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Abstract: We experimentally demonstrate a high-speed differential phase 

shift keying (DPSK) modulation using a silicon push-pull operated dual-

drive Mach Zehnder modulator (MZM) based on carrier depletion. 5 Gbit/s 

and 10 Gbit/s error-free modulation is demonstrated by demodulating the 

generated DPSK modulated signal using a demodulation circuit based on a 

polarization delay interferometer through the use of a differential group 

delay (DGD). Furthermore, the potential for higher DPSK modulation 

speeds up to 20 Gbit/s is also demonstrated. The obtained results validate 

the potential to achieve higher order modulation formats, such as quadrature 

phase shift keying (QPSK), by arranging the MZM in a nested 

configuration. 
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1. Introduction  

 In order to cope with the growing bandwidth demand of next generation communication 

networks, optical transmission systems with low cost, high spectral efficiency and high per-

channel rate are required. Advanced data modulation formats have become quite attractive for 

optical communication systems because they enable the demanded increase of the optical 

network capacity [1]. When compared with on-off-keying, phase-shift keying (PSK) 

modulation format offers several advantages, namely 3-dB receiver sensitivity improvement 

when combined with balanced detection, enhanced tolerance to fiber nonlinearities and 

improved spectral efficiency via higher order modulation formats such as quadrature PSK 

(QPSK) [2]. 

 Silicon-photonics based optoelectronics devices have been shown as the best candidates to 

provide high-bandwidth communications with low power consumption and low cost due to its 

compatibility with complementary metal-oxide-semiconductor (CMOS) manufacturing 

processes. Hence, it is expected that the use of silicon based optical devices will allow large 

scale integration relieving the existing bandwidth bottleneck. 

 Silicon modulators based on microring structures have been proposed to achieve phase 

modulation [3, 4].  Experimental demonstrations of 5 Gbit/s error-free differential PSK 

(DPSK) modulation [5] and 20 Gbit/s QPSK modulation, but without successful error-free 

demonstration, have been recently reported [6]. Ring based modulators have unique features 

in terms of small footprint and low drive voltage. However, the optical bandwidth or range of 



useful wavelengths for modulation is much lower than compared to conventional Mach-

Zehnder modulators (MZM) that in turn implies that the modulator performance is more 

sensitive to fabrication tolerances. Thus, some tuning mechanism, which is usually based on 

the thermo-optic-effect [6], becomes mandatory increasing power consumption and 

complexity of the transmitter. Very recently, the first works dealing with phase modulation in 

silicon MZM have also been reported. In principle, a single MZI is capable of covering any 

phase and amplitude modulation format. However, MZM are typically arranged in a nested 

configuration to independently modulate in the two quadratures. A silicon based dual-drive 

nested MZM for QPSK modulation was firstly demonstrated at 20 Gbit/s [7]. However, a poor 

system constellation was achieved due to the low extinction ratio and unbalanced output 

optical power at the MZMs. A higher modulation speed, 50 Gbit/s QPSK, has also been 

demonstrated by using a single-drive nested MZM but no error-free modulation was achieved 

[8].  

 In this work, we experimentally demonstrate error-free DPSK modulation up to 10 Gbit/s 

using a silicon dual-drive MZM. Furthermore, DPSK modulation up to 20 Gbit/s is also 

achieved. 

2. Design and fabrication 

Figures 1(a)-(b) show the GDS design and fabricated MZM. Multimode interference couplers 

(MMI) were used as input/output 3 dB couplers. The silicon waveguide core has a height of 

220 nm, a width of 450 nm, and a slab thickness of 100 nm, as illustrated in Fig 1(c). Optical 

phase modulation is achieved by depleting the majority carriers from a reverse biased pn 

junction [9] with doping concentrations of 1.6∙1017 cm-3 in the p-type region and 8∙1017 cm-3 in 

the n-type region. 

 

Fig. 1. DPSK modulator. (a) GDS design, (b) optical photograph of fabricated device and (c) cross-section of the pn 

junction. 

The travelling-wave electrodes are formed by depositing a compound AlCu layer on top of 

highly doped p+ and n+ regions with concentrations of 1∙1020 cm-3. A dual-drive electrode 

configuration was chosen for push-pull operation. Push-pull operation allows producing the 

required π-phase shift for DPSK modulation when the phase shifters are biased at zero 

amplitude and driven by digital data signals with opposite polarity and a peak-to-peak voltage 

of Vπ. The two electrodes have the same length to avoid a delay between the non-inverted and 

inverted digital data signals.Starting from of the transfer function of a MZI and assuming the 

same propagation losses for both arms, we can obtain the maximum electrical field at the MZI 

output as: 



 
Fig. 2. Normalized transmission spectra of the MZM with different bias voltages. 

 

We first characterized the transmission spectra of the MZM for different applied voltages. 

Fig. 2 shows the spectra normalized to a reference waveguide. The insertion loss of our DPSK 

modulator, including phase shifter and MMI losses, is about 10 dB and the free spectral range 

(FSR) is 3 nm. Different voltages between 0V and 12V were applied to the MZM. The 

extinction ratios under these DC conditions were close to 30 dB. At 12V the curve was shifted 

exactly one half FSR, as it can be seen in Fig. 2, marking our Vπ value and giving rise to a 

Vπ∙L product about 3.6 V∙cm. Compared to previous works on silicon MZM for PSK 

modulation, the Vπ is only slightly higher than the 10V reported in [8] but in contrast the 

modulation length is reduced down to 3 mm, half of the length reported in [7, 8], thus 

significantly reducing the device footprint. Insertion losses are around 5dB higher but they 

could be reduced via a better optimization of the separation between the high doping regions 

and the optical waveguide while minimizing the impact on the modulator performance. 
 

3. Experiments and results 

Next, we characterized the DPSK modulation using the measurement setup shown in Fig. 

3. The input light emitted by an external cavity laser (ECL) is coupled from a standard single 

mode fiber to the chip via grating couplers. The polarization was optimized and set to a TE 

polarization using a polarization controller (PC). Before being launched onto the chip, the 

optical signal was amplified by an erbium-doped fiber amplifier (EDFA), and filtered by a 

3nm wide tunable optical filter. Digital data signals were generated from a pseudorandom 

binary sequence pattern generator with a pattern length of 27-1, delivered by a bit pattern 

generator (BPG) connected to an external clock. The signals were appropriately decorrelated 

and aligned before being fed to the electrodes with 8 V peak-to-peak voltage. A double RF 

signal probe with GSGSG configuration was used to drive the MZM, while another double RF 

signal probe with 50 ohm terminators was applied at the electrode output (see Figs. 1(a)-(b)). 

A reverse DC bias was applied to the phase shifters for operation in carrier depletion. Separate 

DC sources were used to adjust the bias level of the phase shifters independently using a bias-

tee. The optical modulated DPSK signal was once again amplified after coupling out of the 

chip, and filtered before being visualized in a digital communication analyzer (DCA) for 

capturing the modulated eye. 



 
Fig. 3. Schematic of the experimental set-up for evaluating the performance of the DPSK modulator. 

 

In order to measure the bit error rate (BER), the optical DPSK modulated signal was passed 

through an external demodulation circuit, as depicted in Fig. 3. The demodulation is based on 

a polarization delay-interferometer [10]. Using a PC, the polarization of the modulated signal 

is transformed into a linear polarized wave with the same intensity in the TE and the TM axis. 

The linear signal is then launched into a differential group delay (DGD). The DGD is a 

birrefrigent crystal that introduces a fixed differential group delay between the TE and TM 

polarization axes. In our demodulation circuit, the DGD has been used such it introduces a 

fixed delay between the TE and TM components that is equal or higher than 1-bit period of 

the modulated signal. Finally, the output signal is again adjusted in polarization with another 

PC and combined with a polarization beam splitter (PBS). In such a way, the linear 

polarization is rotated 45 degrees, so the same fraction of the TE and the delayed TM 

intensities match one of the polarization axis of the PBS. Hence, a combination of the signal 

with a 1-bit delayed signal is achieved. The demodulated signal is then simultaneously fed to 

the DCA and BER analyzer, as depicted in Fig. 3. 

 

 
 

Fig. 4. DPSK (a) modulated and (b) AMI demodulated eye diagrams for 5 Gbit/s. 

 
Fig. 5. DPSK (a) modulated and (b) AMI demodulated eye diagrams for 10 Gbit/s. 



The measured eye diagrams of the modulated DPSK signal at 5 Gbit/s and 10 Gbit/s are 

shown in Fig. 4(a) and Fig. 5(a), respectively. The noise is mainly due to the limitation in the 

drive voltage which is not high enough to achieve Vπ in each phase shifter of the MZM (the 

driver only offers 66.6% of the required Vπ). However, clear eye diagrams were obtained for 

both measured bit rates. Figures 4(b) show the alternate-mark inversion (AMI) demodulated 

eye diagrams for the 5 Gbit/s modulation, while Fig. 5(b) shows the AMI demodulated eye 

diagram for the 10 Gbit/s modulation bit rate. As it shown in these figures, very open eye 

diagrams were measured confirming the correct DPSK modulation for both measured bit 

rates. 

 

 
Fig. 6. BER versus received power for 5Gbit/s (○-blue curve) and 10Gbit/s (◊-red curve) DPSK demodulation. 

 

The performance of the silicon DPSK modulator was further evaluated by measuring the 

BER. As shown in Fig. 6, error-free DPSK modulation, for 5 Gbit/s (○-blue curve) and 10 

Gbit/s (◊-red curve), is obtained. Furthermore, no error floor is observed in the results 

showing that inter-symbol interference (ISI) is not produced in the modulation due to carrier 

latency effects. 

 

 
Fig. 7. DPSK modulated eye diagram for (a) 15 Gbit/s (b) 20 Gbit/s. 

 

Modulation at higher bit rates was also tested. DPSK modulated eye diagrams at 15 Gbit/s 

and 20 Gbit/s are shown in Fig. 7 (a) and Fig. 7 (b) respectively. Unfortunately, the delay 

introduced by the DGD (τ~90 ps) was too long for correctly demodulating the DPSK signal 

above 10 Gbit/s and therefore it was not possible to measure the BER for higher speeds. 

However, it can be clearly seen that the transitions between the different states do not overlap 

which confirms that ISI would not occur when the right demodulation stage is used and thus 

the high speed operation of the DPSK modulator. 



4. Conclusion 

 In summary, we have successfully demonstrated error-free DPSK modulation at 5 Gbit/s 

and 10 Gbit/s using a dual-drive silicon MZM. Furthermore, we have also shown the 

feasibility of the proposed MZM for 15 Gbit/s and 20 Gbit/s DPSK modulation.  The obtained 

results validate the potential to achieve higher order modulation formats, such as QPSK, by 

arranging the MZM in a nested configuration. Furthermore, a fully integrated silicon 

transceiver could be implemented by combining the proposed MZM with an integrated silicon 

DPSK receiver [11]. 
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