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Me gustaŕıa expresar mi más sincera gratitud a todos aquellos que de una
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Abstract
Modeling the liver deformation forms the basis for the development of

new clinical applications that improve the diagnosis, planning and guidance

in liver surgery. However, the patient-specific modeling of this organ and its

validation are still a challenge in Biomechanics. The reason is the difficulty

to measure the mechanical response of the in vivo liver tissue. The current

approach consists of performing minimally invasive or open surgery aimed at

estimating the elastic constants of the proposed biomechanical models.

This dissertation presents how the use of medical image analysis and evolu-

tionary computation allows the characterization of the biomechanical behavior

of the liver, avoiding the use of these minimally invasive techniques. In particu-

lar, the use of similarity coefficients commonly used in medical image analysis

has permitted, on one hand, to estimate the patient-specific biomechanical

model of the liver avoiding the invasive measurement of its mechanical re-

sponse. On the other hand, these coefficients have also permitted to validate

the proposed biomechanical models.

Jaccard coefficient and Hausdorff distance have been used to validate the

models proposed to simulate the behavior of ex vivo lamb livers, calculating

the error between the volume of the experimentally deformed samples of the

livers and the volume from biomechanical simulations of these deformations.

These coefficients have provided information, such as the shape of the samples

and the error distribution along their volume. For this reason, both coefficients

have also been used to formulate a novel function, the Geometric Similarity

Function (GSF). This function has permitted to establish a methodology to

estimate the elastic constants of the models proposed for the human liver using

evolutionary computation. Several optimization strategies, using GSF as cost

function, have been developed aimed at estimating the patient-specific elastic

constants of the biomechanical models proposed for the human liver.

Finally, this methodology has been used to define and validate a biome-

chanical model proposed for an in vitro human liver.





Resumen
El modelado de la deformación del h́ıgado constituye la base para el de-

sarrollo de nuevas aplicaciones cĺınicas que mejoren el diagnóstico, la planifi-

cación y el guiado en ciruǵıa de h́ıgado. Sin embargo, el modelado espećıfico

de dicho órgano para cada paciente y su validación son todav́ıa un reto en

Biomecánica. La razón es la dificultad para medir la respuesta mecánica del

tejido in vivo del h́ıgado. El enfoque actual consiste en realizar ciruǵıa abierta

o mı́nimamente invasiva con el fin de estimar las constantes elásticas de los

modelos biomecánicos propuestos.

Esta tesis presenta cómo el uso del análisis de imágenes médicas y com-

putación evolutiva permite la caracterización del comportamiento biomecánico

del h́ıgado, evitando el uso de dichas técnicas invasivas. En particular, el uso

de coeficientes de similitud comúnmente utilizados en el análisis de imágenes

médicas ha permitido, por un lado, estimar el modelo biomecánico espećıfico

para cada paciente evitando la medida invasiva de su respuesta mecánica.

Por otro lado, estos coeficientes también han permitido validar los modelos

biomecánicos propuestos.

Se han utilizado el coeficiente de Jaccard y la distancia de Hausdorff con

el fin de validar los modelos propuestos para simular el comportamiento de

h́ıgados de cordero ex vivo, calculando el error entre el volumen de las mues-

tras de los h́ıgados deformadas de manera experimental y el volumen de las

simulaciones biomecánicas de estas deformaciones. Estos coeficientes han pro-

porcionado información, tales como la forma de las muestras y la distribución

del error a lo largo de todo su volumen. Por esta razón, también se han uti-

lizado ambos coeficientes con el fin de formular una nueva función, la Función

de Similitud Geométrica (FSG). Esta función ha permitido establecer una

metodoloǵıa para estimar las constantes elásticas de los modelos propuestos

para el h́ıgado humano utilizando computación evolutiva. Se han desarrol-

lado varias estrategias de optimización usando la FSG como función de coste



con el fin de estimar las constantes elásticas espećıficas para cada paciente

de los modelos biomecánicos propuestos para el h́ıgado humano. Por último,

esta metodoloǵıa se ha utilizado para definir y validar un modelo biomecánico

propuesto para un h́ıgado humano in vitro.



Resum
El modelatge de la deformació del fetge constitueix la base per al de-

senvolupament de noves aplicacions cĺıniques que milloren el diagnòstic, la

planificació i el guiatge en cirurgia de fetge. Tanmateix, el modelatge espećıfic

d’aquest òrgan per a cada pacient i la seua validació són encara un repte en

Biomecànica. La raó és la dificultat per mesurar la resposta mecànica del

teixit in vivo del fetge. L’enfocament actual consisteix a realitzar cirurgia

oberta o mı́nimament invasiva per tal d’estimar les constants elàstiques dels

models biomecànics proposats.

Aquesta tesi presenta cóm l’ús de l’anàlisi d’imatges mèdiques i computació

evolutiva permet la caracterització del comportament biomecànic del fetge,

evitant l’ús d’aquestes tècniques invasives. En particular, l’ús de coeficients

de similitud comunament utilitzats en l’anàlisi d’imatges mèdiques ha permès,

d’una banda, estimar el model biomecànic espećıfic per a cada pacient evi-

tant la mesura invasiva de la seua resposta mecànica. D’altra banda, aquests

coeficients també han permès validar els models biomecànics proposats.

S’han utilitzat el coeficient de Jaccard i la distància de Hausdorff per a

validar els models proposats per simular el comportament de fetges de corder

ex vivo, calculant l’error entre el volum de les mostres dels fetges deformades de

manera experimental i el volum de les simulacions biomecàniques d’aquestes

deformacions. Aquests coeficients han proporcionat informació, com ara la

forma de les mostres i la distribució de l’error al llarg de tot el seu volum.

Per aquesta raó, també s’han utilitzat ambdós coeficients per tal de formular

una nova funció, la Funció de Similitud Geomètrica (FSG). Aquesta funció

ha permès establir una metodologia per estimar les constants elàstiques dels

models proposats per al fetge humà utilitzant computació evolutiva. S’han

desenvolupat diverses estratègies d’optimització utilitzant la FSG com a funció

de cost per tal d’estimar les constants elàstiques espećıfiques per a cada pacient

dels models biomecànics proposats per al fetge humà. Finalment, aquesta



metodologia s’ha utilitzat per definir i validar un model biomecànic proposat

per a un fetge humà in vitro.
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Chapter 1

Introduction

This chapter presents the motivations behind this thesis, its objectives and its

main contributions. In addition, it also introduces the thesis framework and

the thesis outline.

1.1 Motivation

The impact of technology has increased immensely in the last cen-

tury. These advances in technology have led to tremendous changes

in medicine due to the interest of society in human health and well-

being. The application of new technologies in medicine has allowed a

huge improvement in the surgical treatments.

Since ancient times, people have always tried to understand the

structure and function of the human body. Before the birth of medical

1
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imaging, the only way to see inside the human body was by means of

operations or dissections. Nowadays, the use of medical imaging allows

efficient and safe ways to see inside the human body, providing improve-

ments in diagnosis and treatments of diseases. The birth of medical

imaging has caused a trend in surgery to apply less-invasive methods

[Bonjer et al., 1997]. The advantages of these methods compared with

classical invasive techniques are: less probability of infections, shorter

hospitalization times and faster recovery periods. However, the draw-

backs of minimally invasive surgery are the deficiency of direct vision

which makes difficult the eye-hand coordination, the restricted mobility

and the lack of tactile perception.

Surgical navigators are systems that allow surgeons planning and

guiding their interventions [Taylor and Stoianovici, 2003; Daraio et al.,

2003; Wallace et al., 2006; Nagel et al., 2007]. Surgical navigators assist

surgeons to solve the problems of reduced vision or inaccurate place-

ment of surgical instruments that can occur during minimally invasive

surgery. On the other hand, surgical simulators (Figure 1.1) allow plan-

ning difficult interventions. Furthermore, they allow novice surgeons to

improve their skills by surgical training [Delingette, 1998; O’Toole et al.,

1999; Harders et al., 2003; Gallagher et al., 2005; Soler and Marescaux,

2008; Ayodeji et al., 2007]. Therefore, both surgical navigators and

surgical simulators have been gaining importance since they are very

useful for surgical planning and guidance, training or treatment imple-

mentation. These systems represent the basis of the computer-assisted

surgery, which is a useful set of methods based on visualization tech-

niques and tracking of surgical instruments. Computer-assisted surgery

has experienced an important progress due to the computer technol-

ogy evolution and it has undergone a growing interest in the scientific

community since it provides abundant information during minimally
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invasive surgery. Furthermore, computer-assisted surgery has been a

lead factor for the development of robotic surgery.

Figure 1.1: The LAP Mentor Virtual Reality laparoscopy simulator from
[Ayodeji et al., 2007] (left) and the immersive training environment for hys-
teroscopy from [Harders et al., 2003] (right).

The development of realistic surgical navigators/simulators requires

an accurate modeling of the behavior of the different organs and tis-

sues. The inclusion of biomechanical models that take into account the

deformable behavior of soft tissues can considerably improve the ac-

curacy of these applications [Maurer et al., 1998; Hawkes et al., 2005;

Delingette et al., 2006; López-Mir et al., 2011; Mart́ınez-Mart́ınez et al.,

2012b].

During hepatic surgery, the liver is deformed by surgical instru-

ments. Moreover, the liver is deformed due to patient’s breathing, which

affects the accuracy of some interventions as radiotherapy or some kind

of biopsies [Brock et al., 2002; Nguyen et al., 2009]. In these cases, it is

fundamental to locate the tumor during the respiratory cycle in order

to radiate the dose or to accurately place the biopsy needle. Therefore,
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an accurate biomechanical model able to simulate these deformations

and interactions is essential for the surgical planning and guidance.

Two of the most critical issues to deal with in computational biome-

chanical modeling are the main objectives of this thesis: the estimation

of the elastic constants that define the biomechanical behavior of liver

tissue and the validation of the proposed biomechanical models.

Regarding the first issue, the estimation of the elastic constants of

the liver biomechanical models is usually carried out measuring the me-

chanical response of the liver tissue. These measurements are complex

since the access to the organs and the visibility are complicated, thus,

open surgery or invasive methods are required. Usually, experiments

are carried out obtaining curves that describe the mechanical response

of the organ tissue. These experiments are simulated and some parame-

ters are tuned until the curves of the simulation match the experimental

curves. This parameter tunning is usually performed by means of opti-

mization strategies.

On the other hand, the validation of a proposed model becomes

necessary when the real behavior of the organ must be modeled. Most

of the models proposed for the liver or other internal organs have been

obtained by means of indentation, uniaxial compression/elongation or

aspiration tests. However, the obtained models are not validated. In

fact, good validation methods are still a challenge in Biomechanics [Hen-

ninger et al., 2010].

In this context, the use of medical imaging techniques can play an

important role for both parameter estimation and model validation since

they can be carried out through non-invasive methods. This can be

achieved using similarity coefficients typically used in medical image

analysis. These coefficients have been proposed in this work to calcu-

late the error between the volumes obtained from the experimentally
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deformed liver and a simulation of this deformation. Calculating this

error over the entire volume, the models can be validated and/or an er-

ror function can be formulated in order to estimate the elastic constants

of the biomechanical models that govern the behavior of the liver.

1.2 Objectives

The main goal of this thesis is to achieve an accurate simulation of the

biomechanical behavior of the liver for planning and guidance of hepatic

interventions. In particular, the two main objectives of this thesis are:

the estimation of the optimal parameters that define the patient-specific

biomechanical behavior of the liver (avoiding invasive measurements of

its mechanical response) and the validation of the proposed biomechan-

ical models. For that, several methods and methodologies have been

developed which use techniques from different fields, namely: Com-

putational Biomechanics, Medical Image Analysis and Computational

Intelligence.

As mentioned, the validation of the proposed biomechanical models

for the liver is essential to assure an accurate simulation of the liver be-

havior. This is crucial during surgical guidance or planning of hepatic

interventions, for instance, in the location of a tumor during a biopsy or

for radiotherapy treatments. In the literature there is a lack of valida-

tion experiments. Furthermore, other variables different to those used

to quantify the model accuracy in the few works where validation ex-

periments were carried out [Shi and Farag, 2005; Shi et al., 2008] could

provide more information about the committed error. Therefore, the

first three secondary objectives of this thesis are:

• To propose a model that accurately represents the mechanical
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behavior of the liver tissue.

• To design the experimental setup for model definition and valida-

tion.

• To find a set of coefficients that provide information about the

error committed in both model definition and validation.

An important issue to model the liver behavior is to obtain a realistic

representation of the 3D anatomical shape of the liver. For this reason,

the fourth secondary objective is the segmentation of the liver from

medical images, as well as obtaining Finite Element (FE) meshes from

that segmentation used to perform the different simulations.

On the other hand, estimating the patient-specific biomechanical

behavior of the liver allows finding the smallest error that a specific

model can commit. The estimation of the elastic constants of the pro-

posed biomechanical models involves the use of optimization techniques.

Then, the fifth and sixth secondary objectives of this thesis are the defi-

nition of an error function and the selection of the optimization method

that permit to estimate the patient-specific parameters of a given biome-

chanical model.

In this thesis, the estimation of the elastic constants of the proposed

biomechanical models was performed by means of the simulation of the

deformation that the liver suffers during breathing. In order to test

the method, a device that emulated the respiratory liver motion was

designed and constructed, which is the seventh secondary objective.

The selection of the boundary conditions in the simulation of the

liver deformation caused by the patient’s breathing is complex since

the liver comes into contact with the rest of abdominal organs, which

are also deformable. For this reason, to find an algorithm that per-

forms a point set deformable registration between the non-deformed
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and deformed liver in order to get the boundary conditions is the last

secondary objective of this thesis.

1.3 Main contributions

In this thesis, several biomechanical models to simulate the ex vivo

lamb liver behavior have been proposed and validated. Several coef-

ficients from medical image analysis have been used to measure the

error committed by the models. These coefficients, which are based on

overlap and distance (Jaccard coefficient and Hausdorff distance, re-

spectively), have been chosen from a study of a larger set of coefficients

because discriminate better in the comparison of two volumes. The

use of these coefficients, which complement each other, has provided

more information about the error committed in the validation to those

variables typically used in Biomechanics (e.g., volume difference and/or

maximum deformation in the load direction where it was applied). This

has been one of the main contributions of this thesis [Mart́ınez-Mart́ınez

et al., 2013a]. The fact of using coefficients from medical image analysis

will allows the validation of models for in vivo internal organs trough

non-invasive methods.

The classical techniques to estimate the patient-specific elastic con-

stants for in vivo and ex vivo human livers are based on the acquisition

of their mechanical response directly on the liver tissue. In contrast,

given the potential of the above mentioned similarity coefficients, a novel

error function has been formulated in this thesis by means of those coef-

ficients. Several search strategies, based on evolutionary computation,

that uses this function as cost function has been developed, allowing the

estimation of those elastic constants for in vitro human livers. This has

been another important contribution of this thesis [Mart́ınez-Mart́ınez
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et al., 2012a, 2013b,c,d].

Finally, a whole methodology has been proposed to estimate the

patient-specific elastic constants for in vivo human livers. This method-

ology has been used in this thesis to propose and validate a biomecanical

model for an in vitro human liver, thus, avoiding the invasive measure-

ment of its mechanical response. This methodology can be used to es-

timate and validate any biomechanical model proposed for the in vivo

human liver avoiding invasive methods, being this, due to its impact,

the most important contribution of this thesis.

The proposed techniques allow for instance, the estimation of the tu-

mor location, which is moved due to the patient’s breathing in some liver

cancer treatments. These advances could allow margin reduction dose

delivery during radiotherapy, which implies that the radiated healthy

tissue is smaller, as well as the potential dose increment. It would de-

crease the treatment time, the complications for the patient and the eco-

nomic costs. Other use could be to assist the clinician in tumor targeting

during laparoscopic surgery, biopsies, transarterial chemoembolization,

radio-frequency ablation, etc. or to place gold seeds (fiducials) around

the tumor, which is used later as reference for dose delivering in radio-

therapy.
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1.4 Thesis framework

This thesis stands within the framework of two research projects: “Aug-

mented Reality System for Navigation in Laparoscopic Surgery” (NaR-

ALap, reference TSI-020100-2009-189) and “Planning and Guidance in

Liver Biopsies” (HepaBio, references IDI-20101153 and TIN2010-20999-

C04-01).

NaRALap has been carried out thanks to the collaboration between

LabHuman (Universitat Politècnica de València) and Hospital Cĺınica

Benidorm. The NaRALap project sought the design and implemen-

tation of an augmented reality system together with a biomechanical

model of the liver to assist in abdominal surgery. The aim of the system

was enabling surgeons to perform intra-operatory navigation during ab-

dominal laparoscopic surgery related to the liver. The tasks developed

in this project have advanced in the creation of technology that allowed

the construction of a laparoscopy navigation system to place the surgical

instrumentation in laparoscopic surgery, which is essential for carrying

out safer minimally invasive interventions.

HepaBio was carried out thanks to the collaboration among Lab-

Human, the Unidad de Ciruǵıa Hepatobiliopancreática y Transplante

Hepático of the Hospital Universitari i Politècnic La Fe de Valencia

and Hospital Cĺınica Benidorm. The goal of HepaBio was to develop a

navigator system to allow planning and guidance in liver biopsies. This

tool allows merging real images from the patients with a virtual volume

of their liver reconstructed from a preoperative study. The navigator

helps surgeons to determine accurately the needle insertion point and

to locate the internal structures that are subjected to movements due

to patients’ breathing. This tool consists of three modules: a biome-

chanical model that simulates the liver deformation due to patient’s
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breathing, an augmented reality system that merges the real image of

the patient and the virtual liver, and a tracking module that accurately

locates the position of the biopsy needle. The research performded in

this thesis corresponds to the first described module.

1.5 Outline

This thesis is divided in 8 chapters. This chapter has presented the

motivations behind the research involved in this thesis, the main and

secondary objectives and its main contributions. Finally, it also explains

the thesis framework.

Chapter 2 introduces the liver anatomy, the most important liver

diseases, as well as the liver cancer diagnosis and treatment.

Chapter 3 presents the literature review of the techniques and meth-

ods to model and simulate the biomechanical liver behavior. Some im-

portant issues of this kind of modeling are identified: the estimation of

the elastic constants of the model and the model validation.

Chapter 4 presents the theory related to the methodology and the

techniques used in this thesis. This chapter is organized in three blocks:

the biomechanical models used to simulate the liver deformation; the

use of similarity coefficients from medical image analysis in order to esti-

mate the error committed by the biomechanical models; and the imple-

mentation of optimization strategies in order to find the biomechanical

parameters that define the patient-specific behavior of the liver.

In Chapter 5, several biomechanical models to simulate the ex vivo

lamb liver behavior are analyzed. Jaccard coefficient and Hausdorff

distance are used on reconstructed volumes obtained from computerized

tomography (CT) images to validate the proposed models. Loads of 20

g and 40 g are applied to the livers and their deformations are simulated
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by using the Finite Element (FE) method.

Chapter 6 presents a set of methods to computationally estimate

the elastic constants of several biomechanical models proposed for the

human liver. The methods are intended to prevent the invasive mea-

surement of its mechanical response. Several versions of a novel error

function, the Geometric Similarity Function (GSF), are formulated us-

ing Jaccard coefficient and modified Hausdorff distance. GSF is used

to compare two 3D images: one of them corresponds to a reference

simulated deformation of a human liver from a computer tomography

image, whilst the other one corresponds to the FE simulation of that

deformation in which variations in the values of the model parameters

are introduced. Several search strategies are developed to accurately

find the elastic constants of the models using GSF as cost function.

In Chapter 7, the patient-specific biomechanical model of an in vitro

human liver is obtained. Here, the error is calculated using GSF be-

tween a synthetic tumor (a marble) inserted within an experimentally

deformed liver and the tumor from the FE-simulation of this deforma-

tion. The patient-specific biomechanical model is obtained calculating

the error committed in the location of a synthetic tumor and validated

by means of the location of three needles inserted within the liver.

General and final conclusions, future prospects and scientific publi-

cations derived from this thesis are presented in Chapter 8.





Chapter 2

The human liver

This chapter presents a brief explanation about anatomical aspects of the

liver, the most important liver diseases as well as the liver cancer diagnosis

and treatment.

2.1 Liver anatomy

The liver is the largest internal organ of the human body and plays

a major role in metabolism. The liver has a wide range of functions;

for example, it breaks down and stores many of the nutrients absorbed

from the intestine, makes some of the clotting factors needed to stop

bleeding from a cut or injury, makes bile that goes into the intestine to

help absorbing nutrients, and filters and breaks down toxic wastes in

the blood, which are then removed from the body.

13
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This organ is located in the abdominal-pelvic region, behind the

ribs on the upper-right side of the abdominal cavity and below the

diaphragm. The liver shows large variations in size and shape between

subjects [Couinaud, 1999]. However, the shape tends to be triangular

and it is determined by the surrounding structures: the diaphragm and

ribs in the superior-left part and the right kidney, the intestines, the

stomach, and the gall bladder in the inferior part. Figure 2.1 shows

slices with the contoured shape of the liver and its position.

Figure 2.1: Orthogonal slices from CT abdominal image illustrating the liver
and its position within the abdomen. Transversal or axial view (left), coronal
view (middle) and sagittal view (right). The letters A, P, R, L, S, I refers to
anterior, posterior, right, left, superior and inferior, respectively. Illustration
courtesy of Von Siebenthal [2008].

The liver is connected to several large blood vessels: the portal

vein, the hepatic veins and the hepatic artery. The portal vein brings

blood from other organs, the hepatic veins drain into the inferior vena

cava and the hepatic artery carries blood from the aorta. The liver

is anatomically divided into two parts by means of the middle hepatic

vein. The blood vessels are divided into capillaries, which lead to a

lobe.
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Another well-known anatomical division of the liver was introduced

by Couinaud in 1957 [Couinaud, 1957]. The liver is divided into eight

segments with independent vascularization allowing each segment to

have an independent functional behavior. The three main hepatic veins

divide the liver into four sectors, each of them receiving a portal pedicle.

Hepatic veins and portal veins are intertwined as the fingers of two

hands (Figure 2.2).

Figure 2.2: Schematic representation of the liver in anterior view showing
the eight Couinaud segments (from 1 to 8), the inferior vena cava, the hepatic
veins, the portal vein and the hepatic artery. Illustration adapted from [Kwon
et al., 2012].
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2.2 Liver cancer

This section and sections 2.3 and 2.4 are based on the document called

“Liver Cancer: a guide for patients”1 provided by Reliable Cancer Ther-

apies with the permission of the European Society for Medical Oncology

(ESMO). The contents from that guide are based on [Verslype et al.,

2012].

There are many types of liver diseases. Some are caused by a virus,

such as hepatitis A, B and C or may be caused by consuming alco-

hol, e.g. cirrhosis. In cirrhosis, the liver tissue is slowly modified and

becomes fibrous and scar tissue due to the growth stop or unusual func-

tions of the liver cells. Patients diagnosed with both, hepatitis or cir-

rhosis, can develop a cancer. The most frequent malignant pathologies

that affect the liver are the hepatocellular carcinoma and the metas-

tases (which are types of tumor cancer); and the malignant cancerous

tumor is the liver disease where surgery is more commonly performed.

The liver cancer is a tumor formed in the tissue of the liver. It is the

fifth most common cancer in men and the eighth in women worldwide.

Half million people dies per year as a result of liver cancer in the entire

world. In Europe, 10 in every 1,000 men and 2 in every 1,000 women will

suffer liver cancer at some moment in their life. This type of cancer is

more frequent in South-East Asia and Western Africa. This is as result

of previous infections with hepatitis B, which increases the probability

to suffer liver cancer and is more frequent in these areas. In Unite

Estates and Southern Europe, hepatitis C is more frequent as result of

suffering liver cancer. In 2008, about 40,000 men and 20,000 women

were diagnosed with liver cancer in Europe. The median age at the

diagnosis moment is between 50 and 60 years, but in Asia and Africa is

1http://www.esmo.org/Patients/Patient-Guides/Liver-Cancer

http://www.esmo.org/Patients/Patient-Guides/Liver-Cancer
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between 40 and 50 years. For all these reasons, there is an immeasurable

interest in computer-assisted surgery research for liver cancer treatment.

The main types of liver cancer are:

Hepatocellular carcinoma

This is the most common type of cancer which constitutes the 90% from

all liver cancers.

Fibrolamellar carcinoma

It is a rare cancer and appears only in young people. It grows less

invasively than hepatocellular carcinoma, but both are diagnosed and

treated in the same way.

Liver metastases

This tumor is also called secondary hepatic cancer. It appears in the

liver, but usually originated in other organ.

Angiosarcomas and hemangiosarcomas

This cancer starts in the blood vessels of the liver.

Cholangiocarcinomas

This type of cancer starts in the bile ducts. However, it is sometimes

called hepatic cancer if affects the bile ducts in the liver.
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Hepatoblastomas

This cancer occurs in infants and children.

2.3 Cancer diagnosis

The diagnosis of liver cancer is based on the following examinations:

Clinical examination

The clinician usually asks about complaints and explores the abdomen

by means of palpation. The clinician checks the size of the liver, fluids

in the abdomen and other signs.

Radiological examination

An ultrasound is performed to verify the liver consistency and to look

for new nodules, cysts or lumps which can transform into cancer, and

are only visible by imaging. A CT-scan (Computed Tomography) or

an MRI-scan (Magnetic Resonance Imaging) is used to obtain a more

detailed image in order to detect smaller nodules.

Blood examination

A blood test can give additional information. Elevated levels of a pro-

tein called alpha-fetoprotein (AFP) suggests that the patient may have

liver cancer. This test is used to look for early tumors in people suffering

from cirrhosis.
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Histopathological examination

A biopsy is performed using a fine or thick needle that goes through

the liver in order to obtain a tissue sample. Sometimes a CT-scan or

MRI-scan is used during the biopsy to assure targeting the nodule with

the needle. Once the tissue sample is obtained, this will be examined in

a laboratory. This is the only way to assess whether a lesion is benign

or malignant.

2.4 Cancer treatment

The treatment begins with a meeting in which an expert committee

plans the cancer treatment. The type of treatment will depend on rele-

vant information about the patients like age, medical history, presence

of other liver diseases, chronic infection with hepatitis B or C, whether

the patients have liver cirrhosis, alcohol consumption, etc. The com-

mittee also evaluates information about the disease like the staging of

the disease, the results of the biopsy (if it has been performed), growth

pattern of the tumor or the resectability. If the tumor is operable or re-

sectable, it means that the tumor can be removed by means of surgery.

When the tumor is not resectable, the alternatives are ablative therapy,

embolization or radiotherapy. Ablative therapies destroy cancer cells

by means of chemical or physical ways, embolization blocks the blood

supply of the tumor to limit the supply of nutrients and oxygen and

radiotherapy use external radiation to kill the cancer cells.

The main treatments for resectable tumors (surgery) and for non-

resectable tumors (transarterial chemoembolization, radiofrequency ab-

lation and radiation therapy) are explained below:



20 Chapter 2. The human liver

Surgery

A part of the liver can be removed or a transplantation can be needed

depending on the tumor extension and the degree of liver cirrhosis.

Partial hepatectomy refers to the surgery that removes the part of the

liver that contains the tumor. The rest of the liver will perform the

total liver function. After the surgery, the resected part of the liver

is analyzed by a pathologist to make sure the whole tumor has been

removed.

Other type of surgery is to remove the liver completely and to trans-

plant a new one. However, transplantation is only possible under very

severe conditions due to the shortage of donors. Since this situation is

not very common and not every patient can receive a liver from a donor,

the patients must be firstly considered suitable for the intervention.

Transarterial chemoembolization (TACE)

TACE uses a special catheter in order to deliver an anticancer drug

in the artery responsible to supply blood to the liver. X-ray is used

to place the catheter, which is primarily introduced through the groin.

The used drug aims to kill the cancer cells and/or limit their growth.

Afterwards, degradable micro-spheres are injected to block the arteries

responsible to supply blood to the tumor in order to cut the tumor’s

provision of nutrients and oxygen (Figure 2.3). For most patients, this

procedure is well-tolerated and with few side effects.

Radiofrequency ablation (RFA)

This procedure is usually performed by means of laparoscopic surgery

or by means of CT/US guidance. For this reason, it is important the
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Figure 2.3: Micro-spheres injected during TACE in order to block the blood
supply to the tumor.

development of good guidance systems. During RFA, a thin probe is

inserted and guided into the liver tumor and high-energy radio waves are

applied through the tip of the probe to destroy tumor cells being heated

to more than 50◦C (Figure 2.4). Heat from radiofrequency energy also

closes small blood vessels, decreasing the risk of bleeding.

Figure 2.4: Radiofrequency energy delivered by the tip of the probe.
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Radiation therapy

Radiation therapy or radiotherapy is the use of external ionizing radi-

ation to kill the tumor cells. It can be used with palliative or curative

purpose and it is often combined with other treatments. Currently, it is

under investigation for those patients where the tumor has invaded the

portal vein or the inferior vena cava. Radiation therapy is being used

for cases of large tumors with few surrounding smaller tumors. Ra-

diation therapy involves the focused high-energy X-rays, gamma rays

or subatomic particles delivery from an external device, which attack

DNA within exposed tumor cells leading to cellular death (Figure 2.5).

Radiation beams are delivered from several angles and different shapes

to avoid healthy tissue damage. The beams intersect at the tumor,

causing larger dose than in the surrounding healthy tissue.

Figure 2.5: External beam radiation that comes from a machine aimed at
radiating the tumor cancer.
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2.5 Compensation of the patient’s breathing

The diagnosis of a liver tumor by biopsy and the mentioned treatments

present a common problem, the tumor is in constant movement due to

patient’s breathing. In order to increase the accuracy of the treatment,

a full control of the position of the tumor is needed. Several techniques

have been developed in order to compensate this tumor movement:

• Abdominal compression

A pressure is applied on the patient’s abdomen in order to reduce

the respiratory motion. This technique can only be applied when

using external radiation and it cannot be applied when the patient

has abdominal pain or when the reduction of the movement is too

small to compensate the pain that the patient suffers.

• Respiratory gating

In this technique, the radiation beam is fixed and delivered only

at the same moment within every cycle of the patient’s breath-

ing. This therapy assumes that the tumor is located at the same

position within every breath cycle and the patient breathing pat-

tern does not change. This may result in errors during radiation

delivery, that requires the increase of the safety margin and, as

consequence, an increase of healthy tissue affected.

• Breath holding

This technique is used when neither abdominal compression nor

gating are applicable. The patient takes a full breath and a mech-

anism holds his/her abdomen at end-exhale. This technique is

used aimed at avoiding the tumor motion during the radiation

delivery.
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• Respiratory tracking

In recent years, many investigations work towards a new tech-

nique, called respiratory tracking, where the patient can breath

normally and a tracking system estimates the tumor location dur-

ing the entire breathing cycle in real time. The radiation delivery

changes the beam position depending on the tumor location. To

perform the respiratory tracking, the system correlates the tumor

location with the motion of little marks placed on the patient

chest. This technique allows the margin reduction during dose

delivery. Reducing margins implies that the volume of radiated

healthy tissue is smaller, thus decreasing the complications for

the patient. It also allows the potential dose increment in the

unhealthy tissue, which causes the time therapy reduction.

2.6 Conclusions

Liver cancer diagnosis and treatments are challenging due to the dif-

ficulties of tumor location. Computer-assisted surgery together with

a biomechanical model of the liver behavior provide a set of tools to

estimate a more accurate tumor location during patient’s breathing.

All the techniques developed in this field will improve the accuracy of

in-room tumor targeting.

One of the most important challenges is to develop patient-specific

models of the liver behavior, that accurately simulate how the liver be-

haves for each person. This thesis provides a methodology to construct

these patient-specific models of the liver avoiding invasive measurement

of its mechanical response. This thesis also provides a methodology

to validate the proposed biomechanical models, what is really impor-



2.6. Conclusions 25

tant to quantify the accuracy of the models. This thesis will provide

methods to improve the development of tools for tumor tracking and

targeting during planning and treatment of hepatic lesions considering

the patient’s breathing.





Chapter 3

Background literature

Given the complexity of the human organs and the difficulty to acquire in vivo

tissue data, realistic modeling of the organs as the liver and material parameter

identification are real challenges in Computational Biomechanics. This chapter

presents a literature review related to this active area of research.

3.1 Introduction

The first biomechanical models proposed for the liver were aimed at

modeling its behavior for surgical simulation and they were based on

linear elasticity. For example, Cotin et al. [1999] built a 3D anatomical

model of the liver by means of CT images and used a linear elastic model

to simulate the liver deformation. One year later, the same authors

proposed a physical model for the liver based on linear elasticity theory

27
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and the FE method also for surgery simulation. The model was an

hybrid model that simulated deformations and cutting [Cotin et al.,

2000]. The hybrid model was a combination of a model similar to

spring-mass models (to perform cutting operations) and precomputed

deformations in order to work in real time.

Other behavior models of internal organs that have been proposed

for surgical simulation in the literature were focused on surgical training

too [Picinbono et al., 2002, 2003]. They were proposed to obtain realis-

tic simulations of the organ behavior when this is manipulated during

surgery. Picinbono et al. [2003] proposed a hyperelastic model based on

St. Venant-Kirchoff model to simulate hepatic resection (Figure 3.1),

which took into account the anisotropic behavior and the incompress-

ibility properties of biological tissues.

Figure 3.1: Simulation of laparoscopic liver surgery from [Picinbono et al.,
2003].
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The material properties of the models from the studies mentioned

above were taken from the literature. However, the liver presents a

biomechanical behavior that depends on the patient. This way, if the

model has to be used in guided or planned surgery, it should be patient-

specific. Besides, no validation of the proposed models by comparing

them with experimental results were provided by the authors.

These approaches are very interesting and very useful for surgical

training simulators that work in real time because they achieve equi-

librium between realism and computational cost. These works would

provide an interesting framework for computer-assisted surgery if the

elastic constants of the constitutive equations of the models that they

propose could be calculated as well as the models could be validated.

However, when the purpose of the surgical simulators is not training, but

assisting during an intervention, e.g., surgical planning or guidance, the

main important issue is the accuracy of the simulation of the patient’s

organ behavior. The accuracy to locate, for instance, the position of

a tumor taking into account the different abdominal movements, such

as breathing, mainly depends on the accuracy of biomechanical model

of the liver. This only could be achieved with accurate and patient-

specific models and, for that, both the estimation of the patient-specific

parameters and the validation of the proposed models are fundamental.

These are the main objectives of this thesis.

After explaining the importance of the tissue parameter identifica-

tion and the model validation from real data in order to achieve accu-

rate models for the tissues, which are essential for computed-assisted

surgery, next sections present a review of the most important methods

and experimental techniques carried out to obtain the mechanical re-

sponse for the ex vivo and in vivo liver tissue and the importance of

validation techniques.
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3.2 Ex vivo biomechanical modeling of the liver

The first attempts to measure the mechanical response of liver tis-

sue were performed by means of indentation and uniaxial compres-

sion/elongation tests, which were performed on ex vivo tissue samples.

A force was usually applied on tissue samples to obtain its deformation

and both, force and displacement were recorded.

In 2001, Carter et al. modeled the biomechanical behavior of the

liver using ex vivo porcine livers. Indentation tests on these livers were

performed with a static compliance probe (Figure 3.2). The used mate-

rial model was a version of an exponential stress-strain law from [Fung,

1967] and concluded that their ex vivo results could differ from in vivo

behavior due to physiological differences between both types of tissue.

Years later, Hu and Desai [2003] designed and developed a tissue inden-

tation equipment for characterizing the biomechanical properties of the

liver and formulated a hybrid non-linear model that was valid in both

low strain and high strain regions. The same authors experimentally

characterized the biomechanical properties of the liver and built a FE

model which simulated that experiment [Hu and Desai, 2004]. They

iteratively matched the computational results from the FE model with

the experimental force data using a Mooney-Rivlin model and an Og-

den model. They concluded that the experimental data fitted well with

the Ogden model.

In 2003, Sakuma et al. developed a method based on compression

and elongation test on the same liver sample in order to identify the

mechanical properties in the transition range from compression to elon-

gation. Their testing method allowed conducting both compression and

elongation test continuously on the same liver sample, being able to ac-

curately estimate the origin of the stress-strain curve. One year later,
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Chui et al. [2004] also performed compression and elongation test and

determined the zero stress state of the liver sample. They proposed a

new equation that combined both logarithmic and polynomial strain

energy forms in order to model the experimental data. They concluded

that the deformation of the liver tissue differed between compression

and elongation tests.

Figure 3.2: Schematic diagram of the static compliance probe used for ex
vivo indentation tests from [Carter et al., 2001].

As in vivo tissue behavior differs from ex vivo behavior, some re-

searchers developed systems to perfuse in vitro organs [Ottensmeyer

et al., 2004; Kerdok et al., 2006]. In their testing method, a whole
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porcine liver was perfused under physiologic conditions and tested in

an ex vivo setting (Figure 3.3). Their results suggested that the elastic

and viscous properties of the liver were affected by the liver perfusion.

In particular, the non-perfused liver was stiffer and more viscous than

the perfused liver. They concluded that a complete mechanical char-

acterization of the liver tissue would involve a stress-strain rates that

could damage the tissue.

Figure 3.3: The in vitro liver perfusion system from [Ottensmeyer et al.,
2004].

Kobayashi et al. [2005] measured the viscoelastic properties of the

porcine liver based on dynamic viscoelastic tests as basic research of

a needle insertion robot and performed an axial needle insertion test.

They recorded the needle insertion force and tracked a marker attached

to the liver surface in order to model the liver deformation. The error
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between the needle tip and target marker was around 1 mm. However,

they did not model how the needle went through the liver tissue. In

2007, the same authors [Kobayashi et al., 2007] presented a viscoelastic

and non-linear organ deformation model for needle insertion. They used

sampling time scaling property as the solution for a viscoelastic system

and the modified Newton-Raphson method to solve the non-linear sys-

tem described in [Markle et al., 1999]. As improvement from [Kobayashi

et al., 2005], the organ deformation caused by needle insertion was sim-

ulated, showing the relationship between the needle displacement and

the force loaded on the needle or the tumor displacement (Figure 3.4).

Figure 3.4: Simulation of the liver deformation considering the needle going
through the liver tissue [Kobayashi et al., 2007].

Hollenstein et al. [2006] modeled the liver behavior considering the

liver capsule as a separate structure in their FE model. They performed

in vitro tests on bovine liver samples and they simulated those tests,

finding good agreement between simulations and experimental tests.

More recently, Lister et al. [2010] considered the gravity in order to

model in vivo probing tasks on porcine liver by means of FE simulations.

They initially used an Ogden model developed from ex vivo tension and

compression experiments in order to define initial material properties
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for the simulation of in vivo tissue loading. The authors also included

the effects of the liver capsule adding a mesh layer of 50 µm (Figure

3.5). The model used for the capsule was a reduced polynomial model

with the material properties extracted from [Hollenstein et al., 2006].

Figure 3.5: Simulated surface deformation due to probing with simulated
capsule model (left) and comparison of the experimental and simulated probing
force using the capsule model [Lister et al., 2010].

All the works described above provide comprehensive quantitative

empirical data of ex vivo liver tissue mechanical properties. However,

ex vivo tissue behavior is different to in vivo tissue behavior. Moreover,

most of these authors used animals’ liver and most of these models were

not validated. These are the most important issues to face when the

models are required for computer-assisted surgery, where really accurate

results and patient-specific models are needed. Furthermore, all the

techniques and devices explained in the previous section were used to

measure the mechanical liver tissue behavior locally.

There are researchers who have focused on developing techniques

that assess the global tissue behavior. These techniques were based on

the use of fiducial markers placed on the surface of the sample [DiMaio
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and Salcudean, 2003] or fiducial markers inserted within the sample

[Kerdok et al., 2003; Crouch et al., 2005]. They performed indentation,

compression and/or needle insertion tests on a rubber cube and used

cameras or CT images to track the fiducial markers in order to capture

the global deformation (Figure 3.6). One of the limitations of this kind

of procedures is that the markers placement may change the mechanical

properties of the tissue or even damage the organ.

Figure 3.6: Captured images for fiducial markers tracking: Image-based
marker tracking during indentation [DiMaio and Salcudean, 2003] (left), cam-
era views with tracked fiducial markers and inserted needle [Crouch et al., 2005]
(middle) and CT image of the central vertical plane of the cube in maximally
uniaxial compression [Kerdok et al., 2003] (right).

More recently, Jordan et al. [2009] developed a 3D ultrasound tech-

nique where the ultrasound probe was directly applied under the in-

dentation probe in order to obtain the volumetric deformation of an

ex vivo porcine liver using the perfusion system from [Kerdok et al.,

2006] (Figure 3.3). Then, they used a model based on the volumetric

tissue deformation acquired from the 3D ultrasound and measured the

force response (Figure 3.7). They presented an inverse FE modeling

framework for the parameter estimation regularizing springs attached

at nodal locations. The free ends of each spring were displaced accord-

ing to the locally estimated tissue motion. They used the normalized

potential energy stored in all the springs as an error measurement be-
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tween simulated and experimental results. They first used a biphasic

poroelastic constitutive law and later a quasi-linear constitutive law

(second order reduced polynomial model for the hyperelastic part and

a first order Prony series for the viscoelastic behavior). Their approach

allowed the measurement of volumetric deformation and provided good

sensibility to parameters related with the bulk response of the liver.

Figure 3.7: FE liver model, experimentally measured boundary conditions
and co-registered 3D ultrasound sequence from [Jordan et al., 2009].

Gao and Desai [2010] proposed a new method to estimate the zero-

strain state. They used a global digital image correlation technique to

measure the full-filed deformation behavior of liver tissue under uni-

axial tension tests when a region of tissue passed from compression to

tension state (Figure 3.8). They obtained material parameters for the

Ogden model from experimental results on porcine livers. The FE sim-

ulations based on the fitted model confirmed the effect of gravity on the

deformation of very soft tissue.

Despite these methods provide techniques to asses the global tissue
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Figure 3.8: Tissue deformation respect to the first image and its correspond-
ing mesh in yellow (left), deformed mesh from the last image (middle) and
contour of the simulated cumulative Lagrangian strain field for the mesh in
the last image (right) [Gao and Desai, 2010].

behavior, the problem is exactly the same as in the previous section.

They used ex vivo tissue from animals and their models were not vali-

dated. The validation of a proposed model becomes necessary when the

real behavior of the modeled organ is going to be simulated. However,

as already commented, good validation methods are still a challenge in

Biomechanics [Henninger et al., 2010] and before the research carried

out in this thesis, only two works could be found in the literature where

the validation of the proposed models were carried out.

Shi and Farag [2005] and Shi et al. [2008] validated the models pro-

posed for ex vivo lamb livers by means of a new experiment different

from those experiments proposed to obtain the parameters of the model.

Shi et al. [2008] validated several FE models of soft tissue deformation

using high-resolution micro-computerized tomography images. They

chose samples of ex vivo lamb livers in order to validate a linear elas-

tic model, a neo-Hookean model and a linear viscoelastic model. They
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performed extension and compression test to measure the mechanical

properties of the liver tissue and for the model validation, they first

scanned a liver sample to obtain a 3D geometric model of the unde-

formed tissue. Then, they applied compression loads (5, 10, 20 and

40 g) with a half spherical probe and scanned the deformed tissue for

each load. They generated a mesh from undeformed and deformed tis-

sue and performed FE analysis on the undeformed mesh with the same

load, the same boundary conditions and the previously obtained ma-

terial properties. Finally, to validate the models, they computed two

values: the volume difference between their simulations and the real

deformed tissue; and the maximum vertical deformation (Figure 3.9).

They concluded that linear model was the most applicable for loads

under 20 g and that neo-Hookean model was the closest to reality for

loads between 5 and 40 g.

Figure 3.9: Simulated deformation (red) and the real deformation (green)
under the load of 40 g for the linear model (left), the viscoelastic model (middle)
and the neo-Hookean model (right) [Shi et al., 2008]. Zooms around the contact
region are shown in the second row.

It is important to notice that, as these last works have shown, the
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use of image techniques, like computerized tomography, can be quite

suitable for obtaining and validating in vivo biomechanical models of

abdominal organs since they can be obtained through less-invasive ex-

plorations, thus avoiding open surgery. In addition, the similarity coef-

ficients commonly used in medical image analysis can play an important

role since they can provide additional relevant information about the

model fit to those variables used by Shi et al. [2008] (volume difference

and maximum deformation in the load direction where it was applied).

3.3 In vivo biomechanical modeling of the liver

As described above, the current approach for obtaining the elastic con-

stants that describe the constitutive equations of the models consists

of performing physical experiments aiming at acquiring the mechanical

response of organs. Section 3.2 has presented some of the researchers

who studied the ex vivo biomechanical behavior of livers, measuring the

mechanical response of liver samples by means of compression and/or

tensile tests. However, the models obtained by these authors are not

able to faithfully reproduce the real liver behavior due to the mechani-

cal differences between in vivo and ex vivo tissues, which represent an

increase in the stiffness of 17% for the ex vivo liver tissue [Mazza et al.,

2007]. Therefore, other authors measured the mechanical response of in

vivo liver tissue by means of minimally invasive surgery or open surgery.

Carter et al. [2001] used a hand-held compliance probe similar to

the instruments used in minimally invasive surgery and acquired in vivo

data from volunteer patients, undergoing minor open surgery (Figure

3.10).

They demonstrated highly non-linear stress-strain behavior and mod-

eled it by means of a 3D version of an exponential stress-strain law
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Figure 3.10: Schematic diagram of the hand-held compliance probe used for
in vivo experiments in Carter et al. [2001].

originally from [Fung, 1967]. Nevertheless, they recognized some diffi-

culties concerning the initial stress of the liver tissue, which could not

be measured with their instrument. In addition, they admitted that the

forces could only be applied in some restricted directions and positions

and the applied force should be small enough to avoid tissue damage.

Brouwer et al. [2001] developed devices to measure tissue properties

under extension and indentation, recording instrument-tissue interac-

tion forces. Their goal was to create a web database of data recorded
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from porcine abdominal tissues. Brown et al. [2003] presented a motor-

ized endoscopic grasper to test abdominal in vivo and in situ porcine

tissues with cyclic and static compressive loadings. They used and ex-

ponential model to fit the experimental data. However, they concluded

that their model not always fitted well the data.

Other authors used the tissue aspiration method from [Vuskovic

et al., 2000] in order to capture the mechanical behavior of the liver

[Nava et al., 2003; Mazza et al., 2007; Nava et al., 2008]. The device

consisted of a tube which was pushed against the liver. The internal

pressure was controlled and the tissue was sucked through the aspira-

tion hole. The deformed tissue was monitored by means of an optic

fiver within the tube connected to a digital camera. The profile of the

deformed tissue was recorded and the images were processed off-line.

(Figure 3.11).

Figure 3.11: Picture of the aspiration device in contact with a silicon sample
and principle of working from [Mazza et al., 2007] (left). Example of an image
grabbed by the digital camera on a liver tissue, with the highest point P of the
profile (right).

In the case of Nava et al. [2003], they recorded the displacement

of the highest point of the aspirated tissue of ex vivo human livers

and kidneys and calculated the same displacement by means of FE

simulations of the same experiments. They used a fifth order reduced
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polynomial model to model the hyperelastic behavior and a fourth order

Prony series for the viscoelastic behavior. They determined the model

parameters minimizing an error function based on the distance between

the measured and calculated point (Figure 3.12).

Figure 3.12: Axisymmetric FE model from [Nava et al., 2003] (left) and
measured (dashed line) and calculated (continuous line) vertical displacements
(right).

Years later, Nava et al. [2008] used the same methodology to de-

termine the parameters of the in vivo human liver. They obtained the

parameters of a second order reduced polynomial model with a fourth

order Prony series for one-cycle and multi-cycle response of the tissue.

They concluded that their approach could lead in experimental uncer-

tainties due to the unknown compressive force applied by the surgeon

during the measurements in order to ensure a good initial contact be-

tween the aspiration device and liver surface.

Samur et al. [2005] developed a robotic indenter in order to per-

form minimally invasive measurement of the tissue mechanical proper-

ties during laparoscopic surgery (Figure 3.13). They conduced in situ
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experiments on porcine liver and measured the force-displacement and

force-time tissue response under static and dynamic loads. The advan-

tage was that their device did not rely on hand-held probes and allowed

bigger indentation forces.

Figure 3.13: Components of the robotic indenter from [Samur et al., 2005].

Kim and Srinivasan [2005] characterized the mechanical properties

of the liver and kidneys from in vivo porcine experiments. They devel-

oped a three dimensional FE model to simulate the indentation forces

and determined the parameters for a second order Mooney-Rivlin model

and second order Prony series. They separated the parameter estima-

tion in two steps. First, the viscoelastic parameters were determined

fitting the Prony series parameters to the normalized force responses

against ramp-and-hold indentation from the experiments. Afterwards,

they iteratively used FE simulations using initial Mooney-Rivlin pa-

rameters and estimated viscoelastic parameters to estimate the final

Mooney-Rivlin parameters. At each iteration, they compared the simu-

lated forces from FE simulations and the associated experimental forces

of the indenter. Samur et al. [2007] used similar methodology. They

used the robotic indenter developed in [Samur et al., 2005] (Figure

3.13) and measured the force-displacement and force-time responses of

porcine liver to characterize its material properties. Iterative FE sim-

ulations were performed to estimate the optimum values of viscoelastic



44 Chapter 3. Background literature

and non-linear hyperelastic material properties using the root mean

square error between the simulated and experimental forces. Their re-

sults showed that the force-time response obtained from the simulation

had good agreement with the experimental data.

More recently, Kobayashi et al. [2010] developed an integrated sys-

tem constituted by an ultrasound-guided needle insertion manipulator

and a FE model to simulate liver deformation (Figure 3.14). They car-

ried out an in vivo experiment on a porcine liver in order to verify

the effectiveness of the system. Their results showed that the needle

insertion manipulator accurately placed the needle tip into the target

and that the biomechanical model of the liver accurately replicated the

non-linear force increase upon the needle during the insertion.

Figure 3.14: Integrated system from [Kobayashi et al., 2010]: Displayed ul-
trasound images during needle insertion (III), FE simulation based on the
obtained images (IV-V) and needle position updated by the manipulator given
the insertion path by the physical model.

The methods discussed above used open or minimally invasive surgery

to obtain the model parameters. They provided quantitative data of

the in vivo mechanical response of the liver in order to share with the
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biomechanics research community. This information is useful to con-

struct population models near to the real behavior for surgical training

simulation. However, this population models are not able to accurately

reproduce the patient-specific biomechanical behavior of the liver. Fur-

thermore, it is not feasible to perform these experimental tests in the

operating room to built patient-specific models because it would require

to perform it on every patient before the intervention. This could lead

to a high risk for patients and high economical costs for hospitals. In

addition, in terms of accuracy, the mechanical response of the organ

was only measured at some specific areas of the organ. This way, the

mechanical behavior obtained for these authors can only represent the

mechanical behavior of these narrow areas of the organ. An alterna-

tive for both problems, invasive methods and local modeling, is the

use of global characterization systems, for instance, elasticity imaging

techniques. These techniques use propagating acoustic shear waves to

measure the stiffness of the soft tissue. They have been used to diag-

nose hepatic fibrosis, which can cause cirrhosis, as an alternative to the

liver biopsy. Recently, Fibroscan R© based on transient elastography has

been clinically used to diagnose liver fibrosis [Bensamoun et al., 2008].

In this framework, the use of medical imaging techniques can play

an important role to estimate the elastic constants of the biomechan-

ical models proposed for soft living tissues since they can be obtained

through non-invasive methods. Elasticity imaging techniques have been

developed using several imaging modalities such as ultrasound [Ophir

et al., 2002], magnetic resonance [Muthupillai et al., 1995] and com-

puter tomography [Washington and Miga, 2004]. Kruse et al. [2000]

conducted preliminary studies to define methods for using magnetic

resonance elastography as a tool for addressing the paucity of quantita-

tive tissue mechanical property data in the literature. They evaluated
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fresh animal liver and kidney tissue samples using multiple shear wave

frequencies. Nevertheless, the main problem with elasticity imaging

techniques is that only allows the estimation of Young modulus and

Poisson’s ratio, which are constants of linear elasticity. Hence, elastic

constants of non-linear elasticity or viscosity cannot be estimated. Fur-

thermore, this technique requires additional and complex hardware to

measure and create the mechanical wave.

3.4 Conclusions

The liver presents a biomechanical behavior that is different for each

patient. One of the most crucial aspects when the goal is assisting

during a surgical intervention is the accuracy of the simulation of the

patient’s organ behavior. This only could be achieved with accurate

and patient-specific models. This chapter has shown the importance of

the estimation of the biomechanical parameters as well as the valida-

tion of the proposed models. All the works described in this chapter

provided quantitative experimental data of the liver tissue mechanical

properties, which is useful to construct population models near to the

real behavior. However, these models are not able to accurately repro-

duce the patient-specific biomechanical behavior of the whole organ.

Moreover, the methods discussed in this chapter to in vivo obtain the

elastic constants of the models used open or minimally invasive surgery.

In contrast, the last experiments performed ex vivo to globally char-

acterize the biomechanical behavior of the liver showed that the use of

image techniques can be more appropriate to non-invasively obtain and

validate the biomechanical models of the abdominal organs. In this

framework, similarity coefficients from medical image analysis can pro-

vide additional relevant information about the error committed by the
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models in the simulation of the in vivo behavior.

In this thesis, similarity coefficients from medical image analysis

were used to validate the models proposed to simulate the ex vivo be-

havior of lamb livers. Jaccard coefficient and Hausdorff distance were

used to calculate the error committed in the comparison between the

volume of the experimentally deformed samples of livers and the vol-

ume from biomechanical simulations of these deformations. Jaccard and

Hausdorff provided information, such as the shape of the samples and

the error distribution along their volume. For this reason, both coeffi-

cients were used to formulate a novel function, the Geometric Similarity

Function (GSF) that allowed the calculation of the error committed by

a FE simulation of the human liver deformation caused by the patient’s

breathing. In addition, several optimization strategies used GSF to esti-

mate the patient-specific elastic constants of the biomechanical models

proposed for the human liver by non-invasive techniques.





Chapter 4

Methodology

This chapter presents the theoretical aspects of the methods and techniques

used in this thesis, which are organized in three main blocks:

1. The mechanics of the liver tissue and the biomechanical models used to

simulate the liver deformation.

2. The use of similarity coefficients from medical image analysis in order

to estimate the error committed by the biomechanical models.

3. The implementation of optimization strategies in order to find the biome-

chanical constants that define the patient-specific behavior of the liver.

49
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4.1 Soft tissue biomechanics

Solid mechanics is one of the disciplines of physics that is defined as a

set of physical laws and mathematical techniques that can be used to

predict the behavior of a body when it is subjected to mechanical or

thermal loads. This discipline has a wide range of applications. For

example, Geomechanics models the shape of the planets, even it is used

to predict earthquakes. Civil Engineering is focused on the design of

structures and Mechanical Engineering studies the resistance of the ob-

jects that are subjected to loads. Finally, Biomechanics, which is one of

the disciplines concerned to this thesis, studies the mechanical behavior

of the structures present in biological systems.

Biomechanics can be defined in more detail as the field that stud-

ies the laws, the models and the phenomena that are relevant in the

movement (static or dynamic) of the living being, and whose aim is the

study of the mechanical structures from the living being.

Biomechanics was recognized as a discipline in the second half of the

20th Century thanks to the Y.C. Fung’s investigations [Fung, 1967, 1993,

1996]. The study in this field is interdisciplinary since knowledge from

mechanics, engineering, anatomy, physiology, etc. is required. Biome-

chanics has been applied to the human being in order to understand the

behavior and limitations of the body and its structures: bones, muscles,

ligaments, etc. Nowadays, mathematical models that allow simulating

really complex phenomena in powerful computers are being used to con-

trol a high number of parameters. Currently, one of the main areas of

research in Biomechanics is the study of the behavior of soft biological

living tissues.
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4.1.1 Biomechanical models

The soft living tissue behavior can mainly be approximated by three

different kinds of behaviors: linear elastic, hyperelastic (non-linear) and

viscoelastic [Fung, 1967]. The description of the physical laws that are

involved in these models are detailed below.

Linear elastic model

This model has two main parameters that characterize the behavior of

the material. One is the Young’s Modulus (E), which represents the

relationship between stress and strain in the direction of the applied

force. The other is the Poisson’s ratio (ν), which refers to the rela-

tionship between longitudinal strain and lateral strain. Equation 4.1,

known as generalized Hooke’s law, shows the stress-strain relationship

for the three-dimensional case.

σxx
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(4.1)

where σij are the perpendicular stress in the ij direction, τij are the tan-

gential stress, εij are the perpendicular strain and γij are the tangential

strain. D is the material stiffness matrix for the three-dimensional case

and contains the material properties since it is dependent on E and ν

[Zienkiewicz and Taylor, 1994]

For isotropic materials, the matrix D is defined as shown in Equation

4.2:
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D =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 (1−2ν)
2 0 0

0 0 0 0 (1−2ν)
2 0

0 0 0 0 0 (1−2ν)
2


(4.2)

E and ν are commonly used to characterize the elastic behavior of

the materials. However, other measures can be also used; e.g., the Bulk

modulus K (Equation 4.3) and the shear modulus G (Equation 4.4):

K =
E

3(1− 2ν)
(4.3)

G =
E

2(1 + ν)
(4.4)

K represents the resistance to the change of volume and G measures

the change in the shape of a solid under shear strengths.

The constitutive equation of the linear elastic model is defined by

means of the strain-energy potential, as Equation 4.5 shows:

WLE =
1

2
σεσεσε (4.5)

Hyperelasticity

Linear elasticity theory can be valid for small displacements of soft

living tissue. However, large deformations are common during surgical

procedures and the approximation to linear elasticity becomes poor for
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these situations since is unable to simulate the produced deformations.

Within this framework, non-linear elasticity provides a better way to

analyze such situations.

The hyperelasticity constitutive laws are used to model materials

with elastic behavior that are subjected to large deformations. For this

reason, the stress-strain relationship is non-linear elastic. In this work,

three hyperelastic models have been used: The neo-Hookean model, the

Mooney-Rivlin model and the Ogden model [Belytschko et al., 2000].

If a solid is subjected to a displacement field ui(xk), the deformation

gradient is defined as Equation 4.6 shows:

Fij = δij +
∂ui
∂xj

(4.6)

where δij is 1 if i = j and 0 if i 6= j.

The Jacobian of the deformation gradient is defined as follows:

J = det(F ) (4.7)

The left Cauchy-Green deformation tensor is shown in Equation 4.8:

B = F · FT (4.8)

The principal stretch directions are defined as:

λ1 =
√
e1

λ2 =
√
e2

λ3 =
√
e3

(4.9)

where e1, e2 ,e3 are the three eigenvalues of B.
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The invariants of B are defined as Equation 4.10 shows:

I1 = trace(B) = Bkk = λ21 + λ22 + λ23

I2 =
1

2
(I21 −BikBki) = λ21 λ

2
2 + λ22 λ

2
3 + λ23 λ

2
1

I3 = det(B) = J2 = λ21 λ
2
2 λ

2
3

(4.10)

In Equation 4.11, other invariants of the left Cauchy-Green deforma-

tion tensor are shown. Their use is more convenient to model materials

near the incompressibility. They are called deviatoric strain invariant:

I1 =
I1

J2/3

I2 =
I2

J4/3

J =
√
det(B)

(4.11)

For isotropic hyperelastic materials, the form of the strain energy po-

tential can be expressed as function of the invariants of the left Cauchy-

Green, the deviatoric strain invariants or the principal stretch directions

(Equation 4.12):

W (F ) = Ŵ (I1, I2, I3) = W (I1, I2, J) = W̃ (λ1, λ2, λ3) (4.12)
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• The neo-Hookean model

The form of the strain energy potential for the neo-Hookean model,

WNH , is defined by Equation 4.13:

WNH =
µ0
2

(I1 − 3) +
1

d
(J − 1)2 (4.13)

where µ0 is the initial shear modulus of the material, I1 is the

first deviatoric strain invariant, d is a material incompressibility

parameter that is related to the initial bulk modulus K0 = 2/d,

and J is the determinant of the elastic deformation gradient.

• The Mooney-Rivlin model

The strain energy potential for the Mooney-Rivlin model, WMR,

is defined as Equation 4.14 indicates:

WMR =
N∑

i,j=0

Cij(I1 − 3)i(I2 − 3)j +

N∑
i=1

1

di
(J − 1)2i (4.14)

where N stands for the order of the model, C00=0, Cij are material

constants, and I2 is the second deviatoric strain invariant.

• The Ogden model

The strain energy potential, WO, is defined as shown in Equation

4.15:
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WO =

N∑
i

µi
αi

(λ
αi

1 + λ
αi

2 + λ
αi

3 − 3) +

N∑
i=1

1

di
(J − 1)2i (4.15)

where µi, αi, and di are material properties, and where λ1, λ2,

and λ3 denote the deviatoric stretches (λk = λk
J1/3 ).

Viscoelastic behavior

Real soft tissue also reveals viscous behavior. Thus, it should be consid-

ered in the mechanical characterization of liver tissue. The quasi-linear

viscoelastic framework proposed by Fung [1996] and successfully ap-

plied to a variety of living soft tissues [Miller, 2000; Carew et al., 2000;

Funk et al., 2000] assumes that the mechanical behavior can be decou-

pled into two parts: a non-linear elastic response and a time-dependence

response related to the dissipative behavior of the soft tissue. The time-

dependence contribution is modeled by means of the relaxation function

G(t), which can often be expressed using the Prony series (Equation

4.16):

G(t) = G0

(
α∞ +

N∑
k=1

αke
−t/τk

)
(4.16)

G0 stands for the shear modulus at the fast load limit, α∞ is the relative

modulus of the long-term shear modulusG∞, (α∞ = G∞/G0), N stands

for the order of the Prony series, t represents the time and; αk and τk

are the coefficients of the Prony series, that characterize the relaxation

behavior.
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4.1.2 Finite element method

One of the most extended and used numerical methods for simulating

the mechanical behavior of a continuum body is the Finite Element

Method (FEM) [Zienkiewicz and Taylor, 1994]. Over the years, FEM

has been applied in many different areas of engineering such as struc-

tural analysis in civil and aeronautical engineering, thermal analysis

or biomechanics. FEM is the most widely used numerical method for

realistic modeling of organ deformation.

FEM obtains an approximate solution of the equations that govern

the mechanical behavior of a continuum solid dividing it in a high num-

ber of components called finite elements. That is, FEM transforms a

continuum body in an approximate discrete model. This procedure is

known as discretization. The elements, assembled between them, are

composed by a set of points called nodes. The nodes join each element

with their adjacent elements. The set of nodes and their connexions

form the mesh.

The mesh is generated from the continuum body and the calcula-

tions are performed on it. A set of variables (degrees of freedom) are

defined on each node. This set of variables is written as a linear equa-

tion system, which is represented by a matrix called stiffness matrix.

The number of equations is proportional to the number of nodes. As the

number of nodes increase, more accurate the solution is, since the mesh

represents better the real geometry. However, the computational cost

will be higher. This is due to the fact that the solution is exact in the

nodes, but is approximated for the rest of the points since the solution

is obtained by means of interpolation. For this reason, it is important

to adopt a compromise between speed and accuracy depending on the

type of problem to solve (Figure 4.1).
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Figure 4.1: Representation of a continuum sphere (left), rough mesh of the
sphere (middle) and dense mesh of the sphere that will provide more accurate
results (right).

Given a particular geometry, meshing allows from the selection of

the element size, to the use of algorithms that adapt the element size

to the surface of the solid. That is, the element size becomes smaller in

those parts of the model with more complex geometry and the element

size becomes bigger for simpler geometries.

There is a wide spectrum of FE softwares. Some examples are

ANSYS (ANSYS Inc.), ABAQUS (Simulia), FEBio (Musculoskeletal

Research Laboratories, University of Utah), ADINA (ADINA R & D

Inc.), DYNA3D (Lawrence Livermore National Laboratory), FEMLAB

(COMSOL Inc.), GT STRUDL (Georgia Tech-CASE Center), NX I-

deas (Siemens PLM Software) and NASTRAN (MSC Software Corp.)

4.2 Similarity coefficients for volume compari-

son

As mentioned in previous chapters, the use of medical images can allow

the in vivo validation and in vivo parameter estimation of proposed
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biomechanical models avoiding invasive methods. In this section a set of

coefficients commonly used in medical image analysis for segmentation

validation are presented. These coefficients are used to calculate the

error committed by a segmentation algorithm. The similarity between

two volumes can be determined using these coefficients.

Only in the recent literature, the classical coefficients and distances

from medical image analysis used for segmentation validation have been

used in the field of the Computational Biomechanics. Jaccard coefficient

and Hausdorff distance have been separately used in Biomechanics to

evaluate registration algorithms [Balocco et al., 2010; Vigneron et al.,

2010]. Balocco et al. [2010] used the Jaccard coefficient in order to

quantify the registration quality applied to a pair of simulated mag-

netic resonance images of the heart in diastole and systole aimed to

estimate its wall motion. They separately used the Dice coefficient

to quantify a region clustering technique applied on the strain maps

obtained from the estimated wall motion. The clustering was imple-

mented in order to estimate a regional elasticity distribution. Vigneron

et al. [2010] used a modified Hausdorff distance to evaluate a FE-based

biomechanical model focused on the brain shift deformation that occurs

after the opening of the skull and dura. They compared the similarity

between two magnetic resonance images rigidly and non-rigidly regis-

tered, which gave an estimation of how well the non-rigid registration

technique captured and compensated the local deformations between

the two magnetic resonance images. However, as far as we are aware,

they have never been used together for the validation of biomechanical

models of abdominal organs.

Given two FE meshes, one corresponding to an experimentally de-

formed organ and another one coming from the FE simulation of that

deformation, one way to compute the error committed by the simula-
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tion is to directly compare both meshes. Nevertheless, this is not an

easy task since it is difficult to find a correspondence between the nodes

and elements from one mesh with the nodes and elements from the

other one. One way that can make possible to compare both deformed

organs (the real and the simulated) is to convert them into volumes

by performing a voxelization. Then, the error estimation (or volume

comparison) can be performed by means of the similarity coefficients

previously mentioned.

The computation of the similarity coefficients that will be introduced

in this section have been extended to be able to operate on 3D volumes,

thus abstracting all the processes from the number and type of elements

or nodes.

In this section, the performance of the most commonly used similar-

ity coefficients based on volume overlap and the most commonly used

coefficient based on distance for volume comparison are analyzed.

4.2.1 Similarity coefficients based on overlap

In this section, the most common coefficients based on overlap to pro-

vide the similarity between two volumes is presented. These coefficients

are Jaccard (JC) and Dice (DC) coefficients.

Other classic similarity coefficients, as Tanimoto and Volume Sim-

ilarity, have been proposed for the evaluation of segmentations in the

literature [Cárdenes et al., 2009]. However, Cárdenes et al. concluded

that these coefficients provided values that could arise in erroneous de-

cisions and that other classic measures, such as Jaccard and Dice co-

efficients, gave reasonable values for their study. For this reason, they

chose working with Jaccard coefficient.
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Jaccard coefficient

Given two volumes V1 and V2, the Jaccard coefficient, (JC) [Jaccard,

1901], measures the overlap between the two volumes (Equation 4.17):

JC =
|V1
⋂
V2|

|V1
⋃
V2|

(4.17)

This coefficient provides a value between 0 and 1, where 1 represents

total overlap and 0 represents not overlap at all.

Dice coefficient

The Dice coefficient, (DC) [Dice, 1945], also provides values between 0

and 1. However, DC penalizes less the difference between volumes and

rewards more the overlap than JC. DC is computed as Equation 4.18

shows:

DC =
2|V1 ∩ V2|
|V1|+ |V2|

=
2JC

JC + 1
(4.18)

In 2012, our group carried out a simple experiment to choose be-

tween both coefficients JC and DC [Lago et al., 2012]. This experiment

compared a cylinder with another cylinder of the same size and shape,

but rotated on its own axis. The union of both volumes and the values

obtained in the experiment are shown in Figure 4.2.

The curve of the Figure 4.2 (right) shows how DC discriminates

worse than JC because the DC decay is slower than the JC decay. This
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means that JC indicates the difference between the volumes of the cylin-

ders sooner. Therefore, JC was chosen since allows the measurement of

overlap between two volumes. However, additional information about

the object shape should be added to perform a complete evaluation of

the similarity between two volumes.

 0

 0.5

 1

 0  45  90  135  180
rotation

Jaccard
Dice

Figure 4.2: Comparison between one cylinder and the same cylinder rotated
45o (left) and JC and DC values of a rotated cylinder with respect to another,
from 0o to 180o (right).

Figure 4.3 shows two examples of comparison between 3D images of

the liver in order to show up the convenience of using other similarity

coefficients in addition to the overlap for a better evaluation of the

similarity between two volumes.

In the examples shown in Figure 4.3, JC would provide the same

result for both cases. However, the deformations shown by these cases

are quite different. It would be not possible to differ between these two

deformations if only JC were considered. Therefore, due to coefficients

based on distances can provide a different measurement of similarity

between volumes, their performance must also be evaluated.
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Figure 4.3: Two examples of the comparison between two deformed livers, a
first deformed liver (orange) and second deformed liver (yellow) appear in both
examples, where JC could provide the same value.

4.2.2 Similarity coefficients based on distances

The Hausdorff distance (H) was firstly introduced by the German math-

ematician Felix Hausdorff in his book Grundzüge der Mengenlehre in

1914. This book was translated into English in 1957 under the title

Set theory [Hausdorff, 1957]. This coefficient has been widely used for

image comparison and it is still used nowadays [Aspert et al., 2002;

Lockett and Guenov, 2008; Vigneron et al., 2010].

Hausdorff distance uses the distance between the voxel i to the clos-

est voxel of a volume Vj denoted as dVj (i). In order to calculate the

distances dV1 and dV2 , the Euclidean distance transform is used. The

Hausdorff coefficient is defined as Equation 4.20 indicates:

H = max

(
max
∀i∈B(V1)

dV2(i), max
∀i∈B(V2)

dV1(i)
)

(4.19)

Figure 4.4 shows an example where H would provide the same re-

sult for the comparison of the volumes shown in both cases while JC
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would provide different results. For these cases, it would not be possible

to make a differentiation if only H were evaluated, JC would provide

additional information and should also be considered. Thus, the com-

bination of different coefficients based on overlap and distance should

be used as alternative to accurately compare two different volumes cor-

responding to two different deformations.

Figure 4.4: Two new examples of the comparison between two liver volumes,
a first deformed liver (orange) and second deformed liver (yellow) appear in
both examples, where H would provide the same value.

Due to the reasons explained above, Jaccard coefficient and Haus-

dorff distance were used in this thesis in order to validate several biome-

chanical models proposed for the lamb liver (Chapter 5), which consti-

tuted a novelty within Computational Biomechanics [Mart́ınez-Mart́ınez

et al., 2013a].

4.2.3 Geometric Similarity Function

As a combination of both coefficients provides a good evaluation of

the error distribution along the entire volume, they can also be used

to implement an error function to be used in the estimation of the

elastic constants of the biomechanical models by means of optimiza-
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tion routines. This error function will allow the determination of the

biomechanical properties of the patient-specific liver avoiding the use of

surgery to measure the mechanical response of the liver tissue.

In this thesis, a novel error function called Geometric Similarity

Function (GSF) has been formulated in order to evaluate the accu-

racy of the FE simulation of a human liver deformation. GSF provides

a value that specifies the dissimilarity between two volumes obtained

from two 3D images. This novel error function has been computed

by means of the Jaccard coefficient and a modified Hausdorff distance

[Dubuisson and Jain, 1994]. It has been decided to use the modified

Hausdorff distance instead of the original Hausdorff distance based on

the results and conclusions from Dubuisson and Jain [1994] and Lago

et al. [2012]. The difference between both distances is that whilst the

original Hausdorff distance takes the maximum of all the distances be-

tween each border voxel from one volume and the closest voxel from

other one (and vice versa), the modified Hausdorff distance takes the

mean of all the distances. The modified Hausdorff distance (MHD) is

defined as Equation 4.20 shows, where dVj (i) stands for the mean of

distance between the voxel i to the closest voxel of a volume Vj .

MHD = max
(
dV2(i), dV1(i)

)
(4.20)

In the course of the research developed in this thesis, the formu-

lation of GSF has evolved during the different experiments [Mart́ınez-

Mart́ınez et al., 2012a, 2013b,c,d]. Nevertherless, GSF has been always

based on a combination of the Jaccard coefficient and the modified

Hausdorff distance. Other characteristic that always remains for GSF

is that the smaller GSF values, the better similarity between two vol-
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umes since when overlap is maximum (JC=1) and distance is minimum

(MHD=0), GSF is minimum, that is, the error is smaller. The first

formulation of GSF is showed in Equation 4.21:

GSF = (2− JC)
MHD

2
(4.21)

The second formulation of GSF was simpler, considering that Equa-

tion 4.22 was enough to combine both coefficients.

GSF = (1− JC)MHD (4.22)

The final version of GSF is shown in Equation 4.23.

GSF = ln
(

(1− JC)MHD
)

(4.23)

The use of the natural logarithm allowed achieving bigger differences

between values near to the minimum (approximately zero) since the

natural logarithm of zero tends to -∞.

4.3 Parameter optimization

Optimization is typically used in problems that have several possible so-

lutions across many variables, although it also includes problems with

a single solution. Optimization techniques are used to find a set of pa-

rameters, x = {x1, x2, ..., xn}, that provides the best solution. These
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optimal parameters are obtained by means of the minimization (or max-

imization) of a function f(x) that depends on these parameters. This

function can have several names: objective, fitness and/or cost function.

4.3.1 Local optimization

The cost function f(x) may be subjected to constraints in the form of

equality constraints, inequality constraints and/or parameter bounds.

The general form of a constrained non-linear optimization is shown in

the Equation 4.24:

minimize f(x)

subjected to g(x) ≤ 0

h(x) = 0

(4.24)

where f(x) stands for the cost function and g(x) and h(x) represent all

inequality and equality constrains, respectively.

Two conditions must be accomplished to find a minimum of the

cost function [Nocedal and Wright, 2006]: the necessary condition (also

called first order condition) and the sufficient condition (or second order

condition). In the case of unconstrained optimization, the necessary

condition is accomplished when the gradient (first derivate of the cost

function with respect to the parameters) is equal to zero (Equation

4.25):

∇f(x) =

(
δf(x)

δx1
, · · · , δf(x)

δxn

)
= (0, · · · , 0) (4.25)
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The points where this condition is accomplished are called critical

points and they can be local minima, local maxima or inflexion points.

For the sufficient condition, the second derivative or the matrix of

second derivatives of the cost function must be checked (Equation 4.26).

This matrix is called Hessian matrix.

H(xi, xj) =
∂2f(x)

∂xi∂xj
(4.26)

This condition allows distinguishing between local maxima/minima

(when H is not equal to zero) and inflexion points (when H is equal to

zero).

In the case of the constrained optimization, the necessary condi-

tion is based on the Karush-Kuhn-Tucker (KKT) conditions [Kuhn and

Tucker, 1951]. The KKT conditions are analogous to the condition that

the gradient must be zero at a minimum. Thus, the Lagrangian func-

tion is used in the KKT conditions to take the constraints into account

(Equation 4.27):

L(x, µ, λ) = f(x) +
∑
i

µigi(x) +
∑
j

λjhj(x) (4.27)

where µi and λj are Lagrange multipliers.

Therefore, the necessary conditions for constrained optimization

look like Equation 4.28 shows:
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∇L(x, µ, λ) = ∇f(x) +
∑
µi∇gi(x) +

∑
λj∇hj(x) = (0, · · · , 0)

µigi(x) = 0 ∀i
gi(x) ≤ 0 ∀i
hj(x) = 0 ∀i
µi ≥ 0 ∀i

(4.28)

As mentioned, for the sufficient condition, the bordered Hessian

defined as ∇2L(x, µ, λ) must be checked.

4.3.2 Global optimization

When optimization techniques are applied, the goal is usually to find

the global minimum of a function, which may contain multiple minima.

Therefore, the solution can stuck in a local minimum. For this rea-

son, strategies to generate different solutions are usually taken into ac-

count. A simple and usual approach to circumvent the problem of falling

into local minima is to test different random initializations. However,

there are other complex and effective methods to solve more difficult

global optimization problems. For example, meta-heuristic methods al-

low the diversification of the search and the intensification in some of the

promising areas. Thus, meta-heuristic methods are unlikely entrapped

in a local minimum.

Evolutionary computation is one of the most known meta-heuristic

approaches [Fogel, 1995; Jong, 2006]. The Evolutionary algorithms are

inspired by the theory of biological evolution. They are based on the

combination of a set of solutions, called population solutions, in order

to create new ones. Evolutionary computation has already been pro-

posed in the literature for parameter identification of deformable mod-
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els using mass-spring models [Deussen et al., 1995; Louchet et al., 1995;

Joukhadar et al., 1997] and more specifically for soft tissues [Bianchi

et al., 2004; Xu et al., 2009]. These strategies are used not only as

a mechanism for generating new solutions, but also for integrating lo-

cal search, e.g., gradient descent. Examples of these algorithms are

Scatter Search (SS) and Genetic Algorithms (GA). Although both al-

gorithms present similarities, the main difference is that SS uses system-

atic strategies to combine solutions whilst GA use random strategies.

Another difference is that SS uses a smaller set of solutions and gradient

descent for the local search. This means that SS can only be used for

cost functions that are continuous. However, GA use scores (the value

of the cost function in different iterations), allowing the optimization of

continuous and non-continuous functions.

Scatter Search

The first description of the Scatter Search (SS) dates from 1977 [Glover,

1977]. SS operates on a set of solutions called reference set (RefSet).

These solutions are combined to create new ones. Finally, the best

solutions that are found during the search are stored in the RefSet.

The term “best solutions” refers not only to the solution quality, but it

also refers to the diversity provided by this solution to the RefSet.

Scatter Search consists of five methods that are described below:

• Diversification generation method.

A large set of trial solutions P is generated in this step using

arbitrary seed solutions as input.

• Improvement method.

This method consists of a local search method to improve the
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solutions that come from the diversification generation method or

from the solution combination method.

• Reference set update method.

RefSet is created or updated in this method. RefSet is obtained

choosing the best solutions (b) from P based in quality and diver-

sity criteria.

– Creation. RefSet is initialized with the b/2 best solutions

from P (quality criterion). The rest b/2 solutions are ex-

tracted from P in oder to maximize the distance with the so-

lutions that are already in RefSet (diversification criterion).

For this reason, a distance function must be defined.

– Update. The solutions obtained from the combinations can

replace any of the solutions already included in RefSet just in

case of improvement. Therefore, RefSet keeps its size b con-

stant, but the value of the solutions is getting better during

the search.

• Subset generation method.

This method is used to create subsets from RefSet, in which the

combination method will be applied. SS examines exhaustively

all the combinations from RefSet and specifies how the subsets

are selected in order to apply the combination method. A simple

implementation consist of using pair of solutions. This way, the

method considers all the possible pairs of solutions from RefSet

and the combination method is applied to all of them.

• Solution combination method.

In this method SS combines all the solutions from RefSet. The

combination method is applied to the subsets obtained in the sub-
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set generation method. Figure 4.5 shows the evolution of RefSet

using a mechanism that creates the new solutions by means of a

linear combination of two other solutions. Solution 1 is created

after the linear combination of reference solutions A and B. So-

lution 2 is created after the combination of solutions B and C,

solution 3 by the combination of 1 and C and solution 4 is created

by means of solutions 2 and 3.

Figure 4.5: Solution combination method: Original RefSet (A, B and C) and
new created solutions (1, 2, 3 and 4).

The basic scatter search procedure is described in the following steps

(Figure 4.6):

1. Firstly, the diversification generation method is used to build a

single solution, on which the improvement method is applied. Let

x be the resulting solution from the improvement method. If x

does not exist in P , x is added to P (P = P ∪ x). Otherwise, x

is discarded. This step is repeated until the size of P achieves a

specified size.
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Figure 4.6: Scatter Search procedure workflow.

2. The initial RefSet is built with the reference set update method

(creation). The solutions from RefSet are ordered according to

their cost function value.

3. Subsets are generated with the subset generation method. For

example, all pairs from RefSet, what means a subset size of 2

resulting in (b2 − b)/2 new subsets.

4. One of the generated subsets is selected and the solution combina-

tion method is applied to obtain one or more new trial solutions.

Afterwards, the improvement method is applied to the trial solu-

tions.

5. The reference set update method is applied to the improved trial

solutions (update). The simplest way to apply this method is to
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build a new RefSet. The best solutions (best objective function

values) from the current RefSet and the set of improved trail so-

lutions are selected to build this new RefSet. Finally, the subset

that was subjected to the combination method is deleted from the

new subset.

6. Steps 4 and 5 are repeated for all the new subsets.

7. The procedure terminates after all subsets are subjected to the

combination method and none of the improved trial solutions are

admitted to RefSet under the rules of the reference set update

method.

Genetic Algorithms

Genetic Algorithms (GA) are a heuristic method used for solving opti-

mization problems, which is inspired in some processes of natural evo-

lution such as selection, crossover or mutation [Chatterjee et al., 1996].

Methods based on GA for the parameters identification of soft biologi-

cal tissues have already been presented in the literature [Pandit et al.,

2005; Nair et al., 2008; Harb et al., 2011]. GA iteratively modify a pop-

ulation (parameter combinations) randomly generated which encodes

individual candidate solutions and allow them to reproduce creating

new solutions for the next generations. At each step of the optimiza-

tion, the cost function is calculated for all the individuals (Table 4.1).

Based on the values of the calculated cost function, GA select in-

dividual solutions (parents) from the current population and use them

to produce new solutions (children) for the next generations. This pro-

cedure is performed combining a pair of parents (crossover) or making

random changes to a single parent (mutation)(Figure 4.7). After these
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Table 4.1: Example of a list of solutions (population) and the corresponding
cost values.

Candidate solution Cost function value

[123,−5, 964, 12] 10.24
[874, 95, 321, 35] 1.78

... ...
[321, 57, 121,−9] 0.11

generations, the population evolves toward an optimal solution. When

GA are used, the cost function is usually called fitness function (usually,

the lower value, the better fitness).

Figure 4.7: Example of crossover (top) and mutation (bottom).

The methodology of GA is outlined as follows:

• Initialization.

The algorithm begins creating a random initial population in the

first generation. It can be used an initial range if it is known

where the minimal point approximately lays. The population size
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depends on the nature of the problem, but typically contains sev-

eral tens or hundreds of possible solutions.

• Creation of new population.

The algorithm creates a new population in every new generation.

It is performed by means of the following steps:

1. The algorithm computes the fitness values of the current pop-

ulation and scores each individual member.

2. GA select the parents (best solutions) based on the values of

the fitness function.

3. Some of the individual solutions in the current population

that have the best fitness values are chosen as elite. These

elite individuals form part of the next population.

4. Children are created from the parents by means of crossover

or mutation. The process continues until a new population of

solutions is generated with the appropriated size. Although

reproduction methods that are based on the use of two par-

ents are more biology inspired, some researchers [Eiben et al.,

1994; Akbari and Ziarati, 2011] suggested that more than two

parents generate higher quality individual solutions.

5. The current population is replaced by the children to form

the next generation.

• Termination.

The previous process is repeated until a stop condition is reached.

Common terminating conditions are:

– A defined number of generations is reached.

– A predefined time or number of iterations.
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– The fitness function value of the best point is less or equal

to a given threshold.

4.4 Conclusions

This chapter has presented the theory under the multidisciplinary tech-

niques used in this thesis: Computational Biomechanics, Medical Image

Analysis and Computational Intelligence.

The behavior of the liver can be approximated by three kinds of be-

haviors: linear elastic, hyperelastic (non-linear) and viscoelastic. Lin-

ear elasticity theory can be valid for small displacements of soft living

tissue. However, large deformations are common during surgical pro-

cedures and non-linear elasticity provides a better way to analyze such

situations.

On the other hand, Jaccard and Hausdorff are good coefficients to

measure the error committed by a FE simulation of a deformed or-

gan. They provide more information about the similarity between two

volumes than the classic measurements as volume difference or the max-

imum deformation where the load is applied. They show how the error

is distributed along all the volume and provide information about the

shape. In conclusion, the use of both coefficients is a good way to mea-

sure the error committed by the biomechanical models. A combination

of both can be used to validate those biomechanical models or to deter-

mine the material properties of the patient-specific organs thus avoiding

surgery.

Finally, optimization techniques can be used to find the set of pa-

rameters that best represent the mechanical behavior of the liver. Evo-

lutionary computation techniques (Scatter Search and Genetic Algo-
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rithms) seem the appropriate technique to be used in order to avoid the

solution to fall in a local minimum. Therefore, its performance in this

problem is tackled in this thesis.



Chapter 5

Analysis of the
biomechanical behavior of
ex vivo lamb livers

In this chapter, six biomechanical models for simulating the lamb liver behav-

ior are analyzed. These models are: a linear elastic model, a neo-Hookean

model, a Mooney-Rivlin model, an Ogden model, a linear viscoelastic model

and a hyperviscoelastic model. Their elastic constants are obtained by means

of tensile tests on ex vivo samples. Then, they are validated using Jaccard

coefficient and Hausdorff distance on reconstructed volumes from computer-

ized tomography images. Loads of 20 g and 40 g are applied to the livers

and their deformations are simulated by means of the finite element method,

showing that the model that provides a behavior closest to reality is the hy-

perviscoelastic model, where the hyperelastic part is modeled using an Ogden

79
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model [Mart́ınez-Mart́ınez et al., 2013a].

5.1 Introduction

The validation of a proposed model becomes necessary when the real

behavior of the modeled organ is going to be simulated. However, good

validation methods are still a challenge in Biomechanics. In the last

few years, many researchers have proposed biomechanical models for

the liver. Some of these researchers have modeled the mechanical ex

vivo response of the liver under indentation/elongation. However, as

commented, only Shi and Farag [2005] and Shi et al. [2008] validated

the models that they proposed for the ex vivo lamb liver by means of

a new experiment different from those experiments proposed to obtain

the parameters of the model. Other authors have proposed models for

the in vivo liver behavior. However, none of them have validated the

proposed models. Furthermore, they used open surgery.

For the models proposed in this chapter, the elastic constants that

characterize their constitutive equations were obtained from one exper-

iment and the model was validated with another different experiment.

The Jaccard coefficient and the Hausdorff distance mentioned in Chap-

ter 4 were used together for the validation, becoming this new approach

a novelty within Computational Biomechanics [Mart́ınez-Mart́ınez et al.,

2013a].

5.2 Materials and methods

Six models were proposed to simulate the behavior of the liver: a linear

elastic model, a neo-Hookean model, a Mooney-Rivlin model, an Ogden
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model, a linear viscoelastic model and a hyperviscoelastic model. A lin-

ear elastic model and a neo-Hookean model were chosen based on the

work of Shi et al. [2008], since they used them to model the behavior of

the lamb liver. A Mooney-Rivlin model and an Ogden model were pro-

posed to determine if better results could be achieved with them. The

two last models were a linear viscoelastic model and a hyperviscoelastic

model. They were proposed to take into account the time dependence

of the liver mechanical behavior. The hyperelastic part of the hypervis-

coelastic model was modeled using an Ogden model because it was the

model that provided the best results from all the hyperelastic models.

5.2.1 Identification of the elastic constants

The identification of the elastic constants were carried out by tensile

tests. The procedures carried out for this identification were similar to

the procedures followed by previous authors who proposed biomechani-

cal models for the liver [Sakuma et al., 2003; Chui et al., 2004, 2007; Shi

et al., 2008; Gao and Desai, 2010]. Lamb livers were chosen due to their

easy ex vivo manipulation and also to be able to compare the results to

those obtained by Shi et al. [2008]. To obtain the elastic constants of

the models, a universal testing machine, Diagram Force Meter (DFM),

was used. The DFM consists of a test stand with a DC motor, which

allows the test velocity to be changed, and a dynamometer SP-2 from

PCEr Group attached to this test stand, which was connected though

a computer for the data acquisition (Figure 5.1 left).

A total of 39 rectangular samples from three different fresh lamb

livers were cut parallel to the top surface using a surgical knife. They

were tested in this same direction. The size of the samples was approx-

imately 40 mm in height, 20 mm in width, and 4-8 mm in thickness.
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Samples with blood vessels or big pores were discarded due to the as-

sumption of homogeneity and isotropy of the models. Small rectangular

pieces of sandpaper were glued on the top and the bottom part of both

sides of the liver samples to keep the clamps from sliding out during the

tensile test. Two clamps were used to fix the specimen; the fixed clamp

was the bottom one and the movable clamp was the top one (Figure 5.1

right).

Figure 5.1: Experimental setup to obtain the elastic constants of the models:
SP-2 from PCEr Group with a rank of 0-2 N and a resolution of 10−3N (left)
and specimen in the DFM SP-2 fixed with clamps (right).

The DFM was used to perform the uniaxial tensile tests to acquire

force-time curves from all the samples (Figure 5.2). The tests were

quasi-static with a velocity of 0.3mms−1. After a time, the velocity

was switched to zero and the relaxation forces were acquired for the

time-dependence parameter identification. These curves were trans-

formed into stress-strain curves. The elastic constants of the models

were calculated from the obtained stress-strain curves by performing a

curve fit.
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Figure 5.2: Time-force curves acquired from the uniaxial tensile test for the
39 samples from the three lamb livers.

5.2.2 Validation of the biomechanical models

For the validation of the models, a different experiment was carried out.

This experiment was inspired on the aspiration test used by Nava et al.

[2008] to determine the biomechanical behavior of the in vivo human

liver. Samples from other three fresh lamb livers from the same sup-

plier were introduced in a computerized tomography (CT) machine and

images were acquired before and after applying traction loads. These

images were used to compute and validate the biomechanical models

proposed for the lamb livers. In this work, the Finite Element Method

was used to perform the simulations that were carried out using the

commercial package ANSYSr.

Square samples of approximately 60 mm in height and width were

obtained from the three livers. The liver samples were glued on a card-

board base, which was fixed on the CT machine tray. A small piece

of hard plastic of negligible weight and much stiffer than the liver was
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glued onto the surface of the liver samples and joined to a fine nylon

string (Figure 5.3).

Figure 5.3: Liver sample with the glued plastic piece.

Nylon was chosen because of its high resistance to elongation: it

presents a tensile strength between 8-292 MPa depending on the type

of nylon1. The nylon string was threaded through a little crack in

a wooden structure that was specifically designed for this experiment

(Figure 5.4).

The liver samples were loaded with 20 g and 40 g since, according

to Shi et al. [2008], the behavior under 20 g is linear elastic while the

behavior of the lamb liver over 20 g becomes hyperelastic. They stated

that this behavior is better represented by a hyperelastic model, in par-

ticular by the neo-Hookean model, than by a linear viscoelastic model.

The crack was greased to avoid friction, so the wooden structure worked

as a pulley.

The CT machine used for the image acquisition was the multi-

detector spiral CT GE LightSpeedr VCT-5124069. CT images in DI-

COM format were acquired from each sample both before applying the

load and when the load was actually applied (Figure 5.5).

1http://www.ides.com/generics/Nylon/Nylon_typical_properties.htm

http://www.ides.com/generics/Nylon/Nylon_typical_properties.htm
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Figure 5.4: Wooden structure designed for the test.

Figure 5.5: CT image acquisition with the Multi-detector spiral CT GE Light-
Speed VCT-5124069.

The axial slice interval was 0.625 mm. Wood, plastic, and nylon

were chosen to introduce the structure into the CT machine without

generating artifacts in the image acquisition. The experiments were

carried out at Hospital Cĺınica Benidorm.

Simplewarer was used to process the images in order to obtain the

meshes for the FE model simulations in ANSYS. Figure 5.6 shows a

diagram of the steps followed in this process. These were:
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1. Segmentation: Two algorithms were used to assure the correct

segmentation of the samples and the piece of plastic. First, a

threshold algorithm was used and later a confidence-connected

region growing algorithm. The piece of plastic was manually seg-

mented.

2. 3D reconstruction: A volume of the liver and the piece of plastic

were generated from the segmented area of all the slices.

3. Smoothness: A recursive Gaussian filter was used to obtain a

smoother surface, which permits obtaining FE meshes with better

quality.

4. Mesh generation: An algorithm that allows surface adaptation

was used in Simpleware in order to achieve a good mesh quality

with less number of elements.

5. *.ans file generation: A file that contained all the information

about the mesh was generated in Simpleware. This file can be

read by ANSYS. ANSYS loaded the meshes and allowed the de-

formation to be simulated.

Once the FE meshes were obtained, ANSYS was used to simulate

the deformation obtained with each different model. First, boundary

conditions and loads were applied. For the boundary conditions, the

nodes from the bottom surface of the sample were restricted for all the

degrees of freedom (displacements and rotations in all the directions).

Loads of 20 g and 40 g were applied perpendicular to the bottom surface

of the liver samples (Figure 5.7). Later, the elastic constants obtained
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Figure 5.6: Diagram of the steps for the CT Image Processing: segmenta-
tion, 3D reconstruction, smoothness, mesh generation, *.ans file generation
and ANSYS.

Figure 5.7: FE model with the applied load and boundary conditions in AN-
SYS.

after fitting the curves as a result of the uniaxial tensile tests were

introduced for each model.

After the simulation of the deformation that the liver underwent,

the configurations of the simulated deformations of the samples were

compared with the real deformations of the samples in order to deter-
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mine which model behaved closest to reality. Both meshes from the

simulated deformation and from the real deformed sample were vox-

elized to become a volume with a voxel size of approximately 0.25 x

0.25 x 0.25. The flowchart of the entire validation process is shown in

Figure 5.8.

Figure 5.8: Flowchart of the validation process.

5.3 Results

5.3.1 Results of the identification of the elastic constants

The experimental results of the uniaxial tensile tests were used to ob-

tain the elastic constants of the proposed models. To perform that,

three curve fits were carried out (linear zone, non-linear zone and vis-

cous behavior). The linear zone was obtained from 0 to 1,000 Pa, as

can be seen in Figure 5.9, what is equivalent to approximately 10 g.
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Therefore, the applied loads were out of the linear range and the linear

elastic model was discarded. However, a stress-strain curve fit was per-

formed in MATLABr in order to obtain the Young’s modulus (E) to

be included in the linear viscoelastic model and to be used for the esti-

mation of the bulk modulus for the hyperelastic models (neo-Hookean,

Mooney-Rivlin, and Ogden models).
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Figure 5.9: Curve fit for the linear elastic model of one of the three livers.

For the non-linear zone, a stress-strain curve fit was performed in

ANSYS in order to obtain the elastic constants of the proposed hyper-

elastic models (Figure 5.10). The worst fit for the hyperelastic models

was obtained with the neo-Hookean model (Figure 5.11). Therefore, it

was necessary to search for other models that better represented the

real behavior of the liver. In our case, the best fits were achieved with

the three-parameter Mooney-Rivlin model and with the first-order Og-

den model (two parameters). Therefore, these two models were used

for the simulation and their elastic constants were calculated. The neo-
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Hookean model and the two-parameter Mooney-Rivlin model were dis-

carded.
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Figure 5.10: Curve fit for the Mooney-Rivlin model of one of the three livers.
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Figure 5.11: Hyperelastic model curve fit of the uniaxial tensile test data for
one of the samples.
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A relative shear modulus-time curve fit was performed in ANSYS to

model the viscoelastic behavior. Figure 5.12 shows the curve fit for the

time-dependence modeling (viscoelasticity) of one of the three livers.
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Figure 5.12: Curve fit of the uniaxial tensile tests data for time-dependence
modeling of one of the three livers.

Tables 5.1, 5.2, 5.3, and 5.4 show the Young’s modulus (E), the

elastic constants of the Mooney-Rivlin model (C10, C01, and C11), the

the elastic constants of the Ogden model (µ and α), and the viscous

parameters (α1, α1, τ1, and τ2) obtained for the three livers after the

curve fit, respectively.

E provides a mean value of 12,598 Pa (Table 5.1), which is close to

the value provided by Shi et al. [2008], E=11,055 Pa. Given the great

variation of E for the same liver (Figure 5.9), both values can be admit-

ted since, for example, E was 12,355 Pa for Liver 2, with a deviation of

approximately 3,500 Pa. Nevertheless, the correlation coefficient of the

curve fit was greater than 0.9 for the three livers, with a mean value of

0.974.
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Table 5.1: Young’s modulus calculated by means of curve fit in the linear
zone with Matlab.

Liver 1 Liver 2 Liver 3 Mean

E (Pa) 11,704 12,355 13,734 12,598

r2 0.972 0.979 0.970 0.974

Table 5.2: Elastic constants of the Mooney-Rivlin model calculated by means
of curve fit in ANSYS.

Liver 1 Liver 2 Liver 3 Mean

C10 (Pa) -15,901.87 -14,997.79 -19,291.77 -16,730.48
C01 (Pa) 17,260.33 17,584.37 21,520.56 18,788.42
C11 (Pa) 24,356.64 34,525.92 57,205.97 38,696.18

Table 5.3: Elastic constants of the Ogden model calculated by means of curve
fit in ANSYS.

Liver 1 Liver 2 Liver 3 Mean

µ (Pa) 180.46 578.03 335.72 364.74
α 15.89 13.45 19.23 16.19

Table 5.4: Viscoelastic parameters calculated by means of curve fit in ANSYS.

Liver 1 Liver 2 Liver 3 Mean

α1 0.55076 0.55510 0.57584 0.56057
τ1 (s) 7.73850 2.16980 9.17689 6.36173
α2 0.45047 0.31906 0.44800 0.40585
τ2 (s) 0.97029 0.37075 0.85940 0.73348
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The material incompressibility parameter (d) was estimated as the

initial Bulk modulus (Equations 5.1 and 5.2), using the parameters

obtained in our curve fit and ν = 0.4, which was obtained from [Hu and

Desai, 2003] and [Ottensmeyer et al., 2004]:

dO = 3
1− 2ν

E
(5.1)

dMR =
1− 2ν

C10 + C01
(5.2)

5.3.2 Results of the validation

For the samples whose tests were performed in the CT machine, the

Jaccard coefficient and the Hausdorff distance were calculated compar-

ing both the real deformed configuration and the simulated one for all

the models under loads of 20 g and 40 g. The results of the Jaccard

coefficients are shown in Table 5.5, and the results of the Hausdorff

distance are shown in Table 5.6, where MRM stands for the three-

parameter Mooney-Rivlin model, OM stands for the first-order Og-

den model, LVEM stands for the linear viscoelastic model, and HVOM

stands for the hyperviscoelastic model where the Ogden model was cho-

sen for the hyperelastic part.
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Table 5.5: Calculated Jaccard coefficients for each model under both loads.

Liver 4 Liver 5 Liver 6

20 g

MRM 0.964631 0.985428 0.956571
OM 0.965286 0.985828 0.956998
LVEM 0.964157 0.984741 0.955919
HHVOM 0.966463 0.987002 0.958283

40 g

MRM 0.952755 0.963142 0.949489
OM 0.953362 0.963823 0.950075
LVEM 0.951895 0.962446 0.948658
HHVOM 0.956005 0.966369 0.953391

Table 5.6: Calculated Hausdorff (mm) coefficients for each model under both
loads.

Liver 4 Liver 5 Liver 6

20 g

MRM 2.71996 2.17146 2.64146
OM 2.71968 2.12997 2.62894
LVEM 2.77994 2.21211 2.56868
HVOM 2.57966 1.94108 2.33426

40 g

MRM 3.00560 3.33424 3.42279
OM 3.00516 3.33341 3.36585
LVEM 2.86594 3.39552 3.52308
HVOM 2.64079 3.07456 2.98524

5.4 Discussion

Based on the results of the Jaccard coefficient and Hausdorff distance

(Tables 5.5 and 5.6) from the hyperelastic models (MRM and OM), the

Ogden model provides better results than the Mooney-Rivlin model for

all the livers in both load conditions. Therefore, OM was chosen as the
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hyperelastic part for the hyperviscoelastic model (HVOM). The results

from the validation of the models show that the Jaccard coefficient is

closer to 1 for the hyperviscoelastic model (HVOM) under both 20 g

and 40 g loads. The Hausdorff distance is also the smallest for the

HVOM under both loads.

The Jaccard coefficient provides very good results for all the models

with values above 0.95. The minimum value achieved by H between

the simulated deformed sample and the real deformed sample was 1.94

mm, obtained for Liver 5 with HVOM with a load of 20 g, and 2.64 mm

with a load of 40 g for Liver 4. The fact that JC equal to 1 and H equal

to 0 are not achieved can be caused by the calculation of the elastic

constants of the models, given the great variation of these constants,

even for samples of the same liver (Figures 5.9, 5.10 and 5.12). The

bulk modulus (K) approximation can also affect the results. However,

K has approximately the same value for all the models. Therefore, the

hypothesis that HVOM is the best model for the simulation of the lamb

liver behavior subjected to this loads is still valid.

When these similarity coefficients are compared with the variables

used by Shi et al. [2008] (i.e., volume difference and maximum deforma-

tion in the load direction where it is applied), it should be highlighted

that the maximum deformation in the load direction where it is applied

could be equivalent to Hausdorff. However, H evaluates the maximum

distance between the entire volumes in the three directions of the space,

while the displacement where the load is applied evaluates only the dis-

tance of one point in one direction. On the other hand, the volume

difference is not equivalent to Jaccard. JC measures the overlap, while

the volume difference does not provide information about this. In ad-

dition, the models should not be validated using the volume difference

when K is not measured as an additional parameter of the model since
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its value is directly related to the variation of the volume.

Many models (simple and more complicate) have been proposed in

the literature, however, they have been not validated with other differ-

ent experiments to those used to determine the parameters, except the

linear elastic, neo-Hookean, and linear viscoelastic models proposed by

Shi et al. [2008], which were discarded in our study because they did

not fit well to the behavior of the liver in the range of the used loads.

Nevertheless, in order to simulate the real behavior of the human liver

when it is subjected to surgical simulation, more complicate behaviors

like anisotropic behaviors should be considered, as well as validating

these models taking into account its temporal response under the loads

that can be subjected during the intervention. It will be also neces-

sary to include fluid dynamics to model the pass of the blood through

the liver in order to analyze the whole in vivo mechanical behavior of

this organ. However, it is first necessary a framework to validate the

proposed models and this is the main approach of this chapter.

5.5 Conclusions

In this chapter, several models to represent the behavior of the ex vivo

lamb liver has been proposed and validated. To validate the models,

Jaccard coefficient and Hausdorff distance have been used. The model

that best represented the mechanical behavior of the lamb liver under

traction loads of 20g and 40 g was the hyperviscoelastic model using

the Ogden parameters.

The use of CT images plays a key role in the validation of the mod-

els that simulate the in vivo behavior of internal organs, avoiding in-

vasive methods such as open surgery. This chapter shows that when

the Jaccard coefficient and Hausdorff distance are considered together,



5.5. Conclusions 97

additional information is provided, such as the shape and how the er-

ror is distributed along the entire volume. Next chapter reveals how a

combination of both coefficients can be used to obtain the elastic con-

stants of the constitutive models proposed for the liver. It should be

emphasized that, even though these techniques have been used with ex

vivo samples, they could also be adopted to measure and validate the

biomechanical models of in vivo abdominal organs, as it will be shown

in next chapters.





Chapter 6

Non-invasive estimation of
the elastic constants of
liver biomechanical models

This chapter presents a set of methods to computationally estimate the elas-

tic constants of several biomechanical models proposed for the human liver.

The methods are aimed at avoiding invasive measurement of the mechanical

response of the liver tissue. The chosen models are a linear elastic model, a

two-parameter Mooney-Rivlin model and an first-order Ogden model. Sev-

eral versions of the Geometric Similarity Function (GSF) are formulated using

Jaccard coefficient and modified Hausdorff distance. This function is used to

compare two 3D images: one of them corresponds to a reference simulated de-

formation carried out on a FE mesh of a human liver from a CT image, whilst

the other one corresponds to the FE simulation of that deformation in which

99
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variations in the values of the model constants are introduced. Using GSF

as cost function, several search strategies are developed to accurately find the

elastics constants of the models: for one-parameter optimization, an Iterative

Search Algorithm similar to the dichotomic search [Sellmann and Kadioglu,

2008]; and for two-parameter optimization, an Iterative Local Optimization

and two evolutionary algorithms (Scatter Search and Genetic Algorithms).

The results show that GSF is a very appropriate function to estimate the

elastic constants of the biomechanical models since the average of the relative

mean absolute errors committed by the one-parameter optimization is 0.0123%

[Mart́ınez-Mart́ınez et al., 2012a] and smaller than 4% by the three algorithms

for the two-parameter optimization [Mart́ınez-Mart́ınez et al., 2013b,d].

6.1 Introduction

In biomechanical modeling of organs, the determination of the elastic

constants that describe the constitutive equations of the models is one

of the most important issues to face. The current approach consists of

performing physical experiments aiming at acquiring the mechanical re-

sponse of organs. As commented in Chapter 3, some of the researchers

who studied the biomechanical behavior of livers, measured their me-

chanical response by means of compression and/or tensile tests using

ex vivo liver tissue samples [Hu and Desai, 2003; Sakuma et al., 2003;

Chui et al., 2004; Schwartz et al., 2005; Kerdok et al., 2006; Shi et al.,

2008]. However, the models obtained by these authors are not able

to faithfully reproduce the liver behavior due to the mechanical differ-

ences between in vivo and ex vivo tissues, which represent an increase

of 17% in the stiffness for the ex vivo liver tissue [Mazza et al., 2007].

Other authors [Brouwer et al., 2001; Brown et al., 2003; Samur et al.,

2005; Kerdok et al., 2006; Kim and Srinivasan, 2005; Nava et al., 2008]



6.2. Materials and methods 101

measured the mechanical response of in vivo liver tissue by means of

minimally invasive surgery or open surgery. In these cases, the mechan-

ical response of the organs were only measured on some specific points

of them by indentation or aspiration as in the case of [Nava et al., 2003,

2008]. This way, the mechanical behavior obtained by these authors

can only represent the mechanical behavior of these little narrow areas

of the organ.

In this framework, the use of medical imaging techniques can play

an important role to estimate the elastic constants that defines the

biomechanical models proposed for soft living tissues since they can be

obtained through non-invasive methods. In this chapter, a method to

computationally estimate the elastic constants of three biomechanical

models proposed for the human liver is presented. Given the results ob-

tained in Chapter 5, Jaccard coefficient and modified Hausdorff distance

are used to compute a novel error function, the Geometric Similarity

Function (GSF), which compares two simulated deformations of a liver

reconstructed from CT images. Several optimization strategies, which

use GSF as cost function, are proposed to accurately find the elastic

constants of the models. The method described in this chapter quan-

tifies the error committed by the simulation over the entire volume of

the liver. In addition, this innovative method will allow to estimate

the elastic constants of any biomechanical model avoiding any type of

surgery.

6.2 Materials and methods

This section shows the methodology used for the estimation of the elas-

tic constants by means of the optimization strategies explained in Sec-

tion 4.3. This section starts with the simplest case (a one-parameter
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optimization) and follows with the two-parameter optimization.

6.2.1 Experimental setup

An ex vivo human liver from an anonymous donor (discarded for trans-

plantation) was supplied by the Unidad de Ciruǵıa Hepatobiliopan-

creática y Trasplante Hepático of the Hospital Universitari i Politècnic

La Fe de Valencia. The liver was placed in a box which contained a

foam to keep a similar shape to that the liver keeps inside the body.

The liver was scanned with the Brillance iCT from Philips R© using 80

KVp and 100 mAs. CT images of the liver were acquired in DICOM

format with a size of 323 x 125 x 289 voxels and a voxel size of 1.085 x

1.085 x 0.80 mm. The DICOM images were processed in order to obtain

a Finite Element (FE) mesh as it is shown in Figure 6.1. Simpleware

was used to segment the liver and generate a 3D model. A smoothing

Gaussian filter was used to get a more realistic and continuous model

of the liver. Finally, Simpleware was also used to obtain the FE mesh,

which was exported to ANSYS.

The liver is one of the abdominal organs most strongly influenced by

breathing [Von Siebenthal, 2008]. Breathing process can be separated

in two stages: inhalation and exhalation. The liver is mainly moved

in lower and upper sense due to inhalation and exhalation. During

inhalation, the diaphragm is contracted and flattened about 15 mm

pushing the liver towards the rest of abdominal organs [Balter et al.,

2007]. A deformation similar to this was chosen aimed at testing the

method proposed in this chapter. A displacement of 15 mm was applied

to the top surface of the liver mesh and the nodes belonging to the

bottom surface were restricted in all directions (Figure 6.2).
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Figure 6.1: FE mesh of the human liver obtained after segmentation, 3D
reconstruction and surface smoothing.

Figure 6.2: Boundary conditions used for the FE simulations of the human
liver deformation due to breathing: a displacement of 15 mm was applied to
the top part of the liver and the bottom part was restricted in all directions.
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Reference deformations were chosen in order to evaluate the pa-

rameter estimation methods. These deformations corresponded to a

simulation carried out in ANSYS over the obtained FE mesh using the

boundary conditions mentioned before. Elastic constants from the lit-

erature were used in order to obtain the reference deformations, which

were used as target to assess the performance of the methods to es-

timate the elastic constants. Figure 6.3 illustrates the pipeline of the

method.

Figure 6.3: Pipeline of the search used to find the optimal elastic constants
of the biomechanical models.
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6.2.2 One-parameter optimization

The following two cases were used to find the elastic constants of two

models:

• Case 1: The developed algorithm was applied to a block in order

to analyze its performance. A linear elastic model was used and

a force of 4.9 N was applied perpendicular to one of its surfaces

(Figure 6.4). Although the algorithm was applied to a block, the

chosen material properties belonged to the liver behavior. The

Poisson’s ratio was fixed with a value from the literature and

Young’s modulus was found using the GSF and an Iterative Search

Algorithm (ISA) [Mart́ınez-Mart́ınez et al., 2012a].

Figure 6.4: Case 1: linear elastic model for a block where a force of 4.9 N
was applied perpendicular to one of its surfaces.

• Case 2: A Mooney-Rivlin model for the human liver was used.

As mentioned above, a displacement of 15 mm was applied to the

upper part of the liver similar to the movement of the liver due

to the patient’s breathing [Davies et al., 1994; Brock et al., 2002]

and the lower part was restricted in all directions (Figure 6.2).

Both parameters, C10 and C01, were estimated separately. First

C01 was fixed and C10 estimated and after that, the process was

done the other way round.
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As mentioned before, a reference deformation was chosen for each of

the cases. The parameters for these reference deformations were taken

from the literature. For the case 1, E was 7,800 Pa and ν was 0.3

[Brock et al., 2002]. For the case 2, C10 was equal to 9,850 Pa and

C01 was 26,290 Pa based on the reduced polynomial model parameters

for one-cycle response from [Nava et al., 2008]. The liver behavior was

considered quasi-incompressible due to its high water content. For this

reason, K0 was fixed to 107 Pa [Nava et al., 2008].

An Iterative Search Algorithm (ISA), similar to the dichotomic

search algorithm [Sellmann and Kadioglu, 2008], was implemented for

the one-parameter search. ISA compares GSF values at each iteration

with its value in the previous iteration. This means that this method

does not use the gradient of GSF, it only evaluates the function in each

iteration in order to know if the error committed has increased or de-

creased. A search range was given to ISA and a step that was half of

the range was defined. This step was divided by two when the direction

of the search changed. The stop condition of the algorithm was reached

when the step was equal to 1.

ISA starts simulating the liver deformation in ANSYS with the first

value of the range. The initial search direction goes from the lower limit

to the upper limit of the range. After that, ISA voxelizes the FE mesh

of the simulated liver and the FE mesh of the reference deformation

and calculates the GSF. Based on the value of the step, the parameter

is updated and GSF is calculated again. In each iteration, the value of

GSF is compared with its value in the previous iteration. Thus, holding

the search direction if GSF is improving and changing it otherwise. This

criterion was held till the step was equal to one, what meant that ISA

stops.

For these experiments, GSF was formulated as Equation 6.1 shows.
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GSF = (2− JC)
MHD

2
(6.1)

Methods for estimating more than one parameter are shown in the

following section. These methods solve the problem to fix some of the

parameters in order to find the value of the rest.

6.2.3 Two-parameter optimization

As mentioned in Chapter 4, in the course of the research developed in

this thesis, the formulation of GSF has evolved during the different ex-

periments. At this point, for the two-parameter optimization, GSF was

formulated as Equation 6.2 [Mart́ınez-Mart́ınez et al., 2013b,d] shows.

GSF = (1− JC)MHD (6.2)

In order to evaluate the methods proposed to find the two elas-

tic constants that characterize the biomechanical models proposed for

modeling the liver behavior, five cases were chosen to perform reference

deformations for the liver. The proposed methods found the optimal

elastic constants of the proposed models for each one of the 5 cases

shown in Table 6.1.

The elastic constants of the first case were the same as the elastic

constants of the liver from Section 6.2.2. The elastic constants of the

rest of the cases were chosen by the authors, being the choice of the

elastic constants for the Ogden model based on the results obtained

in Chapter 5 for the lamb liver. For all the cases, K0 was fixed to 107
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Table 6.1: The five cases chosen as reference deformations of the liver.

Model Parameters Value

Case 1 Mooney-Rivlin
C10 (Pa) 9,850
C01 (Pa) 26,290

Case 2 Mooney-Rivlin
C10 (Pa) 5,000
C01 (Pa) 20,000

Case 3 Mooney-Rivlin
C10 (Pa) 10,000
C01 (Pa) 35,000

Case 4 Ogden
µ (Pa) 200
α 10

Case 5 Ogden
µ (Pa) 500
α 15

Pa, following the assumption of quasi-incompressible behavior proposed

by Nava et al. [2008]. For each one of these five cases, the boundary

conditions were the same as the boundary conditions used for the liver

in the one-parameter optimization (Figure 6.2). The deformation was

simulated using ANSYS and taken as a reference deformation, i.e., the

deformation used as target to assess the performance of the different

search strategies based on parameter tuning. For the optimization pro-

cess, the search ranges shown in Table 6.2 were chosen for each elastic

constant.

Table 6.2: Lower and upper bounds from the search ranges for the optimiza-
tion process.

Lower bound Parameter Upper bound

2,000 Pa ≤ C10 ≤ 15,000 Pa
5,000 Pa ≤ C01 ≤ 40,000 Pa
100 Pa ≤ µ ≤ 600 Pa

5 ≤ α ≤ 20
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Three optimization methods were proposed in order to conclude

which of them provided the best results: Iterative Local Optimization,

Scatter Search and Genetic Algorithms. MATLAB was used to im-

plement these three methods, which are explained below. The library

Global Optimization Toolbox1 was used for this purpose.

Iterative Local Optimization

MATLAB uses the function fmincon to carry out constrained non-linear

optimization. This function uses a Sequential Quadratic Programming

(SQP) method, which solves non-linear programming by means of a se-

quence of quadratic approximations. In SQP, an approximation of the

bordered Hessian matrix is calculated in each iteration. The fmincon

function solves a quadratic programming (QP) subproblem in each it-

eration k as Equation 6.3 shows.

min
d

{
1

2
dTHkdk +∇f(xk)

Td

}

subjected to ∇gi(xk)T + gi(xk) ≤ 0

∇hj(xk)T + hj(xk) = 0

(6.3)

where Hk is the calculated approximation of the bordered Hessian ma-

trix at the k − th iteration and dk is the QP search direction.

The new iteration is defined as shown in Equation 6.4.

xk+1 = xk + αkdk (6.4)

1www.mathworks.com/products/gads/
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where αk is the step length and it is determined by a line search proce-

dure.

The Iterative Local Optimization (ILO) process was divided into

two phases. In this first phase, the experiment consisted of 441 simula-

tions of the deformation undergone by the liver due to the displacement

applied to its upper surface (15 mm modeling the inhalation process).

The simulations were carried out in ANSYS by tuning the model pa-

rameters within the above-mentioned ranges. The variation ranges were

divided into 21 equidistant steps in order to increase C10 in 500 Pa and

C01 in 1,000 Pa in each step. The same number of steps were chosen

for the Ogden parameters. Thus, 441 simulations were performed for

each one of the five cases presented in Table 6.1. Figure 6.5 shows the

block diagram of the first phase.

Figure 6.5: Pipeline of the first phase of ILO. In this step, the GSF values
are obtained and stored.
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Firstly, ANSYS was used in order to calculate the reference defor-

mation with the known elastic constants from the case under study.

The FE mesh from this deformation was voxelized and taken as target

to assess the performance of the different simulations carried out tuning

the parameters of the model. Secondly, the program started simulating

the liver deformation in the iteration one using the first values of each

range. The mesh from this simulation was also voxelized. GSF was cal-

culated comparing both voxelized meshes, namely, the mesh from the

reference deformation and the mesh from the simulation, and its value

was stored. In the next iteration, the elastic constants of the model

were updated using a fixed step and the same procedure was repeated

until all the iterations established for that case were performed.

In a second phase, a surface fitting was carried out on the stored

data. This fitting was aimed at obtaining a continuous surface which

describes the behavior of GSF versus the elastic constants of the model

(Figure 6.6). The optimization was carried out on that surface. Since

GSF is a function that measures the error between both volumes, the

surface function was different for each of the five cases under study.

Because of this, the surface fitting carried out in MATLAB was a non-

parametric fitting.

Since it was not observed impulsive noise from the data, interpola-

tion methods were taken into account, keeping all the data points on

the fitted surface. Among the different interpolation methods already

implemented in MATLAB, the biharmonic (v4) method was selected

because this method uses a radial basis function that allows forming

continuous and smooth surfaces through the data.

An iterative procedure was implemented in MATLAB in order to

perform the constrained non-linear local optimization. As it was men-

tioned above, the problem with this type of optimization is that it can
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Figure 6.6: Second phase of ILO: Surface fitting and local optimization.

stuck in a local minimum. To settle this problem, the optimization pro-

cedure was carried out 100 times using random initializations. For this

reason, this method was divided in two phases (data acquisition and op-

timization), since it is less time consuming to optimize 100 times over a

pre-calculated data. In each iteration, an initial point within the bounds

was randomly chosen and the optimization routine was launched. Af-

ter 100 times, the minimum of all the local minima was chosen as the
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global minimum. Figure 6.7 show the surfaces obtained from the GSF

values for each of the elastic constants combination after the biharmonic

interpolation for the five cases.

Figure 6.7: GSF surface representation for the 5 cases.
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Scatter Search

A routine was also implemented in MATLAB for this optimization tech-

nique. The solver Global Search (GS) from MATLAB was used for the

search of the elastic constants. GS uses Scatter Search (SS) mechanism

in order to generate starting points and analyzes them to reject those

points that are unable to improve the best local minimum found so far.

GS also uses the function fmincon to perform local search. GS is used

for problems with smooth objective functions and it searches for a global

minimum or for a set of local minima. In contrast to ILO, where the

process was separated in two phases (data acquisition and optimization

process), here the process is unified. Scatter Search and Genetic Algo-

rithms perform on-line optimization since they are strategies to smartly

generate the points for the GSF evaluation.

In the implemented routine, GS runs fmincon from a randomly ini-

tial point (x0) that belongs to the search range. If it converges, GS

records the initial and final point and the value of the cost function

(GSF). Then, GS uses SS to generate 1,000 trial points, which are po-

tential initial points. The next step is to evaluate a score based on the

GSF values of 200 from the 1,000 trial points and GS selects the point

with the best score. Afterwards, GS runs fmincon from that point

and removes the 200 trial points. Later, GS iteratively examines the

rest of trial points. Finally, after running all the trial points, GS cre-

ates a vector that contains the local minima information, including the

GSF values and points that lead to the minimum. This concludes the

algorithm. Figure 6.8 shows the pipeline of GS.
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Figure 6.8: Pipeline of Global Search solver from MATLAB.

Genetic Algorithms

To apply these algorithms, a preliminary study about the GA parame-

ters that can provide the best solutions was carried out. These param-

eters are:

-Population size: This parameter refers to the total number of indi-

viduals used by GA.

-Elite count : This term refers to the number of individuals with the

best GSF values (elite children) which will survive in the next genera-

tion. If elite count is at least one, the best GSF values can only decrease

in each generation, as desired. However, the search is less effective when

elite count is high.
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-Crossover fraction: This parameter refers to the fraction of individ-

uals, apart from elite children, that are created by crossover. If crossover

fraction is equal to 0, all the children apart from elite children will be

created by means of mutation whilst if crossover fraction is equal to 1,

all the children will be created by means of crossover. None of those

extremes is an effective strategy for optimizing a function.

The experimental setup included testing different values of the popu-

lation size and crossover fraction in order to study the GA effectiveness.

Values of the population size between 50 and 200 individuals (increasing

50 individuals in each experiment) were considered. Crossover fraction

was varied from 0 to 1 (in gaps of 0.1). A fixed value equal to 2 was

chosen for elite count (default option in MATLAB). GA were launched

on the surfaces described in Section 6.2.3 (Figure 6.7). For each pop-

ulation size (4 sizes), each value of crossover fraction (11 values) was

launched 20 times, that is, GA were launched a total of 880 times for

each of the five studied cases. Figure 6.9 shows the means and standard

deviations of the best GSF values over 15 generations, for the 5 cases.

For the MR model (cases 1, 2 and 3), GSF had a descent tendency when

crossover fraction increased, whilst for the Ogden model (cases 4 and

5), GSF had opposite tendency.

Those values of the population size, crossover fraction and mutation

that provided the best mean and smallest deviation of GSF in the re-

sults of the preliminary study were selected (Figure 6.9). Based on this

results, the population size was set to 100 individuals and the selected

value of the crossover fraction was 0.9 for cases 1, 2 and 3. For case

4, the population size was set to 50 individuals and crossover fraction

to 0.2, and for case 5 the population size was set to 50 individuals and

crossover fraction of 0.3.
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Figure 6.9: Means and standard deviations of GSF over 15 generations, for
each of the values of the crossover fraction.
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6.3 Results

6.3.1 Results of the one-parameter optimization

Table 6.3 shows the reference and the estimated elastic constants after

the optimization and the committed error for cases 1 and 2.

Table 6.3: Elastic constants obtained using ISA and the committed Relative
Mean Absolute Error (RMAE) for the two cases.

Parameter Reference Estimated RMAE (%)

Case 1 E (Pa) 7,800 7,801 0.0128

Case 2
C10 (Pa) 9,850 9,848 0.0203
C01 (Pa) 26,290 26,291 0.0038

Figures 6.10, 6.11 and 6.12 show the results of the one-parameter

estimation for cases 1 (block) and 2 (liver). The figures show the value

of the elastic constant and the value of GSF in each iteration. For case

1, ISA terminated after 37 iterations (Figure 6.10). It is observed that

the results were stabilized after 25 iterations approximately. The final

value of the GSF was smaller than 0.4 mm. For case 2, ISA terminated

after 31 iterations in the optimization of C10. It is observed that the

results were stabilized after approximately 25 iterations. The final value

of GSF was approximately 0.462 mm. Finally, in the optimization of

C01 for case 2, ISA terminated after 43 iterations. The results were

stabilized approximately after 20 iterations. The final value of GSF

was approximately 0.462 mm again. It is observed that GSF presents

the most oscillation for case 1 during the estimation of E (varies between

0.4 mm and 0.7 mm) compared with the estimation of C10 and C01 for

case 2.
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Figure 6.10: Results of the one-parameter estimation for case 1 (the block):
Value of E in Pa (left) and value provided by GSF in mm (right) in all the
iterations of the Iterative Search Algorithm.

Figure 6.11: Results of the one-parameter estimation for case 2 (the liver):
Value of C10 in Pa (left) and value provided by GSF in mm (right) in all the
iterations of the Iterative Search Algorithm.
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Figure 6.12: Results of the one-parameter estimation for case 2 (the liver):
Value of C01 in Pa (left) and value provided by GSF in mm (right) in all the
iterations of the Iterative Search Algorithm.

6.3.2 Results of the two-parameter optimization

Results of Iterative Local Optimization

Figure 6.13 illustrates the 100 random initial points and their final posi-

tion after using ILO for the five cases. The contour plot of GSF is visible

under the points. As these figures show, the local minima of GSF are

located on a wide area (darkest part of the contour plot in Figure 6.13)

for all the cases except for case 5. For this reason, different solutions

were obtained in each one of the 100 iterations using ILO (square dots).

Table 6.4 shows the elastic constants obtained in the optimiza-

tion process for the five cases and the Relative Mean Absolute Error

(RMAE) committed by ILO.



6.3. Results 121

Figure 6.13: Contour plot of GSF with the 100 random initial points (pink
circles) and their final position after the constrained non-linear optimization
(yellow squares) in all the cases.
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Table 6.4: Elastic constants obtained using ILO and the committed RMAE
for the five cases.

Parameter Reference Estimated RMAE (%)

Case 1
C10 (Pa) 9,850 10,069 2.22
C01 (Pa) 26,290 26,086 0.78

Case 2
C10 (Pa) 5,000 5,966 19.32
C01 (Pa) 20,000 19,033 4.83

Case 3
C10 (Pa) 10,000 10,400 4.00
C01 (Pa) 35,000 34,747 0.72

Case 4
µ (Pa) 200 198.88 0.56
α (-) 10 10.22 2.20

Case 5
µ (Pa) 500 501.70 0.34
α (-) 15 14.85 1.00

Results of Scatter Search

Figure 6.14 shows the histogram of the computed GSF values where

local minima were found by SS in the five cases. As it was expected,

most of the GSF local minima found by SS lays on the smallest values

of GSF. It is observed that the largest number of local minima close to

zero was found in case 3 (about 100), compared with the other cases.

In contrast, the local minima was more scattered in cases 4 and 5.

Table 6.5 shows the values of the elastic constants found by SS and

the committed Relative Mean Absolute Error (RMAE).
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Figure 6.14: Histogram of the computed GSF values for the 5 cases using
GS.
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Table 6.5: Elastic constants obtained using Scatter Search and the committed
RMAE for the five cases.

Parameter Reference Estimated RMAE (%)

Case 1
C10 (Pa) 9,850 9,827 0.23
C01 (Pa) 26,290 26,367 0.29

Case 2
C10 (Pa) 5,000 5,473 9.46
C01 (Pa) 20,000 19,521 2.39

Case 3
C10 (Pa) 10,000 9,934 0.66
C01 (Pa) 35,000 35,040 0.11

Case 4
µ (Pa) 200 207.77 3.88
α (-) 10 9.58 4.20

Case 5
µ (Pa) 500 501.66 0.33
α (-) 15 14.92 0.53

Results of Genetic Algorithms

Figures 6.15 and 6.16 display the best and mean GSF at each generation

of GA for the 5 cases. It shows the improvement in the GSF value,

achieving its minimum before 15 generations for all the cases. It also

shows the average distance between individuals at each iteration, which

is a good measure of the population diversity. As Figures 6.15 and

6.16 show, the distance is decreasing generation after generation hence

individuals are getting closer and closer after each new generation.
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Figure 6.15: GA results: Best and mean fitness of computed GSF at each
generation (left) and average distance between individuals at each generation
(right) for the MR model (cases 1, 2 and 3).



126 Chapter 6. Estimation of the elastic constants of biomechanical models

Figure 6.16: GA results: Best and mean fitness of computed GSF at each
generation (left) and average distance between individuals at each generation
(right) for the Ogden model (cases 4 and 5).
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Table 6.6 shows the values of the elastic constants found by GA and

the committed Relative Mean Absolute Error (RMAE).

Table 6.6: Elastic constants found using Genetic Algorithms and the com-
mitted RMAE for the five cases.

Parameter Reference Estimated RMAE (%)

Case 1
C10 (Pa) 9,850 9,521 3.34
C01 (Pa) 26,290 26,518 0.87

Case 2
C10 (Pa) 5,000 4,605 7.90
C01 (Pa) 20,000 20,400 2.00

Case 3
C10 (Pa) 10,000 9,955 0.45
C01 (Pa) 35,000 34,857 0.41

Case 4
µ (Pa) 200 187.13 6.43
α (-) 10 10.65 6.50

Case 5
µ (Pa) 500 499.13 0.17
α (-) 15 15.03 0.20

6.3.3 Comparison of the results obtained by the three

algorithms

This section compares the results of the optimization strategies used

for the two-parameter optimization. Table 6.7 illustrates the obtained

elastic constants by Iterative Local Optimization (ILO), Scatter Search

(SS) and Genetic Algorithms (GA) compared with the elastic constants

of the reference deformations. Table 6.8 shows the Relative Mean Ab-

solute Errors (RMAE) committed by the three algorithms.



128 Chapter 6. Estimation of the elastic constants of biomechanical models

Table 6.7: Comparison between the elastic constants estimated using Iterative
Local Optimization (ILO), Scatter Search (SS) and Genetic Algorithms (GA)
for the five cases.

Parameters Value

Parameter Reference ILO SS GA

Case 1
C10 (Pa) 9,850 10,069 9,827 9,531
C01 (Pa) 26,290 26,086 26,367 26,518

Case 2
C10 (Pa) 5,000 5,966 5,473 4,005
C01 (Pa) 20,000 19,033 19,521 20,400

Case 3
C10 (Pa) 10,000 10,400 9,934 9,955
C01 (Pa) 35,000 34,747 35,040 34,857

Case 4
µ (Pa) 200 198.88 207.77 187.13
α (-) 10 10.22 9.58 10.65

Case 5
µ (Pa) 500 501.70 501.66 499.13
α (-) 15 14.85 14.92 15.03

Table 6.8: Relative Mean Absolute Error (RMAE) committed by Iterative
Local Optimization (ILO), Scatter Search (SS) and Genetic Algorithms (GA)
for the five cases.

RMAE (%)

Parameter ILO SS GA

Case 1
C10 2.22 0.23 3.34
C01 0.78 0.29 0.87

Case 2
C10 19.32 9.46 7.90
C01 4.83 2.39 2.00

Case 3
C10 4.00 0.66 0.45
C01 0.72 0.11 0.41

Case 4
µ 0.56 3.88 6.43
α 2.20 4.20 6.50

Case 5
µ 0.34 0.33 0.17
α 1.00 0.53 0.20
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As Table 6.8 illustrates, GA provided the best results for the cases 2

and 5, SS for the case 1 and ILO for case 4. In the case 3, GA obtained

the best result for the parameter C10 and SS for the parameter C01.

In conclusion, GA provided the best results for 5 out of 10 searched

parameters (two parameters from each of the five studied cases). SS

provided the best results for 3 out of 10 parameters and ILO provided

the best results for 2 out of 10 parameters. Therefore, GA were the

algorithms which provided the best results in most of the cases. More-

over, the results provided by GA were still valid in the 5 out of 10

searched parameters where GA did not provide the best results.

6.4 Discussion

The method proposed in this chapter has been verified by means of

a controlled procedure, where the boundary conditions and the elastic

constants of the models were known. The reference solution consisted

of an elastic deformation for a choice of elastic constants of two well-

defined constitutive models. However, the reality is much more complex

because the constitutive model of a biological tissue is not perfectly de-

fined. Moreover, in the establishment of the boundary conditions, there

is an amount of inevitable noise. Nevertheless, this is a preliminary

work that establish a framework that will allow the estimation of the

real behavior of the in vivo human liver.

Inside the human body, the liver comes into contact with the rest of

the organs, which are not rigid. Therefore, the extraction of boundary

conditions in real cases is not obvious and its incorrect selection can

lead to invalid results. A solution to obtain the boundary conditions

could be the use of a deformable registration between the real deformed

liver (inhalation) and the non-deformed liver (exhalation). Then, GSF
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could be calculated over some internal structure of the liver, as a tumor

or as the hepatic tree.

The fact that the data from GSF was stored and fitted in ILO was

useful not only for the estimation of the optimal elastic constants, but it

also provided important and visible information about the behavior of

these constants inside the ranges of study (Figure 6.6). These surfaces

that depended on the model parameters allowed to better understand

the relationship between the parameters and how their variation can

affect the solution.

The problem of ILO is that the necessary simulations to obtain

enough data to represent GSF faithfully grow exponentially when more

than two elastic constants must be found. For this reason, this method

is not feasible for the search of a large number of parameters. ILO could

be improved if a coarse surface is obtained and, after some minimization

steps, a local refinement of the surface is performed. However, there

exist other techniques that perform a better evaluation of the search

space, which is more critical for high dimensional spaces. For this rea-

son, techniques based on evolutionary computation were proposed and

evaluated, like SS or GA. These techniques allow fine explorations of

the space in some promising areas and a coarse search in other areas

with apparently less relevant information. Moreover, the use of a pop-

ulation approach is an appropriate way to search space diversification,

thus outperforming local search [Fogel, 1995; Lourenço et al., 2010].

Another problem of increasing the number of elastic constants is

that the random initialization of points may be a non-optimal way to

analyze the search space since GSF may be very complex and contain

multiple local minima. This random initialization was proposed due to

the surface simplicity and the size of the search space. Other techniques

based on the initial point generations, as latin hypercube or orthogonal
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sampling could also be implemented. However, even using those tech-

niques to improve ILO, SS and GA will provide a better performance

since they are especially designed to obtain the global minimum of a

function, thus avoiding the problem of falling into local minima [Fogel,

1995; Jong, 2006]. Hence, as the number of elastic constants increase,

the choice of SS or GA is more and more convenient compared to ILO.

6.5 Conclusions

This chapter has presented computational methods to estimate the elas-

tic constants of the biomechanical models proposed for the human liver.

These methods are aimed at avoiding the invasive measurement of the

mechanical response of this organ and the use complex hardware or ex-

pensive test devices to perform this task. Several search strategies (It-

erative Search Algorithm, Iterative Local Optimization, Scatter Search

and Genetic Algorithms) which make use of GSF as cost function, have

been applied to accurately find the elastic constants of the models. The

results show that the use of medical images can play a key role in the in

vivo estimation of the biomechanical model parameters for internal or-

gans since the average of the relative mean absolute errors committed

in the one-parameter optimization is smaller than 0.012%. The rel-

ative absolute error committed in the two-parameter optimization by

the three search strategies is smaller than 4%. These results also show

that GSF is a very appropriate function for the estimation of these

elastic constants.





Chapter 7

Simulation of the
biomechanical behavior of
the human liver

In this chapter, two biomechanical models are used, a first-order Ogden model

for a proof of concept and a second-order Ogden model for the simulation

of the real biomechanical behavior of a human liver. Two CT studies from

an in vitro human liver placed into a device that emulates human breathing

are acquired corresponding to end-exhale (initial state) and end-inhale (de-

formed state). Two FE meshes are obtained from both studies and a point

set registration algorithm (the Coherent Point Drift) is applied in order to ob-

tain the boundary conditions for the FE simulation of the deformation caused

by inhalation. Afterwards, the FE simulation is embedded within Genetic

Algorithms to find the elastic constants that define the patient-specific biome-

133
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chanical behavior of the liver. This is performed by means of a new version

of GSF that measures at each iteration the dissimilarity between a synthetic

tumor inside the experimentally deformed liver and the tumor from the FE-

simulation of that deformation. For this last real case, three surgical needles

were inserted into the liver before the experiment in order to validate the pro-

posed model. The results show that the proposed method is suitable to obtain

the patient-specific biomechanical model of the liver avoiding invasive mea-

surements of its mechanical response since the error committed in the tumor

location for the real case is 0.73 mm and the average distance and average

angle between needles are 2.39 mm and 4.64◦ respectively.

7.1 Introduction

Locating and tracking liver tumors are challenging tasks in some treat-

ments of liver cancer as radiation therapy, radio-frequency or high-

intensity focused ultrasound. This is mainly due to changes in the shape

and the position of the liver caused by stomach filing, daily patient po-

sitioning, and respiratory motion. Tumor location is also important

in the placement of fiducials around a tumor, which is used later as

reference for the dose delivering, or in some critical types of biopsies

previous to the treatment.

Modeling the liver deformation forms the basis for the development

of new clinical applications that improve the diagnosis, planning and

guidance in surgery. In particular, it allows taking into account changes

in the liver position and shape improving the tumor targeting accuracy.

Finite Element (FE) modeling allows estimating the tumor location by

means of the relationship between a displacement and/or a force field

and the biomechanical behavior of the liver tissue. However, to obtain

a patient-specific biomechanical model for the liver, it is necessary to
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estimate the elastic constants that describe its constitutive equations.

As described in previous chapters, the mechanical response of the

liver has been acquired in the literature by means of minimally invasive

or open surgery aimed at estimating the elastic constants of the pro-

posed biomechanical models. However, it is unfeasible to perform these

experimental surgery tests inside the operating room since it can lead

to a high risk for the patient, a high economical costs and a nuisance

for both the clinician and the patient.

In this chapter, a FE simulation of the respiratory liver deformation

has been embedded within an optimization routine aimed to estimate

the patient-specific biomechanical properties of the liver avoiding inva-

sive measurements. The steps for this estimation were the following:

1. A liver with an inserted synthetic tumor (a marble) was placed

inside a device that emulated the human breathing and two FE

meshes were obtained from the liver corresponding to end-exhale

and end-inhale.

2. A point set registration algorithm was applied on the external

nodes of the FE liver meshes in order to obtain the boundary

conditions to apply for simulating the deformation that the liver

undergoes during breathing.

3. Genetic Algorithms were used to find the elastic constants that

provide the smallest error (GSF value) between the tumor volume

in the experimentally deformed liver (end-inhale) and the tumor

volume in the FE simulation of that deformation. For that, a

combination of elastic constants provided by GA at each FE sim-

ulation was used. GA were chosen since they provided the best

results as explained in Chapter 6.
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In order to verify the correct performance of the method, a proof of

concept was performed before. In this proof of concept, the step 3 from

the above mentioned steps was modified. A target deformation (a FE

simulation of end-inhale with assumed elastic constants together with

the boundary conditions estimated in the step 2) was used instead of

the FE mesh from the experimentally deformed liver.

In the real case, the model obtained using GA was validated analyz-

ing the distance and angle of three needles inserted into the liver before

the acquisition of the two CT studies.

7.2 Materials and methods

A device called artificial human torso (AHT) was designed and built in

order to recreate the deformation of the liver caused by human breath-

ing. All the materials used for the AHT assembly were chosen in order

to avoid artifacts generation during the image acquisition with a CT

scanner. The size of the AHT was approximately 180 x 400 x 600 mm.

The main components of the AHT were the artificial diaphragm, the

foam and the liver cavity (Figure 7.1).

The AHT was an improved design based on the respiratory liver mo-

tion simulator constructed by Maier-Hein et al. [2009]. The improve-

ments in the AHT design were based on morphological aspects: the

cavity of the liver was placed in the left side of the box instead of in the

middle and the diaphragm was considered curved, which is closer to the

reality than considering it flat. The artificial diaphragm moved in the

upper-lower sense pushing the liver against the foam, which emulated

the rest of abdominal organs.

Two human livers from anonymous donors (discarded for transplan-

tation) were supplied by the Unidad de Ciruǵıa Hepatobiliopancreática
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Figure 7.1: Artificial Human Torso that emulated the respiratory motion.

y Transplante Hepático of the Hospital Universitari i Politècnic La Fe

de Valencia. One of the liver was used for the proof of concept and the

other one was used to estimate the real behavior of the liver. In this

case, 3 needles were introduced into the liver in order to validate the

proposed model. A marble was introduced into each liver through the

inferior vena cava emulating an internal structure that can be visible in

CT images, e.g., a tumor. The livers were placed in the AHT cavity for

the experiment and the AHT was positioned into the scanner Brillance

iCT from Philips. Two CT studies were performed on each liver, when

the artificial diaphragm was at its initial position (end-exhale, corre-

sponding to non-deformed state) and when it reached the final position

(end-inhale, corresponding to the deformed state), emulating the real

breathing (Figure 7.2).

The scanner parameters for the image acquisition were set to 80 KVp

and 100 mAs and images in DICOM format were acquired with a size of

512 x 512 x 258 voxels. The voxel size was 0.98 x 0.98 x 1.5 mm for the

liver in the proof of concept and 0.64 x 0.64 x 1.5 mm for the liver chosen
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Figure 7.2: CT image acquisition of an in vitro human liver with Brillance
iCT Philips in the Hospital Universitari i Politècnic La Fe de Valencia. Two
image acquisitions were performed (end-exhale and end-inlale) using the AHT.

in the real estimation of the elastic constants. Simpleware 4.2 was used

to process the images in order to obtain two FE meshes from each

liver, from the non-deformed state and the deformed state. First, the

livers and the synthetic tumors were segmented and 3D morphological

models of the liver were generated. Afterwards, a smoothing Gaussian

filter was used to obtain continuous surfaces and, finally, the FE meshes

were obtained.

FE modeling allows estimating the tumor location by means of the

relationship between the displacement and/or the force field and the

biomechanical behavior of the liver tissue. On the other hand, point set

registration allows mapping the end-exhale FE mesh to the end-inhale

state creating a displacement field that defines the transition between

both states, i.e., the boundary conditions of the tacked problem. The

approach was to perform a FE simulation of the deformed state from
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the non-deformed state (end-exhale) similar to the target deformation

(end-inhale) and to estimate the error committed on the synthetic tu-

mor location. This FE simulation was included within an iterative

optimization routine, Genetic Algorithms, aimed at finding the optimal

elastic constants that define the biomechanical behavior of the human

liver. Figure 7.3 shows an schematic of the process.

Figure 7.3: Pipeline of the final method for the real estimation of the elastic
constants.

A point set registration algorithm, the Coherent Point Drift (CPD)

[Myronenko and Song, 2010], was used to obtain nodal displacements
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of the liver surface, which were the boundary conditions to apply to the

FE mesh of the non-deformed liver. The goal of this kind of registration

is to find correspondences between two sets of points and to obtain the

transformation that maps one of the sets to the other. CPD considers

the alignment between both sets of points as a probability density es-

timation problem, where the first point set (Gaussian Mixture Model

centroids) is fitted to the second point set (data). CPD forces the cen-

troids to move coherently preserving topological structure. In this work,

CPD was used to align the external nodes of the liver in exhalation with

the external nodes of the liver in inhalation (Figure 7.4). Thereby, the

displacements to reach the deformed state were obtained. Once the

boundary conditions were estimated, the final tumor location in the

FE-simulated deformed state will only depend on the elastic constants

of the biomechanical model.

Figure 7.4: External nodes from the non-deformed liver (GMM centroids)
and experimentally deformed liver (Data) before CPD registration (left) and
after CPD registration (right).
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The cost function used by GA was a new version of the Geometric

Similarity Function (GSF), which was computed as the natural loga-

rithm of the last GSF version (Equation 7.1).

GSF = ln
(

(1− JC)MHD
)

(7.1)

The use of the natural logarithm allows to get bigger differences

between values near to the minimum (approximately zero) since the

natural logarithm of zero tends to -∞. GSF provided the error between

two voxelized FE meshes of the synthetic tumor in each individual so-

lution from GA: one mesh from the experimentally deformed liver and

other mesh from the FE simulation using the biomechanical model pa-

rameters provided by GA. The smaller the GSF value, the smaller the

committed error in the volume comparison of the tumor from the exper-

imentally deformed liver and the tumor from the FE simulation. The

minimum of the expression inside the natural logarithm in Equation 7.1

tends to zero.

7.2.1 Proof of concept

Based on the results from [Hu and Desai, 2004; Mart́ınez-Mart́ınez et al.,

2013a], where it was found that the Ogden model provided better re-

sults than other hyperelastic models, a first-order Ogden model was

chosen to represent the mechanical behavior of the liver. To perform

the proof of concept, a target deformation consisting of a simulation

with known parameters was used instead of the FE mesh of the ex-

perimentally deformed liver. The known parameters are the same as

obtained in Chapter 5 for Liver 1 (µ=180.46 Pa and α =15.89). K0

was fixed to 107 Pa following the assumption of quasi-incompressible

behavior [Nava et al., 2008].
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Initially, GA were launched setting the population to a small value

(20 individuals) in a wide search range (Table 7.1) to carry out a rough

exploration. Afterward, GA were launched again using a population

with 50 individuals, reducing by half the size of the search range and

centering the new halved range in the solution found by GA in the

previous search range. These process was iteratively repeated three

more times. The two individual solutions from GA with the best cost

function values in the current population were chosen as elite. These

elite individuals formed part of the next population. From the remain-

ing individuals, the 80% were assigned for mutation and the 20% for

crossover.

Table 7.1: Lower and upper bounds from the search ranges for the optimiza-
tion of the biomechanical parameters of the liver in the proof of concept.

Lower bound Parameter Upper bound

10 Pa ≤ µ ≤ 1,000 Pa
1 ≤ α ≤ 50

GA were used to find the optimal elastic constants within the initial

bounds showed in Table 7.1, which are wider than in Chapter 6. These

bounds were normalized (between 0 and 1) to allow the optimization to

converge faster and avoid the cost function to take skewed shapes. The

method was implemented in a MATLAB script that communicated with

ANSYS. This MATLAB script denormalized the elastic constant com-

binations from the individual solutions (Equation 7.2), and launched

ANSYS with the denormalized elastic constants. µn stands for the nor-

malized constant; and lb and ub stand for the lower bound and upper

bound from the search ranges, respectively. Finally, the results after

the FE simulation were read, the FE meshes of the tumor were vox-
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elized and the error between the voxelized tumor from the reference

deformation and from the FE simulation was computed by means of

GSF.

µ =
(
µn(ub− lb)

)
+ lb (7.2)

7.2.2 Elastic constants for the real case

A second-order Ogden model was chosen to represent the mechanical

behavior of the liver. GA were also used to find the optimal elastic

constants within the bounds showed in Table 7.2. Larger search ranges

than in the proof of concept were used to allow GA identify the cor-

rect elastic constant values. For this reason the population size was

increased to a value of 100 individuals. These bounds were also normal-

ized for the same reasons mentioned in the proof of concept. Firstly, GA

randomly generated an initial population in the first generation which

contained 100 individual candidate solutions from 100 biomechanical

model parameter combinations within the specified normalized bounds.

The entire method was implemented in a MATLAB script that commu-

nicated with FEBio, which is a free FE software. This MATLAB script

denormalized the constant combinations from the individual solutions

as shown in Equation 7.2 and created a FEBio input file for each de-

normalized combination. The script launched the input file, read the

results once FEBio finished the simulation and finally, computed the

GSF value between the experimental data and the FE simulation re-

sults.

In this case, two of the individual solutions were also chosen as

elite and from the 98 remaining individuals, the 80% were assigned for

mutation and the 20% for crossover.
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Table 7.2: Lower and upper bounds from the search ranges for the optimiza-
tion of the biomechanical parameters of the liver for the real case.

Lower bound Parameter Upper bound

100 Pa ≤ µ1 ≤ 100,000,000 Pa
-100 ≤ α1 ≤ 100

100 Pa ≤ µ2 ≤ 100,000,000 Pa
-100 ≤ α2 ≤ 100

7.3 Results

7.3.1 Results from the proof of concept

GA terminated due to the average change in GSF over the last 50 gen-

erations was smaller than 0.1 for the wide search range and smaller than

10−6 for the rest search ranges, which were the values of the stipulated

tolerance. Figure 7.5 shows the best and mean GSF values provided

by GA in each generation for the initial search range (wide range) with

20 individuals and for the estimated halved ranges with 50 individuals

(medium, narrow and very narrow search ranges).

Table 7.3 shows the elastic constants estimated by GA using the four

search ranges and the values of the estimated bounds for the medium,

narrow and very narrow search ranges. It also shows the minimum GSF

values for the four search ranges.

The minimum GSF value found by GA was -12.76, which corre-

sponds with a Jaccard coefficient equal to 0.99998 and a modified Haus-

dorff distance of 0.15985 mm. The relative mean absolute error of the

final parameters (very narrow range) estimated by GA was 2.07% for µ

and 0.38% for α.
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Figure 7.5: GA results: Best and mean GSF values at each generation for
the four search ranges.
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Table 7.3: Estimated bounds for the medium, narrow and very narrow search
ranges; estimated elastic constants and GSF minimum values for the 4 search
ranges.

Search
Range

Parameter
Lower
bound

Upper
bound

estimated
parameter

GSFmin

Wide
µ (Pa) 10 1,000 370.12

-8.75
α (-) 1 50 18.60

Medium
µ (Pa) 120 620 255.58

-9.19
α (-) 7 31 15.25

Narrow
µ (Pa) 130 380 236.57

-11.05
α (-) 9 21 14.97

Very narrow
µ (Pa) 175 300 184.19

-12.76
α (-) 12 18 15.82

7.3.2 Results for the real case

GA terminated for the same criterion as in the proof of concept: the

average change in GSF was smaller than the tolerance (10−6) over the

last 8 generations (Figure 7.6). As Figure 7.6 shows, GSF improved over

the generations and the average distance between individuals measured

the population diversity, where this distance was decreasing over the

generations, confirming that individuals were getting closer from each

other.

The optimal elastic constants estimated by GA in the real case are

shown in Table 7.4. The distance between the center of mass of the

tumor from the experimentally deformed liver and from the FE simula-

tion using these optimal elastic constants was only 0.73 mm. This is a

small distance that allows establishing that these elastic constants can

really represent the real biomechanical behavior of this liver.



7.3. Results 147

Figure 7.6: GAs results: best and mean cost function at each generation
(top) and average distance between individuals at each generation (bottom).

Table 7.4: Optimal elastic constants of the second-order Ogden model esti-
mated by GA for the in vitro human liver.

µ1 (Pa) α1 (-) µ2 (Pa) α1 (-) GSF (ln(mm))

59,342,699 -50 66,907,693 21.50 -2.78
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To validate the model, three surgical needles were inserted into the

liver before the experimental deformation. The final position of the

three needles from the optimal FE-simulated deformation was compared

with the final position of the three needles from the experimentally

deformed liver (Figure 7.7). The error measurements considered for

validation were: the angles between the experimental and simulated

needles (ϕ) and the Euclidean distances between the center of mass of

the needles (dcm), which are shown in Table 7.5.

Figure 7.7: Experimentally deformed and non-deformed liver with the tumor
and the three needles (left) and comparison between the experimentally de-
formed liver and FE simulation with the tumor and the three needles (right).
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Table 7.5: Validation errors for the three needles.

ϕ (◦) dcm (mm)

needle 1 3.99 0.98
needle 2 6.07 2.20
needle 3 3.86 3.97

7.4 Discussion

The research detailed in this chapter has shown how the use of medical

images has permitted to obtain the elastic constants of the second-order

Ogden model for a human liver through non-invasive explorations. The

method proposed in this work has demonstrated to be suitable for the

estimation of the biomechanical parameters of the human liver since the

error committed was fairly small (a distance of 0.73 mm between the

center of mass of the tumor from the experimentally deformed liver and

from the FE-simulated deformation). The minimum GSF was -2.77,

which corresponds with a Jaccard coefficient of 0.92 and a modified

Hausdorff distance of 0.74 mm.

The model has been validated comparing the distance and the angle

between 3 needles inserted into the experimentally deformed liver and

the three needles from the optimal FE simulation of that deformation.

Therefore, the method presented in this chapter has not only been used

to estimate the elastic constants of the Ogden model, but also a com-

plete and validated patient-specific FE model of the liver deformation

caused by breathing has been obtained. This model can be used during

image-guided interventions, as biopsy or radiation therapy, improving

the tumor targeting accuracy, reducing the margins of the irradiated

tissue and reducing the treatment times.

Although the method has been used to obtain and validate a second-
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order Ogden model for an in vitro human liver, it is applicable on real

patients. Furthermore, other biomechanical models can be obtained

and validated with the same methodology if represent the behavior of

the in vivo human liver. As mentioned in Chapter 6, the liver comes

into contact with the rest of abdominal organs in real patients. This

fact complicates the way to estimate the boundary conditions. For this

reason, a deformable registration method (CPD) has been used to esti-

mate the boundary conditions, instead of modeling a contact problem

between the artificial diaphragm, the liver and the foam. This approx-

imation makes more applicable the proposed method for the in vivo

human liver. However, the fact of using CPD forced to use the GSF

on the tumor and not on the entire volume of the liver. Moreover, as

the synthetic tumor was rigid, GSF did not provide overlap information

about the tumor deformation. However, as the tumor was displaced,

GSF provided information about the overlap due to the tumor transla-

tion. Nevertheless, GSF is still applicable to other entire organs, where

the problem of the boundary conditions does not appear.

Regarding the validation, the procedure proposed in this chapter

should be changed for real patients. The error validation could be mea-

sured on some specific internal structure as the hepatic tree, or only

taking into account some characteristic points as bifurcations or the

end of the blood vessels. Other option would be validating the method

by means of intermediate CT images. Patients subjected to radiation

therapy undergo 4D-CT scan. Therefore, these images could be used

to validate the model at intermediate stages.

In this context, it is important to highlight that some researchers

have used FE-based deformable registration approach to model the res-

piratory liver motion [Bharatha et al., 2001; Liang and Yana, 2003;

Brock et al., 2005, 2006; Al-Mayah et al., 2011]. However, it is wrongly
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assumed that the material properties does not influence on the inter-

nal tissue deformation when the organ surface is fully constrained and,

hence, the elastic constants that define the mechanical behavior of the

tissue could be taken from the literature. This can be true if a simple

mechanical behavior, e.g. linear elastic, is considered. However, the

liver behaves non-linearly for large deformations, and this is not true in

this cases.

The study performed by Chi et al. [2006] showed that exist a ma-

terial sensitivity on the accuracy of FE-based deformable registration

of organs. This study demonstrated that the registration error for a

sub-volume increase as its distance from the boundary increase. It was

also revealed that the achievable accuracy of a FE-based deformable

organ registration method depends on the shape of an organ. For thin

hollow organs, the registration error caused by the material sensibility

was fairly small. However, for solid organs, as the liver, the error regis-

tration was larger. In the proof of concept carried out in this chapter,

a maximum distance of approximately 4.5 mm was found between the

tumor position in the FE-simulated deformation that provided the best

GSF value and the tumor position in the FE simulation that provided

the worst GSF value, which proves the importance of determining the

elastic constants of the proposed models.

7.5 Conclusions

This chapter has presented a computational method that has been vali-

dated and that allows the estimation of the patient-specific elastic con-

stants of the second-order Ogden model for a human liver. This method

has been developed aimed at avoiding the invasive measurements of the

liver tissue mechanical response by means of the use of medical images
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and evolutionary computation. This has been achieved by means of

the optimization using Genetic Algorithms of the Geometric Similar-

ity Function, which calculated the differences between the volume of

a synthetic tumor inserted into an experimentally deformed liver and

the volume of the same tumor from the FE simulation. A validated

patient-specific biomechanical model of the liver has been also obtained

to simulate the deformation of this organ during breathing. The method

proposed in this chapter will allow the estimation of the in vivo patient-

specific liver behavior improving the tumor targeting accuracy during

image-guided treatments, for instance: the margin reduction in radia-

tion therapy, radio-frequency or high-intensity focused ultrasound.



Chapter 8

Conclusions and future
prospects

8.1 General conclusions

Liver cancer treatment is challenging due to the difficulties of tumor

location and tracking during surgical interventions. This is mainly due

to the liver motion and deformation caused by the patient’s breathing.

Computer-assisted surgery with the use of the biomechanical modeling

of the liver provides a set of tools to estimate the liver deformation and

tumor location during the patient’s breathing. All the techniques devel-

oped in this field will improve the accuracy of in-room tumor targeting.

One of the most important challenges is to develop patient-specific mod-

els of the liver deformation, since the liver behaves differently for each

patient. Another important issue is to validate the models obtaining as

much information as possible about the committed error. This disserta-

tion has addressed these two main problems arisen in the biomechanical

modeling of the liver tissue.

In Chapter 5, several models to represent the behavior of the ex vivo

153
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lamb liver have been proposed and validated. To validate the models,

Jaccard coefficient and Hausdorff distance have been used. The model

that best represented the mechanical behavior of the lamb liver under

traction loads (20 g and 40 g) was the hyperviscoelastic model using

the Ogden parameters. This chapter has demonstrated the potential

that presents the use of medical images in the process of validation of

biomechanical models. However, what really gives to these images this

potential is the use of similarity coefficients on them. It has been shown

that combining coefficients based on overlap and distance is possible to

make a better assessment of the error over the entire volume of the liver.

On the other hand, combining such coefficients has allowed formu-

lating a novel cost function, the Geometric Similarity Function (GSF),

that permitted together an optimization routine the estimation of the

elastic constants that define the mechanical behavior of the liver. Chap-

ter 6 has presented computational methods to estimate these elastic

constants. The presented methods are aimed at avoiding the invasive

measurement of the mechanical response of this organ and the use of

complex hardware or expensive test devices to perform this task. Sev-

eral search strategies, which make use of GSF, have been applied to

accurately find the elastic constants of the models. The search strategy

that provided the best results was Genetic Algorithms. This chapter

has demonstrated that GSF is a very good measure of error to find

the optimal elastic constants since it takes into account overlaps and

distances. However, it is hardly interpretable. Therefore, the use of

both Jaccard coefficient and Hausdorff distance for validation is easier,

analyzing them separately, since it makes easier to interpret the error

if those features (distance and overlap) are taken as different variables.

In Chapter 7, a validated patient-specific biomechanical model of

an in vitro human liver has been obtained to simulate the deformation
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of this organ during breathing. The used methodology is applicable

to real patients. The elastic constants of a second-order Ogden model

have been estimated by means of the optimization of GSF using Genetic

Algorithms, which calculated the differences between the volume of a

synthetic tumor inserted into an experimentally deformed liver and the

volume of the same tumor from the FE-simulated deformation. The

proposed methodology has been validated comparing the distance and

the angle between 3 needles inserted into the experimentally deformed

liver and the three needles from the optimal FE simulation of that

deformation.

The problem of modeling the biomechanical behavior of in vivo hu-

man livers is that the liver has complex boundary conditions inside the

human body. To solve this problem, in Chapter 7 a point set registra-

tion algorithm, the Coherent Point Drift (CPD), was used instead of

modeling the contact between the liver, the artificial diaphragm and the

foam. This approximation brings closer the application of this method

to real patients.

8.2 Final conclusions

This thesis was aimed to develop new methodologies to improve the

determination of biomechanical behavior of the human liver. These

methodologies were based on the use of medical images and evolution-

ary computation. On one hand, the use of coefficients commonly used

in medical image analysis has allowed to improve the validation of the

biomechanical models providing more information about the committed

error than volume difference and/or maximum deformation in the load

direction where it was applied. On the other hand, the same coefficients

have permitted to compute a cost function, the Geometric Similarity
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Function (GSF), that allows the estimation of the elastic constants of

patient-specific biomechanical models proposed for the human liver,

thus avoiding the invasive measurements of its mechanical response.

This thesis has shown a multidisciplinary work using techniques from

different fields: Computational Biomechanics, Medical Image Analysis

and Computational Intelligence.

8.3 Future prospects

In future works, the method to estimate the elastic constants will be

used to model the biomechanical behavior of the liver on real patients.

Internal structures (non-rigid) as hepatic tree or characteristic points as

the bifurcations or the end of the blood vessels will be used to compute

GSF and the validation errors. Another important improvement will be

to compute several GSF values in intermediate states, not only in the

final deformed state. This will allow evaluating the model at different

stages thus obtaining a more precise behavior of the liver.

Our group is using this methodology to estimate the patient-specific

biomechanical models of the cornea and the breast using GSF, which

is optimized by Genetic Algorithms. In the case of the breast, a defor-

mation caused by the mammography plates is being simulated. In the

case of the cornea, a pressure applied by an air jet at the middle of the

cornea is being simulated.

The method is also applicable to other organs influenced by the

breathing such as lungs or pancreas.
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rat, C., Pareja, E., Cortés, M., López-Andújar, R., and Brugger,
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Bianchi, G., Solenthaler, B., Székely, G., and Harders, M. (2004). Simulta-
neous topology and stiffness identification for mass-spring models based on
fem reference deformations. In Proc. of the International Conference Medi-
cal Image Computing and Computed-Assisted Intervention (MICCAI 2004),
pages 293–301. Springer, Heidelberg.

Bonjer, H. J., Hazebroek, E. J., Kazemier, G., Giuffrida, M. C., Meijer, W. S.,
and Lange, J. (1997). Open versus closed establishment of pneumoperi-
toneum in laparoscopic suergery. Brithis Journal of Surgery, 84:599–602.

Brock, K. K., Dawson, L. A., Sharpe, M. B., Moseley, D. J., , and Jaffray, D. A.
(2006). Feasibility of a novel deformable image registration technique to fa-
cilitate classification, targeting, and monitoring of tumor and normal tissue.
International Journal of Radiation Oncology*Biology*Physics, 64(4):1245–
1254.

Brock, K. K., Hollister, S. J., Dawson, L. A., and Balter, J. M. (2002). Techni-
cal note: creating a four-dimensional model of the liver using finite element
analysis. Medical Physics, 29(7):1403–1405.

Brock, K. K., Sharpe, M. B., Dawson, L. A., Kim, S. M., and Jaffray, D. A.
(2005). Accuracy of finite element model-based multi-organ deformable
image registration. Medical Physics, 32(6):1647–1659.

Brouwer, I., Ustin, J., Bentley, L., Sherman, A., Dhruv, N., and Tendick, F.
(2001). Measuring in vivo animal soft tissue properties for haptic modeling
in surgical simulation. In Proc. of the Studies in Health Technology and
Informatics - Medicine Meets Virtual Reality (MMVR01), pages 69–74. IOS
Press Books.



Bibliography 171

Brown, J. D., Rosen, J., Kim, Y. S., Chang, L., Sinanan, M. N., and Han-
naford, B. (2003). In-vivo and in-situ compressive properties of porcine
abdominal soft tissues. In Proc. of the Studies in Health Technology and
Informatics - Medicine Meets Virtual Reality (MMVR03), volume 94, pages
26–32. IOS Press Books.
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