the 

study of the “breaks in presence” during a virtual reality experience, 

also using EEG. The first data for this study have been already 

obtained. 

Regarding the study of phobias, the present work will be replied 

using EEG to compare the results obtained with this technique with 

the ones already presented in this PhD Thesis. Moreover, the study 

will be replied using non-phobic subjects, to check if the areas related 

to the phobia are not activated in them.  

The hypothesis of this PhD about the contributions to 

neuropsychotherapy will also be analyzed with another psychological 

case study, to check if the same conclusions can be deduced.  

In the following points some of the future lines of study that will be 

derived from this thesis are related: 

 In the present PhD Thesis, good results for the study of 

presence were obtained with both neuroimaging techniques. 

The number of subjects for the EEG study (10 for each kind of 

screen, 20 in total) is limited. As aforementioned, enlarging 
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the list of subjects will increase the significance of the results, 

and probe the validity of the conclusions. 

 

 One special branch of research inside the analysis of 

presence in virtual reality is the study of “breaks in presence” 

or BIPs. For this purpose, a virtual environment was 

developed in the LabHuman laboratory, using Doppler for the 

measure of the brain. Another line of work will be to 

reproduce the study of BIPs already done with TCD using EEG 

(both TMSi and Emotiv EPOC headsets). The study will also 

analyze the differences due to the screen sizes, using both 

the desktop PC screen and the Power Wall. This research has 

already begun. It has been already acquired the data from 40 

subjects (also 10 per each screen and device), and they will 

be analyzed soon.  

 

 Regarding the study of phobias, the study was successful 

using fMRI for the analysis of phobic subjects. In a future line 

of work, it would be interesting to reply the same 

experimental design using EEG to check if the results 

obtained are the same as with the fMRI scanner. This would 

bring useful information about the temporal evolution of the 

brain areas activated in each moment of the phobic 

exposure, and for example, show the brief activation of the 

amygdala (according to what was explained in the 

corresponding discussion of the results). 

 

 Another possible study could be the analysis of the brain 

areas activated with the same virtual environments in non-

phobic subjects, to check that the areas that were considered 

related to the phobia are not activated in them. 

 

 A long-term post-treatment analysis of the phobic subjects 

from the fMRI study could also be done to corroborate that 



216 
 

the brain areas related to the phobia are still not activated 

and that the subject remains cured.  

 

 In a combined work with the psychologists involved in this 

work, the application of the obtained information to the 

treatment of small animals’ phobic subjects will be 

evaluated, allowing the therapists to provide a treatment 

based on the knowledge of brain activations, in order to 

contribute to the neuropsychotherapy. 

The principal objective in this PhD Thesis was to probe the usefulness 

of the new neuroimaging techniques and the goodness of combining 

them with virtual reality stimulus.  In the future, the line of work to 

follow will continue in the analysis of possible applications of 

neuroimaging (especially fMRI and EEG) using virtual environments. 

In this sense, several projects have already been proposed; that are 

expected to result in satisfying conclusions for the matter: 

 Evaluation of the results of a cognitive treatment over 

Acquired Brain Injury (ABI) patients, using fMRI and DTI. In 

this study, ABI patients will be studied before and after 

passing through a new kind of cognitive treatment developed 

using virtual reality games. During the scans, the subjects will 

attend attention tasks similar to those conducted during the 

treatment. The objective will be to probe the goodness of 

this new kind of treatment and to study the plasticity of the 

brain. 

 Evaluation of the results of a motor treatment over 

Acquired Brain Injury (ABI) patients, using fMRI and DTI. 

Similarly to the previous study, in this one ABI patients will be 

analyzed before and after passing through a new kind of 

motor treatment, also developed using virtual reality games. 

During the scans, the subjects will perform several motor 

tasks with the upper limbs (wrist and elbow) with both the 

affected and the healthy member. The objective in this case 
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will be also to probe the goodness of this new kind of 

treatment and to study the plasticity of the brain, this time 

for the motor areas. 
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6 Appendixes 

Appendix 1 
Informed consent to sign before entering the fMRI scan 
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Appendix 2 
Informed consent to sign before passing the EEG scan 
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Appendix 3 
Edinburgh Handedness Inventory questionnaire (Oldfield et al., 1971)  

This questionnaire measures the laterality (if they are left or right 

handed) over the participants of the study. It’s worthy to remember 

that in this study it were used right-handed subjects, in order to 

obtain equivalent brain activations regarding the dominant 

hemisphere of the brain (in the right-handed people, the dominant 

side is the left hemisphere; however, between the left-handed 

people there is no fixed dominant side).  
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Appendix 4 
SUS Questionnaires (Usoh et al., 2000) 

In this appendix, there will be presented the SUS questionnaires 

(Usoh et al., 2000) used for the subjective measure of presence, 

personalized for each of the experimental conditions: photographs, 

video and navigation. 
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VALORACIÓN DE LA HABITACIÓN DURANTE EL VISIONADO 

DE FOTOGRAFÍAS 

INICIALES………..…   FECHA DE NACIMIENTO…….………..… 

A continuación te vamos a hacer una serie de preguntas. 

El objetivo es saber hasta qué punto has considerado real 

o no las cosas que has visto, y hasta qué punto has 

sentido que “tú estabas ahí”, en esa situación. Queremos 

saber hasta qué punto la experiencia ha sido parecida a 

ver una imagen o una película de cine, o ha sido la 

realidad que estabas viviendo.  

1. Por favor, valora la sensación que has tenido de estar 

en la habitación, en una escala de 1 a 7 (donde 7 

representa tu experiencia normal de estar en un lugar).   

Tuve la sensación de “estar ahí”,  en la habitación. 

1 Nada en absoluto....................................... 7 Totalmente 

 

1 2 3 4 5 6 7 

 

2. Por favor, valora en una escala de 1 a 7 si hubo 

momentos durante la experiencia en los que creíste que 

la habitación era real  

Hubo momentos durante la experiencia en que la 

habitación era real para mí. 

1 En ningún momento, siempre me pareció totalmente 

irreal......................7 Me pareció real todo el tiempo 

 

1 2 3 4 5 6 7 

 

3. Ahora, al reflexionar y pensar sobre la experiencia que 

has vivido, ¿cómo recuerdas la habitación, como una 
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imagen (una película, una foto) que has visto, o como un 

sitio en el que tú has estado  

Al pensar en la habitación, lo recuerdo más como… 

1 Imágenes que he visto................................ 7 Como un 

sitio en el que he estado  

 

1 2 3 4 5 6 7 

 

4. Mientras duraba esta experiencia, lo que has sentido 

con más fuerza es que estabas “en la habitación”, o has 

sentido que estabas en otro sitio viendo la imagen de una 

habitación  

Mi mayor sensación  fue la de... 

1 Estar en otro sitio viendo la imagen.......................7 Estar 

en la habitación 

 

1 2 3 4 5 6 7 

 

5. Piensa en el recuerdo que tienes de estar en “la 

habitación” ¿Hasta qué punto ese recuerdo es similar a 

otros recuerdos que tienes de haber estado en otros sitios 

parecidos? (Considera cosas tales como: el grado de ese 

recuerdo, su color, si es vívido o realista, su tamaño, su 

localización en tu imaginación, etc.) 

1. Totalmente distinto...................  7. Completamente igual. 

 

1 2 3 4 5 6 7 

 

6. Mientras duró la experiencia, solías pensar que tú 

estabas realmente en la habitación que se te mostraba.  

Durante la experiencia, solía pensar que estaba en la 

habitación.  

1 Nunca............................................................ 7 Todo el rato 
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1 2 3 4 5 6 7 

 

7. Por favor, escribe cualquier comentario que quieras 

sobre la experiencia. Especialmente todo aquello que te 

ayudó a sentir que estabas en una habitación y que era 

real.  

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________ 
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VALORACIÓN DE LA HABITACIÓN DURANTE EL VISIONADO 

DE VÍDEOS 

INICIALES…………   FECHA DE NACIMIENTO…….………..… 

A continuación te vamos a hacer una serie de preguntas. 

El objetivo es saber hasta qué punto has considerado real 

o no las cosas que has visto, y hasta qué punto has 

sentido que “tú estabas ahí”, en esa situación. Queremos 

saber hasta qué punto la experiencia ha sido parecida a 

ver una imagen o una película de cine, o ha sido la 

realidad que estabas viviendo.  

1. Por favor, valora la sensación que has tenido de estar 

en la habitación, en una escala de 1 a 7 (donde 7 

representa tu experiencia normal de estar en un lugar).   

Tuve la sensación de “estar ahí”,  en la habitación. 

1 Nada en absoluto......................................... 7 Totalmente 

 

1 2 3 4 5 6 7 

 

2. Por favor, valora en una escala de 1 a 7 si hubo 

momentos durante la experiencia en los que creíste que 

la habitación era real  

Hubo momentos durante la experiencia en que la 

habitación era real para mí. 

1 En ningún momento, siempre me pareció totalmente 

irreal......................7 Me pareció real todo el tiempo 

 

1 2 3 4 5 6 7 

 

3. Ahora, al reflexionar y pensar sobre la experiencia que 

has vivido, ¿cómo recuerdas la habitación, como una 
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imagen (una película, una foto) que has visto, o como un 

sitio en el que tú has estado  

Al pensar en la habitación, lo recuerdo más como… 

1 Imágenes que he visto................................ 7 Como un 

sitio en el que he estado  

 

1 2 3 4 5 6 7 

 

4. Mientras duraba esta experiencia, lo que has sentido 

con más fuerza es que estabas “en la habitación”, o has 

sentido que estabas en otro sitio viendo la imagen de una 

habitación  

Mi mayor sensación  fue la de... 

1 Estar en otro sitio viendo la imagen.......................7 Estar 

en la habitación 

 

1 2 3 4 5 6 7 

 

5. Piensa en el recuerdo que tienes de estar en “la 

habitación” ¿Hasta qué punto ese recuerdo es similar a 

otros recuerdos que tienes de haber estado en otros sitios 

parecidos? (Considera cosas tales como: el grado de ese 

recuerdo, su color, si es vívido o realista, su tamaño, su 

localización en tu imaginación, etc.) 

1. Totalmente distinto...................  7. Completamente igual. 

 

1 2 3 4 5 6 7 

 

6. Mientras duró la experiencia, solías pensar que tú 

estabas realmente en la habitación que se te mostraba.  

Durante la experiencia, solía pensar que estaba en la 

habitación.  

1 Nunca............................................................ 7 Todo el rato 
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1 2 3 4 5 6 7 

 

7. Por favor, escribe cualquier comentario que quieras 

sobre la experiencia. Especialmente todo aquello que te 

ayudó a sentir que estabas en una habitación y que era 

real.  

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________ 
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VALORACIÓN DE LA HABITACIÓN DURANTE LA 

NAVEGACIÓN 

INICIALES…………   FECHA DE NACIMIENTO…….………..… 

A continuación te vamos a hacer una serie de preguntas. 

El objetivo es saber hasta qué punto has considerado real 

o no las cosas que has visto, y hasta qué punto has 

sentido que “tú estabas ahí”, en esa situación. Queremos 

saber hasta qué punto la experiencia ha sido parecida a 

ver una imagen o una película de cine, o ha sido la 

realidad que estabas viviendo.  

1. Por favor, valora la sensación que has tenido de estar 

en la habitación, en una escala de 1 a 7 (donde 7 

representa tu experiencia normal de estar en un lugar).   

Tuve la sensación de “estar ahí”,  en la habitación. 

1 Nada en absoluto.......................................... 7 Totalmente 

 

1 2 3 4 5 6 7 

 

2. Por favor, valora en una escala de 1 a 7 si hubo 

momentos durante la experiencia en los que creíste que 

la habitación era real  

Hubo momentos durante la experiencia en que la 

habitación era real para mí. 

1 En ningún momento, siempre me pareció totalmente 

irreal......................7 Me pareció real todo el tiempo 

 

1 2 3 4 5 6 7 

 

3. Ahora, al reflexionar y pensar sobre la experiencia que 

has vivido, ¿cómo recuerdas la habitación, como una 
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imagen (una película, una foto) que has visto, o como un 

sitio en el que tú has estado  

Al pensar en la habitación, lo recuerdo más como… 

1 Imágenes que he visto................................ 7 Como un 

sitio en el que he estado  

 

1 2 3 4 5 6 7 

 

4. Mientras duraba esta experiencia, lo que has sentido 

con más fuerza es que estabas “en la habitación”, o has 

sentido que estabas en otro sitio viendo la imagen de una 

habitación  

Mi mayor sensación  fue la de... 

1 Estar en otro sitio viendo la imagen.......................7 Estar 

en la habitación 

 

1 2 3 4 5 6 7 

 

5. Piensa en el recuerdo que tienes de estar en “la 

habitación” ¿Hasta qué punto ese recuerdo es similar a 

otros recuerdos que tienes de haber estado en otros sitios 

parecidos? (Considera cosas tales como: el grado de ese 

recuerdo, su color, si es vívido o realista, su tamaño, su 

localización en tu imaginación, etc.) 

1. Totalmente distinto...................  7. Completamente igual. 

 

1 2 3 4 5 6 7 

 

6. Mientras duró la experiencia, solías pensar que tú 

estabas realmente en la habitación que se te mostraba.  

Durante la experiencia, solía pensar que estaba en la 

habitación.  

1 Nunca............................................................. 7 Todo el rato 
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1 2 3 4 5 6 7 

 

7. Por favor, escribe cualquier comentario que quieras 

sobre la experiencia. Especialmente todo aquello que te 

ayudó a sentir que estabas en una habitación y que era 

real.  

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________ 
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Appendix 5 
The diagnostic criteria (DSM-IV) for 300.29 specific phobia. 

 

Diagnostic criteria for 300.29 Specific Phobia 

A. Marked and persistent fear that is excessive or unreasonable, cued 

by the presence or anticipation of a specific object or situation (e.g., 

flying, heights, animals, receiving an injection, seeing blood). 

B. Exposure to the phobic stimulus almost invariably provokes an 

immediate anxiety response, which may take the form of a 

situationally bound or situationally predisposed Panic Attack. Note: 

In children, the anxiety may be expressed by crying, tantrums, 

freezing, or clinging. 

C. The person recognizes that the fear is excessive or unreasonable. 

Note: In children, this feature may be absent. 

D. The phobic situation(s) is avoided or else is endured with intense 

anxiety or distress. 

E. The avoidance, anxious anticipation, or distress in the feared 

situation(s) interferes significantly with the person’s normal routine, 

occupational (or academic) functioning, or social activities or 

relationships, or there is marked distress about having the phobia. 

F. In individuals under age 18 years, the duration is at least 6 months. 

G. The anxiety, Panic Attacks, or phobic avoidance associated with 

the specific object or situation are not better accounted for by 

another mental disorder, such as Obsessive-Compulsive Disorder 

(e.g., fear of dirt in someone with an obsession about 

contamination), Posttraumatic Stress Disorder (e.g., avoidance of 

stimuli associated with a severe stressor), Separation Anxiety 

Disorder (e.g., avoidance of school), Social Phobia (e.g., avoidance of 
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social situations because of fear of embarrassment), Panic Disorder 

With Agoraphobia, or Agoraphobia Without History of Panic 

Disorder. 

Specify type: 

Animal Type 

Natural Environment Type (e.g., heights, storms, water) 

Blood-Injection-Injury Type 

Situational Type (e.g., airplanes, elevators, enclosed places) 

Other Type (e.g., fear of choking, vomiting, or contracting an illness; 

in children, fear of loud sounds or costumed characters) 
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Appendix 6 
The Anxiety Disorders Interview Schedule for DSM-IV (ADIS-IV) for 

the specific phobias. 

In this appendix it is presented a semi-structured model of interview 

for the assessment of the phobia. 

 

SPECIFIC PHOBIA 

I. INITIAL INQUIRY 

For each situation, make separate ratings for level of fear and degree 

of avoidance using the following scale: 

0-----------1-----------2-----------3-----------4-----------5-----------6-----------7--

---------8 

     No fear/                           Mild fear/                     Moderate fear/                  Severe 
fear/                  Very severe fear/ 
  Never avoids                Rarely avoids                Sometimes avoids               Often avoids                     
Always avoids 

 

For each situation, inquire for both current and past episodes: 

 

1. Currently, do you fear or feel a need to avoid such things as: 

Use space for comments to record other clinically useful information 

(e.g., frequency with which feared situation arises). 

 
a. Animals (e.g., snakes, spiders, 
dogs, bees/insects) 
b. natural Environment 
 Heights 
 Storms 
 Water 
c. Blood/injection/injury: self 
 Blood from minor cut 
 Receiving injections 
 Having blood drawn 

FEAR 
___ 

 
 

___ 
___ 
___ 

 
___ 
___ 
___ 

AVOID 
___ 

 
 

___ 
___ 
___ 

 
___ 
___ 
___ 

COMMENTS 
__________ 

 
 

__________ 
__________ 
__________ 

 
__________ 
__________ 
__________ 
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d. Blood/injection/injury: others 
 Blood from minor cut 
 Receiving injections 
 Having blood drawn 
e. Situational 
 Air travel 
 Elevators/ small 
enclosed places 

Driving 
f. Other 
 Dental/medical 
procedures 

Choking 
Vomiting 
Contracting an illness 

 
___ 
___ 
___ 

 
___ 
___ 
___ 

 
___ 
___ 
___ 
___ 

 
___ 
___ 
___ 

 
___ 
___ 
___ 

 
___ 
___ 
___ 
___ 

 
__________ 
__________ 
__________ 

 
__________ 
__________ 
__________ 

 
__________ 
__________ 
__________ 
__________ 

 

**************************************************

********************* 

If no evidence is found for fear/avoidance, skip to PTSD 

**************************************************

********************* 

II. CURRENT EPISODES 

Complete for each specific fear that is potentially of clinical severity: 

Now I want to ask you a series of questions about your current 

specific fears. 

A. Specific fear #1: 

________________________________________________________

______ 

1. What are you concerned will happen in this situation? 

______________________________ 

________________________________________________________

_____________________ 

2. Do you experience the anxiety nearly every time you encounter 

_____________________? 

YES ____ NO ____ 
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3. Does the anxiety occur as soon as you enter the situation or are 

about to enter the situation, or is the anxiety sometimes delayed or 

unexpected? 

IMMEDIATE ____ DELAYED ____ 

4a. Are you anxious about this situation because you are afraid that 

you will have an unexpected panic attack? 

YES ____ NO ____ 

If YES, 

b. Other than times when you are exposed to __________, have you 

experienced an unexpected rush of fear/anxiety? 

YES ____ NO ____ 

If YES, where has this occurred? 

__________________________________________________ 

If YES to 4a. or 4b., consider whether fear could be subsumed into 

panic disorder. 

 

5. Panic Attack Symptoms 

Do you experience _______________ when you encounter 

__________________? 

 

0-----------1-----------2-----------3-----------4-----------5-----------6-----------7--

---------8 

       None                                 Mild                              Moderate                             Severe                        
Very severe 

 

a. Palpitations, pounding 
heart, or accelerated 
heart rate 
b. Sweating 
c. Trembling or shaking 
d. Shortness of breath or 
smothering sensations 
e. Feeling of choking 
f. Chest pain or 
discomfort  
g. Nausea or stomach 

 
___ 
___ 
___ 
 
___ 
___ 
___ 
___ 
___ 

i. Dizziness, unsteady 
feelings, lightheadedness, 
or faintness 
j. Feeling of unreality or 
being detached from 
oneself 
k. Numbing or tingling 
sensations 
l. Fear of dying 
m. Fear of going crazy 
n. fear of doing something 

 
___ 
 
___ 
___ 
___ 
___ 
 
___ 
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distress 
h. Chills, hot flushes, or 
blushing 

uncontrolled 

 

6. In what ways has this fear interfered with your life (e.g., daily 

routine, job, social activities)? How much are you bothered by this 

fear? 

________________________________________________________

________________________________________________________

__________________________________________ 

 

Rate interference: _________ distress: _________ 

 

0-----------1-----------2-----------3-----------4-----------5-----------6-----------7--

---------8 

       None                                 Mild                              Moderate                             Severe                        
Very severe 

 

 

7a. When did the anxiety about _______ begin to be a problem in 

that it caused a lot of distress or interfered with your life? (Note: if 

patient is vague in date of onset, attempt to ascertain more specific 

information, e.g., by linking onset to objective life events) 

________________________________________________________

_____________________ 

Date of Onset: ______ Month ______ Year  

 

b. Can you recall anything that might have led to this fear? 

____________________________ 

________________________________________________________

_____________________ 

 

B. Specific fear #2: 

________________________________________________________

______ 
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1. What are you concerned will happen in this situation? 

______________________________ 

________________________________________________________

_____________________ 

2. Do you experience the anxiety nearly every time you encounter 

_____________________? 

YES ____ NO ____ 

3. Does the anxiety occur as soon as you enter the situation or are 

about to enter the situation, or is the anxiety sometimes delayed or 

unexpected? 

IMMEDIATE ____ DELAYED ____ 

4a. Are you anxious about this situation because you are afraid that 

you will have an unexpected panic attack? 

YES ____ NO ____ 

If YES, 

b. Other than times when you are exposed to __________, have you 

experienced an unexpected rush of fear/anxiety? 

YES ____ NO ____ 

If YES, where has this occurred? 

__________________________________________________ 

If YES to 4a. or 4b., consider whether fear could be subsumed into 

panic disorder. 

 

5. Panic Attack Symptoms 

Do you experience _______________ when you encounter 

__________________? 

 

0-----------1-----------2-----------3-----------4-----------5-----------6-----------7--

---------8 

       None                                 Mild                              Moderate                             Severe                        
Very severe 
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a. Palpitations, pounding 
heart, or accelerated 
heart rate 
b. Sweating 
c. Trembling or shaking 
d. Shortness of breath or 
smothering sensations 
e. Feeling of choking 
f. Chest pain or 
discomfort  
g. Nausea or stomach 
distress 
h. Chills, hot flushes, or 
blushing 

 
___ 
___ 
___ 
 
___ 
___ 
___ 
___ 
___ 

i. Dizziness, unsteady 
feelings, lightheadedness, 
or faintness 
j. Feeling of unreality or 
being detached from 
oneself 
k. Numbing or tingling 
sensations 
l. Fear of dying 
m. Fear of going crazy 
n. fear of doing something 
uncontrolled 

 
___ 
 
___ 
___ 
___ 
___ 
 
___ 
 

 

6. In what ways has this fear interfered with your life (e.g., daily 

routine, job, social activities)? How much are you bothered by this 

fear? 

________________________________________________________

________________________________________________________

__________________________________________ 

 

Rate interference: _________ distress: _________ 

 

0-----------1-----------2-----------3-----------4-----------5-----------6-----------7--

---------8 

       None                                 Mild                              Moderate                             Severe                        
Very severe 

 

7a. When did the anxiety about _______ begin to be a problem in 

that it caused a lot of distress or interfered with your life? (Note: if 

patient is vague in date of onset, attempt to ascertain more specific 

information, e.g., by linking onset to objective life events) 

________________________________________________________

_____________________ 

Date of Onset: ______ Month ______ Year  
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b. Can you recall anything that might have led to this fear? 

____________________________ 

________________________________________________________

_____________________ 
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